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ABSTRACT 
        This paper presents a variant of the Iterative Closest 
Point (ICP) algorithm for merging multiple color point clouds 
generated from a mobile 3D Light Detection and Ranging 
(LIDAR) System. This algorithm uses hue information 
generated from a camera along with the coordinates of the scan 
points and enables high accuracy registration of point clouds. A 
k-d tree based nearest neighbor search associates 
corresponding colored points in 4-D space between data and 
model point clouds. Singular Value Decomposition (SVD) 
method solves for the rigid rotation and translation. 
Experimental results illustrate that 3D color point clouds 
accelerate the 3D map registration if the hue data and model 
point clouds have sufficient hue distribution and the imaging 
sensor robustly captures the hue.  
 
1. INTRODUCTION 

Mobile mapping requires registration of map segments from 
various vantage points or those taken at various times.  Due to 
the distance restrictions of range sensors and robot positioning 
constraints, 3D point clouds obtained from a single vantage 
point are seldom adequate to construct complete maps. 
Therefore, it is important to register point clouds obtained from 
different vantage points together to construct a large-scale 
global 3D map [1-4]. Registering the map segments is trivial if 
precise position and orientation of the sensor are known about a 
global reference frame. However, sensing the position and 
orientation of the robot accurately is challenging and use of 
registration algorithms based on identifying common features 
and geometries in the two map segments may be accurate, 
efficient and economical.  A rigid both transformation with 
translation and rotation is obtained from the map registration 
process determining the map sensor position in 3D space and 
its orientation [5, 6]. The map registration quality can vary 
depending upon the accuracy required by the application. While 
high definition surveying may need sub-centimeter or 
millimeter accuracy, robotic exploration may only require much 
coarser registration.  

Generation of point clouds is the most common 3D map 
format in mobile robotic mapping. Discrete range points 
received from range sensor describe spatial information about 
the environment. Different techniques exist for merging 3D 
maps together by exploiting geometric features and measuring 
surfaces. The most popular registration algorithm for point 
cloud map registration is iterative closest point (ICP) algorithm 
[2], in which the corresponding closest points in different point 
clouds are associated and optimal rigid transformation to 
minimize a mean-square error of separation between associated 
points of the two data sets [3] is iteratively found. Upon 
convergence, ICP algorithm terminates at a minimum [2]. 
Several algorithms are in existence for calculating the 
minimum average distance between two point clouds.  
Singular Value Decomposition (SVD) method [3], eigen-system 
methods that exploit the orthonormal properties of the rotation 
matrices, and unit and dual quaternion techniques were adopted 
in ICP techniques [9]. Quaternion based algorithms have been 
used in ICP for map fusion in [2], SVD based algorithms are 
widely used in ICP and 6DOF SLAM [6, 7] as they are robust 
[3] to reach local minimum and easy to implement. 

Different variants of ICP have been investigated [8]. 
Corresponding points sampling, matching, weighting and 
rejecting are some methods used to accelerate the ICP 
algorithm. In the ICP algorithm, associating corresponding 
points in two point cloud data sets is the most critical step. 
Nearest neighbor search in 2D or 3D space is commonly used 
for associating the corresponding points. Parallel ICP 
algorithms have been developed [10] to accelerate computation 
speed. 

As vision sensors are now integrated into laser ranging 
systems [11], 3D point clouds also contain the color properties 
in the scene.  In this effort, the color attributes of the range 
point is utilized in ICP progress to increase computational 
speed and provide higher accuracy. The color attribute of the 
scanned point from Red-Green-Blue (RGB) space is translated 
into Hue-Saturation-Lightness (HSL) space and the hue value is 
used along with the coordinate data during the corresponding 



 
 

point association step. Prior work on hue association is based 
on filtering the point set on hue before ICP [11]. Some 
preliminary work on processing images to extract 
corresponding visual features for registration has also been 
reported [12].  

This paper introduces a hue assisted ICP algorithm for 
registration of color point clouds. The criteria for association 
are defined on a 4D space rather than 3D geometric space. The 
4th dimension selected is the hue value representing the intrinsic 
color values of the scene. While achieving the effect of a hue-
based filter, hue-association also reduces the nearest neighbor 
search burden considerably. The remaining sections of the 
paper describe the approach and the performance of the 
algorithm under several hue distributions in the scene. 

