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ABSTRACT  

Many applications require dimensionally accurate and detailed maps of the environment. 
Mobile mapping devices with laser ranging devices can generate highly detailed and 
dimensionally accurate coordinate data in the form of point clouds.  Point clouds represent 
scenes with numerous discrete coordinate samples obtained about a relative reference frame 
defined by the location and orientation of the sensor. Color information from the environment 
obtained from cameras can be mapped to the coordinates to generate color point clouds. Point 
clouds obtained from a single static vantage point are generally incomplete because neither 
coordinate nor color information exists in occluded areas. Changing the vantage point implies 
movement of the coordinate frame and the need for sensor position and orientation information.  
Merging multiple point cloud segments generated from different vantage points using features of 
the scene enables construction of 3D maps of large areas and filling in gaps left from occlusions. 
Map registration algorithms identify areas with common features in overlapping point clouds and 
determine optimal coordinate transformations that can register or merge one point cloud into 
another point cloud’s coordinate system. Algorithms can also match the attributes other than 
coordinates, such as optical reflection intensity and color properties, for more efficient common 
point identification.  The extra attributes help resolve ambiguities, reduce the time and increase 
precision for point cloud registration. This chapter describes a comprehensive parametric study 
on the performance a specialized Iterative Closest Point (ICP) algorithm that uses color 
information. This Hue-assisted ICP algorithm, a variant developed by the authors, registers point 
clouds in a 4-D (x, y ,z, hue) space.  A mobile robot with integrated 3D sensor generated color 
point cloud used for verification and performance measurement of various map registration 
techniques. The chapter also identifies various algorithms required to accomplish complete map 
generation using mobile robots.    
  



 

 

1. INTRODUCTION 
Complete and dimensionally accurate maps of the environments are of interest to many 

domains including surveying, search and rescue, security, defense and construction. Laser based 
scanning devices (Light Detection And Ranging-LIDAR) are generally used to generate point 
clouds that describe spatial information in the form of numerous discrete point coordinate 
measurements. Point data are acquired by measuring time of flight of scattered light or phase 
shift between incident and reflected light to find the distance between the object surface and the 
scanning device (Blais, 2004).  The speed of scanning discrete points can be enhanced by pulse 
and phase based measurement technologies (Blais, 2004). Precise rotation mechanisms with 
high-resolution encoders spin a 2D LIDAR device to generate a 3D point cloud. Point cloud 
scanners have been mounted on airplanes (Browell et. al. 1990) and ground vehicles (Gebre, et al. 
2009) to create large area terrain maps. When vision sensors are integrated with the laser ranging 
systems, point clouds can also contain the color information of the scene.  Optical imagery from 
the camera is associated with point coordinates to produce color point clouds (Andresson, 2007). 
 

A 3D point cloud obtained from a single vantage point is seldom adequate to construct a 
complete map. Generation of a complete map of an environment requires merging or registration 
of map segments taken from various vantage points. The registration enables construction of 
large-scale global 3D maps (Thrun, 2003). Registering the map segments is trivial if precise 
position and orientation of the sensor are accurately known about a global reference frame. 
Position sensors such as inertial measurement units or those relying on global positioning 
systems are prone to errors and can be highly inaccurate under certain conditions. The map 
registration process determines the rigid body translation and rotation of the sensor as its output 
(Thrun, 1993, 2003). The map registration quality varies depending upon the sensor resolution 
and the extent of overlap between the map segments.  Different techniques exist for merging 3D 
maps by exploiting geometric features and measuring surfaces. The most popular registration 
algorithm for point cloud registration is the iterative closest point (ICP) algorithm (Thrun 2003). 
In ICP, the corresponding closest points in different point clouds are associated and optimal rigid 
transformation required to minimize a mean-square error of separation between the associated 
points (Bsel, 1992) is iteratively found.  The color attributes of the sampled point can be utilized 
in ICP progress to increase computational speed and provide higher accuracy. Anderson (2007) 
filtered the point set data based on hue before conducting traditional ICP. Houng et al. (2009) 
processed images to extract corresponding visual features that are used in registration process.  
 

In this chapter, we examine the algorithms required for a mobile robot to generate a 
dimensionally accurate and complete map of an area without prior information about the area. 
We focus particularly on the techniques for registration of map segments taken from various 
vantage points.  The chapter also describes a mobile robotic system with a color point cloud 
scanner and various algorithms required for accomplishing the mission of generating a complete 
and dimensionally accurate map of an area.  
 
2. MOBILE MAPPING WITH COLOR POINT CLOUD SCANNERS 

Color point clouds are created by synchronizing range sensors such as the LIDAR with 
video/still cameras. LIDAR devices discretely measure the distance between a light source and a 
reflection target at a high frequency. By changing the path of the light through mirrors and 
actuators, a point cloud of a 3D space is produced. A calibrated vision sensor maps the color 



 

 

information to the sampled points. Installing such a scanning sensor on a mobile platform 
extends its range and enables mapping of large areas. 
 
2.1 3D Color Scanner  

The 3D color scanner used in this effort consists of a 2D LIDAR and two 1.3 megapixel 
high-frame rate video cameras installed on the LIDAR scanning plane. The LIDAR and the 
cameras moved such that the scan plane is rotated about an axis within the plane, thus generating 
3D color point clouds. Figure 1 shows that the LIDAR consists of a rotating mirror which is 
driven about Y axis (degree of freedom: θ) and the scan plane is rotated about Z axis (φ: degree 
of freedom). The rotations are controlled by servomotors installed on the axes. The cameras are 
calibrated to be on the LIDAR scan plane and a forty-pixel wide image stripe is extracted from 
the cameras. The color information is then matched, in real-time, to the points ranged by the 
LIDAR.  The relative distance between cameras and LIDAR is pre-configured and images are 
pre-aligned. The 2D LIDAR generates scans at a frequency of 38 Hz and the cameras provide 
imagery at 60 frames per second.  Time synchronization establishes that the pixel color is 
mapped to each ranged point. Use of two cameras reduced occlusions due to the offset between 
the LIDAR mirror and the camera lens. All areas visible to the LIDAR are visible to one of the 
two cameras. The 2D range measurement along with the scanner rotation position (φ) is used to 
generate the coordinate in a spherical coordinate system, which is transformed to Cartesian 
system as necessary.  Figure 1 also shows a picture of a compact version of the system. 

