
  

  

Abstract—This paper presents methodologies to accelerate the 
registration of 3D point cloud segments by using hue data from 
the associated imagery. The proposed variant of the Iterative 
Closest Point (ICP) algorithm combines both normalized point 
range data and weighted hue value calculated from RGB data of 
an image registered 3D point cloud. A k-d tree based nearest 
neighbor search is used to associated common points in {x, y, z, 
hue} 4D space. The unknown rigid translation and rotation 
matrix required for registration is iteratively solved using 
Singular Value Decomposition (SVD) method. A mobile robot 
mounted scanner was used to generate color point cloud 
segments over a large area. The 4D ICP registration has been 
compared with typical 3D ICP and numerical results on the 
generated map segments shows that the 4D method resolves 
ambiguity in registration and converges faster than the 3D ICP. 

I. INTRODUCTION 
 The generation of dimensionally accurate 3D maps is of 
interest to many domains such as surveying, rescue, security, 
defense and construction. Laser based scanning device have 
been applied to generate point clouds which portray spatial 
information about objects and environments [1].These 
scanners generate high density 3D point clouds using precise 
high speed rotary mechanisms and sensors. Corresponding 
optical imagery from a color camera can also be associated 
with 3D point clouds to produce visually realistic 3D color 
point clouds. The 3D color point cloud contains both distance 
and texture information, which provides a richer 
representation of the scanned environment and allows for 
easier identification of objects within the scan [2].  

Large scale 3d maps can be generated by acquiring 3D 
scans from multiple locations. The individual scans acquired 
at different locations have to be combined together as 
complete large scale map based on vantage point position and 
orientation information. Algorithms to associated point 
clouds obtained from two vantage points that are sufficiently 
close to each other can be divided into Iterative Closest Point 
(ICP) related techniques, ICP variant related techniques and 
non-ICP techniques. A Point to point association strategy is 
used in the Iterative Closest Point (ICP) algorithm. It is the 
most popular registration algorithm for point cloud map 
registration [3]. In an ICP algorithm closest points in different 
point clouds are associated and optimal rigid transformation 
that minimizes a mean-square error of separation between the 
associated points of the two data sets [8] is iteratively 

 
 

computed. Upon convergence, ICP algorithm has been 
proved to terminate at a minimum error[9]. Singular Value 
Decomposition (SVD) method [10], eigen-system method 
and dual quaternion techniques are commonly used to 
determine the minimum average distance between matched 
points in two point clouds [11]. In recent years SVD based 
algorithms have been widely used in ICP and 6D SLAM [12, 
13, 15] due to their robustness and ease of implementation. 
 3D color point clouds can be generated by integrating a 
color camera onto a custom built 3d LIDAR [14]. By 
applying proper calibration on the hybrid sensor system [13, 
16], range measurement and visual information can be 
integrated together to construct a visually realistic and 
geometrically accurate representation of the scene. Color 
mapped 3D data was used to enable registration of individual 
3d scans by using weighted red, green, blue data. The 
corresponding point search can be finished based on both 
dimensional and color data during the ICP process. The hue 
(from the Hue-saturation-lightness model) of each point is 
classified and used as a filter to constrain the closest point 
search in every ICP iteration [17, 18]. Color data on range 
image can be used to estimate initial alignment of pair wise 
scans via Scale Invariant Feature Transform (SIFT), color 
attributes transferred in YIQ color model are weighted to 
construct new variant together with range information for ICP 
fine registration [16]. Depth-interpolated Image Feature 
(DIFT) algorithm solves corresponding points between 2 
imagery and register color point cloud based on extracted 
correspondences [19]. Probabilistic scan registration traces 
laser beam to exploit maximum range readings to increase 
likelihood of alignment [20]. Point cloud surface normal 
distributions are helpful in coarse registration. Point cloud 
surface normal vector distribution can be translated in to 
orientation histogram as Extended Gaussian Image (EGI) 
[21] and rigid motion between different scans can be solved 
from the cross covariance function [22]. Rigid motion could 
also be solve in Fourier domain by computing Discrete 
Fourier Transform on Rotation Group on SO(3) (SOFT) [23]. 
Color attribute has been applied as kernel extension in 
Normal Distributions Transform (NDT) process so that 
robustness is increased [23]. In most cases, normal based 
registration methods are applied for point cloud rough 
alignment, ICP based algorithms are utilized for fine 
registration. 
 This paper presents a hue assisted 4D ICP algorithm that 
makes use of data from color laser ranging system. The key 
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idea is to apply weighted hue value with 3D coordinate data to 
increase point registration speed and accuracy. Point 
association takes place in solving ambiguities that can occur 
with 3D point cloud map alignment. The performance of 
point association during ICP process can be advanced by hue 
data.  

