
CRACK ME IF YOU CAN
2024 DEBRIEF

Team Hashcat
8 September 2024

Table of Contents
Table of Contents 2
About the Contest 3
About the Team 3
Organization & Planning 3
Software Stack 4
Hardware Stack 5
Competition Narrative 7
In Conclusion 12

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 2

https://hashcat.net/discord

About the Contest
Crack Me If You Can (CMIYC) is an annual password cracking competition created and hosted by KoreLogic.
It is most frequently held during the annual DEF CON hacker conference in Las Vegas, NV (with two
historical exceptions when CMIYC was held during DerbyCon in Louisville, KY). This competition involves
cracking cryptographic password hashes and password-protected files such as documents, archives, and
disk images from various artificial sources, with plaintext values typically following a common pattern or
theme. Point values for each successful crack typically scale with the difficulty of the password hashing
function or underlying KDF. The contest is partitioned into two classes: the cut-throat Pro class, and the
more casual Street class.

About the Team
Founded in 2010, Team Hashcat is a static, hand-selected fraternity of professional password crackers who
have proven themselves worthy of representing the Hashcat name. Organized and led by Hashcat founder
atom and managed by team member Dropdead, Team Hashcat has taken First Place in fifteen password
cracking competitions over the past fourteen years, including ten First Place CMIYC victories. Team Hashcat
represents a subset of the best the password cracking community has to offer.

The following 18 team members actively participated in this year’s CMIYC competition:

atom baybedoll blandyuk Chick3nman dropdead

epixoip kontrast23 kryczek matrix m3g9tr0n

N|GHT5 philsmd rurapenthe T0XIC TychoTithonus

unix-ninja Xanadrel xmisery

Organization & Planning
The 15th annual CMIYC competition took place during DEF CON 32 in Las Vegas, NV, running from 11:00 AM
PDT on August 9, 2024, to 11:00 AM PDT on August 11, 2024. Team Hashcat, as expected, competed in the
Pro class. With team members scattered across the globe — some on-site in Las Vegas and most others
working remotely — we utilized Discord for both real-time and asynchronous communication, Google Sheets
for strategic planning, and our custom-built collaborative cracking platform, List Condense (LC), developed
and maintained by very own Xanadrel, for operational efficiency.

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 3

https://hashcat.net/discord

Software Stack
Team Hashcat has primarily utilized the same software stack for the past 10 years, reflecting the fact that
there hasn’t been any monumental shift in tooling within the password cracking landscape. However, as with
any complex competition, we did have to integrate some "exotic" software tailored to address a few of the
more unusual challenges we encountered, such as handling obscure hash types and proprietary algorithms.
Despite these additions, the lack of significant advancements in mainstream tooling speaks to the maturity
of the current ecosystem. We continue to rely on the established, battle-tested methods that have proven
effective, adapting only when confronted with specific edge cases that require unique solutions.

The following software was utilized by Team Hashcat for this competition:

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 4

Name Version Link
List Condense (LC) 0.1.0b Internal collaboration platform, not for distribution
hashcat-lc 6.2.6+LC Internal fork of Hashcat that integrates with the LC API
hashcat-utils 1.9 https://github.com/hashcat/hashcat-utils
John the Ripper Bleeding Jumbo https://github.com/openwall/john
PCFG Cracker 4.5 https://github.com/lakiw/pcfg_cracker
princeprocessor 0.22 https://github.com/hashcat/princeprocessor
PACK2 0.1.0 https://github.com/hops/pack2
Elcomsoft AAPR 2.0 https://archive.org/details/aapr20/

https://hashcat.net/discord
https://github.com/hashcat/hashcat-utils
https://github.com/openwall/john
https://github.com/lakiw/pcfg_cracker
https://github.com/hashcat/princeprocessor
https://github.com/hops/pack2
https://archive.org/details/aapr20/

Hardware Stack
Most members of Team Hashcat utilize personal hardware that is readily accessible to them. Most
commonly, these are personal desktop computers with mid- to high-end CPUs and consumer-grade GPUs.
Occasionally, cloud assets and special-purpose hardware such as FPGAs are deployed for specific
challenges.