 
 
Figure 1 3D Scanning Devices built with 2D commercial scanners. 
 

The 3D color scanner is mounted on a mobile vehicle for mapping large areas. This 
mobile mapping system generates color point cloud data. Figure 2 shows the mobile system with 
the scanner installed on top of the vehicle.  The vehicle has no global positioning devices other 
than wheel encoders. Cameras and short-range inferred sensors enable observation of terrain 
conditions, collision avoidance and allow a remote operator to drive the vehicle. Map data and 
video feeds are transmitted using an on-board wireless communication system. This mapping 
system performs scans only when it is stopped. The vehicle can localize itself from the map 
observations and moves directly from one vantage point to the next and acquires additional map 
information. This system can generate color point cloud maps with 0.25° angular resolution in 
the vertical scanning direction with a coverage angle of 100°. In the rotation (φ) direction, the 
resolution is at 0.1° with coverage angle 300°. The map segment from one vantage point covers a 
maximum radius of 80 meters.  



 

 

 
The data elements produced by the scanner are shown in Figure 3.  Figure 3(a) shows the 

camera image taken from the vantage point depicting scene visible to the scanner. The 3D color 
point cloud generated at that vantage point is shown in figure 3(b). In this figure, the coordinate 
(x,y,z) and the color (r,g,b) for all the pixels known.  The point density (spatial resolution of the 
point cloud) varies on the left and right sides of the color scan scene depending upon the distance 
between the scanned point and the scanner. The closest area to the scanner has the highest 
density of points. The scanner also records the optical reflection intensity of laser beam. The 
intensity information is combined with range measurement data and shown in figure 3(c). The 
object surface material, color and distance towards scanner cause variations in intensity data. 
Similarities between intensity point cloud and color point cloud can be observed between figure 
3(b) and (c) on edges, doors, and windows.  
 
 

 
Figure 2 Mobility platform used for 3D color map construction in large area (Gebre et al., 2009). 
 
2.2. ALGORITHMS FOR COMPLETE  MAPPING  

An autonomous robot with the color point cloud scanner can reduce the surveying and 
map building cost and time. However, several methodologies for robust self-localization, map 
completeness evaluation, map based navigation and 3D map registration must evolve before a 
high degree of autonomy can be achieved.  
 

A mapping robot deployed at initial start position must go through the four phases of the 
mapping processes as shown in Figure 4. The robot must be able to localize itself so it can 
navigate the scene. This can be accomplished by 2D SLAM (Simultaneous Localization and 
Mapping) techniques or other methods. Methodologies for establishing the map completeness 
and detection of occluded areas are necessary. Determination of the optimal vantage point for 
filling in the occluded areas and exploring unmapped areas is also a critical step. As the 
navigation is based on imprecise mapping and localization information, the map segment 



 

 

registration based on 3D color point clouds is the last but crucial step in building the complete 
map of a given area. In this subsection, we discuss the algorithms that address each of these tasks. 
 
 

      
(a) Image of an urban building.   (b) Color point cloud map. 

 
(c) Laser reflection intensity map. 
 
Figure 3 High dimensional point cloud map segment taken from a single vantage point. 
 
 

 
Figure 4 Map completeness orientated robotic mapping process. 
 
 
 
 



 

 

2.2.1 Robot Self-localization 
The self-localization problem requires mobile mapping robot to determine its location in 

an unknown environment. Localization is critical because robot cannot effectively navigate to 
the next waypoint without the location information.  Map registrations require location and pose 
estimates. Usually robot is equipped with multiple position and orientation sensors like GPS, 
Inertial Measurement Unit (IMU), odometer, and wheel encoders to measure real-time pose and 
position. Multiple position and location sensors return robot position information with certain 
level of error due to reasons like sensor precision, GPS signal noise and errors, sensor drift for 
IMU and inaccurate measurements from other sensors.  
 

The main challenge for robot localization is to escape location sensor noise, drift errors, 
and constantly provide accurate location and position reference for the robot. Probabilistic self-
localization techniques based on maximum-likelihood estimation have been applied to address 
this problem.  These techniques assume that the noise of position sensor follows certain 
probabilistic distribution, which can be described mathematically. They also assume that two 
subsequent map results are highly comparable to each other and several landmarks can be 
quickly identified. Therefore, accurate relative position and location can be solved by comparing 
current map with a previous map in short time intervals, and probabilistically maximizing 
similarity between two maps (Olson, 2000). Map could be generated by different sensors like 
stereo cameras, sonar or laser range finders. Landmarks extracted from maps are commonly 
applied in the self-localization process to reduce computation cost. Whyte and Bailey (2006) 
utilize the relative localization results between two neighbor vantage points to merge the two 
maps. 
 

A two-step process, termed as Simultaneous Localization and Mapping (SLAM), 
typically localizes the robot. The robot position is established from multiple but imprecise sensor 
measurements and comparison of landmarks in the scene. The position sensor data is improved 
using sensor fusion techniques by Spletzer (2003). Location information is estimated based on 
previous location, driving command information and current sensor measurements. In SLAM, 
probabilistic methods are applied to reduce sensor noise effects. Extended Kalman filter and 
particle filters and noise models improve the location estimates (Montemerlo, et al. 2003). The 
SLAM solution has been expanded into 3D space with a six degree of freedom (6DOF) SLAM 
which applies sensor measurement and robot kinematics models (Nücher, 2005). Landmark 
extraction and map comparison entail the major computation effort during the SLAM progress. 
Real-time SLAM has been demonstrated with stereovision sensors (Davison, 2003). 
 