II. COLOR POINT CLOUD GENERATION 
 Color point clouds are created by using a video registered 
3D LIDAR scanning system. The system makes use of a 2D 
LIDAR scanner mounted atop a rotary mechanism. The 
LIDAR is oriented to produce a vertical 2D scan and the 
mechanism is rotated about the vertical axis. A rotary position 
sensor is used to measure the angle of the mechanism during 
each scan and serves as the third dimension of a spherical 
coordinate system used to produce 3D scans. Calibrated high 
speed video cameras are mounted onto of the scanner and 
used to colorize the 3d data in real-time (Fig. 1).  

 
Figure 1. 3D color Lidar scanning system

 

 
 The scanning mechanism is mounted on top of a mobile 
electric platform named ROAMS (Remotely Operated and 
Autonomous Mapping System) to enable the generation of 
large scale maps (Fig. 2) [13]. The system can be operated 
wirelessly from large distances and can enable the generation 
of maps of remote locations. To generate large scale maps 
ROAMS is driven to various location around the scan area 
and 3d color scans are taken at each location. 
 

.  
Figure 2. Remotely Operated and Autonomous mapping system 

(ROAMS) 

III. HUE ASSISTED ICP ALGORITHM 
 Hue value can be applied to increase the accuracy of point 
association. The majority of the time and computation cost 
during the ICP process is spent on trying to find correct point 
pairs. Closest spatial distance rule is utilized for typical 3D 
ICP method. The point cloud distance value in 3D space can 
be expanded into 4D space by adding weighted hue value as 
the 4th dimension. By integrating hue value into the closest 
point search, accuracy of point association can then be 
improved.  

A. Hue Invariance with Vantage Point 
 Hue value remains consistent for the same point between 
images taken from two vantage points, while the color values 
represented in red, green and blue quantities usually differ 
because of variation in light conditions. In order to effectively 
apply color to improve the association process, lighting effect 
should be removed. Raw RGB color data is transformed into 
representation of separate chroma, lightness and brightness 
value. Figure 3 shows two camera images take at different 
angles of a color palette on a Rubik’s cube, four colors are 
used on the same surface. Figure 3 also shows the color pixels 
with the background and black frame removed. Histograms 
showing the red, green and blue value in RGB space for all 
the pixels are shown in figure 4.  In the RGB histogram, R, G, 
and B distributions of the image vary considerably with the 
vantage point.  When the RGB color space is transformed into 
HSL space and histograms of hue, lightness and saturation are 
plotted in figure 5, the hue values remain relatively invariant 
with the position of the camera. Therefore, hue value of the 
pixel taken from the Hue-Saturation-Lightness (HSL) model 
is used as the fourth dimension in the color point association 
process.  
 

 
Figure3. Rubik’s cube camera images take from 2 different angles 
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Figure 4. RGB distributions change with camera positions (θ1, θ2) 

 
Figure 5 HSL distribution: hue remains invariant 

B. Algorithm for Hue-Assisted ICP 
 Both hue and range value have to be combined together in 
the 4D ICP variant as {xo, yo, zo, ho} for point association. xo, 
yo, zo are the original coordinate values with distance units 
and ho is the original hue value. Hue values are normalized 
from 0 to 1 and must be weighted during the closest point 
search in the four-dimensional space. hw is the normalized and 
weighted hue value. In order to normalize the coordinates, the 
maximum range of the scanner is used and the coordinate 
space is rescaled to a 0-1 range. The normalized variant for 
point association is {x, y. z, hw}, where x=xo/2rmax+0.5, 
y=yo/2rmax+0.5, z=zo/2rmax+0.5, rmax is the max range of 
LIDAR.  

