Applications of UD analysis

syntactic queries, cross-linguistic
comparisons and language learning

Arianna Masciolini and Aarne Ranta
LT2214 Computational Syntax

8 april 2024

Intoday’s lecture

1. some deptreepy magic
2. parallel syntactic queries with STuND
3. language learning applications

2/27

Deptreepy

Tree queries

usage:

python3 deptreepy.py <command> <arg>*

The command-arg combinations are

cosinagadmitartty=<afile> <file> <field>* # cosine similarity of treeban

'match_trees <pattern>'
'match_subtrees <pattern>'

' mateh=nerdtinee—=paLtern>'
'match_segments <pattern>
'change_wordlines <pattern>'
'change_subtrees <pattern>'
'statistics <field>*
'treetype_statistics <field>*'
"head_dep_statistics <field>*
"count_wordlines'

#

#
#
#
#
#
#
#
#
#

match entire trees

match entire trees and recursively t
match individual wordlines in all tr
match contiguous, disjoint segments
make changes in wordlines

change subtrees recursively
frequency-ordered statistics of <fie
frequency-ordered statistics of type
frequency-ordered statistics of head
the number of wordlines

Compound tenses

= present continous (/ am showing you the first query)

5/27

Compound tenses

= present continous (I am showing you the first query):

TREE_
(FORM *ing)
(AND (LEMMA be) (FEATS *Tense=Presx*))

or even better:

TREE_

(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Presx))
(AND (LEMMA be) (FEATS *Tense=Presx))

5/27

Compound tenses

= present continous (I am showing you the first query):

TREE_
(FORM *ing)
(AND (LEMMA be) (FEATS *Tense=Presx*))

or even better:

TREE_
(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Presx))
(AND (LEMMA be) (FEATS *Tense=Presx))

= present perfect (/ have just shown you the first query): ?

5/27

Compound tenses

= present continous (I am showing you the first query):

TREE_
(FORM *ing)
(AND (LEMMA be) (FEATS *Tense=Presx*))

or even better:

TREE_
(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Presx))
(AND (LEMMA be) (FEATS *Tense=Presx))

present perfect (/ have just shown you the first query): 7

5/27

Present perfect & friends
Marton Andras Toth

Doctoral Student
Department of Swedish, multilingualism, language technology -

MAIL VISITING ADDRESS

marton.toth@gu.se Renstrémsgatan 6
41255 Goteborg

POSTAL ADDRESS

Box 200

40530 Goteborg

About Marton Andras Téth

| am a PhD student in Nordic Languages with main research focus on grammar. My
PhD thesis concerns the use of th Swedish (e.g. jag har atit "I
have eaten”). | am mostly interested in what characteristic features Swedish has in
its tense-aspect system compared to other languages.

6/27

STUND ' public % star ~

A GUI Search Tool for (bilingual) parallel Universal
Dependencies treebanks

® Haskell All MIT License Updated on Jan 25
= Haskell prototype (small syntactic differences in the

queryies)
= available for download at github.com/harisont/STUnD

7/27

STUnD demo

Under the hood

1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences!

! how? See github.com/harisont/concept-alignment

9/27

Under the hood

1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences!
2. the query is rewritten as two separate patterns

! how? See github.com/harisont/concept-alignment

9/27

Under the hood

1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences!

2. the query is rewritten as two separate patterns

3. each query is matched against the correspondences found
at step 1 (similar to deptreepy’s match_trees, but in
parallel)

! how? See github.com/harisont/concept-alignment

9/27
]

Under the hood

1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences!

2. the query is rewritten as two separate patterns

3. each query is matched against the correspondences found
at step 1 (similar to deptreepy’s match_trees, but in
parallel)

4. if the user provided a replacement pattern, it is used to
refine the search results

! how? See github.com/harisont/concept-alignment

9/27
]

Use cases

Comparing:

= a text and its translation to another language

10/27

Use cases

Comparing:

= a text and its translation to another language

= same text analyzed with two different parsers

10/27

Use cases

Comparing:

= a text and its translation to another language
= same text analyzed with two different parsers
= ungrammatical sentences vs. corrections hypotheses

10/27

Yet another STUnD demo

Going the other way around

= can we also infer error patterns from L1-L2 treebanks?
= and possibly: can we generate feedback comments on
the basis of error patterns?