 
2. APPROACH 

 
2.1 Introduction to ICP Algorithm 

ICP algorithm is an iterative process that calculates rigid 
transformation matrix based on associating two point clouds. 
The point cloud defined about a known reference frame is 
termed as the model point cloud and that being registered as the 
data point cloud.  We use a SVD based mean square error 
minimization method to solve for the transformation matrix that 
registers the data point cloud into the model reference frame 
[3]. A transformation error function, E(R,T) is defined as Eq. 
(1) that defines the distance between associated points.  
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R and T are the relative 3D rotation and translation matrix 
for data point cloud transformation into the reference frame. Nm 
and Nd are the number of related points in model and data point 

clouds, respectively. { , , }i ix iy izm m m m=  represents the 
coordinates of the ith point in the model point cloud and  

{ , , }j jx jy jzd d d d=  is the jth point in data point cloud. Wij is 
weight for the association, which is assumed unity in this effort 
indicating that each associated point contributes equally to the 
error. 

The point association or correspondence between the data 
and model point clouds is based on a nearest neighbor search 
using a k-d tree. The transformation matrix R and T are then 
updated by minimizing Eq. (1). The point association and 
update of the transformation matrices, R and T is iteratively 
performed until the specified convergence criterion is reached. 
This variant of the ICP algorithm has been proved to be 
convergent [2]. 

 
2.2  Point Cloud Association in 4-D space 

The ICP computation speed and precision are highly 
dependent on association process. Use of a k-d tree for closest 
point search and association or the Nearest Neighbor Search 
(NNS) problem increases the speed and efficiency of the 
search. The k-d tree is a spatial partitioning data structure that 

stores and organizes data in a k dimensional space. The k-d tree 
is a generalized type of binary tree, with every leaf node is a k-
dimensional data point that splits the hyperspace into two 
subspaces. Splitting is done sequentially from the first 
dimension to the kth dimension.  A typical k-d tree in 2D space 
is shown in Fig. 1. Each point in the 2D space divides the space 
sequentially into a left-right spaces (about x-axis) or into a top-
bottom spaces (about y-axis). 

Nearest neighbor search can be done very efficiently on k-d 
trees. For a given point with known coordinates in the data 
point cloud and a search radius, the algorithm recursively 
moves down the tree and follows the same procedure as 
insertion. Search stops at a leaf node of the tree and the points 
in the model tree within the search radius are identified. The 
nearest point is obtained using distance computation. Figure 2 
shows the nearest neighbor (red square) for the search point at 
the center of the circle. The nearest point is then regarded as the 
point  associated with the search point.  

 

 
Figure 1 k-d tree construction in 2D space 

 

 
Figure 2 2D space nearest neighbor search in k-d tree 
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2.3 Color Assisted ICP Algorithm 
     Object color described in the RGB (red, green, blue) 
space is easily affected by light and camera performance. In 
order to ensure robustness to color search, only hue component 
of the color in the HSL (hue, saturation and lightness) space are 
used. Hue is used as the fourth dimension in the point 
association process as it is regarded to be independent of light 
condition and robustly represents the object color property. Hue 
value is weighted to construct a 4D k-d tree along with x y z 
range value for point association. Compared to 3D range point 
association (Fig. 3), more accurate corresponding point search 
can be expected from the 4D color point association when the 
object has a non-homogeneous hue distribution as shown in 
Fig. 4.  
 

 
(a) 3D point association   (b) 3D matching result 

Figure 3 3D ICP point association 
 

 
(a) Point association in 4D space  (b) 4D matching result 

Figure 4 Color ICP point association 
 

A typical range based nearest point association process is 
shown in Fig. 3. The data point cloud D{di ,i=1,2,3} must be 
registered into model point cloud M{mi ,i=1,2,3,4}. The 
registration process is based on spatial information in 3D space, 
the closest point search results in association as shown in Fig. 
3(a). After matching and transformation, data point cloud is 
then shown in Fig3 (b). Color ICP takes into account the hue 
information from color space during the point association 
process. Fig. 4(a) illustrates the initial position of data and 
model point sets. Each point now has the hue information and 
has the coordinates {x, y, z, h} in a 4D space. Compared to 
typical ICP, registration process in color ICP associates points 
based on the closest distance by combining the coordinate and 
hue value.  

