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guarantees of grammatical correctness

= in such systems, lexical exactness is as important as

grammaticality
* need for high-quality translation lexica preserving
semantics and morphological correctness
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The problem

= manually building a translation lexicon
* is time consuming
* requires significant linguistic knowledge
= desire to automate this process at least in part

> possible when example parallel data are available
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A parallel corpus

Alice thought she might as well wait, as she had
nothing else to do, and perhaps after all it might tell
her something worth hearing.

For some minutes it puffed away without speaking,
but at last it unfolded its arms, took the hookah out
of its mouth again, and said, 'So you think you're
changed, do you?'

'I'm afraid | am, sir," said Alice; 'l can't remember
things as | used--and | don't keep the same size for
ten minutes together!'

Alice penso che poteva aspettare, perche non aveva
niente di meglio da fare, e perche forse il Bruco
avrebbe potuto dirle qualche cosa d'importante.

Per qualche istante il Bruco fumo in silenzio,
finalmente sciolse le braccia, si tolse la pipa di
bocca e disse: — E cosl, tu credi di essere
cambiata?

— Ho paura di si, signore, — rispose Alice. — Non
posso ricordarmi le cose bene come una volta, e
non rimango della stessa statura neppure per lo
spazio di dieci minuti!

From Lewis Carroll, Alice’s adventures in Wonderland. Parallel text

at paralleltext.io
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Alignment

Word alignment:

Alice thought she might as well wait, as she had Alice penso che poteva aspettare, perche non aveva
nothing else to do, and perhaps after all it might tell  niente di meglio da fare, e perche forse il Bruco
her something worth hearing. avrebbe potuto dirle qualche cosa d'importante.
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Alignment

Word alignment:

Alice thought she might as well wait, as she had
nothing else to do, and perhaps after all it might tell
her something worth hearing.

Phrase alignment:

Alice thought she might as well wait, as she had
nothing else to do, and perhaps after all it might tell
her something worth hearing.

Alice penso che poteva aspettare, perche non aveva
niente di meglio da fare, e perché forse il Bruco
avrebbe potuto dirle qualche cosa d'importante.

Alice penso che poteva aspettare, perche non aveva
niente di meglio da fare, e perché forse il Bruco
avrebbe potuto dirle qualche cosa d'importante.
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Statistical approaches

Standard approaches are statistical (IBM models).

= pros:
* easy to use
* can handle noisy data
» fast on large corpora
= cons:
* require large amounts of raw data
* correspondences between strings — no morphological info

» "“fixed” level of abstraction (word, phrase or sentence)
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Syntax-based approaches |

Alternative: tree-to-tree alignment.
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Syntax-based approaches ||

Word alignment
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Syntax-based approaches |

Phrase alignment

/N N
AN N
IN N
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Comparison

statistical syntax-based

require large amounts of data  work consistently well even on
individual sentence pairs

works with raw data requires the data to be analyzed

correspondences between strings correspondences between
grammatical objects

“fixed” level of abstraction all levels of abstraction —
(word or phrase) concept alignment
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Why not just use GF?

= quality of the analysis is crucial
= lack of robust GF parsers
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Why not just use GF?

= quality of the analysis is crucial
= lack of robust GF parsers

= dependency trees are an easier target for a parser
* neural parsers such as UDPipe
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GF
P ] i
parsin UD trees 2 UD subtrees f-ud ++ translation
text 9 alignment lexicon

1. parse parallel data to UD trees
2. search for aligned UD subtrees
3. convert them to GF trees and then grammar rules
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UD trees

t # text = she missed the boat 2 mi 4 mi VERB o "
! b 1 she she PRON _ _ 2 nsubj _ _ Tm;e :IS;RDN “s rg‘_’ - -
(_‘\ m 2 missed miss VERB _ _ O root _ _ she she - - nsuq__
4 boat boat NOUN _ _ 2 obj _
PRON VERB DET NOUN 3 the the DET _ _ 4 det _ _
she missed the boat 4 boat boat NOUN _ _ 2 obj _ 3 the the DET _ _ 4 det _ _

Graphical, CoONNL-U and Rose Tree representation of the same UD
tree.
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Graphical, CoONNL-U and Rose Tree representation of the same UD
tree.

= dependency-labelled links between words (head-dependent
pairs)

= POS tags
-
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Extracting concepts
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Matching dependency labels

root

obj
nsubj det
PRON VERB DET NOUN

she missed the boat

Extracting concepts

root
obj
aux det

AUX VERB FHET NOUN
ha perso il treno
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Matching dependency labels

root root
obj obj
nsubj det ?i‘\ vd/eg\
PRON VERB DET NOUN AUX VERB  DET NOUN
she missed the boat ha perso il treno

= (she missed the boat, ha perso il treno)
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Matching dependency labels

root root
obj obj
PRON VERB DET NOUN AUX VERB PET NOUN
she missed the boat ha perso il treno
= (she missed the boat, ha perso il treno)
= (missed the boat, perso il treno)
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Matching dependency labels

root

nsubj det aux det

PRON VERB DET NOUN AUX VERB PET NOUN
she missed the boat ha perso il treno

= (she missed the boat, ha perso il treno)
= (missed the boat, perso il treno)
E3
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Matching dependency labels

root root
obj obj
nsubj vd/et_\ aux %
PRON VERB DET NOUN AUX VERB PET NOUN
she missed the boat ha perso il treno
= (she missed the boat, ha perso il treno)
= (missed the boat, perso il treno)
= *(the boat, il treno)
= (the, il)
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Aligning heads of maching trees
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Aligning heads of maching trees