The SLAM technique simultaneously considers the localization and mapping mission 
(Thrun, et al., 2000).    The SLAM problem can be described by a joint posterior: 

    0: 0: 0( , | , , )t t tP x m z u x       (1) 
Where, xt  is the state vector representing the robot location and orientation,  mi  is the 

vector representing the ith landmark location, zit  is the robot mapping measurement about ith 
landmark at time t, and ut  is the control vector applied at t-1 time to drive robot to state xt at time 
t. 
 

The SLAM problem requires that equation (1) be solved for the time, t, and the latest 
robot state vector xt be computed. Solving the joint posterior from, 0-t requires an observation 



 

 

model and a motion model based on Bayes Theorem. (Whyte and Bailey, 2006). The observation 
model determines the probabilistic distribution of observation zt with known vehicle state and 
landmarks location as: 
  

 ( | , )t tP z x m   (2) 
The robot motion model describes probability on state transition of robot state vector, xt 

with known previous state xt-1 and control input ut 
  

 1( | , )t t tP x x u−  (3) 
The transition of state vector is assumed as a Markov process, implying that the next 

robot state xt can only be determined on previous state xt-1 and latest control input ut and not the 
history of states. The state of robot is independent of both observations and landmarks. Equation 
(1) can be recursively solved in a Prediction (time update) and Correction (Measurement update) 
form.  
Prediction: 
 

 0: 1 0: 0 1 1 0: 1 0: 1 0 1( , | , , ) ( | , ) ( , | , , )t t t t t t t t t tP x m z u x P x x u P x m z u x dx− − − − − −= ∫   (4) 
Correction: 
  

 

0: 1 0: 0
0: 0: 0

0: 1 0:

( | , ) ( , | , , )( , | , , )
( | , )

t t t t t
t k t

t t t

P z x m P x m z u xP x m z u x
P z z u

−

−

=  (5) 

Equation (4) and equation (5) recursively solve latest robot state joint posterior. Robot 
state can be predicted from the motion model 1( | , )t t tP x x u− and control input at time t. The 
observation model ( | , )t tP z x m is applied to correct state prediction with observation and 
mapping at time t. 

 
In order to find solutions to the SLAM problem, proper practical descriptions about 

motion and observation model in equation (2) and equation (3) should be provided with 
reliability and efficiency.  Extended Gaussian Filter (EKF) is applied to represent these models 
on state-space model with additive Gaussian noise (Welch and Bishop, 1995). The EKF based 
SLAM simplifies motion model as: 
  

 1( , )t t t tx f x u w−= +   (6) 
f(xt-1,ut) is the robot kinematics model and wt is the additive uncorrelated Gaussian 

disturbances with zero mean and covariance Qt.  The observation model can be described as: 
  

 ( , )t t tz h x m v= +  (7) 
In which, h(xt,m) is the observation geometry description and vt is the additive 

uncorrelated Gaussian disturbance with zero mean and covariance Rt. Eqs. (6) and (7) can be 
applied to the SLAM prediction and correction. In EKF-SLAM process, the mean and 
covariance of both motion model and observed motion should be updated at every time t. Other 
probabilistic methods such as Particle Filter (PF) (Montemerlo et al., 2003) and Graph Filter (GF) 
are used to solve the SLAM problem. A typical SLAM method is implemented on 2D space, 



 

 

however, SLAM in 3D space with 6 Degree of Freedom (6DOF) on robot kinematics have been 
implemented by expanding landmarks state, motion model and observation model into 3D space 
(Nücher, 2005).  
 
2.2.2 Map completeness evaluation 

The map completeness problem can be addressed with several methodologies including 
grid occupancy, obstacle recognition and object view completion detection.  The completeness of 
map is calculated by occupancy grid map (Thrun, 2003), which entails projecting the acquired 
map on an occupancy grid and calculating the occupancy level. Possible mapping area is 
determined based on the contour of the objects and separating the map into areas that can be 
potentially mapped or impossible to map (Oh et al., 2004). Terrains are extracted from current 
incomplete map for possible paths for navigation. The map evaluation also returns possible 
explorative area that is accessible to the mobile robot but not mapped. If map completeness is the 
most important factor for the mission, algorithms that evaluate latest exploration status after 
every scan may require assessment of the complete map and not just the current map segment. 
There are many techniques to evaluate the completeness of mapping, namely, grid based 
occupancy map (Thrun, 2003), network/graph, cell based map (Zelinsky, 1994) and template 
based completeness evaluation (Oh et al, 2004). 
 

The occupancy grid map is one of the most commonly used methods to determine map 
completeness. Area of interest is gridded and acquired maps from different vantage position are 
transferred into or projected onto the grid. Grid is marked as occupied when data exists on this 
grid, every grid should be represented with certain level of occupancy, which is computed by 
density of point cloud map on this grid. Map can be assumed as complete all the mapped objects 
form self-closed contours or closed contours with the boundaries of the mapped area.   
 

A major challenge in map completeness evaluation is deciding whether an area can be 
mapped. For example, when mapping robot is performing indoor exploration, space behind wall 
of the hallway may not be accessible. Contours extracted from latest global map may be used to 
determine possible navigation paths. Possible mapping area exists for contours with gaps. 
Ascertaining that the gaps in map contours are indeed traversable paths requires discerning 
traversable pathways in the map.  
 
2.2.3  Map based navigation 

Determination of the next vantage point may depend upon several criteria: best view, 
coverage of unmapped areas, areas of overlap with current map, localization, accessibility and 
traveling costs. Two steps are required for determination of the next vantage position. The first 
step is the generation of candidate positions and second step is the selection of optimal vantage 
point from the list. The candidate vantage positions can be created based on frontier exploration 
algorithm (Basilico and Amigoni, 2009) considering obstacles, position and terrain conditions.  
The vantage position is selected between candidate positions that have the best view coverage 
and shortest traveling cost. Next vantage point should be decided based on the best view to fill 
occluded regions and cover as much new area as possible. Frontier based exploration algorithm 
provides vantage point candidates for the best view point, these candidate points are evaluated to 
determine best vantage point for next mapping. 
 



