
Towards automatically
extracting morphosyntactical
error patterns from L1-L2
parallel dependency treebanks

18th Workshop on Innovative Use of NLP
for Building Educational Applications

Arianna Masciolini, Elena Volodina and Dana Dannélls
Språkbanken Text, University of Gothenburg

13.07.2023

L1-L2 treebanks

learner sentences ∥ correction hypotheses
no explicit error labelling,
just morphosyntactical annotation
main design goal: interoperability → UD

Example

⟨we clearly needing an example, we clear needing _ esample⟩

Example

⟨we clearly needing an example, we clear needing _ example⟩

Example

⟨we clearly need an example, we clear need an example⟩

Tasks

find instances of specific error patterns → L2-UD query
engine1

automatically classify syntactical errors → SErCL2

extract machine-readable error patterns

1 Masciolini, 2023
2 Choshen et al., 2020

Tasks

find instances of specific error patterns → L2-UD query
engine1

automatically classify syntactical errors → SErCL2

extract machine-readable error patterns

1 Masciolini, 2023
2 Choshen et al., 2020

Error pattern extraction

1. error detection: align L1-L2 sentences and filter
discrepant alignment

2. pattern generation: convert pairs of UD subtrees into
machine-readable error patterns

Step 1: error detection

concept-alignment

github.com/harisont/concept-alignment

extracts subtree alignments from parallel UD treebanks
syntax-based but language-agnostic
designed to generate translation lexica, but easy to adapt
to the L1-L2 case

Alignments

⟨we clearly need an example, we clear needing example⟩,
⟨need, needing⟩
⟨we, we⟩
⟨clearly, clear⟩
⟨an example, example⟩, ⟨example, example⟩

Errors

⟨we clearly need an example, we clear needing example⟩*,
⟨need, needing⟩*
⟨we, we⟩
⟨clearly, clear⟩*
⟨an example, example⟩*, ⟨example, example⟩

Step 2: pattern generation

Query languages for UD trees

several options to choose from
PML-TQ, Grew-match, UDAPI. . .

decided on gf-ud’s embedded query language
sufficiently expressive and user-friendly
easy to use as a library

UD patterns in gf-ud

pattern type example

single-token patterns DEPREL "nsubj"
tree patterns TREE (POS "NOUN") [DEPREL "det"]
sequence patterns SEQUENCE [DEPREL "advmod", POS "VERB"]
logical operators3 OR [POS "NOUN", POS "PRON"]

3 AND, OR, NOT

Single-token patterns

DEPREL "nsubj"

Tree patterns

TREE (POS "NOUN") [DEPREL "det"]

Sequence patterns

SEQUENCE [DEPREL "advmod", POS "VERB"]

Logical operators

OR [POS "NOUN", POS "PRON"]

L1-L2 UD patterns

TREE_ (POS "VERB") [POS "ADJ"]

L1-L2 UD patterns

⟨TREE_ (POS "VERB") [POS "ADV"], TREE_ (POS "VERB") [POS "ADJ"]⟩

L1-L2 UD patterns

TREE_ (POS "VERB") [POS "{ADV -> ADJ}"]

Simplification strategies
0. Automatically generated L1-L2 pattern
TREE

(AND [FORM "need", LEMMA "need", POS "VERB", XPOS "VBP", DEPREL "root",
FEATS "Mood=Ind|Number=Plur|Person=1|Tense=Pres|VerbForm=Fin"])

[AND [FORM "we", LEMMA "we", POS "PRON", XPOS "PRP", DEPREL "nsubj"
FEATS "Case=Nom|Number=Plur|Person=1|PronType=Prs"],

AND [FORM {"clearly" -> "clear"}, LEMMA {"clearly" -> "clear"},
POS {"ADV" -> "ADJ"}, XPOS {"RB" -> "JJ"},
FEATS {"_" -> "Degree=Pos"}, DEPREL {"advmod" -> "amod"}],

TREE
(AND [FORM "example", LEMMA "example", POS "NOUN",

XPOS "NN", FEATS "Number=Sing", DEPREL "obj"])
[AND [FORM "an", LEMMA "a", POS "DET", XPOS "DT",

FEATS "Definite=Ind|PronType=Art", DEPREL "det"]
]

]

Simplification strategies

1. Filtering by CoNNL-U field
Ignoring FORM, LEMMA, XPOS and DEPREL:

TREE
(AND [POS "VERB",

FEATS "Mood=Ind|Number=Plur|Person=1|Tense=Pres|VerbForm=Fin"])
[AND [POS "PRON", FEATS "Case=Nom|Number=Plur|Person=1|PronType=Prs"],
AND [POS {"ADV" -> "ADJ"}, FEATS {"_" -> "Degree=Pos"}],
TREE

