library(openxlsx) library(lmerTest) library(visreg) ## About the data #### data <- read.xlsx("resid.xlsx") ## EDA #### boxplot(LivCU~Farm, data = data) boxplot(LivCU~Treatment, data = data) boxplot(log(LivCU)~Farm, data = data) boxplot(log(LivCU)~Treatment, data = data) d1 <- data[complete.cases(data),] interaction.plot(x.factor = d1$Treatment, trace.factor = d1$Farm, response = log(d1$LivCU)) hist(data$LivCU) hist(log(data$LivCU)) ## Analysis #### # remind of the principle assumptions of linear models... (4 of them) lme0 <- lmer(log(LivCU) ~ Farm + Treatment + (1|SheepID), data = data) plot(lme0) summary(lme0) anova(lme0) hist(residuals(lme0)) shapiro.test(residuals(lme0)) ## take2 #### data2 <- data[1:135,1:4] names(data2) <- c("SheepID", "Farm", "Treatment", "CU1") data2$CU2 <- data[136:270,"LivCU"] data2$diff <- data2$CU2-data2$CU1 table(data2$diff < 0) lm0 <- aov(diff ~ Treatment, data = data2) TukeyHSD(lm0) summary(lm0) anova(lm0) hist(residuals((lm0))) shapiro.test(residuals(lm0)) boxplot(diff~Farm, data = data2) boxplot(diff~Treatment, data = data2) d2 <- data2[complete.cases(data2),] interaction.plot(x.factor = d2$Treatment, trace.factor = d2$Farm, response = d2$diff) visreg(lm0, "Treatment", by = "Farm") ##### lme1 <- lmer(sqrt(LivCU) ~ Farm + Treatment + (1|SheepID), data = data) shapiro.test(residuals(lme1)) hist(residuals(lme1))