
CRACK ME IF YOU CAN 2021
TEAM WRITE-UP

Table of Contents

Team Members 2

Background 2

Team Information & Planning 3

Software Stack 3

Hardware Stack 4

The Competition 4

The start of the competition 4

Hashes 10

KJV Bible 12

Bonjovi 15

Ferengi 15

Games 16

Song 16

Numberword 17

contest 17

Latinloc 17

Password 17

h2stem 17

Training 17

Website 17

Other stuff we did 18

Autocrack for sleep time: 18

“Blind” non pattern attacks based on all cracks: 19

Conclusion 21

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Revision 0.4
Date: 15/08/2021

Team Members

The following team members (20) were actively involved in CMIYC 2021:

alotdv atom blandyuk Chick3nman dropdead

EvilMog kontrast23 kryczek matrix m3g9tr0n

N|GHT5 philsmd rurapenthe The_Mechanic T0XIC

TychoTithonus unix-ninja Xanadrel xmisery _NSAKEY

Background

Crack Me If You Can is a password-cracking contest held by KoreLogic every year at DEF CON
in Las Vegas (and in uncommon cases, at DerbyCon instead of DEF CON). The contest
involves various tasks related to cracking passwords that have been obtained from many
different (artificial) sources. These passwords are hashed using industry-standard algorithms
of various difficulty and may or may not include salts.

Team Hashcat competed in this year’s CMIYC under its common name of Team Hashcat.

Team Information & Planning

The competition ran from 10 AM Las Vegas Time 6th August 2021 until 6 AM Las Vegas Time
8th August 2021. The competition was sponsored by KoreLogic as per previous years. Team
Hashcat, being distributed in various geographic regions, used our consolidated platform for
managing hashes, completed jobs and team communication.

Certain team members were on-site in LAS, while others operated from their respective
locations. Contrary to previous years, we decided to switch communication primarily to
Slack.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Software Stack
The following software was used in the competition by the Team:

Name Version Link

hashcat 6.2.3 https://hashcat.net/hashcat/

Hashtopolis 0.12.0 https://github.com/s3inlc/hashtopolis

hashcat-utils 1.9 https://github.com/hashcat/hashcat-utils

MDXfind 1.112 https://hashes.org/mdxfind.php

princeprocessor 0.22 https://github.com/hashcat/princeprocessor

maskprocessor 0.73 https://github.com/hashcat/maskprocessor

hashcat-legacy 2.0.0 https://github.com/hashcat/hashcat-legacy

impacket/secretsdump 0.9.23 https://github.com/SecureAuthCorp/impacket

DSInternals 4.4 https://github.com/MichaelGrafnetter/DSInternals

Mimikatz 2.2.0-20210729 https://github.com/gentilkiwi/mimikatz

stuff made by us
during the contest

- https://github.com/hashcat/team-hashcat/tree/mai
n/CMIYC2021

qemu 1.4.2 https://github.com/qemu/qemu

vbox 6.1 https://www.virtualbox.org/

autopsy 4.19.0 https://github.com/sleuthkit/autopsy

LC -

Google Sheets -

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://hashcat.net/hashcat/
https://github.com/s3inlc/hashtopolis
https://github.com/hashcat/hashcat-utils
https://hashes.org/mdxfind.php
https://github.com/hashcat/princeprocessor
https://github.com/hashcat/maskprocessor
https://github.com/hashcat/hashcat-legacy
https://github.com/SecureAuthCorp/impacket
https://github.com/MichaelGrafnetter/DSInternals
https://github.com/gentilkiwi/mimikatz
https://github.com/hashcat/team-hashcat/tree/main/CMIYC2021
https://github.com/hashcat/team-hashcat/tree/main/CMIYC2021
https://github.com/qemu/qemu
https://www.virtualbox.org/
https://github.com/sleuthkit/autopsy
https://discord.gg/HFS523HGBT

Hardware Stack

Keep in mind that in general all of our team members used just their normal hardware since
this particular contest made it really hard to keep the hardware actually busy. So don’t get
discouraged by this quite modest list, everybody can do it.
The following hardware was used in the competition by the Team:

The Competition

The start of the competition

Korelogic decided to throw a curveball this year by not providing hashlists directly, but
instead providing an OVA image containing a Windows Server 2019 VM enabled as an Active
Directory domain controller.