 

 

Computing vantage position for mapping based on previous vantage positions and 
incomplete map is known as the Next Best View (NBV) problem (Yamauchi, 1997; Basilico and 
Amigoni, 2009) NBV algorithms navigate robot to acquire maximum uncovered area.   A certain 
level overlapped area ensures that the robot has enough landmarks to navigate between the 
current and the next best view vantage point.  Frontier based algorithm can be applied to provide 
candidate positions for the next best view point. Based on the regions on the boundary between 
mapped and unmapped space, the frontier can be extracted.  Considering the range for mapping 
sensor constraints, next mapping position on the frontier can then be generated. Current frontier 
should be evaluated in occupancy grid map so that the frontier grid positions that cover more 
unoccupied can be selected to accelerate the coverage of the area. These candidate points can be 
evaluated based on the criteria for the exploration and time and power requirements for reaching 
the vantage point.  

The map data acquired from various vantage points must be registered into global map 
space using various registration algorithms. Although this section describes the various 
algorithms required for complete map generation, the focus of this chapter remains on the 
registration aspect of the mapping exploration.  

 

3. ALGORITHMS FOR REGISTERING MAP SEGMENTS 
Three-dimensional point cloud segments acquired from different locations have to be 

combined together as complete large-scale map. Position and orientation information required 
for registration can be provided directly by mobile platform sensors such as GPS and IMU 
(Thrun 1993). In most cases, position information acquired from sensor is reasonably accurate. 
However, the orientation information is costly and relatively imprecise because orientation 
sensor measurement can be affected by external disturbances like magnetic field variations and 
sensor integration drift with time. Position and orientation information can also be provided by 
indirect techniques based on both rough position sensor measurement and common geometric 
feature identification. Figure 5 shows two maps generated from separate vantage points. The left 
map on the top row shows map generated with robot facing towards one side of the building, the 
right map shows the map generated from the second vantage point. The bottom figure shows the 
map data from the first vantage point registered into the coordinate system of the second location. 
Registering the two segments produces the complete map of the façade of the building.  

Comparing with the SLAM algorithm, map registration techniques focus on generating 
accurate map details rather than localization of the robot in a global coordinate system (Arun, 
1987; Bsel, 1992; Lorusso, 1995; Rusinkiewucz, 2001). Discrete range points received from 
color point cloud sensor contain detailed spatial information about the environment. Different 
techniques exist for merging such point clouds together by exploiting geometric features and 
measuring surfaces.  Map registration techniques such as Iterative Closest Point (ICP) algorithm 
proposed by Bsel (1992) has been applied to stitch two neighbor 3D point cloud maps together 
into one map based on their common coverage area. Upon convergence, ICP algorithm 
terminates at a minimum. Several algorithms are in existence for calculating the minimum 
average distance between two point clouds.  Singular Value Decomposition (SVD) method by 
Arun (1987), eigen-system methods that exploit the orthonormal properties of the rotation 
matrices, and unit and dual quaternion techniques were adopted in ICP process. Quaternion 
based algorithms have been used in ICP for map fusion by Bsel (1992), SVD based algorithms 
are widely used in ICP and 6DOF SLAM (Arun 1987, Nucher, 2005, Joung et al., 2009) as they 



 

 

are robust to reach local minimum and easy to implement. Several variants of ICP are reported 
by Rusinkiewucz (2001) to increase the speed and precision. Corresponding points sampling, 
matching, weighting and rejecting are some methods used to accelerate the ICP algorithm. In the 
ICP algorithm, associating corresponding points in two point cloud data sets is the most critical 
step. Nearest neighbor search in 2D or 3D space is commonly used for associating the 
corresponding points. Parallel ICP algorithms have been developed by Robertson (2002) to 
accelerate computation speed. Point to plane registration method (Lorusso, 1995, Rusinkiewucz, 
2001, Salvi et al., 2007) accelerates the ICP iteration and convergence. 

  

Figure 5 Map segments generated from two vantage points (Top) and registered map (Bottom). 
 

 
Other techniques include the point signature method by Chua (1997), which uses 

signature points to describe curvature of point cloud and matches corresponding signature points 
during the registration process. Spin image based methods compute 2D spin image to represent 
surface characterization and solve the registration problem by finding best correspondence 
between two different scan spin images (Johnson 1997). Other methods like principle component 
analysis (Chung and Lee, 1998) and algebraic surface model (Tarel et al., 1998) are based on the 
point cloud surface geometrical features. The normal vector distribution can be translated into an 
orientation histogram in an Extended Gaussian Image (EGI) (Makadia and Daniilidis, 2006). 
Rigid motion required to register two point clouds is solved from the cross covariance function 
(Chibunichev and Vilizhev, 2008) of the two EGI images. Rigid motion could also be solve in 
Fourier domain by computing Discrete Fourier Transform on Rotation Group on SO(3) (SOFT) 
(Joistekecm and Ricjnirem, 2008).  



 

 

 
Registration of color point clouds has been considered (Ferbabdez, et al., 2007; Druon, 

2007; Newman et al., 2006; Anderson, 2006, 2007). By applying proper calibration on the hybrid 
sensor system (Joung et al., 2009; Newman, Cole, Ho, 2006), range measurement and visual 
information can be integrated together to construct a visually accurate representation of the scene. 
Color mapped 3D data was used in map registration by weighted red, green, blue data. The 
corresponding point search during the ICP is conducted on both the coordinate and color data 
(Johnson, Kang, 1997). Hue filters were also used to constrain the closest point search in every 
ICP iteration (Druson, 2007).  Color data can be used to estimate initial alignment of pair wise 
scans using Scale Invariant Feature Transform (SIFT) techniques. Color attributes transferred in 
YIQ color model can also be weighted to construct new variant together with range information 
for ICP fine registration. Depth-interpolated Image Feature (DIFT) algorithm solves 
corresponding points between two images and registers color point clouds based on extracted 
correspondences (Anderson, Lilienthal, 2010).   
 

