
CRACK ME IF YOU CAN
2023 DEBRIEF

Team Hashcat
18 August 2023

Table of Contents
About the Contest 3
About the Team 3
Organization & Planning 3
Software Stack 4
Hardware Stack 5
Competition Narrative 7
Street Hashes 10
In Conclusion 11

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 2

https://hashcat.net/discord

About the Contest
Crack Me If You Can (CMIYC) is an annual password cracking competition created and hosted by KoreLogic
Security. It is most frequently held during the annual DEF CON hacker conference in Las Vegas, NV (with two
historical exceptions during DerbyCon in Louisville, KY). This competition involves cracking cryptographic
password hashes and password-protected files such as documents, archives, and disk images from various
artificial sources, with plaintext values typically following a common pattern or theme. Point values for each
successful crack typically scale with the difficulty of the password hashing function or underlying KDF. The
contest is partitioned into two classes: the cut-throat Pro class, and the more casual Street class.

About the Team
Founded in 2010, Team Hashcat is a static, hand-selected fraternity of professional password crackers who
have proven themselves worthy of representing the Hashcat name. Organized and led by Hashcat founder
atom and managed by team member dropdead, Team Hashcat has taken First Place in fifteen password
cracking competitions over the past thirteen years, including ten First Place CMIYC victories. Team Hashcat
represents the best of the best the password cracking community has to offer.

The following team members actively participated in this year’s CMIYC competition:

atom baybedoll blandyuk Chick3nman dropdead

epixoip EvilMog * kontrast23 kryczek m3g9tr0n

N|GHT5 philsmd rurapenthe The_Mechanic T0XIC

TychoTithonus unix-ninja Xanadrel xmisery _NSAKEY
* EvilMog experienced a medical emergency that limited his participation.

Organization & Planning
The 14th CMIYC competition was held during DEF CON 31 in Las Vegas, NV from 11 August 2023 11:00 PDT
until 13 August 2023 11:00 PDT. Team Hashcat naturally competed in the Pro class for this competition. As
Team Hashcat is heavily geographically dispersed - with some team members located on site in Las Vegas
and others located around the globe - we rely upon Discord for both real-time and asynchronous
communications, Google Sheets for formal planning, and our home-grown collaborative cracking platform
List Condense (LC), maintained by our very own Xanadrel, for operations.

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 3

https://hashcat.net/discord

Software Stack
Team Hashcat utilized the following software during the competition:

When the test hashes were released, we made several improvements to our extensive automation. Xanadrel
added additional automation to handle all communications with KoreLogic, including decrypting and parsing
received emails, as well as adding a new Discord bot to monitor uploads and submissions.

After the contest had started, Xanadrel added a new section to LC lovingly dubbed Metafucker that displays
the user metadata in a queryable table format alongside their corresponding cracked plaintexts for easier
analysis. Kudos to Xanadrel for taking time away from the fun of cracking for the benefit of the team.

Photo enlarged to show texture.

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 4

Name Version Link
List Condense (LC) 0.1.0a Internal collaboration platform, not for distribution
hashcat-lc 6.2.6+LC Internal fork of Hashcat that integrates with the LC API
hashcat-utils 1.9 https://github.com/hashcat/hashcat-utils
John the Ripper Bleeding Jumbo https://github.com/openwall/john
PCFG Cracker 4.5 https://github.com/lakiw/pcfg_cracker
princeprocessor 0.22 https://github.com/hashcat/princeprocessor
maskprocessor 0.73 https://github.com/hashcat/maskprocessor
PACK2 0.1.0 https://github.com/hops/pack2
rling 1.74 https://github.com/Cynosureprime/rling

https://hashcat.net/discord
https://github.com/hashcat/hashcat-utils
https://github.com/openwall/john
https://github.com/lakiw/pcfg_cracker
https://github.com/hashcat/princeprocessor
https://github.com/hashcat/maskprocessor
https://github.com/hops/pack2
https://github.com/Cynosureprime/rling

Hardware Stack
Most members of Team Hashcat utilize personal hardware that is readily accessible to them. Most
commonly, these are personal desktop computers with mid- to high-end CPUs and consumer-grade graphics
processors. Occasionally, cloud assets and special-purpose hardware such as FPGAs are deployed for
specific challenges. Team Hashcat utilized a total of 47 FPGA boards and 78 GPUs for this competition:

Count Model
47 ZTEX 1.15y FPGA boards (4 x Xilinx Spartan-6 LX150 FPGAs per board)
19 NVIDIA GTX 1080 Ti
18 NVIDIA RTX 4090
10 NVIDIA GTX 1080
8 NVIDIA Tesla T4
5 NVIDIA GTX 2080 Ti
3 NVIDIA GTX 1070
3 NVIDIA GTX 980 Ti
2 NVIDIA Titan Xp
2 AMD Radeon RX 6900 XT
2 NVIDIA RTX 3090
2 NVIDIA RTX 3080 Ti
2 NVIDIA RTX 3060 Ti
1 AMD Radeon RX 7900 XTX
1 NVIDIA RTX 3080

While this may seem like a lot of hardware, this essentially translates to a 3.9:1 GPU-to-member ratio (a 39%
reduction vs. CMIYC 2021), a 2.35:1 FPGA-to-member ratio, and a 1.6:1 GPU-to-FPGA ratio.

Nearly 85% of the hardware utilized by Team Hashcat during the competition was personally owned. All
cloud assets, combined with all ZTEX FPGA boards, were solely dedicated to cracking bcrypt hashes
(because fuck bcrypt), while the remaining graphics processors were utilized to crack all other hash
algorithms. The total cloud expenditure for the contest was $815.00 USD, or an average of $40.75 per team
member.

We recognize the use of cloud resources is potentially contentious, and that there may be some
disagreement as to whether the use of such during the contest is particularly sporting. This has been a
source of some internal debate as well, where some team members feel we should make the most efficient
use of the resources we already have, and others feel cloud resources are more economical and more
environmentally friendly, further adding that they are spending less on cloud resources than they would on a
new GPU. While we have yet to reach a consensus, one undeniable fact is that the cloud is open and
available to all, and affordable computing power is easily accessible and well within reach of even the
entry-level adversaries that we all ultimately seek to simulate.

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 5

https://hashcat.net/discord

Distribution of cloud assets vs. personally-owned compute devices.

Less than 25% of the graphics processors utilized by Team Hashcat were current generation models. In fact,
more than 64% of the graphics processors were two or more generations old, while the three-generation old
GTX 1080 Ti was the most represented GPU amongst team members. This serves to demonstrate that the
latest and great hardware is not a prerequisite for success, nor is old hardware a barrier to competitiveness.

Distribution of graphics processors by age.

Even with the hardware dedicated to bcrypt, it was challenging keeping our hardware anywhere near 100%
utilized, as the particular nature of this competition leads to most time being spent on pattern analysis and
attack preparation. A mere 30% or less of our non-dedicated hardware was in use at any given time, with our
most successful non-ZTEX team members using only two or three GPUs apiece.

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 6

https://hashcat.net/discord

Competition Narrative
At the start of the contest, each team member independently downloaded and decrypted the GPG-encrypted
hash file provided by KoreLogic. Upon opening the decrypted file, we realized “fuck, it’s YAML, just like the
test hashes.” The file appeared to emulate an authentication database with users from multiple companies
and locations, perhaps as some sort of merger or acquisition scenario. This was a cool twist, but it also
presented new challenges versus the usual “go crack this shit” format.

A typical account had the following metadata:

➔ Username
➔ Given Name
➔ Surname
➔ Created Date (weird format and timezone discrepancies, which turned out to be a hint)
➔ City
➔ Phone
➔ Company
➔ Department

We raced to convert the data structure into a more usable format, and within the first five minutes we had
isolated the following hash types and imported them into LC:

➔ Raw MD5 (mode 0)
➔ Raw SHA-1 (mode 100)
➔ Raw SHA-256 (mode 1400)
➔ LDAP SSHA-1 (mode 111)
➔ LDAP SSHA-512 (mode 1711)
➔ md5crypt (mode 500)
➔ sha1crypt (mode 15100)
➔ sha256crypt (mode 7400)
➔ bcrypt (mode 3200)

With bcrypt, of course, being the most pestiferous – and the most valuable.

We knew that the metadata would prove to be a key component of the contest, so we attempted to enrich
the metadata as much as we could with what we had learned from the test hashes. One way in which we did
this was to map each user to their corresponding language and charset based on their location and phone
number. The phone number turned out to be inconclusive, so we used ChatGPT 3.5 to give us an estimate of
the primary language for each user. This would be used later to feed Google Translate for translation into
different charsets.