To make working with the VM hard, Korelogic decided to booby trap it with various things
like automatic shutdowns, calling back to KL (if networking was enabled), replacing various
menu entries with garbage, etc.

From our side, extract hashes were easy; after import the OVA into VMware we mount the
vmdk disk.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Figure 1 - vmdk mount

Next we make a copy of SAM, SECURITY, SYSTEM and NTDS.dit files and then we use
secretsdump from Impacket to perform extractions of local and domain hashes.

Figure 2 - extract SAM, SECURITY, SYSTEM and NTDS.dit from vmdk

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Figure 3 - retrieve local hashes with impacket/secretsdump

Figure 4 - retrieve domain hashes with impacket/secretsdump

During the full extraction of domain hashes, we successfully cracking the local admin
password and then the domain one. With these passwords we are able to login to Windows,
and found the “plaintexts” :)

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Figure 5 - plaintexts Properties

We proceed first by remove Windows Defender using Server Manager (from
Manage/Remove Roles and Features) to disable Antivirus real-time protection. (Optionally
just disable the protection.)

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Figure 6 - remove Windows Defender Antivirus

Then we connect a USB drive to VM and we are able to run mimikatz. In that way we are
able to extract some others/related info useful to perform future analysis/attacks.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Figure 7 - retrieve credentials using lsadump with mimikatz

Notes:
⦁ to use a USB drive we had to set "USB Compatibility" to "USB 3.1" in the VM
settings on VMware
⦁ Windows server shutdown every hour due to license expired. We fix this using
Powershell: “slmgr -dlv” and “slmgr -rearm”

To make sure about all hashes was extracted, we use DSInternals Get-ADDBAccount
powershell script to dump again the NTDS.dit, after repairing it using “esentutil”.

Figure 8 - dump accounts with secret attributes from AD using DSInternals Get-ADDBAccount

We are using filter to retrieve only have the user objects (remove the computer objects).
This helped to also get the "Description" field with passwords in clear text.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Figure 9 - extract Training's user password from DSInternals / Get-ADDBAccount dump

These passwords have been extracted also using strings from linux, as shown below.

Figure 10 – extracting Training's user password from ntds.dit with strings

Hashes

This year, the number of hashes in the competition were relatively small compared to
previous years – but not any easier. The hashes were spread out as follows:

● NTLM hashes at ~70 000 hashes

However, during the whole contest we were not sure if these 70k were actually all of them
due to Korelogic's mindfuckery

All hashes came out of the active directory with username and correlated history, with
“history0” being the user’s current password, through “history6” as the oldest. This is also
how Korelogic awarded points - value of the hash increasing with the complexity:.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

history0 - 64 points
history1 - 32 points
history2 - 16 points
history3 - 8 points
history4 - 4 points
history5 - 2 points
history6 - 1 point

This led to an interesting dynamic, since the oldest (and lowest scoring) hashes needed to be
cracked first to extract the information necessary to progress to the newer ones.

Unsurprisingly, History6 list did not give us any trouble. We basically managed to crack
almost all of them instantly with standard attacks like rockyou+rules. The same goes for
History5.

As a side note, the initial few hours were especially chaotic due to Korelogic releasing the
lists for history6 and history5 in the first couple of hours, which forced us to double-check
whether our lists were correct. So good job on introducing another layer of chaos, @KL :P

At the same time, History4 was slowly being cracked - by iterating over the founds from
history6 and history5, using additional rules and hybrid attacks as patterns emerged.

