Dependency grammar and Universal Dependencies

an introduction and annotation exercise

Arianna Masciolini
LI2020 Syntax 2

Who am I and why am I here?

- Arianna Masciolini
" background in Computer Science
- PhD student in Natural Language Processing at the Department of Swedish, Multilingualism, Language Technology
\#. interested in Computational Syntax and Second Language Acquisition
"- currently working on
* UD treebank of L2 Swedish
: automatic annotation of $L 2$ texts

Today's agenda

1. basics of dependency grammar
2. quick introduction to Universal Dependencies
3. annotation exercise

Dependency grammar

Dependency vs. phrase structure

dependency grammar

- Lucien Tesnière (1959)
- descriptive
- (labelled) head-dependent links
- based on dependency
phrase structure grammar
- Noam Chomsky (1956)
- generative
- rewrite rules/transformations
- based on constituency

Dependency vs. constituency

We are trying to understand the difference.
Dependency

We are trying to understand the difference.
Constituency
original image: commons.wikimedia.org

Dependency

" one-to-one correspondence between two elements of a sentence
*" elements are typically words, but can also be subwords or larger semantic units
:" dependency trees typically have less nodes than phrase structure trees
directed link between a head and a dependent
links can be labelled to specify syntactic function

Various standards and formats

original image: commons.wikimedia.org

Various standards and formats

generated with UDPipe Online: lindat.mff.cuni.cz/services/udpipe

Various standards and formats

generated with gf-ud: github.com/GrammaticalFramework/gf-ud

Universal Dependencies 101

What is Universal Dependencies?

a growing collection of dependency treebanks for many languages (over 140!)
\#- an annotation scheme for cross-lingually consistent grammatical annotation

Some UD languages

6	Abaza	1	＜1K	\bigcirc	Northwest Caucasian
\geqslant	Afrikaans	1	49 K	＊ 6	IE，Germanic
－	Akkadian	2	25K	［1013	Afro－Asiatic，Semitic
¢	Akuntsu	1	1K	［1］${ }^{\text {a }}$	Tupian，Tupari
\pm	Albanian	1	＜1K	W	IE，Albanian
다ㄴㅡㅡ늘	Amharic	1	10K		Afro－Asiatic，Semitic
徃	Ancient Greek	3	456 K	－90	IE，Greek
$\stackrel{\square}{\square}$	Ancient Hebrew	1	39 K	－	Afro－Asiatic，Semitic
Q	Apurina	1	＜1K	［10］	Arawakan
힌	Arabic	3	1，042K	［國W	Afro－Asiatic，Semitic
5	Armenian	2	94 K	Mer＊国00W	IE，Armenian
8．	Assyrian	1	＜1K	［1［）］	Afro－Asiatic，Semitic
II	Bambara	1	13 K	国 ${ }^{\text {a }}$	Mande
	Basque	1	121K	［1］	Basque
	Beja	1	1 K	0	Afro－Asiatic，Cushitic
＋	Belarusian	1	305K		IE，Slavic
\square	Bengali	1	＜1K	7	IE，Indic
\square	Bhojpuri	1	6K	［10930	IE，Indic
es	Bororo	1	1K	7	Bororoan
＂	Breton	1	10K	Elceojw	IE，Celtic
	Bulgarian	1	156K	E＊葍	IE，Slavic
$\underline{\square}$	Buryat	1	10K	E\％區	Mongolic
＊	Cantonese	1	13 K	\bigcirc	Sino－Tibetan
表	Catalan	1	553K	［멱）	IE，Romance
\geq	Cebuano	1	1K	γ	Austronesian，Central Philippine
F	Chinese	7	309K	Nて＊＊	Sino－Tibetan
\geqslant	Chukchi	1	6K	\bigcirc	Chukotko－Kamchatkan
1＋1	Classical Armenian	1	13 K	－	IE，Armenian
\％n	Classical Chinese	1	433K	（9）．	Sino－Tibetan
國	Coptic	1	57 K	－90	Afro－Asiatic，Egyptian
플	Croatian	1	199K	［또0W	IE，Slavic
$\underline{\square}$	Czech	6	2，253K		IE，Slavic
틑	Danish	1	100K	래밍	IE，Germanic
$\underline{=}$	Dutch	2	306K	國W	IE，Germanic