Team Hashcat utilized a total of 47 FPGA boards and 62 GPUs for this competition:

Count Model
47 ZTEX 1.15y FPGA boards (4 x Xilinx Spartan-6 LX150 FPGAs per board)

9 NVIDIA GTX 1080 Ti

8 NVIDIA RTX 4090

8 NVIDIA Tesla V100

7 NVIDIA GTX 2080 Ti

5 NVIDIA GTX 1070 Ti

4 NVIDIA GTX 1080

3 NVIDIA RTX A2000

3 NVIDIA RTX 3080 Ti

3 NVIDIA RTX 3060 Ti

3 NVIDIA GTX 980 Ti

2 NVIDIA Titan Xp

2 AMD Radeon RX 6900 XT

2 NVIDIA RTX 3090

1 NVIDIA RTX 4080 Ti

1 NVIDIA RTX 4080

1 AMD Radeon RX 7900 XTX

This year, Team Hashcat utilized 21% fewer GPU resources compared to last year, marking a 51% reduction
from CMIYC 2021 and highlighting our commitment to reducing our carbon footprint in accordance with
global climate initiatives. We also did not utilize any cloud resources this year, instead relying entirely on
personally owned hardware for this contest. And, as expected, our ZTEX FPGA boards were dedicated
exclusively to cracking bcrypt hashes.

Similar to last year, fewer than 20% of our GPUs were current-generation models. More than 60% of our
GPUs were two or more generations old, with the three generations old GTX 1080 Ti remaining the most
represented GPU amongst team members. This reinforces the notion that cutting-edge hardware isn't
essential for success, and continues to underscore that older hardware is not a barrier to competitiveness.

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 5

https://hashcat.net/discord

Distribution of graphics processors by age.

A perpetual theme with every contest, we once again struggled to keep our hardware 100% utilized, as the
very nature of this competition leads to most time being spent on pattern analysis and attack preparation.

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 6

https://hashcat.net/discord

Competition Narrative
KoreLogic provided the following synopsis for this year’s competition:

As tradition, each team member independently downloaded and decrypted the GPG-encrypted files dropped
by KoreLogic at the start of the contest. This year, we were greeted with two files — one a text file containing
30,685 hashes, and the other a tarball. Naturally, we focused our efforts on the hash list first, segmenting
and analyzing it based on the apparent formats.

The hashes came prefixed with usernames, immediately signaling that this was some sort of database
dump scenario, likely tied to that notorious “Zoogleta” company. It wasn’t immediately clear whether these
were employee accounts or some other group of users, but the contest description made one thing certain:
we were tasked with digging through these dumps to find something damning. Game on—let’s see what this
dataset has to offer.

The hash list was a mixed bag. Some of the formats were natively supported by Hashcat, so we could dive
straight in:

➔ NTLM (mode 1000)
➔ Raw SHA-1 (mode 100)
➔ bcrypt (mode 3200)
➔ MS-AzureSync PBKDF2-HMAC-SHA256 (mode 12800)
➔ RAdmin (mode 29200)

But as always, there were plenty of edge cases that required additional legwork. A few of the hashes we
recognized but did not support in Hashcat, and others didn’t immediately match any standard algorithms.

➔ Variable length hex-encoded strings that we identified as the “striphashes”
➔ RC2
➔ sm3crypt
➔ Apache Shiro (Argon2id)
➔ Something with an x-isSHA512 prefix, which we identified as SAPSHA512
➔ An unknown bcrypt variant with a $2k$12$ prefix, which we identified as bkr256
➔ Another unknown bcrypt variant with a $2b$12$ prefix, which we identified as bcr256

We initially did not know the points values for each of these algorithms, but it quickly became obvious that
the majority would come from the bcrypt variants, which put us on edge right away. KoreLogic has been
ramping up the focus on bcrypt over the last two contests, and this year 84% of the points came from bcrypt

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 7

Zoogleta has been scheming to corporatize and enshittify the Internet through regulatory capture,
squashing indy devs, and commodifying users.

You've been contacted by journalists and whistleblowers who need help sifting through some big
dumps of encrypted data and password hashes.

Help them so they can publish the smoking gun, crash Zoogleta's stock price, and get their
leadership and the corrupt politicians they own arrested by exposing their internal dirt, for
great justice.