KoreLogic always has to throw a curveball our way, and it wasn’t long before we identified issues with how
Hashcat handles md5crypt and SSHA-512. Many of the md5crypt hashes shared the same salt values, which
is not something Hashcat supported, but of course we were able to quickly resolve this issue. Similarly, our
parser for SSHA-512 expects the tag to be uppercased, while the hashes in the database had lowercase
tags. A simple substitution was enough to work around this issue, although we found that we also had to
substitute the lowercase tags back before submitting our cracks to KoreLogic.

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 7

https://hashcat.net/discord

At this point in the contest, the name of the game was to search for patterns in the fast hashes that could
then be correlated back to identify slower hashes that could be cracked with that knowledge. The attacks
run against Raw MD5 and Raw SHA-1 were, in most cases, not feasible to also run against the much slower
and much more costly sha256crypt and bcrypt hashes without additional optimization. The work loop was
essentially as follows:

➔ Blitz shit at the fast hashes, to see what sticks
➔ Identify plaintexts that look interesting
➔ Attempt to identify correlations or patterns
➔ Find groupings based on any known metadata
➔ Devise and tune a targeted attack against slow hashes
➔ Test it
➔ GOTO 10

One of the first patterns we identified was epoch timestamps; the all-numeric plaintexts were easily
identifiable in juxtaposition with the other, more traditional plaintexts. For the faster hashes, it was trivial to
brute force 16?d?d?d?d?d?d?d?d. For the slower hashes, however, this was not feasible. Here we identified
that most of the account creation dates in the metadata were provided in CST, but some were provided in
CDT. It did not take long to determine that the ones with CDT timestamps could be converted to epoch time
and correlated on a user-by-user basis to crack.

Example: Thu Sep 1 21:33:54 CDT 2022 -> 1662086034

Another pattern we identified early on was foreign languages. Not only bare dictionary words in languages
like Polish, Dutch, and Russian, but we also rapidly identified that some of the plaintexts were kanji, which
then led to the realization that those kanji are the actual names of some of the users. We also stumbled
upon the Hindi river names midway through the contest by running a list of Hindi Wikipedia article titles. The
keyspaces were mostly too large to hit on the slow and salted hash types, which was a common theme
throughout this contest, but correlating the hashes by inferred language helped reduce the search space.

Example: Imai -> 今井

We also identified more metadata-related hits in the distinct pattern of “CompanyName Suffix”, such as
“QuantumLeap Games”. To fully exploit this pattern, we devised a list of common company suffixes with the
help of Reddit and other sources and ran simple combinator attacks (-a 1) against the fast hashes. After
enumerating as many of the company names as possible, an association attack (-a 9) was used against the
bcrypt hashes, cracking all of the hashes that followed this pattern in less than 30 seconds on a single GPU.

Examples: AeroDyn Aerospace, DataLeapDynamics, CyberGuard Security, TerraGlideFoods

We further identified additional metadata-related hits for users in the Sales departments. All of these
plaintexts were corporate-style passwords that followed very predictable patterns and a limited vocabulary.

Examples: !23Executive, Quota23@, 2023Profit$, Account2023!

We also hit upon a peculiar pattern that initially threw us for a loop. We want to precede this by reiterating
that the sources for these competitions are supposed to be completely artificial, and that’s usually what
gives these competitions a less-than-genuine vibe. In the real world, we leverage the human element of the

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 8

https://hashcat.net/discord

password creation process by exploiting the universal patterns we are all prone to following. But in CMIYC,
we have Hank. And the game, at its very essence, is to reverse-engineer Hank - what sources did Hank use,
what patterns did Hank devise, etc. One of the drawbacks of the “throw everything at the wall” approach is
that it makes it difficult to trace back the source of a crack when needed (who cracked it, what attack did
they run, etc.) So color us fucking surprised when we found a large number of plaintexts prefixed with
“#3&4%#!”, which appeared to be some sort of static salt or pepper, and we traced the source back to the
hashmobs-all-found and hashes.org wordlists, and then to the Turk-Internet leak specifically. Holy shit,
there’s real breach data in here! This wasn’t too terribly difficult to exhaust once we found some of the
sources - but we couldn’t exactly run an entire 16 GiB wordlist through the salted hashes. A bit of analysis
concluded that users with these real-world passwords were all from the Telecom departments, which
enabled us to reduce the search space.

Examples: #3&4%#!alpo123789, #3&4%#!etcpasswd, #3&4%#!morpheus

One last pattern before we dive into the two patterns we spent the most time and effort on: the math and
physics equations and chemical formulas. This was a theme that we got a few hits on, but when we tried to
exploit this theme, we largely came up empty-handed. We believe this was primarily due to the use of
unicode subscript & superscript characters. When attempting to create wordlists for this, all of the sources
we found used images or HTML entities.