source：universaldependencies．org

Design goals

F human and machine readability
: ease of visualization and manual annotation
:" text-based format for straightforward computer processing
". suitability for both mono- and multilingual use cases
\because uniform morphosyntactic annotation layer complemented by language-specific guidelines
:" main fields of applications: typology and Natural Language Processing

UD sentences: tree format

generated with gf-ud: github.com/GrammaticalFramework/gf-ud

UD sentences: CoNLL-U format

```
sent_id = 1
text = We are trying to understand the difference.
    We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ TokenRange=0:2
    are be AUX VBP Mood=Ind|Number=Plur|Person=1|Tense=Pres|VerbForm=Fin 3 aux _ TokenRange=3:6
    trying try VERB VBG Tense=Pres|VerbForm=Part 0 root _ TokenRange=7:13
    to to PART TO - 5 mark - TokenRange=14:16
    understand understand VERB VB VerbForm=Inf 3 xcomp _ TokenRange=17:27
    the the DET DT Definite=Def|PronType=Art 7 det _ TokenRange=28:31
    difference difference NOUN NN Number=Sing 5 obj _ SpaceAfter=No|TokenRange=32:42
    . . PUNCT . _ 3 punct _ SpaceAfter=No|TokenRange=42:43
```


UD sentences: table format

original image generated with UDPipe Online: lindat.mff.cuni.cz/services/udpipe

UD sentences: table format

Content vs. function words

" content words: words with own lexical meaning
? usually open class: nouns, lexical verbs, adjectives, adverbs...
:" function words: words that primarily denote grammatical relationships between other words
:" usually closed class: prepositions, pronouns, auxiliaries...

Primacy of content words

\#- syntactic heads tend to be content words
"- as a rule of thumb, the root of a dependency tree is its main lexical verb or, in its absence, the complement of the copula

Example 1

The root is the present participle trying, not the finite auxiliary are:

This facilitates comparisons with languages that don't use an auxiliary in this context:

Example 2

The root is the noun difference, not the copula is:

Some more dependency labels

Core nominal arguments of the verb

n nsubj (nominal subject)

- obj (direct object)

Some more dependency labels

Subordinate clauses

". xcomp (predicative complement whose subject is externally determined, as opposed to ccomp in sentences like I think that we understand the difference)

Some more dependency labels

Function words

" aux (auxiliary)
:- mark (word marking a subordinate clause) det (determiner of a nominal)

Some more dependency labels

Others
" punct (punctuation mark)

Dependency labels: overview

	Nominals	Clauses	Modifier words	Function Words
Core arguments	$-\begin{aligned} & \text { nsubj. } \\ & \text { obj. } \end{aligned}$	$\begin{gathered} -\frac{\text { csubj. }}{\text { ccomp }} \\ \text { xcomp } \end{gathered}$		
Non-core dependents	$\begin{aligned} - & \underline{\text { obl }} \\ & \underline{\text { vocative }} \\ - & \operatorname{expl} \\ & \text { dislocated } \end{aligned}$	- advcl	- advmod* discourse	$\begin{aligned} & \text { aux } \\ & \underline{\text { cop }} \\ & \text { mark } \end{aligned}$
Nominal dependents	- nmod - appos nummod	- acl	- amod	$\begin{array}{r} \text { clet } \\ -\frac{\text { case }}{} \end{array}$
Coordination	Headless	Loose	Special	Other
$\begin{aligned} & -\underline{c o n j} . \\ & -\underline{c c} \end{aligned}$	fixed flat	list parataxis	compound orphan goeswith reparandum	$\left(\begin{array}{l} \text { punct } \\ \text { root } \\ \text { dep } \end{array}\right.$

source: universaldependencies.org

Annotation exercise

Annotation exercise

- 10 hand-picked sentences from the ESL (English as a Second Language) treebank
" 2 different methods:

1. manual annotation
2. automatic parsing + manual validation

Sentence 1

I do not want to spend much time on computers.