 The weight value for the hue dimension should be properly 
selected for point association. Since both range and hue value 
are normalized from 0 to 1. Weight for hue represents its 
influence in the nearest neighbor search process. Low weight 
biases the point association towards the range data and a high 
weight towards the hue values. Small weight values for the 
hue correspond to the traditional 3D-ICP. Experimental 
results have shown that a hue weight 10% and 35% of 3D 
range search distance produced the best results for accurate 
point association. Error in 4D ICP will be evaluated by 
calculating the average mean square root distance of the 
associated point pairs.   
 The Hue-assisted ICP algorithm entails the following 
steps: 

1. Estimate the initial values for the matrices R and T 
that transform points in the data point cloud into the 
model point cloud’s coordinate system.  

2. Construct k-d tree of model point cloud 
M{m1,m2,m3…mM}, with weighted hue value  as the  
4th  dimension; 

3. While merging error � > preset tolerance 

3.1  Use R and T to transfer data point cloud 
D{d1,d2…dN}: D RD T= +

�� ��
 

3.2 Nearest Neighbor Association Step: 
 For i=1 to Number of points in the data point cloud 

     Set Number of Associated Points N = 0 
 Search closest point for point di {dix , diy , diz  
,dih} in model k-d tree  

If closest point mj exists within a specified 
search range, r 
Associate di and mj  as {dk , mk}; 

                               Increment number of associated points++: 
       End If 
    End   For 

3.3 Distance error Computation: For each associated 
point pair, calculate normalized mean square root 
distance � as error,  

   
2 2 2

1

1 ( ) ( ) ( )
N

ix ix iy iy iz iz
i

d m d m d m
N

ε
=

= − + − + −�
   

3.4 Solve for R and T that minimize ε: Construct 
orthonormality matrix H (Eq.7) and solve rigid rotation 
R and translation T (Eq.8 & 9); 

End While 
4. Post-Registration error estimates: Compute any 

post registration errors such as planarity or 
curvature continuities. 

C. k-d Tree Based Point Cloud Association 
 In 3D ICP algorithm, corresponding points are searched 
according to the closest distance rule. This may cause 
incorrect matching during single iteration loop and takes 
more than 1 iteration to pair correct nearest neighbor points 
for given data points set. Based on correct hue property, the 
best neighbor in the model can be found in one iteration. 
Depending on the correct color information, corresponding 
point can locked with less iteration.  
 The ICP computation speed and precision are highly 
dependent on association process. Use of a k-d tree for closest 
point search and association or the Nearest Neighbor Search 
(NNS) problem increases the speed and efficiency of the 
search. The k-d tree is a spatial partitioning data structure that 
stores and organizes data in a k dimensional space. The k-d 
tree is a generalized type of binary tree, with every leaf node 
is a k-dimensional data point that splits the hyperspace into 
two subspaces. Splitting is done sequentially from the first 
dimension to the kth dimension.   
 Nearest neighbor search can be done very efficiently on k-d 
trees. For a given point with known coordinates in the data 
point cloud and a search radius, the algorithm recursively 
moves down the tree and follows the same procedure as 
insertion. Search stops at a leaf node of the tree and the points 
in the model tree within the search radius are identified. The 
nearest point is obtained using distance computation and then 
is regarded as the point associated with the search point.  
 In 3D closest point search, the distance between 2 points in 
2 neighboring point clouds is: 

