Applications of UD analysis

syntactic queries, cross-linguistic comparisons and language learning

Arianna Masciolini and Aarne Ranta LT2214 Computational Syntax

- 1. some deptreepy magic
- 2. parallel syntactic queries with STuND
- 3. language learning applications

Tree queries

'count_wordlines'

usage:		٦
python3 deptreepy.py <command/> <a< td=""><td>rg>*</td><td></td></a<>	rg>*	
The command-arg combinations are		
<u>cosine_cimilarity <file></file></u> <file> <</file>	field>* # cosine similarity of treeban	
'match_trees <pattern>'</pattern>	<pre># match entire trees</pre>	
\'match_subtrees <pattern>'/</pattern>	<pre># match entire trees and recursively t</pre>	
'match_wordlines <pattern>'</pattern>	<pre># match individual wordlines in all tr</pre>	
'match_segments <pattern></pattern>	<pre># match contiguous, disjoint segments</pre>	
'change_wordlines <pattern>'</pattern>	# make changes in wordlines	
'change_subtrees <pattern>'</pattern>	# change subtrees recursively	
'statistics <field>*'</field>	<pre># frequency-ordered statistics of <fie< pre=""></fie<></pre>	
'treetype_statistics <field>*'</field>	<pre># frequency-ordered statistics of type</pre>	
'head_dep_statistics <field>*'</field>	<pre># frequency-ordered statistics of head</pre>	

the number of wordlines

present continous (I am showing you the first query)

present continous (I am showing you the first query):

```
TREE_
  (FORM *ing)
  (AND (LEMMA be) (FEATS *Tense=Pres*))
or even better:
```

TREE_

```
(AND (FEATS *VerbForm=Part*) (FEATS *Tense=Pres*))
(AND (LEMMA be) (FEATS *Tense=Pres*))
```


present continous (I am showing you the first query):

```
TREE_
  (FORM *ing)
  (AND (LEMMA be) (FEATS *Tense=Pres*))
or even better:
TREE_
  (AND (FEATS *VerbForm=Part*) (FEATS *Tense=Pres*))
  (AND (LEMMA be) (FEATS *Tense=Pres*))
```

present perfect (I have just shown you the first query): ?

present continous (I am showing you the first query):

```
TREE_
  (FORM *ing)
  (AND (LEMMA be) (FEATS *Tense=Pres*))
or even better:
TREE_
  (AND (FEATS *VerbForm=Part*) (FEATS *Tense=Pres*))
  (AND (LEMMA be) (FEATS *Tense=Pres*))
```

present perfect (*I have just shown you the first query*): ?
...

Present perfect & friends

Márton András Tóth

Doctoral Student Department of Swedish, multilingualism, language technology →

MAIL marton.toth@gu.se

POSTAL ADDRESS Box 200 40530 Göteborg VISITING ADDRESS Renströmsgatan 6 41255 Göteborg

About Márton András Tóth

I am a PhD student in Nordic Languages with main research focus on grammar. My PhD thesis concerns the use of the present perfect. Swedish (e.g. jag har ätit "I have eaten"). I am mostly interested in what characteristic features <u>Swedish</u> has in its tense-aspect system <u>compared</u> to other languages.

- Haskell prototype (small syntactic differences in the queryies)
- available for download at github.com/harisont/STUnD

STUnD demo

1. sentences are aligned based on the UD analysis, resulting in a set of subtree correspondences $^{\rm 1}$

¹ how? See github.com/harisont/concept-alignment

- 1. sentences are aligned based on the UD analysis, resulting in a set of subtree correspondences $^{\rm 1}$
- 2. the query is rewritten as two separate patterns

¹ how? See github.com/harisont/concept-alignment

- 1. sentences are aligned based on the UD analysis, resulting in a set of subtree correspondences $^{\rm 1}$
- 2. the query is rewritten as two separate patterns
- each query is matched against the correspondences found at step 1 (similar to deptreepy's match_trees, but in parallel)