In this chapter, we introduce hue assisted ICP algorithm for registration of color point 
clouds. The criteria for association are defined on a 4D space rather than 3D geometric space. 
The fourth dimension selected is the hue, representing the intrinsic color values of the pixel. 
While achieving the effect of a hue-based filter, hue-association reduces the nearest neighbor 
search burden considerably (Men and Pochiraju, 2010). The remaining sections of the paper 
describe the approach and the performance of the algorithm under several hue distributions in the 
scene. 
 
 
4. Hue-Assisted Iterative Closest Point (HICP) Algorithm 

The primary hypothesis of this algorithm is that the hue value can be applied to increase 
the accuracy of point association and accelerate the registration process. The major time and 
computation cost during ICP is finding the correct points pairs. Closest spatial distance is 
typically applied in 3D ICP method. The distance value in 3D space can be expanded into 4D 
space by adding weighted hue value as the 4th dimension. By integrating hue value into the 
closest point search, accuracy of point association can then be improved. 
  
4.1 Hue invariance with vantage point 

Hue value remains consistent about the same point between images taken from two 
vantage points, while the color values represented in red, green and blue quantities usually differ 
because of variation in light conditions. In order to apply color to improve the association 
process, lighting effect should be removed. Color raw data are transformed into representation of 
separate chroma, lightness and brightness value. Figure 6 shows two camera images of different 
angles of a color palette on a Rubik’s cube, four colors are used on the same surface. Figure 6 
also shows the color pixels with the background and black frame removed. Histograms showing 
the red, green and blue value in RGB space for all the pixels are shown in figure 7.  In the RGB 
histogram, R, G, and B distributions of the image vary considerably with the vantage point.  
When the RGB color space is transformed into HSL space and histograms of hue, lightness and 
saturation are plotted figure 8, the hue values remain relatively invariant with the position of the 
camera. Therefore, hue value of the pixel, taken from the Hue-Saturation-Lightness (HSL) model, 
is used as the fourth dimension in the point association process. In Figure 9, the hue range map 



 

 

of color range map in Figure 3(b) is shown. Hue values are normalized between 0 and 1. The hue 
distribution is typically similar to the color distribution in Figure 3(b). 

 
 

Figure 6 Rubik’s cube camera images take from two vantage points. 



 

 

Figure 7 RGB distribution varies with camera positions.     

 
Figure 8 HSL distribution: hue remains invariant. 

 
Figure 9: Hue map of the scene shown in Figure 3. 



 

 

 
4.2 Construction of a weighted 4D search space 

Both hue and range value have to be combined together in the HICP variant as {xo, yo, zo, 
hw} for point association. xo, yo, zo are the original coordinate values with distance units and hw is 
the weighted hue value. Hue values are normalized to a 0-1 range and must be weighted during 
the closest point search in the four-dimensional space. In order to normalize the coordinates, we 
find the bounding box for each map segment and the coordinate space is rescaled to a 0-1 range. 
The normalized variant for point association is {x, y. z, hw}, where x=xo/rx, y=yo/ry, z=zo/rz. rx, ry, 
rz are the dimensions of the bounding box in x, y, z directions.  
 

The weight value for the hue dimension should be properly selected for point association. 
Since both range and hue value are normalized from 0 to 1. Weight for hue represents its 
influence in the nearest neighbor search process. Low weight biases the point association 
towards the range data and a high weight towards the hue values. Small weight values for the hue 
correspond to the traditional 3D-ICP. Hue weight should be selected between 10% and 35% for 
accurate point association. Error in 4D ICP will be evaluated by the average mean square root 
distance of normalized associated point pairs.   
 
4.3  k-d Tree Based Point Cloud Association 

In 3D ICP algorithm, corresponding points are searched according to the closest distance 
rule. This may cause incorrect matching during single iteration loop as Figure 10. Dashed line 
circle illustrates range based nearest point association results, in which all points in data set look 
for nearest neighbor in 3D space. It takes more than one iteration to pair correct nearest neighbor 
points for given data points set. Grey circle denotes the HICP nearest point search that also uses 
the correct hue property in finding the best neighbor in the model. Depending on the correct 
color information, corresponding point can locked with less iteration.  
 

 
Figure 10 Point association based on nearest distance (dotted) and nearest distance and 
hue( solid) 
 

The ICP computation speed and precision are highly dependent on association process. 
Use of a k-d tree for closest point search and association or the Nearest Neighbor Search (NNS) 
problem increases the speed and efficiency of the search. The k-d tree is a spatial partitioning 
data structure that stores and organizes data in a k dimensional space. The k-d tree is a 
generalized type of binary tree, with every leaf node is a k-dimensional data point that splits the 
hyperspace into two subspaces. Splitting is done sequentially from the first dimension to the kth 



 

 

dimension.  A typical k-d tree in 2D space is shown in figure 11(a). Each point in the 2D space 
divides the space sequentially into a left-right spaces (about x-axis) or into a top-bottom spaces 
(about y-axis). 
 

Nearest neighbor search can be done very efficiently on k-d trees. For a given point with 
known coordinates in the data point cloud and a search radius, the algorithm recursively moves 
down the tree and follows the same procedure as insertion. Search stops at a leaf node of the tree 
and the points in the model tree within the search radius are identified. The nearest point is 
obtained using distance computation. Figure 11(b) shows the nearest neighbor (red square) for 
the search point at the center of the circle. The nearest point is then regarded as the point 
associated with the search point.  
 

   
(a) k-d tree construction in 2D space.               (b) 2D space nearest neighbor search in k-d tree. 
 
Figure 11 k-d tree construction and nearest neighbor search in 2D space. 
 