Time is of the essence! You will have 48 hours to crack as many files and hashes as possible.

https://hashcat.net/discord

variants. We get that bcrypt adoption is finally reaching mainstream status, largely due
to it being the default in PHP 7+ and several popular webapp frameworks, and that’s
reflected in the growing number of bcrypt hashes in public leaks. But most modern
environments have moved on, so why such a heavy focus on it? If their goal is to push
us to optimize the bcrypt kernel further, they’ll be disappointed — we’ve already wrung
every last drop of optimization possible out of our bcrypt kernel. If KoreLogic truly
wanted to encourage skillful pattern recognition and exploitation while leveling the
playing field, they’d be better off using PBKDF2 with a high iteration count, which is
more GPU-friendly and doesn’t require FPGAs. New teams, take note.

All that aside, we didn’t waste any time. Everything was immediately funneled into List Condense, but we
also set up a Google Sheet to organize the user:hash pairs and prepare for correlation with external data.
This structure would later prove indispensable. But an hour into the contest, reality set in: KoreLogic didn’t
just throw one curveball — they threw several. We only had four lists ready for immediate cracking. The rest
were still unidentified, unverified, or just out of reach since Hashcat didn’t natively support them. It was a
scramble to get the remaining hashes prepped.

Initially, the striphashes looked like truncated versions of SHA1 hashes. We quickly cracked some of the
39-character variants using mdxfind , but had no luck with the shorter ones when treating them as simple
truncations. At first, we explored a "character-driven" approach, assuming hex characters had been randomly
removed from any location within the hash string. This led us to generating a full hash list by inserting all
possible missing characters at any position to restore the hashes to their original length. While this method
worked for the 38-character hashes, the sheer volume of combinations for shorter ones made it clear that
scaling this approach would be inefficient. Then, Xanadrel made a breakthrough discovery — he realized the
missing characters were always zeroes. Armed with this knowledge, we were able to restore the hashes by
padding them with zeroes in every possible position until we reached the full 40-character length.

Turning towards the file dumps, the first dump contained 201 ARJ-compressed archives — a format that
dates back to 1991 and was once a leading compression tool for MS-DOS and Windows 3.x. However,
cracking ARJ archives proved challenging due to the lack of modern tools specifically designed for this task.
We decided to approach the problem using multiple methods. Our initial attempt was through a
multithreaded Python implementation, leveraging “patoolib” to extract the archives while testing password
validity. Then, we turned to legacy tools like “Elcomsoft Advanced ARJ Password Recovery” (AAPR) and “Yet
Another ARJ Cracker” (YAAC), both relics from the early 2000s. These tools required dedicated systems to
run, with Elcomsoft’s ARJ cracker only functioning in Windows 95 compatibility mode. Despite the outdated
nature of the software, it was necessary to resort to these ancient utilities to tackle this format.

We found RAdmin3 hashes buried in a file called radmin.reg , which appeared to be a registry export from
Windows. While we had our radmin3_to_hashcat.pl script for extracting RAdmin3 hashes, it only handled
one hash at a time, which was far from practical given the volume we were dealing with. We ended up
having to write a custom script to pull out all the individual hashes at once. Though it sounds
straightforward, this turned out to be more tedious than expected. Ultimately, it came down to some regex
trickery in EditPlus to get everything extracted cleanly. What should have been simple took longer than
anticipated, but in the end, we got it done.

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 8

https://hashcat.net/discord

In the second file dump, we discovered the “gen_rc2.py” script, which contained the exact algorithm used to
generate the RC2 hashes. Using this information, we developed and implemented an optimized version of
the RC2 cracking process in a custom multiprocessing Python script. This approach allowed us to efficiently
distribute the workload across multiple cores, significantly speeding up the attack and ultimately leading to
the successful cracking of the RC2 hashes.

By the time the first night hit (for the Europeans, anyway), atom had already contributed solutions to crack
the Apache Shiro and SAPSHA512 (mode 35000) hashes. For Apache Shiro, it involved tweaking the
settings to make the hashes compatible with John the Ripper. SAPSHA512 required more work: a new
plugin had to be written for Hashcat, leveraging the existing SAPSHA256 code as a foundation. During the
second day, atom also created an implementation of sm3crypt (new hash-mode 35100). Both new
implementations will be released to the public in the upcoming hashcat release. Having an sm3crypt
module really boosted our progress on those algos, though it didn’t save us from plateauing later that day.
Our progress on the high value algorithms was still pretty slow.