History3 was the first layer that began to give us more of a challenge. At this point in the
contest, it was clear that the same process demonstrated in the test hashes (released prior
to the contest) was used on the contest hashes as well and that every “newer” layer (history
2, 1 and 0) were based on further manipulations of previous founds, either directly
(additional rules applied to the preceding found) or indirectly (general thematic trends per
user).

At this point, we began a Google spreadsheet tab to correlate the cracks we have against the
users from where they came.

Figure 11 - google spreadsheet correlation tab

(Due to an initial misunderstanding, our internal names for the lists in our shared
collaboration server were “off by one” in their naming(current == history0 on our side,
history1 == H1 on our side and so on...). However, our spreadsheet ignored our internal
representation, relying solely on the exact history strings embedded in the usernames.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

From that initial correlation tab, we began to identify different groups (or themes) that the
plains were based on. As the groups became clear and new cracks became available, we
began to iteratively repopulate the spreadsheet for central reference. Using a perl script that
we wrote on the fly on Saturday, we analyzed each user on a per-crack basis, and applied a
heuristic to make a cumulative “best guess” as to which password group that user belonged
to. For example, if three passwords for a given user contained number words like “billion”
and “sixty”, then that user received a “numberword” score of 3. The largest score was then
used to “vote” for the “best” category for that user. There were some false positives due to
certain substrings being used at first (with “two” being one of the more problematic, so it
was eventually omitted), but the heuristic, while simple, was generally pretty reliable - and
got increasingly more reliable as more cracks arrived and with some additional tuning. The
resulting labels allowed any member who wanted to attack or study a specific group to filter
on just that group, reducing the noise of unrelated cracks and allowing natural pattern
recognition “by sight” to be much more efficient.

The identified groups were initially tagged as follows (though some of them ended up being
slightly inaccurate, they were still useful for filtering the target hashes):

bible bonjovi ferengi games song numberword

contest latinloc password h2stem training website

We are going to refer to these groups from here on out.

KJV Bible

This group identified itself by having a history6 and history5 crack to a name plus a number
which turned out to be psalms of the bible. To move up a step to history4, we needed first to
crack using a couple of standard methods. Once we had a couple of examples, we could
correlate the psalms and identify that the plain is a word from the psalm. So far, so good -
but what about history3 and above? There it started to get a bit tricky. For a while nothing
worked, but with some endurance, we managed to crack a couple of the history3 to find that
those turned out to be 3 words from the psalm. Once identified, extracting those 3-word
phrases from a sourced KJV bible could be done with a simple script. (1250 total cracks)
From here, going to history2 was another layer of complexity which proved to be challenging
at first. Finding the first cracks took quite a while, but by random chance we found a few that
turned out to be similar words but different. After further analysis and tests the revelation
was that those crack to 3-5 words from the psalm, seamling random in order but we knew at
this point where this was heading. At this point, we had an idea but feared that the potential
keyspace (if you permuted every combination of words from every psalm for a particular
user) was quite high - and labor intensive. The solution was to automate - first parts of it,
then everything.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

The first iteration was a perl script that converted a psalm into a hashcat-legacy table attack.
By adding some additional modifiers to hashcat, it also gave us the first cracks of history0 -
which turned out to be exactly the same text as history1 but with leetspeak.
its closing time -> 1+5 c!051ng +1m3
Knowing this we started another iteration of the attack.