Addition of hue in the nearest neighbor match is especially 
significant in those instances where the coordinate based 
matching results in non-unique registration. For example, if the 
points in the model and the data point clouds belong to a plane, 
traditional coordinate based ICP results in non-unique 
association of points. In such cases using the hue value (if 
differences exist in this dimension in the matched features) may 
result in unique registration of the points  

The computational complexity of associating range data ICP 
algorithm is O(n2). This hue value based color assisted ICP 
algorithm holds the same computational complexity with range 
data ICP algorithm. As the hue value of a point remains 
invariant with the registration transformation during the ICP 
iteration loop, the algorithm acts as filter in the nearest point 
search process. 

The color assisted ICP algorithm in this paper is as follows: 
1. Estimate the initial transformation matrix R and T; 
2.Construct k-d tree of model point cloud  M{m1,m2,m3…mM}, 
hue value has been weighted as the 4th dimension; 
3. While merging error ε >preset error 

Use R and T to transfer data point cloud 
D{d1,d2…dN}. 
D RD T= +  
4. For i=1 to length of data point cloud 
Search closest point for point di {dix,diy ,diz,dih} in 
model k-d tree  

If  closest point mj exists in search range r 
Pair di and mj  as {dk,mk}; 

   k++; 
End If 

End   For 
5. Acquire paired point cloud Dp and Mp, contain N 

points, calculate merging mean square ε as error:
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6. Calculate mean value in paired point cloud Dp and 
Mp,  

      { , , }d px py pzc d d d=  
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  Construct new data set D’ and model set M’, in 
which, di’=dpi-cd, mj’=mpj-cm ; 
7. Construct H matrix for singular value 
decomposition, 

      
xx xy xz

yx yy yz

zx zy zz

S S S
H S S S

S S S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦            



 
 

      1

' '
N

xx ix ix
i

S m d
=

= ∑  

      
1

' '
N

yy iy iy
i

S m d
=

=∑  

      
1

' '
N

xx ix ix
i

S m d
=

=∑  

     
1

' '
N

xy ix iy
i

S m d
=

= ∑ … 

8. Solve R & T using SVD 
      SVD(H), 
     TH U V= Λ  
     

TR VU=  
     T=Cm-RCd 

End While 
 

The differences between this color ICP algorithm and a 
typical ICP algorithm are in Step 2 and Step 4.  

 
3. ALGORITHM PERFORMANCE 

In this section, we describe the performance of the 
algorithm under various hue distribution scenarios on the same 
geometric model, the Stanford bunny point cloud. In HSL color 
space, hue value varies from 0- 360. The color correspondence 
between RGB and hue is given in Table 1.  
 
3.1 Hue Varied Color Point Cloud Map Registration 

For the first experiment, we colorized he Stanford bunny 
point cloud model as shown in Figure 5. In this model, the hue 
varies from 0 to 360 with from bottom to top at Z direction in 
seven segments. Figure 5 also shows the initial registration of 
the model and data point clouds used for this simulation. 

 
Color R G B Hue 
Gray 128 128 128 0 
Yellow 255 255 0 60 
Green 0 255 0 120 
Cyan 0 255 255 180 
Blue 0 0 255 240 
Magenta  255 0 255 300 
Red 255 0 0 360 

Table 1 Varied hue and corresponding color in RGB space 

 
Figure 5 Varied hue rendered Stanford bunny 

 
(a) Mean square error comparison in ICP progress 

 
(b) Associated point number comparison in ICP progress 
Figure 6. Hue assisted ICP results compare with range ICP 

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

#Iteration

M
ea

n 
S

qu
ar

e 
E

rro
r

 

 
Hue Assisted ICP
Range ICP

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

#Iteration

#A
ss

oc
ia

tio
n 

P
oi

nt
s

 

 
Hue Assisted ICP
Range ICP



 
 

 
Figure 7 Registered 7 segment hue color point cloud  

 
Hue assisted ICP registration progress is shown in Figure 6. 

