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From Lewis Carroll, Alice’s Adventures in Wonderland. Parallel text
at paralleltext.io
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Word alignment:

Phrase alignment:



Approaches to automation
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statistical (e.g. IBM models) syntax-based

require large amounts of data work consistently well even on
individual sentence pairs

works with raw data requires the data to be analyzed

correspondences between strings correspondences between
grammatical objects

“fixed” level of abstraction
(word or phrase)

all levels of abstraction →
concept alignment
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lack of robust constituency parsers while high-quality analysis is
crucial → UD parsing (UDPipe)
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morphological variations.

Alignment: tuple of equivalent concrete expressions in different
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〈she missed the boat, ha perso il treno〉
〈missed the boat, perso il treno〉
*〈the boat, il treno〉
〈the, il〉

Simple improvement: aligning heads of matching subtrees

〈she missed the boat, ha perso il treno〉, 〈missed the boat,
perso il treno〉 → 〈missed, ha perso〉 (including the auxiliary)
〈the boat, il treno〉 → *〈boat, treno〉
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Divergence: systematic cross-linguistic distinction.

categorial
〈Gioara listens distractedly, Gioara lyssnar distraherad〉
〈Herbert completed his doctoral thesis, Herbert ha
completato la sua tesi di dottorato〉

conflational
〈Filippo is interested in game development, Filippo är
intresserad av spelutveckling〉

structural
〈I called Francesco, Ho telefonato a Francesco〉

head swapping
〈Anna usually goes for walks, Anna brukar promenera〉

thematic
〈Yana likes books, A Yana piacciono i libri〉
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〈she missed the boat, ha perso il treno〉 → 〈[subj] missed
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〈she told you that, hon berättade det för dig〉 → 〈[subj] told
[iobj] [obj],[subj] berättade [obj] för [obl]〉
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Purely morphological unilingual dictionaries.

Example:

...
lin morphologic_A =

mkAMost "morphologic" "morphologicly" ;
lin morphological_A =

mkAMost "morphological" "morphologically" ;
lin morphology_N =

mkN "morphology" "morphologies" ;
...



Extraction grammar
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Defines the syntactic categories and functions to build lexical entries.

Example (prepositional NPs):

PrepNP : Prep -> NP -> PP # case head



Lexical rules
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Abstract:

fun in_the_field__inom_området_PP : PP ;

English concrete:

lin in_the_field__inom_område_PP =
PrepNP in_Prep (DetCN the_Det (UseN field_N))



Evaluation 23/30

Evaluation



Evaluating extraction

Evaluation 24/30

UD tree alignments are evaluated:

independently from the quality of UD parsing (100-sentence
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CE fast_align
(100 sentences)

fast_align
(full dataset)

en-it en-sv en-it en-sv en-it en-sv
distinct alignments 536 638 1242 1044 1286 1065

correct 392 (73%) 514 (80%) 346 (28%) 538 (52%) 540 (42%) 677 (64%)
usable in MT 363 (68%) 503 (79%) 316 (25%) 525 (50%) 510 (40%) 666 (63%)

CE module compared with fast_align, so extracting only
one-to-many and many-to-one alignments
CE has much higher precision, even when fast_align is
trained on full 1000-sentence corpus
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correct 916 (77%) 1112 (85%) 1205 (66%) 1269 (66%)

usable in MT 880 (74%) 1099 (84%) 1157 (63%) 1248 (64%)

Comparison between experiments on manually annotated
treebanks and raw text
precision decreases, but is still higher than fast_align’s
recall much lower
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No need for an ad hoc grammar: extend extraction grammar
with existing RGL functions

2 bilingual lexica from course plans corpora
corpus of sentences to translate generated in the GF shell

semi-random lexical and grammatical variations on a set
of semantically plausible sentences

metric: BLEU scores
reference translations obtained by manual postprocessing of the
automatic ones

avoid low scores due to different but equally valid lexical
and grammatical choices
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BLEU-1 to 4 55 61
BLEU-1 to 3 63 68
BLEU-1 to 2 70 74

BLEU-1 79 81

Better results for English-Swedish (due to systematic errors in
Italian)
sentence-level scores range from 0 (sometimes due to a single
semantic error) to 100
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datasets

simultaneous extraction of word, phrase, . . . alignments,
incl. discontinuous expressions
possibility to search for specific types of correspondences,
e.g. predication patterns
customizable divergence patterns
output: compilable, morphology-aware GF translation lexica
require manual corrections and completions, but can
significantly reduce lexicon bootstrapping time
available as Haskell library + executables
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