The second iteration was to exchange hashcat-legacy with the freshly created tool
“simple-table” that atom prepared before the contest (because of the test hashes) which
looked like this:

cat rawphrase.txt | tr ' ' '\n' | sort -u |sed -e 's/^/1\t/' |sort -u > table;
cat table.add >> table;
perl simple_table.pl template table | hashcat -m 1000 all.left -r base.rule -r
leetspeak.rule --username -o current.out

Additionally we created a base.rule which contained overall modifiers that we found could
be used - like removing the character “j” and leetspeak.rule which contained the identified
leetspeak-conversions.

leetspeak.rule

sa@sc<se3si1so0ss$sh5sv^sl!st+
sa4sc<se3si1so0ss$sh5sv^sl!st+
sa@sc<se3si1so0ss5sv^sl!st+
sa4sc<se3si1so0ss5sv^sl!st+
sh5 so0 se3 sa@
sh5 so0 se3
sh5 so0
sh5
so0 se3 sa@
se3 sa@
sa@
so0 se3
sh5 so0 sa@
sh5 se3 sa@
sh5 sa@
st+
sh5 so0 se3 sa@ st+ sv^
sh5 so0 se3 st+
sh5 so0 st+
sh5 st+
so0 se3 sa@ st+
se3 sa@ st+
sa@ st+
so0 se3 st+
sh5 so0 sa@ st+
sh5 se3l sa@ st+

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Continuing the attack with the second iteration was working, but still not very efficient - due
to the effort required in precisely identifying the psalm. And depending on the word count in
the psalm, the very large keyspace that the attack need to go through to find both plains for
history1 and history0.

Further iterations:

permute3.c Tool version 3 for applying permutation attacks like permute.c from
hashcat-utils, but not for individual letters of passwords, but for words

splitter.pl Extract 5/N random words for a Bible psalm
The speed of word generation is around 22 MW/s per thread
$ time ./permute < 100.txt | head -1000000000 > /dev/null
real 0m45.005s
The speed drops to 1.5 MH / s due to parsing, expanding, compressing and
finally hashing
The total key space of all 5 word permutations from all KJV psalms (with our
reference database and without uniqueness) is 1,617,781,809,660
Then 1617781809660/1500000 = 1078521 seconds = 300 hours = too much

minintlm3.c

As a solution to this, we had to improve the I/O time so that we could
achieve 22 MH/s instead of 1.5 MH/s. The result is a standalone NTLM
cracker, threadless, only CPU, but very light, so it can execute N many
instances. Why not use Hashcat? The splitter.pl script was too slow to
generate enough candidate passwords quickly enough while running on a
single instance. Hence, we need to run multiple instances of it. But multiple
instances of Hashcat put a heavy load on the system. So why not use
jtr/mdxfind? Both do not support NTLM with password candidates > length
27, which was very often the case with the KJV challenge.
The three tools are chained as follows:
$ splitter.pl kjv_all.txt | ./permute3 | ./minintlm history0_hashes.txt

history0.c A tool developed after we had some success with the above chains, but
works more efficiently. It combines permute3 and minintlm and also does a
unique sorting of the words per psalm to further reduce the number of
combinations. It now contains essentially all of the relevant code to write a
simple password cracker. We've added some comments so that anyone
interested in how a password cracker is built can easily learn from it. Of
course, this doesn't include deep tweaks, threading, or writing
crypto-primitives as the goal was to keep it simple

bla2.sh Simple script that is run N times history0 to make full use of all CPU
resources. It divides the workload among the threads by using the
hashcat-utils' gate.bin utility. For example, my computer has 16 CPU listed
in /proc/cpu, so I use "gate.bin 16 0" for the first thread, "gate.bin 16 1" for
the second, and so on. The same could be done in history0, but it's a good

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

http://splitter.pl/
http://splitter.pl/
http://bla.sh/
https://discord.gg/HFS523HGBT

opportunity to show how gate.bin can help parallelize programs that don't
natively support multiple threads.

Tools can be found here: https://github.com/hashcat/team-hashcat/tree/main/CMIYC2021

When things cleared up, we had a total of 605 cracks from history0/1.

If you are wondering how we got a good source to programmatically use as a basis for these
attacks, we pulled it from the Gutenberg Project and processed it a bit. Due to copyright
issues, we can not do more than linking to the source:
https://www.gutenberg.org/files/10/10-0.txt

You cannot use this source 1:1 due to formatting issues like word wrapping. We used some
regex-magic to untangle it.