Examples: A = πr², I = ∑mr2, PV = nRT, C₁₂H₂₂O₁₁, C₆H₅OH, CH₂O

Let’s talk GHosting. Most of the users from this company were different from the other users in the
database as they didn’t have names or phone numbers, so we felt like we didn’t have much metadata to go
off of. The pattern eluded us for quite a while and left us banging our heads against the wall, until we had
that epiphany moment and realized the usernames for the users in the IT department were a sort of code.
For example, take the username “pk4923”: the ‘p’ stands for ‘production environment’, the ‘k’ stands for
Kubernetes, and ‘4923’ is the system ID. We had already identified and began exploiting this pattern when
the last hint was released, but that did provide confirmation that we were taking the right approach.
Unfortunately, it turned out finding what all those letters in the usernames represented was fairly difficult.
Initially, we constructed a table attack to expand each of the characters in the usernames. However, we
ended up writing a special tool called ghost-cracker to exploit what we knew and only target the slow hashes
with the actual combinations of possible words and separators. While we were able to crack a fair number
of these passwords, a decent amount remained uncracked.

Examples: PRODkube8784, dev|Oracle_1777, UAT%2dweb%5f2375,

Finally, the largest and most prevalent pattern – the one we identified early on in the competition, but didn’t
fully master until the final day – the two, three, and four-word passphrases. First, it was overwhelmingly
obvious that the phrases were not random – they were from something. So we initially tried the three books
and three movies listed on the DEF CON “about the theme” page, and that yielded quite a few cracks, but we
still felt there was more. We began to expand our search for more potential sources, which led to us creating
a special tool called epub2phrases to generate two, three, and four-word phrases from EPUB archives using
a sliding window. For movie scripts that are not distributed in EPUB format, we found a tool to convert PDF
files to EPUBs. With this tool we were able to rapidly build a very large collection of phrases from dozens of
potential sources. We had also identified that single quotes, not just punctuation characters, were used to
split the source words leading to words like “m” instead of “I’m”, “ve” instead of “you’ve”, etc., and our tool

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 9

https://hashcat.net/discord

incorporated this as well. Over time, we realized that only certain numbers and special characters were
appended to the phrases, which enabled us to reduce our search space. Unfortunately, we still felt like we
hadn’t found “the” source after generating millions of potential phrases, so we decided to turn to AI
candidate generation. Using lakiw’s Probabilistic Context Free Grammar (PCFG) cracker, we were able to
train a model on all of our cracked phrases to help us generate new phrases without having to download and
scrape more EPUBs. This approach worked surprisingly well, and we were able to crack dozens of bcrypt
hashes with PCFG. For the majority of the contest we only had two to four team members working on these
phrases, but once it became clear that the distribution of our cracks was skewing ~ 70% towards phrases, it
was all hands on deck for the final sprint.

Examples: a little misunderstanding1, about my boobs1, all AIs want9%, They hold images1

Street Hashes
Similar to previous years, we began cracking the Street
class hashes at some point on the second day of the
contest in order to identify overlapping plaintexts and
patterns. However, while there was some overlap with
the phrases, we identified very little overlap in other
areas. This had the benefit of confirming some of the
patterns, but overall didn’t help us directly.

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 10

https://hashcat.net/discord

In Conclusion

The seven stages of grief, CMIYC edition.

This year’s contest attempted to emulate a real world scenario of a service provider managing
authentication for multiple entities (Okta-esque), or a merger, or an acquisition, or whatever, complete with
real world breach data. The delivery format was unique, the setting was engaging and quite challenging, and
overall it was barely manageable, and at times on the verge of being ridiculously hard. Despite the usual
frustration during specific times of the contest (especially when CsP managed to take and hold the lead for
a third of the contest) the team pulled together and fought even harder to find and exploit more patterns.

The biggest takeaway for us was that we need to increase the focus on the tooling to handle these complex
association attacks and allow for better analysis, which was probably the core idea of what KoreLogic
wanted us to go for.

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 11

https://hashcat.net/discord

Overall – great job, KoreLogic! This was probably the smoothest and most well-balanced competition so far.

We would also like to thank all of the Pro teams – Cynosure Prime, achondritic, HashMob, and john-users –
for competing against us again this year, and for giving us a great fight to the end! We greatly look forward
to our next match-up.

Copyright 2010 - 2023, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 12

https://hashcat.net/discord