By this point in the contest, we had solidified our strategy:

➔ Target the fast algorithms first (NTLM, SHA1, RAdmin3)
➔ Apply any successful patterns to the slower algorithms (Argon2id, sm3crypt, SAPSHA512)
➔ Once we were confident in an attack, we would run it against bcrypt

Some of the patterns and themes we identified during the contest were:

➔ Indian given names with “YY”, “@YY”, “YYYY”, or “@YYYY” appended
Akshay12, Arjun@17, Akshay2308, Dharshan@2017

➔ Names of Star Trek actors
Liam Bilby, Sarah Sisko, John Torres, Kate Bowman

➔ Star Trek characters, titles, and ranks, particularly in “<adverb/rank> <noun/surname>” format
Admiral Cartwright, Alien Commander, Bridge Officer, Cardassian Prisoner

➔ Phrases from books, sometimes with space replaced with another special character
You were right. David reached the top of Arasaka Tower.
His friendship was an inspiration, his love a blessing.
Here I lie. I wanted it all, but I lost everything.
He@drops his battered
He takes the#cigarette

➔ QWERTY to Dvorak mappings
Dapc@2014, Cbeca2012, Ipcuucb08, Dppcedg23

➔ Cybersecurity/hacktivism
Hack4Justice, CyberwarriOr99!, CtrlAltWin8*

➔ Minga vanity strings
minga1mingaz!, minganbing2024, mingalingbung0$, MINGAGUA1U8@

➔ Pop culture references
metallica!, spongebob!, livingonapraye11, blink_182

➔ Financial/banking
Citi1bank, InvestmentBanking#, Citi1bank, CorporateFinance

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 9

https://hashcat.net/discord

➔ IT terminology
Network#application, Ethernet$speeds, Processor+speeds

➔ Fantasy/RPG
Paladin#1, Mage2021, DragonSlayer!

➔ Date Formats
25Nov2006, 2009-08-20, 08-09-2024

Additionally, epixoip leveraged Lakiw’s PCFG (Probabilistic Context-Free Grammar) Cracker to great effect by
training a custom PCFG model on all of our cracked plaintexts, which enabled us to generate new candidate
passwords with structures that closely mirrored the patterns we had already observed in our successful
cracks. This had the greatest effect against the Argon2id and SAPSHA512 hashes.

To streamline our efforts and track correlations between users, hashes, and plaintexts, Dropdead set up a
Google Sheet that mapped all hashes to their associated data, including:

➔ Username
➔ Plaintext
➔ Algorithm
➔ Original and formatted hashes
➔ Tags
➔ Department
➔ Cracks from files and hints
➔ Street-level cracks based on usernames
➔ Dvorak-to-QWERTY mappings

This system helped us spot potential correlations, but we often found ourselves chasing dead ends,
searching for patterns that simply didn’t exist — much like real-world cracking.

And then there were the .zip files... It was clear from the beginning that these would contain valuable
information. However, this .zip file came with a twist: each file within the archive had its own password.
KoreLogic intended for users to discover this feature, where individual files in the same .zip can have
different passwords. Unfortunately, we initially picked the only uncrackable file, which led to a lot of wasted
effort. In hindsight, we realize this wasn’t a matter of luck. We should have recognized that mixed-password
zips could contain uncrackable files, but after testing a few individual hashes without success, we
deprioritized the zips and moved on to other tasks. The lesson here is that persistence and a methodical
approach might have revealed the other crackable files sooner, instead of abandoning the effort too early.

Additionally, as in previous years, we attempted to crack the Street class
hashes to identify overlapping plaintexts and patterns. Unsurprisingly, we
saw the same familiar patterns and sources emerge, which reaffirmed what
we already knew, but unfortunately without yielding any new patterns or
sources. Given the high cost of fully pursuing these patterns, we decided
against dedicating more resources to them. We also took a shot at the Street
.zip files, hoping for better luck, but we ran into the same frustrating issue: we ended up selecting the one
hash that was uncrackable. This reinforced our earlier decision to not invest further time in exploring the
Street class, as the payoff didn’t justify the effort.