Bonjovi
BON JOVI :D and variants on the word 'Obsessiveness'

Ferengi
Ferengi Rules of Acquisition (Deep Space 9), reordered, then with rules.
This group was fairly straight forward to crack. Once we had enough cracks, it was just a
matter of doing a Google search with the exact number and format of how it’s written to
find the actual source.

History5 Number. 239.

History4 Rule #Number. Rule #239.

History3 Word + ?d?s mislabel1

History2 3-5 words from the rule in right order + ?d afraid to mislabel1

History1 3-5 words from the rule random order mislabel a product.1

History0 we didn’t crack anything here afraid be a mislabel to

(For anybody interested, after the contest was finished, we figured out the actual
replace-rules to crack history0 by running the plains from history1 against a table attack with
leet-table. One by one we opened them and extracted the rules: seE sl1 si: so. st% ssS sa@
sx* sg&)

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://github.com/hashcat/team-hashcat/tree/main/CMIYC2021
https://www.gutenberg.org/files/10/10-0.txt
https://discord.gg/HFS523HGBT

Games
This group went kind meh, so here are just the notes that survived the chaos:

Games - board games, video games, card
games - may even be separate subgroups

https://nintendo.fandom.com/wiki/List_of_Ninte
ndo_games and others

APPLY SOME RULES WITH HASHCAT CPU,
THEN PIPE TO GPU w/MORE RULES

lots of "game"-related ones available. download
correlation tab and filter on 'game' surrounded
by underscores

strip spaces and trim at length 8

Song
Should have been divided between song lyrics and author quotes, but in practice this was
very difficult to automate. In the debriefing, it was clear that KoreLogic generated these as a
single group of hashes on purpose.

Cracking History5-2 was not that difficult, and mostly done by standard methods. History1
and 0 was again quite hard to get cracks but after the first few we saw a similar pattern
appear as for the bible.

History6 name + $d Arnold1

History5 full name + $d Tim Arnold1

History4 word that relates to the name + $d would1

History3 words that relate to the name + $d what love would1

History2 2-3 words that relate to the name mixed with
?d?s

would want1

History1 3-5 random words that relate to the name love want would what Ask

History0 3-5 random words that relate to the name +
leetspeak

!0v3 w4n+ w0u!d wh4+ A5k

Due to the fact that we didn’t manage to get a hold of a good source for either author
quotes or songs to crack a lot of those, we were not able to really elaborate on the exact
pattern.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://nintendo.fandom.com/wiki/List_of_Nintendo_games
https://nintendo.fandom.com/wiki/List_of_Nintendo_games
https://discord.gg/HFS523HGBT

Numberword
These were all based on the written forms of some different numbers, including “two”,
“billion”, “sixty”, and others. Proceeding from the oldest to newest was straightforward,
appending numbers, extending length, and applying rules.

contest
DEF CON, Vegas, Ballys, etc etc etc

Latinloc
These were locations in Latin America, including estados in Mexico, departments in Bolivia,
and others.

Password
Passwords regularly based on the word ‘password', but also a mashup of general password
strategies. May be based on RockYou or some other corpus. This group is probably what the
KL outbriefing referred to as the “intern-generated” hashes.

h2stem
h2 column has the stem word - always [word]2020 or 2021, with optional single special

Training
The plains found within the VM.
powershell: repair with “esenutil” dump with dsinternals (directory services internals) + filter
to only have the user objects (remove the computer objets) + convert from UTF-16 to UTF-8.
The easiest way to extract the passwords was using “strings -e l” and then grep
“PASSWORD_IS” on the output.