= (the boat, il treno) — *(boat, treno)
= (missed the boat, perso il treno) — (missed, ha perso)
(including the auxiliary)

Extracting concepts 16/34



Using POS tags

root root
obj obj
nsubj vd/et_\ aux ?t_\
PRON VERB DET NOUN AUX VERB DET NOUN
she missed the boat ha perso il  treno
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root root
obj

e m 2 S
AUX VERB DET NOUN

PRON VE.RB DET NOUN L
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Using POS tags

root root
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Using POS tags

root root

obj

nsubj det aux %
PRON VERB DET NOUN AUX VERB PET NOUN
she missed the boat ha perso il  treno

more reliable ignoring function words

in this case, basically same results as when matching labels
can increase recall when labels do not coincide

can increase precision if used in conjuncion with labels

bl i ol

Extracting concepts 17/34



Translation divergences

Divergence: systematic cross-linguistic distinction.
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Translation divergences

Divergence: systematic cross-linguistic distinction.

= categorial
* (Gioara listens distractedly, Gioara lyssnar distraherad)
* (Herbert completed his doctoral thesis, Herbert ha
completato la sua tesi di dottorato)
= conflational
* (Filippo is interested in game development, Filippo dr
intresserad av spelutveckling)

= structural
* (I called Francesco, Ho telefonato a Francesco)
= head swapping
* (Anna usually goes for walks, Anna brukar promenera)
= thematic
* (Yana likes books, A Yana piacciono i libri)
Extracting concepts 18/34



Reusing known alignments

= allows using CA in conjunction with statistical tools
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Reusing known alignments

= allows using CA in conjunction with statistical tools
= iterative application
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Searching for specific patterns

= gf-ud pattern matching allows looking for specific syntactic
patterns
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Searching for specific patterns

= gf-ud pattern matching allows looking for specific syntactic
patterns
= possible generalization via pattern replacement

Example predication patterns:

= (she missed the boat, ha perso il treno) — ([subj] missed
[ob]], ha perso [obj])

= (she told you that, hon berattade det fér dig) — ([subj] told
[iobj] [obj],[subj] berdttade [obj] fér [obl])
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Propagating concepts
to anew language
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Concept Propagation

= So far, we focused on how to identify correspondences in
bilingual parallel texts (Concept Extraction)
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Concept Propagation

= So far, we focused on how to identify correspondences in
bilingual parallel texts (Concept Extraction)
= what happens when we need to handle a third language?
= Concept Propagation: finding the expression
corresponding to a known concept in a new language

Propagating concepts to a new language 22/34



text A |

L1 L2 Ls
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Scenario 2

text A Ij text B

YA
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Generating grammar rules
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aligned UD trees

dependency configurayions for gf-ud
morphological dictionaries
extraction grammar

b e i
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Morphological dictionaries

Purely morphological unilingual dictionaries.
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Morphological dictionaries

Purely morphological unilingual dictionaries.

Example:

lin morphologic_A =

mkAMost "morphologic" "morphologicly" ;
lin morphological_A =

mkAMost "morphological" "morphologically" ;
lin morphology_N =

mkN "morphology" "morphologies"
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Extraction grammar

Defines the syntactic categories and functions to build lexical entries.
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Extraction grammar

Defines the syntactic categories and functions to build lexical entries.
Example (prepositional NPs):

PrepNP : Prep -> NP -> PP # case head
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Lexical rules

Abstract:

fun in_the_field__inom_omradet PP : PP ;
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Lexical rules

Abstract:
fun in_the_field_ _inom_omradet PP : PP
English concrete:

lin in_the_field__inom_omrade_PP =
PrepNP in_Prep (DetCN the_Det (UseN field _N))
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Detailed view

L1 string L2 string L3 string

UD parsing

L1 UD trees L2 UD trees
L3 UD trees
L1-L2 aligned subtrees

S

L1-L2-L3 aligned subtrees

GF translation lexicon
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Refining the generated lexicon

Postprocessing tools:
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Refining the generated lexicon

Postprocessing tools:

= interactive selection
= CoNNL-U synoptic viewer
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= (parsing)
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(parsing)
Concept Extraction

Concept Propagation
GF lexicon generation

bl i ol
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(parsing)
Concept Extraction

Concept Propagation
GF lexicon generation
postprocessing
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Links to everything mentioned in this talk, and more:

= An overview of the IBM models

= fast_align

= the UD standard

= UDPipe

= B. J. Dorr’s paper on translation divergences

= gf-ud

= the concept-alignment repo

= my thesis report where everything is explained in detail but

not everything is up to date
the paper on CE | wrote together with Aarne
the CoNNL-U synoptic viewer

L]
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http://www.statmt.org/survey/Topic/IBMModels
https://github.com/clab/fast_align
https://universaldependencies.org/
https://ufal.mff.cuni.cz/udpipe
https://dl.acm.org/doi/abs/10.5555/203987.203993
https://github.com/GrammaticalFramework/gf-ud
https://github.com/harisont/concept-alignment
https://raw.githubusercontent.com/harisont/concept-alignment/master/thesis/final_report/synbased_ca_for_mt.pdf
https://raw.githubusercontent.com/harisont/concept-alignment/master/paper/paper.pdf
https://github.com/DigitalGrammarsAB/synoptic-conllu-viewer

Questions?
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