¹ how? See github.com/harisont/concept-alignment

- 1. sentences are aligned based on the UD analysis, resulting in a set of subtree correspondences $^{\rm 1}$
- 2. the query is rewritten as two separate patterns
- each query is matched against the correspondences found at step 1 (similar to deptreepy's match_trees, but in parallel)
- 4. if the user provided a replacement pattern, it is used to refine the search results

¹ how? See github.com/harisont/concept-alignment

Comparing:

a text and its translation to another language

Comparing:

- a text and its translation to another language
- same text analyzed with two different parsers

Comparing:

- a text and its translation to another language
- same text analyzed with two different parsers
- ungrammatical sentences vs. corrections hypotheses

Yet another STUnD demo

- can we also infer error patterns from L1-L2 treebanks?
- and possibly: can we generate feedback comments on the basis of error patterns?

1. obtain correction hypothesis

- 1. obtain correction hypothesis
- 2. annotate learner sentence and correction in UD

- 1. obtain correction hypothesis
- 2. annotate learner sentence and correction in UD
- 3. extract error patterns

- 1. obtain correction hypothesis
- 2. annotate learner sentence and correction in UD
- 3. extract error patterns
- 4. generate feedback comments with GF

1. Grammatical Error Correction

"detta mening korrekt grammatisk?"

"Är denna mening grammatiskt korrekt?"

~"these sentence correct grammatical?" \rightarrow "Is this sentence grammatically correct?"

1. Grammatical Error Correction

- well-established NLP task
- often solvable via back-and-forth translation

Back-and-forth translation

Swedish (detected) 🗸	₹	English (UK) 🗸		Glossary
detta mening korrekt grammatisk?	×	Is this sentence grammatically correct?		
		Alternatives:		
		Is this sentence correctly grammatical?		
		This sentence is correctly grammatical?		
		this sentence correctly grammatically?		
		4 P 2	0	~°

Back-and-forth translation

English 🗸	⇔	Swedish \checkmark	G	llossary
Is this sentence grammatically correct?	×	Är denna mening grammatiskt korrekt?		
		Alternatives:		
		Är meningen grammatiskt korrekt?		
		Är den här meningen grammatiskt korrekt?		
		År denna mening grammatisk korrekt?		
			ē	مہ
		CI W	U	w0

2. UD annotation

("År denna mening grammatiskt korrekt?", "detta mening korrekt grammatisk?")

- existing UD parsers such as UDPipe perform well on standard language, L2 is way more challenging
- a task for ML (neural networks?)
- this is what I'm working on right now:
 - building a reference treebank
 - crazy experiments with using corrections as training data
 - less crazy experiments with synthetic errors

3. Error pattern extraction

TREE_ (AND [POS "NOUN", FEATS_ "Gender=Com"]) [AND [POS "DET", FEATS_ "Gender=Neutr"]]

creation of error patterns ("queries") from UD tree pairs
 also something I've been working on, see (suboptimal) code at github.com/harisont/L2-UD

TREE (AND [POS "NOUN", FEATS_ "Gender=Com"]) [AND [POS "DET", FEATS_ "Gender=Neutr"]]

The determiner's gender is neutrum, but the gender of the noun it refers to is common.

TREE (AND [POS "NOUN", FEATS_ "Gender=Com"]) [AND [POS "DET", FEATS_ "Gender=Neutr"]]

OBS: detta substantiv är ett en-ord!

TREE (AND [POS "NOUN", FEATS_ "Gender=Com"]) [AND [POS "DET", FEATS_ "Gender=Neutr"]]

Pay attention to gender agreement!

- (multilingual) data2text task
- Grammatical Framework is the perfect tool for the job!
- but this is a story for another day...

- good, consistent GEC?
- Swedish L2 treebanks?
- really good L2 parsers?
- improved pattern extraction?
- actual feedback comment generation?

But also:

5-

- better subtree alignment?
- web version of deptreepy/STUnD?
- work on UD treebanks/parsers in general?
- dependency-based language learning applications? (see github.com/harisont/advpy_nlp for inspiration)