Website
Did not crack any - this puzzle totally escaped us. The information required had to be pulled
from other metadata associated with specific users.
After the end of the contest, we successfully extract the website’s user passwords from
ntds.dit using strings :)

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Figure 12 - extracting Website's user passwords from ntds.dit using strings

111 plaintexts useful to crack 1:1 history0 hashes, so 7104 missing points here :|

Other stuff we did

Autocrack for sleep time:

autocrack.sh

#!/bin/sh
while true; do
shuf -n 10 /root/dd/dict_all.dict.txt | /root/dd/smartquote.pl| sort -u |sed -e 's/^/1\t/'
> /root/dd/table
shuf -n 2 /root/dd/template.seed > /root/dd/template

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

http://autocrack.sh/
https://discord.gg/HFS523HGBT

perl /root/dd/simple_table.pl /root/dd/template /root/dd/table |
/root/git/hashcat/hashcat -m 1000 /root/dd/all.left -g 100000 -o /root/dd/current.out
--remove --generate-rules-func-max=30
/root/git/hashcat/hashcat -m 1000 /root/dd/all.left /root/dd/dict_all.dict.txt -g
10000000 -O -w3 -o /root/dd/current.out --remove --generate-rules-func-max=30
done;

template.seed
11
111
1111
11111
1 1
1 1 1
1 1 1 1
1 1 1 1 1

“Blind” non pattern attacks based on all cracks:

-----START-------------------------quick and stupid sh-----------

cat dict.txt > 1.txt
sort dict.txt | tr -d [:punct:] | tr -d [:digit:] | uniq -ic | sort -rn | cut -b9- >> 1.txt
sort dict.txt | tr -d [:punct:] | tr -d [:digit:] | tr [:upper:] [:lower:] | uniq -ic | sort -rn |
cut -b9- >> 1.txt
cat dict.txt | tr [:alpha:] "\n" >> 1.txt
cat dict.txt | tr [:digit:] "\n" >> 1.txt
cat dict.txt | tr [:punct:] "\n" >> 1.txt
cat dict.txt | tr [:punct:] "\n" | tr [:digit:] "\n" >> 1.txt
cat dict.txt | tr [:punct:] "\n" | tr [:digit:] "\n" >> 1.txt
cat dict.txt | tr [:upper:] "\n" >> 1.txt
cat dict.txt | tr [:lower:] "\n" >> 1.txt
cat test.wordlist >> 1.txt
cat anothertest.wordlist >> 1.txt
cat 1.txt | sort | uniq -ic | sort -rn | cut -b9- > 2.txt
cat 2.txt > 3.txt
cat 2.txt | cut -b -3 >> 3.txt
cat 2.txt | cut -b -4 >> 3.txt
cat 2.txt | cut -b -5 >> 3.txt
cat 2.txt | cut -b -6 >> 3.txt
cat 2.txt | cut -b -7 >> 3.txt
cat 2.txt | cut -b -8 >> 3.txt
cat 2.txt | cut -b -9 >> 3.txt
cat 2.txt | cut -b -10 >> 3.txt
cat 2.txt | cut -b -11 >> 3.txt
cat 2.txt | cut -b -12 >> 3.txt

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

cat 2.txt | cut -b -13 >> 3.txt
cat 2.txt | cut -b -14 >> 3.txt
cat 2.txt | cut -b -15 >> 3.txt
cat 2.txt | cut -b -16 >> 3.txt
cat 2.txt | cut -b -17 >> 3.txt
cat 2.txt | cut -b -18 >> 3.txt
cat 2.txt | cut -b -19 >> 3.txt
cat 2.txt | cut -b -20 >> 3.txt
cat 2.txt | cut -b -21 >> 3.txt
cat 2.txt | cut -b -22 >> 3.txt
cat 2.txt | cut -b -23 >> 3.txt
cat 2.txt | cut -b -24 >> 3.txt
cat 2.txt | cut -b -25 >> 3.txt
cat 2.txt | cut -b -26 >> 3.txt
cat 2.txt | cut -b -27 >> 3.txt
cat 2.txt | cut -b -28 >> 3.txt
cat 2.txt | cut -b -29 >> 3.txt
cat 2.txt | cut -b -30 >> 3.txt
sort 3.txt | uniq -ic | sort -rn | cut -b9- > 4.txt
cat 4.txt > 5.txt
cat 4.txt | tr [:upper:] [:lower:] >> 5.txt
sort 5.txt | uniq -ic | sort -rn | cut -b9- > 6.txt
cat 1p.txt >> 6.txt
sort 6.txt | uniq -ic | sort -rn | cut -b9- > wordlist.txt
---------END--------------quick and stupid sh--------------------

