
Applications of UD analysis
syntactic queries, cross-linguistic

comparisons and language learning

Arianna Masciolini and Aarne Ranta
LT2214 Computational Syntax

8 april 2024



In today’s lecture

2/27

1. some deptreepy magic
2. parallel syntactic queries with STuND
3. language learning applications



3/27

Deptreepy



Tree queries

4/27



Compound tenses

5/27

present continous (I am showing you the first query)

:
TREE_

(FORM *ing)
(AND (LEMMA be) (FEATS *Tense=Pres*))

or even better:
TREE_

(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Pres*))
(AND (LEMMA be) (FEATS *Tense=Pres*))

present perfect (I have just shown you the first query): ?

. . .



Compound tenses

5/27

present continous (I am showing you the first query):
TREE_

(FORM *ing)
(AND (LEMMA be) (FEATS *Tense=Pres*))

or even better:
TREE_

(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Pres*))
(AND (LEMMA be) (FEATS *Tense=Pres*))

present perfect (I have just shown you the first query): ?

. . .



Compound tenses

5/27

present continous (I am showing you the first query):
TREE_

(FORM *ing)
(AND (LEMMA be) (FEATS *Tense=Pres*))

or even better:
TREE_

(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Pres*))
(AND (LEMMA be) (FEATS *Tense=Pres*))

present perfect (I have just shown you the first query): ?

. . .



Compound tenses

5/27

present continous (I am showing you the first query):
TREE_

(FORM *ing)
(AND (LEMMA be) (FEATS *Tense=Pres*))

or even better:
TREE_

(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Pres*))
(AND (LEMMA be) (FEATS *Tense=Pres*))

present perfect (I have just shown you the first query): ?

. . .



Present perfect & friends

6/27



Om en stund. . .

7/27

Haskell prototype (small syntactic differences in the
queryies)
available for download at github.com/harisont/STUnD



8/27

STUnD demo



Under the hood

9/27

1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences1

2. the query is rewritten as two separate patterns
3. each query is matched against the correspondences found

at step 1 (similar to deptreepy’s match_trees, but in
parallel)

4. if the user provided a replacement pattern, it is used to
refine the search results

1 how? See github.com/harisont/concept-alignment



Under the hood

9/27

1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences1

2. the query is rewritten as two separate patterns

3. each query is matched against the correspondences found
at step 1 (similar to deptreepy’s match_trees, but in
parallel)

4. if the user provided a replacement pattern, it is used to
refine the search results

1 how? See github.com/harisont/concept-alignment



Under the hood

9/27

1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences1

2. the query is rewritten as two separate patterns
3. each query is matched against the correspondences found

at step 1 (similar to deptreepy’s match_trees, but in
parallel)

4. if the user provided a replacement pattern, it is used to
refine the search results

1 how? See github.com/harisont/concept-alignment



Under the hood

9/27

1. sentences are aligned based on the UD analysis, resulting in
a set of subtree correspondences1

2. the query is rewritten as two separate patterns
3. each query is matched against the correspondences found

at step 1 (similar to deptreepy’s match_trees, but in
parallel)

4. if the user provided a replacement pattern, it is used to
refine the search results

1 how? See github.com/harisont/concept-alignment



Use cases

10/27

Comparing:

a text and its translation to another language

same text analyzed with two different parsers
ungrammatical sentences vs. corrections hypotheses



Use cases

10/27

Comparing:

a text and its translation to another language
same text analyzed with two different parsers

ungrammatical sentences vs. corrections hypotheses



Use cases

10/27

Comparing:

a text and its translation to another language
same text analyzed with two different parsers
ungrammatical sentences vs. corrections hypotheses



11/27

Yet another STUnD demo



Going the other way around

12/27

can we also infer error patterns from L1-L2 treebanks?
and possibly: can we generate feedback comments on
the basis of error patterns?



Steps

13/27

Given a learner sentence:

1. obtain correction hypothesis
2. annotate learner sentence and correction in UD
3. extract error patterns
4. generate feedback comments with GF



Steps

13/27

Given a learner sentence:

1. obtain correction hypothesis

2. annotate learner sentence and correction in UD
3. extract error patterns
4. generate feedback comments with GF



Steps

13/27

Given a learner sentence:

1. obtain correction hypothesis
2. annotate learner sentence and correction in UD

3. extract error patterns
4. generate feedback comments with GF



Steps

13/27

Given a learner sentence:

1. obtain correction hypothesis
2. annotate learner sentence and correction in UD
3. extract error patterns

4. generate feedback comments with GF



Steps

13/27

Given a learner sentence:

1. obtain correction hypothesis
2. annotate learner sentence and correction in UD
3. extract error patterns
4. generate feedback comments with GF



1. Grammatical Error Correction

14/27

“detta mening korrekt grammatisk?”
↓

“Är denna mening grammatiskt korrekt?”

~“these sentence correct grammatical?” → “Is this sentence grammatically correct?”



1. Grammatical Error Correction

15/27

well-established NLP task
often solvable via back-and-forth translation



Back-and-forth translation

16/27



Back-and-forth translation

17/27



2. UD annotation

18/27

⟨“Är denna mening grammatiskt korrekt?”, “detta mening korrekt grammatisk?”⟩

↓



2. UD annotation

19/27

existing UD parsers such as UDPipe perform well on
standard language, L2 is way more challenging
a task for ML (neural networks?)
this is what I’m working on right now:

building a reference treebank
crazy experiments with using corrections as training data
less crazy experiments with synthetic errors



3. Error pattern extraction

20/27

↓
AND [POS "DET", FEATS_ "Gender={Com -> Neutr}"], or

TREE_ (AND [POS "NOUN", FEATS_ "Gender=Com"]) [AND [POS
"DET", FEATS_ "Gender=Neutr"]]



3. Error pattern extraction

21/27

creation of error patterns (“queries”) from UD tree pairs
also something I’ve been working on, see (suboptimal)
code at github.com/harisont/L2-UD



4. Feedback comment generation

22/27

TREE (AND [POS "NOUN", FEATS_ "Gender=Com"])
[AND [POS "DET", FEATS_ "Gender=Neutr"]]

↓
The determiner’s gender is neutrum, but the gender of the noun it

refers to is common.



4. Feedback comment generation

23/27

TREE (AND [POS "NOUN", FEATS_ "Gender=Com"])
[AND [POS "DET", FEATS_ "Gender=Neutr"]]

↓

OBS: detta substantiv är ett en-ord!



4. Feedback comment generation

24/27

TREE (AND [POS "NOUN", FEATS_ "Gender=Com"])
[AND [POS "DET", FEATS_ "Gender=Neutr"]]

↓

Pay attention to gender agreement!



4. Feedback comment generation

25/27

(multilingual) data2text task
Grammatical Framework is the perfect tool for the job!
but this is a story for another day. . .



Stories for other days

26/27

good, consistent GEC?
Swedish L2 treebanks?
really good L2 parsers?
improved pattern extraction?
actual feedback comment generation?



Other stories for other days

27/27

But also:

better subtree alignment?
web version of deptreepy/STUnD?
work on UD treebanks/parsers in general?
dependency-based language learning applications? (see
github.com/harisont/advpy_nlp for inspiration)
. . .


	Deptreepy
	STUnD demo
	Yet another STUnD demo