Figure 6(a) shows the mean square error during the ICP process 
and Figure 6(b) shows the number of points associated during 
iteration loops. Both data and model point cloud  after 
registration  is shown in Figure 7. The hue-assisted ICP 
registers the point and data clouds faster than the traditional 
coordinate based ICP.  
 
3.2 Continuously Varied Hue along One Dimension 

In the second simulation, a continuous hue distribution is 
assigned to the bunny model. The hue value is varied from 0 to 
360, smoothly, along the z (vertical) direction. The resultant 
model and data clouds are shown in Figure 8. Saturation and 
lightness value have been set as constant at every point inside 
dataset. Hue value can be calculated by Eq. (2). 

 
݄ ൌ 360 ௭೔ି௭೘೔೙
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      (2) 

 
h is the hue value at range point i, zi is the coordinate 

distance for ith point at z direction, zmax and zmin are maximum 
and minimum coordinate of the point cloud at z direction. 

 
 

(a) Data point cloud     (b) Model point cloud 
 

Figure 8: Bunny model with continuous hue variation in one axis 

 
Figure 9 Merged Continuous Hue bunny  

 
Continuous hue distribution on point cloud data is 

registered and the results are shown in Figure 10.  A 
comparison of model performance on discrete and continuous 
distribution of hue on the same model shows the expected 
acceleration in performance due to uniform distribution of hue 
on the model.   

 
3.3 Randomized Hue on the Model 

In this case, the model considered has a continuously 
distributed hue but with a randomized and noisy pattern. In this 
case, there is no geometric pattern for the color on the object. 
The color point clouds are rendered in Figure 11. The merged 
cloud point cloud after registration is shown in Figure 12. 
Figure 13 shows the error minimization iteration and 
comparison with the seven-segment hue distribution model. In 
this case the hue confuses the nearest neighbor search. The 
registration accuracy is also not as good as a patterned hue 
case. 

 
 

 
(a) Mean square error comparison in ICP progress 
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(b) Associated point number comparison in ICP progress 

 
Figure 10. Comparison between discrete and continuous hue 

distribution cases 
 

 
 

(a) Data point cloud     (b) Model point cloud 
 

Figure 11 Random Hue rendered bunny  

 
Figure 12 Merged model with randomized hue 

 
 

 
(a) Mean square error comparison in ICP progress 

 
(b) Associated point number comparison in ICP progress 

 
Figure 13. Comparison between discrete and random hue 

distribution case 
 
3.4 Effect of Camera Noise  

In the previous simulation, the imaging sensor is assumed 
perfect. The hue on a point is assumed to be recorded by the 
imaging sensor perfectly in both model and data clouds. Some 
noise in the color measurement can be expected when the point 
clouds are generated from two vantage points [13]. Considering 
this situation, we colorized the bunny model but with 50% 
noise in the sensor. The points in the model and data clouds 
differ in color by as much as 50%. The resulting point clouds 
are shown in Figure 14. The merged color point cloud is shown 
as Figure 15. 

 

    
(a) Data point cloud     (b) Model point cloud 

Figure 14 Varied Hue with 50% noise rendered bunny model 
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Figure 15 Merged noisy color point with 50% hue noise 

 
a) Mean square error comparison in ICP progress 

 
(b) Associated point number comparison in ICP progress 

Figure 16. Comparison between color ICP in noise hue data and 
range ICP results 

 
Hue assisted color ICP matching result in camera noise 

color point cloud is compared with range ICP matching 

performance. From Figure 16, noise in hue decreases the 
matching accuracy and reduces the iteration efficiency. 

 
4. CONCLUSION AND FUTURE WORK 

The color ICP algorithm developed in paper was applied to 
match a standardized data set with several texture happing. Use 
of the hue value to assist the point association and error 
minimization is shown to be effective during the ICP iteration 
schemes when there is a patterned hue on the object and when 
the camera imaging noise is low.  Work is in progress to use 
the luminosity and the camera, light and material interactions 
for faster scan registration performance. . However, in HSL 
data space, Lightness should change according to the view 
angle and light position. Corresponding point search using 
additional lightness value could be a further research field to 
increase Color ICP algorithm. The developed algorithms are 
being used to register large scale 3D map data obtained using a 
mobile mapping robot [13]. 
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