In 3D closest point search, the distance between 2 points between 2 point clouds is: 

 
2 2 2( ) ( ) ( )ij ix jx iy jy iz jzr m d m d m d= − + − + −

  (8) 
 
In which, di{dix,diy,diz} and mj{mjx,mjy,mjz} are point spatial coordinates in data and model range 
map respectively. 
 

In 4D space, the 4th dimension for each point should be weighed hue value dhw or mhw. 
The spatial value of points should be normalized by 3D search radius rij as mentioned in section 
4.1. In order to accomplish closest point search in 4D space, the distance between two 
normalized points di{dix,diy,diz,,hihw} and mj{mjx,mjy,mjz,mjhw } should be: 

' 2 2 2 2( ) ( ) ( ) ( )ij ix jx iy jy iz jz ihw jhwr m d m d m d m d= − + − + − + −  (9) 
 

or 
 

    
' 2 2

ij ij ijwr r h= + Δ
    (10) 



 

 

 
In the ICP process, search radius effects the computation time and final result. A constant 

search radius is applied for all iteration loops.  Once the search radius is large, too many points 
will be included as candidates and increases the computational burden. Candidate points cloud be 
missed if search radius is too small. The search radius is determined by the density of point cloud. 
In 4D k-d tree search, the search radius comprises of two parts -- a distance part and weighted 
hue part as seen in equation (9). The search range for 3D distance is selected such that it ensures 
about 50 candidate points within search radius. As hue value is not transformed at iteration, hue 
search is analogous to filtering. If the weight for hue is high, k-d tree search will bias toward hue 
dimension. Therefore, appropriate hue weighting ensures that spatial search dominates over hue 
filtering. 
 

The ICP algorithm iteratively converges at minimum error, which is described by mean 
square root of the spatial distance between paired points. At each iteration, a rigid transformation  
matrix is computed so that the distance error metric between the associated points is minimized. 
Data point cloud is transformed into the model space using the computed transformation matrix. 
This iteration continues until error metric converges.  
 

Use of hue as a fourth dimension is significant in those instances where the coordinate 
based matching results in a non-unique registration. For example, if the points in the model and 
the data point clouds belong to a plane, traditional coordinate based ICP results in non-unique 
association of points. In such cases using the hue value may result in unique registration of the 
points.   

 
The color assisted ICP algorithm in this paper can be described as follows. 

1. Estimate the initial transformation matrix R and T; 
2. Construct k-d tree of model point cloud M{m1,m2,m3…mM}, hue value has been 

weighted as the 4th dimension; 
3. While merging error ε >preset error 
Use R and T to transfer data point cloud D{d1,d2…dN}. 

D RD T= +  
4. For i=1 to length of data point cloud 

                       Search closest point for point di {dix , diy , diz  ,dih} in model k-d tree  
                      If  closest point mj exists in search range r 
                            Pair di and mj  as {dk , mk}; 
                            k++; 
                     End If 
               End   For 

5. Acquire paired point cloud Dp and Mp, contain N Points, calculate normalized mean 
square root distance ε as error,  

2 2 2

1

1 ( ) ( ) ( )
N

ix ix iy iy iz iz
i

d m d m d m
N

ε
=

= − + − + −∑
 

6. Construct orthonormality matrix H (Equation14) and solve rigid rotation R and 
translation T (Equation15, 16) for next iteration; 

End While 



 

 

 
 

4.4 Solving Rigid Transformation  
ICP algorithm is an iteration process to calculate rigid transformation matrix based on 

associated point clouds. { , , }i ix iy izm m m m= represent the coordinates of the ith point in the model 
point cloud and  { , , }j jx jy jzd d d d=  is the jth point in data point cloud. Rigid transformation (R) 
that minimizes the error measure E(R,T) shown in Equation (11) is determined. 

 1

1( , ) ( )
N

i i
i

E R T m Rd T
N =

= − +∑
 (11) 

A centroid for the associated points is calculated as the first step (Equation12) and 
associated points are translated into centroid relative coordinates (Equation13). Orthonomal 
matrix of associated points can then be constructed as shown in Equation14. Rotation R and 
translation T are decoupled based on the gravity center of associated points. Using Singular 
Value Decomposition (SVD) methods, R can be determined as shown in Equation15. Translation 
T is computed using Equation16.  

     1

1 N

i
i

m m
N =

= ∑
, 1

1 N

i
i

d d
N =

= ∑
 (12) 

 
In which, { , , }x y zm m m m= and { , , }x y zd d d d= are the center points of associated points 

in model and data point clouds. N is the amount of point pairs. 
 

The coordinated of associated point in center point relative space should be 

 i im m m′ = − , i id d d′ = −                           (13) 
In which, { , , }i ix iy izm m m m′ ′ ′ ′=  and { , , }i ix iy izd d d d′ ′ ′ ′= are the ith associated point with center 

relative coordinates. 
The orthonormality matrix H can be constructed based on m ′ { im ′ , i=1… N} and d ′{ id ′ , 

i=1… N}. 
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zx zy zz
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 (14) 
Singular value decomposition is performed on constructed H matrix for optimal rotation R 
                                                                

TH U V= Λ                                                                (15) 
Where optimal rotation                  

TR VU= . 
 

The translation T can be calculated as 

                                                                 
T T

T m Rd= −                                                             (16) 
 
4.5 Convergence Criteria 

Convergence and stopping criterion for the HICP iteration are discussed in this sub-
section. An association stability criterioa is introduced as the one of the convergence criteria. 
Association stability, denoted as S, is defined as the for the number of points which changed their 
paired point in any iteration. If a point comes into association or changes its nearest neighbor, S 
is incremented. Large value of S signifies that point association has not stabilized. HICP iteration 
is terminated when S vanishes and the distance error converges. 