(AND [POS "NOUN", FEATS "Number=Sing"])
[AND [POS "DET", FEATS "Definite=Ind|PronType=Art"]]

]

Simplification strategies

2. Removal of never-discrepant fields
In all alignments, FEATS is either identical both in the L1 and in the L2 or
absent in one of the components:

TREE
(AND [POS "VERB"])
[AND [POS "PRON"],
AND [POS {"ADV" -> "ADJ"}],
TREE (AND [POS "NOUN"]) [AND [POS "DET"]]

]

Simplification strategies

3. Elimination of identical subpatterns
Removing identical subtrees4:

TREE_
(AND [POS "VERB"])
[AND [POS {"ADV" -> "ADJ"}]]

4 optionally, identical roots can be replaced with the wildcard pattern TRUE too

Simplification strategies

4. Monolingual single-pattern simplifications
AND [p] is equivalent to p:

TREE_ (POS "VERB") [POS {"ADV" -> "ADJ"}]

Preliminary evaluation

Experimental design

evaluation through a similar example retrieval task:
1. extract L1-L2 patterns from an error-correction input pair
2. query an L1-L2 treebank with the extracted patterns

interactive version available as prototype CALL application

Data
2 datasets for linguistic acceptability judgments:

only one error per sentence
filtered: only morphosyntactical errors
automatically parsed with UDPipe 2

name language size5 description

BLiMP English 14 996 artificially generated sentences
DaLAJ Swedish 1 198 postprocessed L2 learner sentences

5 post-filtering

Results

BLiMP DaLAJ
R6 82% 69%
R+

7 82% 63%

6 retrieval rate
7 successful retrieval rate

Summarizing

github.com/harisont/l2-ud

novel approach to error pattern extraction
preliminary, bilingual evaluation on LA datasets giving
promising results
interactive similar example retrieval pipeline available as
prototype CALL application

Future work

extraction method:
handle nonexistent word forms
deal with real-world L2 data:

non-morphosyntactical errors (spelling, lexical. . .)
multiple overlapping errors

example retrieval application:
implement pattern selection/ranking
build UI

use L1-L2 patterns from feedback comment generation
improve automatic annotation of L2 sentences

— — — -Thank you!— — — -
asynchronous questions/comments: arianna.masciolini@gu.se

References

Leshem Choshen, Dmitry Nikolaev, Yevgeni Berzak, and Omri Abend.
Classifying syntactic errors in learner language. In Proceedings of the
24th Conference on Computational Natural Language Learning, pages
97–107, Online, 2020. Association for Computational Linguistics
Prasanth Kolachina and Aarnte Ranta. From abstract syntax to
Universal Dependencies. Linguistic Issues in Language Technology,
13, 2016
John Lee, Keying Li, and Herman Leung. L1-L2 parallel dependency
treebank as learner corpus. In Proceedings of the 15th International
Conference on Parsing Technologies, pages 44–49, Pisa, Italy, 2017.
Association for Computational Linguistics

References

Arianna Masciolini. A query engine for L1-L2 parallel dependency
treebanks. In Proceedings of the 24th Nordic Conference on
Computational Linguistics (NoDaLiDa), pages 574–587, Tórshavn,
Faroe Islands, 2023. University of Tartu Library
Arianna Masciolini and Aarne Ranta. Grammar-based concept
alignment for domain-specific Machine Translation. In Proceedings of
the Seventh International Workshop on Controlled Natural Language
(CNL 2020/21), Amsterdam, Netherlands, 2021. Special Interest
Group on Controlled Natural Language
Aarne Ranta and Prasanth Kolachina. From Universal Dependencies
to abstract syntax. In Proceedings of the NoDaLiDa 2017 Workshop
on Universal Dependencies (UDW 2017), pages 107–116, Gothenburg,
Sweden, 2017. Association for Computational Linguistics

References

Elena Volodina, Yousuf Ali Mohammed, and Julia Klezl. DaLAJ-a
dataset for linguistic acceptability judgments for Swedish: Format,
baseline, sharing. arXiv preprint arXiv:2105.06681, 2021
Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei
Peng, Sheng-Fu Wang, and Samuel R. Bowman. BLiMP: The
benchmark of linguistic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–392, 2020

	Step 1: error detection
	Step 2: pattern generation
	Preliminary evaluation
	Thank you!asynchronous questions/comments: arianna.masciolini@gu.se