2 2 2( ) ( ) ( )ij ix jx iy jy iz jzr m d m d m d= − + − + −  (1) 
 In which, di{dix,diy,diz} and mj{mjx,mjy,mjz} are point spatial 
coordinates in data and model point cloud map respectively. 
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In 4D space, the 4th dimension for each point should be 
weighed hue value dhw and mhw. The spatial value of points 
should be normalized by 3D search radius rij in Eq. (1). In 
order to accomplish closest point search in 4D space, the 
distance between two normalized points di{dix,diy,diz,,hihw} 
and mj{mjx,mjy,mjz,mjhw } should be: 

' 2 2 2 2( ) ( ) ( ) ( )ij ix jx iy jy iz jz ihw jhwr m d m d m d m d= − + − + − + −
 (2) 

' 2 2
ij ij ijwr r h= + Δ

     (3) 
 In the ICP process, search radius effects the computation 
time and final result. A constant search radius is applied for 
all iterations.  If the search radius is large, too many points 
will be included as candidates during association.  On the 
other hand, if the search radius is small, the points may not be 
associated and more iteration will be required.  The optimal 
search radius depends upon the density of point cloud and the 
initial position estimation. In 4D k-d tree search, the search 
radius is based on both the coordinate data as well as the 
weighted hue as shown in Eq. (3).  As a rule of thumb, search 
radius is typically selected to yield about 50 candidate points. 
If a substantial weight is used in the construction of 4-D 
space, the k-D search will bias toward hue dimension and the 
4D ICP algorithm will behave close to a applying a hue-filter 
to the system.  
 Strictly coordinate based association may result in 
non-unique registration. For example, if the points in the 
model and the data point clouds belong to a plane, coordinate 
based ICP results in non-unique association of points. In such 
cases using the hue value may result in unique registration of 
the points.   

D. Error Minimization  

    If { , , }i ix iy izm m m m= represent the coordinates of the ith 

point in the model point cloud and  { , , }j jx jy jzd d d d=  are 
coordinates of the jth point in the associated or paired point 
set, a distance error is defined as  given in  Eq. (4). 

1

1( , ) ( )
N

i i
i

E R T m Rd T
N =

= − +�
  (4) 

     Centroids are computed for the associated points in both 
model and data point clouds as shown in Eq.5. The 
coordinates are translated to have the origin at the centroid as 
given in Eq.6. An orthonormal transformation matrix of 
associated points can be constructed (Eq.7). Rotation R and 
translation T are decoupled. Using Singular Value 
Decomposition (SVD), R can be solved from the 
orthonormality matrix (Eq.8). Translation T is computed by 
translating the centroids of model and data point sets (Eq.9).  

1

1 N

i
i

m m
N =

= �
, 1

1 N

i
i

d d
N =

= �
 (5) 

 { , , }x y zm m m m= and { , , }x y zd d d d= are the 
centroids of associated points in model and data point clouds. 
N is the total number of associated points. The coordinates 
after transformation are: 

    i im m m′ = − , i id d d′ = −                (6) 

{ , , }i ix iy izm m m m′ ′ ′ ′=  and { , , }i ix iy izd d d d′ ′ ′ ′= are the ith 
associated point about the transformed coordinate system. 
The orthonormality matrix H can be constructed based on 

m ′ { im ′ , i=1… N} and d ′{ id ′ , i=1… N}. 

xx xy xz

yx yy yz

zx zy zz

S S S
H S S S

S S S

� �
� �= � �
� �� �   

Where             

      1
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N

yy iy iy
i

S m d
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=�
  1
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N

xx ix ix
i

S m d
=

=�
  

1
' '

N

zz iz iz
i

S m d
=

=�
  1

' '
N

xy ix iy
i

S m d
=

=�
      (7)    

 Singular value decomposition is performed for the H 
matrix to determine the rotation matrix, R,  that minimizes the 
error as:  

TH U V= Λ                 (8) 
 Where optimal rotation 

TR VU= . The translation T can be 
calculated as: 

T T
T m Rd= −                (9) 

E.  Convergence Criteria 
 We establish three separate criteria for convergence of the 
4D ICP iteration. First, we use a measure called the 
association stability. Association stability(S) is defined as the 
number of points that changed their paired points in the 
previous iteration of the ICP algorithm.  A large value of S 
indicates that the point association is not stable and a small or 
zero value indicates that the point pairing has stabilized. 
Secondly we use the convergence of number of points 
associated during the NNS search.  Second convergence 
criterion used is the change in error, Δε.  4D ICP algorithm is 
terminated when the following three measures converge: 
a) Error value:  Δε � 0 
b) Number of associated new points: ΔΝ � 0 
c) Association stability measure: S � 0. 

