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In today’s lecture
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1. some deptreepy magic
2. parallel syntactic queries with STuND
3. language learning applications
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Deptreepy



Tree queries
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Compound tenses
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present continous (I am showing you the first query)

:
TREE_

(FORM *ing)
(AND (LEMMA be) (FEATS *Tense=Pres*))

or even better:
TREE_

(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Pres*))
(AND (LEMMA be) (FEATS *Tense=Pres*))

present perfect (I have just shown you the first query): ?

. . .
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Present perfect & friends

6/27



Om en stund. . .
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Haskell prototype (small syntactic differences in the
queryies)
available for download at github.com/harisont/STUnD
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STUnD demo



Under the hood
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1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences1

2. the query is rewritten as two separate patterns
3. each query is matched against the correspondences found

at step 1 (similar to deptreepy’s match_trees, but in
parallel)

4. if the user provided a replacement pattern, it is used to
refine the search results

1 how? See github.com/harisont/concept-alignment
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Use cases
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Comparing:

a text and its translation to another language

same text analyzed with two different parsers
ungrammatical sentences vs. corrections hypotheses
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Yet another STUnD demo



Going the other way around
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can we also infer error patterns from L1-L2 treebanks?
and possibly: can we generate feedback comments on
the basis of error patterns?



Steps
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Given a learner sentence:

1. obtain correction hypothesis
2. annotate learner sentence and correction in UD
3. extract error patterns
4. generate feedback comments with GF
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1. Grammatical Error Correction
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“detta mening korrekt grammatisk?”
↓

“Är denna mening grammatiskt korrekt?”

~“these sentence correct grammatical?” → “Is this sentence grammatically correct?”



1. Grammatical Error Correction
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well-established NLP task
often solvable via back-and-forth translation



Back-and-forth translation
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Back-and-forth translation
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2. UD annotation
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⟨“Är denna mening grammatiskt korrekt?”, “detta mening korrekt grammatisk?”⟩

↓



2. UD annotation
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existing UD parsers such as UDPipe perform well on
standard language, L2 is way more challenging
a task for ML (neural networks?)
this is what I’m working on right now:

building a reference treebank
crazy experiments with using corrections as training data
less crazy experiments with synthetic errors



3. Error pattern extraction
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↓
AND [POS "DET", FEATS_ "Gender={Com -> Neutr}"], or

TREE_ (AND [POS "NOUN", FEATS_ "Gender=Com"]) [AND [POS
"DET", FEATS_ "Gender=Neutr"]]



3. Error pattern extraction
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creation of error patterns (“queries”) from UD tree pairs
also something I’ve been working on, see (suboptimal)
code at github.com/harisont/L2-UD



4. Feedback comment generation
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TREE (AND [POS "NOUN", FEATS_ "Gender=Com"])
[AND [POS "DET", FEATS_ "Gender=Neutr"]]

↓
The determiner’s gender is neutrum, but the gender of the noun it

refers to is common.



4. Feedback comment generation
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TREE (AND [POS "NOUN", FEATS_ "Gender=Com"])
[AND [POS "DET", FEATS_ "Gender=Neutr"]]

↓

OBS: detta substantiv är ett en-ord!



4. Feedback comment generation
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TREE (AND [POS "NOUN", FEATS_ "Gender=Com"])
[AND [POS "DET", FEATS_ "Gender=Neutr"]]

↓

Pay attention to gender agreement!



4. Feedback comment generation
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(multilingual) data2text task
Grammatical Framework is the perfect tool for the job!
but this is a story for another day. . .



Stories for other days
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good, consistent GEC?
Swedish L2 treebanks?
really good L2 parsers?
improved pattern extraction?
actual feedback comment generation?



Other stories for other days
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But also:

better subtree alignment?
web version of deptreepy/STUnD?
work on UD treebanks/parsers in general?
dependency-based language learning applications? (see
github.com/harisont/advpy_nlp for inspiration)
. . .
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