A pair wised color point HICP registration was accomplished based on above criteria. 
Model point cloud contained 122,409 points with color attributes. Data point cloud is extracted 
from model point cloud with a known rotation (θz=5o). The HICP registration process is 
compared with 3D ICP, error as shown in Figure 12(a). The associated point number reaches 
maximum after the 5th iteration (Figure 12(b)), but error has not converged. From Figure 12(c) 
the association stability (S) reaches 0 after 15th and 26th iteration for HICP and 3D ICP 
respectively. Error and rigid transformation are shown in Figure 12(a) and Figure 13. The known 
transformation (θz=5o) is recovered by the HICP and ICP algorithms.  

 
 
 
 
 
 
 
 
 



 

 

 
(a) Comparison of error convergence                   (b) Association number convergence 

 
(c) Association stability convergence 

 
Figure 12 Building color range map registration comparison between H-ICP and Range ICP 
algorithm. 



 

 

 
Figure 13 Convergence of translation and rotation estimates during registration 

 
 
5. MAP REGISTRATION WITH ICP AND HICP 

The hue distribution or the color of the model is generally independent of the geometry. 
If the entire body is painted with a color of a single hue, HICP is as effective as the traditional 
ICP. In this section, we describe the performance of the algorithm under various hue distribution 
scenarios. The Stanford bunny point cloud is considered as the benchmark data set. In HSL color 
space, hue value varies from 0- 360. The color correspondence between RGB and hue is given in 
Table 1. 
 
 

Color R G B Hue 
Gray 128 128 128 0 

Yellow 255 255 0 60 
Green 0 255 0 120 
Cyan 0 255 255 180 
Blue 0 0 255 240 

Magenta 255 0 255 300 
Red 255 0 0 360 

Table 1: Hue and RGB values for several common colors. 
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(a)                                                                         (b) 

Figure 14:  Registration of point clouds with uniformly distributed hues(a) Stanford Bunny point 
clouds with hue distributed as seven distinct stripes (b) Registered color point cloud.  
 
 

.  
 (a) Mean square error comparison.             (b) Associated point number comparison.  
Figure 15 Registration comparisons between H-ICP and Range ICP algorithm. 

 
 

 
5.1 Environments with Fixed Hue Distributions 

For the first experiment, we textured the Stanford bunny point cloud model as shown in 
Figure 14(a). In this model, the hue varies from 0 to 360 with from bottom to top at Z direction 
in seven segments. Figure 14(b) also shows the initial registration of the model and data point 
clouds used for this simulation. 

The HICP registration progress is shown in Figure 15(a) and Figure 15(b). Figure 15(a) 
shows the mean square error during the ICP process and Figure15 (b) shows the number of 
points associated during iteration loops. Both data and model point cloud after registration is 
shown in Figure 14(b). The hue-assisted ICP registers the point and data clouds faster than the 
traditional coordinate based ICP.  
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5.2 Continuously Varied Hue along One Dimension 
In the second simulation, a continuous hue distribution is assigned to the bunny model. 

The hue value is varied from 0 to 360, smoothly, along the z (vertical) direction. The resultant 
model and data clouds are shown in Figure 16 (a), (b). Saturation and lightness value have been 
set as constant at every point inside dataset. Hue value can be calculated by equation (17). 
 
 
 360                         (17) 

 
 
h is the hue value at range point i, zi is the coordinate distance for ith point at z direction, zmax and 
zmin are maximum and minimum coordinate of the point cloud at z direction. 
 

 
 
(a) Data point cloud.    (b) Model point cloud.          (c) Merged View. 
Figure 16 Bunny model with continuous hue variation in one axis. 

 
Continuous hue distribution on point cloud data is registered together (Figure 16 (c)) and 

the results are shown in Figure 17.  A comparison of model performance on discrete and 
continuous distribution of hue on the same model shows the expected acceleration in 
performance due to uniform distribution of hue on the model.   

  
 
(a) Mean square error comparison.                       (b) Associated point number comparison.  
Figure 17 Registration comparisons between 7 segment hue model and continuous hue model. 
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5.3 Randomized Hue on the Model 

In this case, the model considered has a continuously distributed hue but with a 
randomized and noisy pattern. In this case, there is no geometric pattern for the color on the 
object. The color point clouds are rendered in Figure 18 (a, b). The merged cloud point cloud 
after registration is shown in Figure 18(c). Figure 19 shows the error minimization iteration and 
comparison with the seven-segment hue distribution model. In this case the hue confuses the 
nearest neighbor search. The registration accuracy is also not as good as a patterned hue case. 
 

 
 
(a) Data point cloud     (b) Model point cloud  (c) Merged View 
Figure 18: Bunny point cloud with randomized hue distribution  

 
(a) Mean square error comparison             (b) Associated point number comparison 
Figure 19 Comparison between discrete and random hue distribution case 
 
5.4 Effect of Imaging Noise  

In the previous simulation, the imaging sensor is assumed perfect. The hue on a point is 
assumed to be recorded by the imaging sensor perfectly in both model and data clouds. Some 
noise in the color measurement can be expected when the point clouds are generated from two 
vantage points (Gebre et al., 2009). Considering this situation, we colorized the bunny model but 
with 50% noise in the sensor. The points in the model and data clouds differ in color by as much 
as 50%. The resulting point clouds are shown in Figure 20(a, b). The merged color point cloud is 
shown as Figure 20(c). 
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(a) Data point cloud.    (b) Model point cloud. (c) Merged View. 
Figure 20 Hue mapped with  noise. 
 

 
(a) Mean square error comparison.             (b) Associated point number comparison. 

Figure 21 Comparison between color ICP in and range ICP  for noisy hue case 
 

Hue assisted color ICP matching result in camera noise color point cloud is compared 
with range ICP matching performance. From Figure 21, noise in hue decreases the matching 
accuracy and reduces the iteration efficiency. Two groups of cloud point clouds are selected to 
evaluate the performance of 4D ICP algorithm compare with typical 3D ICP. A known 
transformation point cloud data pair was generated by transforming model point cloud at 6DOF 
to compare the convergence speed and registration accuracy as the rigid transformation is 
already known. Outdoor large scale area pair wised registration includes 8 pair wised data 
registration.  
 