Then run :
• -a 6 -a 7 attacks with mask like ?a?a?a?a
• -a 1 attacks | stdin with debugged rules from previous cracks
• combined rules attacks -r toggle -r debugged
• -a 1 attacks with phrases (2,3,4,5 words) and -j $[space]

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Conclusion

Figure 13 – Final Scores

Figure 14 – Final Stats

1/10, would not bang… Besides that pretty cool 48 hours, thanks KL!

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

Here are some unfiltered thoughts of our team members:

evilmog: The contest was chaotic, while I liked the fact that it was only NTLM it was
extremely hard to get into my groove. Most likely I'm out of practice, but my frustrations for
the most part are to do with me fighting with LC and us having no clean way of exploiting
our massive pile of hardware. Next year I'm just not using htp and will have to code
something custom to send manual attacks out. It seems every year Minga screws with the
pro teams and it’s kind of lots of fun. The Pro contest take so much time to get into the
groove that you miss out on the rest of defcon

matrix: I enjoyed it a lot, especially because of the VM challenge, for which some skills
related to the world of security were needed.

Xanadrel: Spent first hours monitoring & fixing shit, didn’t even play with the VM, didn’t do
much cracking, this felt like the most dull contest I ever did.

_NSAKEY: The AD stuff turned me off but I get why it was done, and a Category 4 Doom
Storm at work pulled me away during the last 3 hours.

Kontrast23: interesting contest, partly over-engineered, constant impression “there must be
more” but wasn’t, enjoyed the hunt and development

unix-ninja: there was a lot of dissonance; communication wasn’t great and there as a bit of
overlapping work.

atom: The KJV challenge has been my personal favorite challenge. I had to write several
small tools to get there, but for the short time it was, it wasn't too difficult. And the reward
was good enough to spend most of the time on. Still, I wonder if I could do better if I took
advantage of the RNG involved. But without the possibility to analyze a source or binary it is
very likely I am just wasting my time.

tychotithonus: I enjoyed the novelty of working with purely fast hashes, the variety of
strategies used to generate the target plaintexts, and the challenge of correlation of user
password history (which I didn’t have much experience with).

blandyuk: Good contest but would have liked more algos like MSSQL and maybe some
phpass on a Wordpress site. This could have easily been done via a second VM. The patterns
per user which got harder as the history went down was great. More complex but still based
on original password. Shows users do not go far from password.

RuraPenthe: I liked the real-world scenario of a damaged or lost domain controller image we
had to recover to get the hayes that Minga mixed with his usual evil ways to make us suffer.

dropdead: Loved the balance between “too hard” and “super easy” in combination with
sheer willpower to break through those histories.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

T0XlC : Working with just “fast hashes”, for a change, was the most exciting part. It allowed
us to run complex *blind* attacks with larger rulesets and dictionaries to identify patterns
within the existing cracked hashes. As per previous years, human-cracker effort was the only
way to win. Using big cracking rigs alone would have no substantial benefit.

m3g9tr0n : I really enjoyed the contest because it was mostly active directory and pentesting
related. While I did not play with the VM at all, I spent all of my time trying to crack hashes,
building rules and identifying patterns.

Team Hashcat
Please direct any questions or comments to hashcat discord:

https://discord.gg/HFS523HGBT

https://discord.gg/HFS523HGBT