Sentence 1

I do not want to spend much time on computers.
". what clause is the subject of the subordinate clause controlled by?

Sentence 1

I do not want to spend much time on computers.
". what clause is the subject of the subordinate clause controlled by?

Sentence 2

All your tasks will be performed by computers.

Sentence 2

All your tasks will be performed by computers.
F- what are the logical and syntactic subjects of this sentence?

Sentence 2

All your tasks will be performed by computers.
.what are the logical and syntactic subjects of this sentence?

Sentence 3

Can you imagine life before computers?

Sentence 3

Can you imagine life before computers?
:- question
"- what does "before computers" modify?

Sentence 3

Can you imagine life before computers?
:- question
". what does "before computers" modify?

Sentence 4

There are only ten computers in the school.

Sentence 4

There are only ten computers in the school.
" is the use of the verb "to be" the same as in sentence 2?

Sentence 4

There are only ten computers in the school.
" is the use of the verb "to be" the same as in sentence 2?

Sentence 5

But the most important innovation in technological development is the computer.

Sentence 5

But the most important innovation in technological development is the computer.
F. what is the subject here and how many dependents does it have?

Sentence 5

But the most important innovation in technological development is the computer.
.What is the subject here and how many dependents does it have?

Sentence 6

In particular, the computer has changed my daily life dramatically.

Sentence 6

In particular, the computer has changed my daily life dramatically.
\#. what is "in particular"?

Sentence 6

In particular, the computer has changed my daily life dramatically.
" what is "in particular"?

Sentence 7

Maybe, technology will never stop advancing and our life will never work without computers.

Sentence 7

Maybe, technology will never stop advancing and our life will never work without computers.
. what are the two conjuncts in this sentence?

Sentence 8

I work with children and the computer helps me in my job but affects it too.

Sentence 8

I work with children and the computer helps me in my job but affects it too.
" two coordinating conjunctions here: what is conjunted to what?

Sentence 9

When I was a child I didn't use the computer because I didn't know what it was.

Sentence 9

When I was a child I didn't use the computer because I didn't know what it was.
" how many clauses are there?
what is the relationship between them?

Sentence 10

With the introduction of the computer in our civilization we can access the Internet to communicate with our relatives and friends living abroad or far from us.

Sentence 10

With the introduction of the computer in our civilization we can access the Internet to communicate with our relatives and friends living abroad or far from us.
" what is "living" referred to?

Readings \& useful links

Learn more

". a more in-depth introduction to UD by its creators and treebank maintainers: amupod.univ-amu.fr (video)
." official UD documentation, at universaldependencies.org
= a (relatively) up-to-date scientific publication: Marie-Catherine de Marneffe, Christopher D. Manning, Joakim Nivre, and Daniel Zeman. Universal Dependencies. Computational Linguistics, 47(2):255-308, 2021 (available through the GU library)
=- Computational Syntax course, part of the Master in Language Technology, usually in the Spring semester (detailed course notes are available at cse.chalmers.se/~aarne/grammarbook.pdf)

Other useful links

\#. UDPipe online, a user-friendly online parser with models for many languages: lindat.mff.cuni.cz/services/udpipe official online viewer for CoNNL-U files: universaldependencies.org/conllu_viewer.html
" latest version (2.13) of the UD treebanks: lindat.mff.cuni.cz/repository/xmlui/handle/11234/15287
= to contact me after this lecture:
arianna.masciolini@gu.se

Thank you for today!