12/27

Given a learner sentence:

13/27

Given a learner sentence:

1. obtain correction hypothesis

13/27

Given a learner sentence:

1. obtain correction hypothesis
2. annotate learner sentence and correction in UD

13/27

Given a learner sentence:

1. obtain correction hypothesis
2. annotate learner sentence and correction in UD
3. extract error patterns

13/27

Given a learner sentence:

1. obtain correction hypothesis

annotate learner sentence and correction in UD
extract error patterns

generate feedback comments with GF

BN

13/27

1. Grammatical Error Correction

“detta mening korrekt grammatisk?”

!

“Ar denna mening grammatiskt korrekt?”

~"these sentence correct grammatical?” — “Is this sentence grammatically correct?”

14/27

1. Grammatical Error Correction

= well-established NLP task
= often solvable via back-and-forth translation

15/27

Back-and-forth translation

Swedish (detected) v/

detta mening korrekt grammatisk?

2

English (UK) \/ Glossary

Is this sentence grammatically correct?

Alternatives

Is this sentence correctly grammatical?
This sentence is correctly grammatical?

this sentence correctly grammatically?

d @ Z 0 <

16/27

Back-and-forth translation

English ‘:) Swedish Glossary
Is this sentence grammatically correct? X Ar denna mening grammatiskt korrekt?
Alternatives

Ar meningen grammatiskt korrekt?
Ar den har meningen grammatiskt korrekt?

Ar denna mening grammatisk korrekt?

d @ 6 <

17/27

2. UD annotation

(“Ar denna mening grammatiskt korrekt?”, “detta mening korrekt grammatisk?")

O—
<root>

korrekt

root

ADJ \
Ar mening grammatiskt ?
cop / nsubj advmod punct
AUX" NOUN ADV PUNCT
denna
det
DET

!

Q
<root>

korrek
root
ADJ

mening grammatisk ?
nsubj amod punct
NOUN ADJ PUNCT

detta
det
DET

18/27

2. UD annotation

= existing UD parsers such as UDPipe perform well on
standard language, L2 is way more challenging
= a task for ML (neural networks?)
= this is what I'm working on right now:
» building a reference treebank
* crazy experiments with using corrections as training data
* less crazy experiments with synthetic errors

19/27

3. Error pattern extraction

«Q
<root>

e
korrekt

korrek
root root
ADJ ADJ
\ Gendex=Com \
[

Ar /mening grammatiskt ? mening grammatisk ?

o—
<root>

cop / nsubj advmod punct nsubj amod punct
AUX" NOUN) ADV PUNCT NOUN ADJ PUNCT
J Gendexr=Com

denna ¥V detta

det % (Gendex=Neut ot

DET DET

!

AND [POS "DET", FEATS_ "Gender={Com -> Neutr}"], or

TREE_ (AND [POS "NOUN", FEATS_ "Gender=Com"]) [AND [POS
"DET", FEATS_ "Gender=Neutr"]]

20/27

3. Error pattern extraction

creation of error patterns (“queries”) from UD tree pairs
also something I've been working on, see (suboptimal)
code at github.com/harisont/L2-UD

-
-

21/27

4. Feedback comment generation

TREE (AND [POS "NOUN", D
[AND [POS "DET", FEATS_ "Gender=Neutr"]]
The determiner’s gender is neutrum, but the of the noun it
refers to is

22/27

4. Feedback comment generation

TREE (AND [POS "NOUN",)]
[AND [POS "DET", FEATS_ "Gender=Neutr"]]

!

OBS: detta substantiv ar ett en-ord!

23/27

4. Feedback comment generation

TREE (AND [POS "NOUN", 1)
[AND [POS "DET", FEATS_ "Gender=Neutr"]]

!

Pay attention to gender agreement!

24/27

4. Feedback comment generation

= (multilingual) data2text task
= Grammatical Framework is the perfect tool for the job!
= but this is a story for another day. ..

25/27

Stories for other days

N EE EE =

good, consistent GEC?

Swedish L2 treebanks?

really good L2 parsers?

improved pattern extraction?

actual feedback comment generation?

26/27

Other stories for other days

But also:

better subtree alignment?

web version of deptreepy/STUnD?

work on UD treebanks/parsers in general?
dependency-based language learning applications? (see
github.com/harisont/advpy_nlp for inspiration)

E EE EE EE

27/27

	Deptreepy
	STUnD demo
	Yet another STUnD demo