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 10

https://hashcat.net/discord

And finally, the timecodes. We first encountered the timecodes after KoreLogic released one of their hints,
but figuring out how to crack the expensive bcrypt hashes tied to these timecodes took some time.
Chick3nman started by cracking the base timecodes from the NTLM hash set using a simple mask and
combinator attack. These base cracks led to unlocking user .zip files from an earlier file drop, each
containing new timecode information along with a source. The first breakthrough came when Chick3nman
very rapidly realized that the random-looking string next to the word “transcript” was a YouTube video key,
and that the timestamps were pulled directly from YouTube transcripts. This discovery proved pivotal. From
there, epixoip wrote a script that, when provided with a YouTube video key, used the YouTube API to
download the video’s transcript, extract the relevant lines based on the timestamps, and pull the exact
words needed to construct the password. This script allowed us to crack hundreds of bcrypt hashes at an
impressive pace, with Chick3nman doing the bulk of the work using epixoip’s automated process.

Meanwhile, atom took on the task of parsing books, which was a much more difficult challenge. Several
team members helped track down copies of the books, some of which had to be cleaned up manually
before atom could use them in his cracking efforts. This was near the end of the contest, and Dropdead’s
spreadsheet work played a crucial role in tying all the data together. However, automating the book-based
timecodes was a major headache. YouTube transcripts were relatively straightforward: timestamped in the
hour:minute:second format, with each word simply counted from the start of the relevant section. The
books, on the other hand, followed an imprecise structure (chapter:paragraph:word? page:line:word? how
could we know?), and gathering the correct words from various fanfictions and books felt like a nearly
impossible task. KoreLogic eventually revealed that they had used OCR-scanned copies of physical books,
which was strange given the online nature of the contest. We had naturally reached for digital copies like
.epub or .pdf, but how could we even be sure we had the same versions KoreLogic used? The whole process
for the books felt poorly thought out and unnecessarily frustrating.

Also, a major shout-out to RuraPenthe for throwing a ton of points on the board in the final hour. His
expansive Star Trek knowledge really came in clutch and he cracked an insane amount of Argon2id hashes
in a very short amount of time.

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 11

https://hashcat.net/discord

In Conclusion

Photo finish, CMIYC edition.

This year’s Crack Me If You Can contest centered around a fictional scenario where teams were tasked with
helping journalists and whistleblowers expose an evil corporation, Zoogleta. While the concept was novel
and added an interesting narrative, it lacked the immersive connection we’ve felt in previous contests and
we felt wholly detached from the plot. In the end, it didn’t matter who the whistleblower was, did it? The
challenges were intense — borderline undoable within the given timeframe — but in a way, that’s exactly
what pushes teams like ours to evolve. With around 120 billion points on the table and the winning team
only managing to pull in around 5 billion, it raises the question: Is KoreLogic encouraging teams to step up,
or is this the expected outcome?

One of the most significant pain points was the constant need to search for, validate, and map sources into
actionable attacks. While this added a layer of complexity, it also highlighted an area where more
sophisticated tooling could make a difference, though such tools might only be useful in the context of this
contest.

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 12

https://hashcat.net/discord

The biggest takeaway for us this year was that we’ve reached an inflection point. For the first time, the
reduction in hardware became a limiting factor despite still not fully utilizing all of the resources we had,
forcing us to rethink how we allocate resources. Beyond that, the most pressing challenge remains how to
better correlate data points more efficiently. KoreLogic has continued to push for innovation and efficiency
in this area, aligning with their mission to simulate real-world cracking challenges. Overall, great work from
KoreLogic! The contest has clearly evolved, and so must the balance between strategy, tooling, and
hardware.

We want to extend our thanks to all the other Pro teams — HashMob, Cynosure Prime, team vodka,
achondritic, and john-users — for the fierce competition. It was great to see so many new teams join the
fray, as more competition makes for a better contest all around. And congrats to HashMob on their first-ever
CMIYC victory – something we’ll ensure never happens again ;)

Until next time,
~ Team Hashcat

Prep for next CMIYC.

Copyright 2010 - 2024, Team Hashcat. All rights reserved worldwide.
Please direct any questions or comments to the Hashcat Discord at https://hashcat.net/discord

Page 13

https://hashcat.net/discord