IV. EXPERIMENTAL RESULTS 

A. Known 6DOF Transformation Point Cloud Segments 
Registration 

 This experiment compares registration speed between 3D 
ICP and 4D ICP for two point clouds whose registration 
transformation is known a priori. Both algorithms were 
applied on the map obtained from the mobile mapping robot 
[13]. The same point cloud has been transformed to a new 
viewpoint at 6DOF. New view position is selected with 10° 
off around both Y and Z axis from the original space. 
Translation is selected as distance 2.46, 2.612 and 0.347 
about X, Y, Z axis respectively. Error comparison and 
associated point number comparison are shown in Figure 6(a) 
and Figure 6(b). Association stability is shown in Figure 6(c) 
to illustrate convergence of the process. The 4D ICP complete 
registration after 102 iterations and the traditional 3D ICP 
converges after 164 iterations. This illustrates that 4D ICP 
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algorithm converges faster than 3D ICP be
point search provides more accurate p
Merged color point cloud about building is s

(a) Mean square error 

   (b) Number of associated poi

 (c) Stability Metric    
Figure 6. Evolution of error metrics for 4D ICP and 

 

Figure 7. Map after registration 

0 50 100 150
0

1

2

3

4

5

6

7

8
x 10

-3

Iteration

E
rr

or

0 50 100 150
5

10

15

20

25

30

35

Iteration

A
ss

oc
ia

te
d 

P
oi

nt
s 

(x
10

00
)

0 50 100 150
0

5

10

15

20

25

Iteration

A
ss

oc
ia

tio
n 

S
ta

bi
lit

y 
(x

10
00

)

4D ICP 

3D ICP 

4D IC

3D ICP 

4D ICP

ecause 4D nearest 
point association.  
shown in Figure 7. 

 

 
ints 

 

3D ICP algorithms 

 

B. Large Area Point Clouds Reg
Transformations 

 3D ICP and 4D ICP algorithm
construct an outdoor map. Color po
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the map. Figure 8 shows the aerial vi
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Figure 9 shows the registered maps a
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Figure 9: Top view of map generated with ei
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Figure 10: Point cloud map generated from vantage points 3 (blue) and 4 
(black) before registration 

 
(a)  Black data points originated vantage point 4 and blue data points from 

vantage point 3. 

 
(b)  Coordinate data and color data from both the vantage points 

Figure 11: Color point cloud map generated from two vantage points after 
registration. 

 
 4D ICP is seen to require less number of iterations than 
traditional 3D ICP. This multiple map segments sequential 
registration experiment illustrates the effect of adding the 
hue-dimension to the registration progress for large scale map 
construction. For instance, position 3 and 4 acquired point 
clouds have been shown in Figure 10 before registration, 
registered point clouds are shown in Figure 11, Figure 11(a) 
describes two different point clouds with two different colors, 
point cloud at position 4 (black) has been registered into 
position 3 point cloud (blue). Combined point clouds with 
color are shown in Figure 11(b). 

V. CONCLUSION 
A Hue assisted 4D Iterative Closest Point algorithm that 

uses both the coordinate and hue information to merge map 
segments is described in this paper. The 4D ICP works 
without the need for position and orientation information. A 
building data set and large-scale outdoor point cloud map has 
been registered using 4D ICP. Use of the hue value to assist 
the point association and error minimization is shown to be 
effective during the ICP iteration schemes. Higher 
dimensional point association based on weighted hue and 
range data leads to more accurate point matching, faster 
convergence of ICP process. 
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