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From Lewis Carroll, Alice’s adventures in Wonderland. Parallel text
at paralleltext.io
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Alternative: tree-to-tree alignment.
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Word alignment
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Phrase alignment
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statistical syntax-based

require large amounts of data work consistently well even on
individual sentence pairs

works with raw data requires the data to be analyzed

correspondences between strings correspondences between
grammatical objects

“fixed” level of abstraction
(word or phrase)

all levels of abstraction →
concept alignment
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Divergence: systematic cross-linguistic distinction.

categorial
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〈Filippo is interested in game development, Filippo är
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〈Yana likes books, A Yana piacciono i libri〉
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Propagatingconcepts
toanew language
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Links to everything mentioned in this talk, and more:

An overview of the IBM models
fast_align
the UD standard
UDPipe
B. J. Dorr’s paper on translation divergences
gf-ud
the concept-alignment repo
my thesis report where everything is explained in detail but
not everything is up to date
the paper on CE I wrote together with Aarne
the CoNNL-U synoptic viewer

http://www.statmt.org/survey/Topic/IBMModels
https://github.com/clab/fast_align
https://universaldependencies.org/
https://ufal.mff.cuni.cz/udpipe
https://dl.acm.org/doi/abs/10.5555/203987.203993
https://github.com/GrammaticalFramework/gf-ud
https://github.com/harisont/concept-alignment
https://raw.githubusercontent.com/harisont/concept-alignment/master/thesis/final_report/synbased_ca_for_mt.pdf
https://raw.githubusercontent.com/harisont/concept-alignment/master/paper/paper.pdf
https://github.com/DigitalGrammarsAB/synoptic-conllu-viewer
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