5.5 REGISTRATION WITH SIX-DOF ROTATION. 

In this experiment, registration speed between 3D ICP and HICP are compared using data 
and model point clouds with known (and exact) registration transformation. Both HICP 
algorithm and 3D ICP algorithm have been applied on a building data set(Gebre et al., 2009). 
The data point cloud is taken from a view position that is  10° off  in Y and Z axis from the 
model point cloud. Translation between the point clouds is known to be 2.46, 2.612 and 0.347 
along the X, Y, and  Z respectively. Same parameters for registrations are selected to be the same 
as in the previous 1-DOF registration. Error comparison and associated point number 
comparison are shown in Figure 22(a) and (b). Association stability is shown in Figure 22(c). 
The evolution of rigid transformation during ICP is shown in Figure 23. The HICP completes 
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registration after 102th iteration and the traditional 3D ICP after the 164th iteration, which 
demonstrates the effectiveness of HICP for registering complex and realistic point clouds.  The 
merged color point cloud about building is shown in Figure 24. 

        
(a) Mean square error comparison.                        (b) Associated point number comparison. 

 
 (c) Stability Comparison.   
Figure 22 Registration comparisons between 3D ICP and 4D ICP algorithm. 



 

 

 
Figure 23 Convergence of translation and rotation estimates during registration 

 
Figure 24 Registered data and model point clouds 

 
5.6 SEQUENTIAL REGISTRATION OF MULTIPLE POINT CLOUDS 

3D range ICP and H ICP algorithms have been applied on  several outdoor map segments. 
Color point clouds taken from eight different vantage points have been registered together to 
construct a large scale color range map. Figure 25 shows the top view of outdoor mapping area 
in aerial image. This scene includes trees, road, electrical poles and buildings. Figure 26 shows 
the registered map and the vantage points from which map segments are obtained. Pair-wise 
registration is applied to construct a single map about the reference coordinate of the first map 
segment. 3D search radius in k-d tree was set as 1.5 and the 3D range data was normalized based 
on this radius.  Hue value was normalized to a 0-1 range, hue search radius was set to be 0.15, 
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and hue weight was set to 5.0. The final error and the number of iterations required to register the 
point clouds is shown in Table 2. HICP requires less number of iterations than 3D ICP. 
 

 
Figure25 Aerial image of outdoor mapping area and vantage positions. 
 

 
Figure26 Top view of eight sequentially registered color range maps. 

 
 
 



 

 

 
Position 3D ICP Iterations 4D ICP Iterations 3D ICP Error 4D ICP Error

2 45 35 0.842 0.856
3 54 44 0.929 0.961
4 77 54 0.039 0.290
5 49 43 0.104 0.319
6 66 59 0.165 0.179
7 73 69 0.129 0.128
8 99 95 0.068 0.070

Table 2  Sequential registration of multiple point clouds. 

 
(a) Registered position 4(black) point cloud into position 3 (blue) point cloud. 

 
(b) Color point cloud after registration. 
Figure 27 Map registered from scans taken from two vantage points 

 
This experiment proves that faster registration will be conducted by adding color value 

into registration progress. Position 3 and 4 acquired range maps have been registered together 
and shown in Figure 27, Figure 27(a) describes two different range map with two different color, 
point cloud at position 4 (black) has been registered into position 3 point cloud (blue). Combined 
point clouds with color are shown in Figure 27(b). 
 
 



 

 

6. FUTURE RESEARCH DIRECTIONS 
Point clouds are inefficient representations of geometry. Some of the future research 

directions can include:  

(a) Efficient generation of higher order geometric representations --- lines, surfaces and 
solids from the point cloud data;   

(b) Map completeness measures that predict the geometry missing in the occluded areas 
based on a knowledge-base; and  

(c) Extra sensing modalities such as infrared or thermal imaging, acoustic/ultrasonic and 
radio frequency imaging to help determination of materials in the scene.  

Architecture, surveying and engineering fields have considerable needs for  automatic or 
semi-automatic conversion of 3D point clouds into higher order line, surface and solid models 
that are compatible with commercial CAD software. This enables bringing the point cloud data 
into existing business processes like generation of drawings for code compliance, additions and 
modifications to existing built areas and remodeling interior spaces.  

7. CONCLUDING REMARKS 
This chapter describes an algorithm to introduce color attribute into point cloud 

registration process and fundamental algorithms for autonomous robotic complete mapping. 
Normalization of range data and hue value have been applied during the registration process and 
quantitatively evaluate the effect of hue search range and weight for the point association 
process. Different hue distribution and noise effect have been discussed with specific hue 
rendered color point clouds. A building data set and large-scale outdoor range map has been 
registered using image data assisted algorithm. Use of the hue value to assist the point 
association and error minimization is shown to be effective during the ICP iteration schemes. 
Higher dimensional point association based on weighted hue and range data leads more accurate 
point matching result, conduct earlier convergence of ICP progress, and reduce computation 
time. When rigid transformation is been application in every iteration loop during the ICP period, 
hue value does not change in space transformation. However, in HSL data space, Lightness 
should change according to the view angle and light position. Corresponding point search using 
additional lightness value could be a further research field to increase Color ICP algorithm. 
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KEY TERMS & DEFINITIONS 
3D Map: 3D map represents certain level of spatial information about the geometry features in 
specific area. The map is dimensionally accurate and may have a relative or absolute reference.  
3D Mapping: 3D mapping is the process of applying measurement devices to construct 3D map about 
specified environment. 
Point Cloud: Discrete  points  group with accurate 3D coordinates describing object surface dimensional 
measuremnts, usually contructed by laser ranging devices.  
Color Point Cloud:  Discrete points group with both dimensiaonl accurate measurement and texture 
property, normally generated by both ranging device and color camera. 
Map registration: A process to accurately stitch pair or multiple point clouds together into single point 
cloud.  


