
CRACK ME IF YOU CAN 2022
TEAM WRITE-UP

Table of Contents

Team Members 2

Background 2

Team Information & Planning 2

Software Stack 3

Hardware Stack 4

Updates to LC 4

The Competition 5

The start of the competition 5

Container 5

halfmd5.zip - subterranean / banned 6

20DollarDumps.odt - Kingpin 6

DEFCON-with-key.kdbx 6

list23-Authoritiesappeartohaveuncoveredavastnefariousconspiracy.hashes.gpg 7

LoopAESLoopAESLoopAES 8

ManMadeSelf.pdf 8

riddle_wrapped_up_in_an.zip / Imitation Game 8

web.conf.tgz 10

wopr.7z - 12

DEFCON.kdbx 12

new_and_unbroken.rar 12

pennysuncle 12

Street hashes 12

Conclusion 13

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

Revision 0.5
Date: 30/08/2022

Team Members

The following team members (20) were actively involved in CMIYC 2022:

atom blandyuk Chick3nman dropdead EvilMog

Hydraze kontrast23 kryczek matrix m3g9tr0n

N|GHT5 philsmd rurapenthe The_Mechanic T0XIC

TychoTithonus unix-ninja Xanadrel xmisery _NSAKEY

Background

Crack Me If You Can is a password-cracking contest held by KoreLogic every year at DEF CON
in Las Vegas (and in uncommon cases, at DerbyCon instead of DEF CON). The contest
involves various tasks related to cracking passwords that have been obtained from many
different (artificial) sources. These passwords are hashed using industry-standard algorithms
of various difficulty and may or may not include salts.

Team Hashcat competed in this year’s CMIYC under its common name of Team Hashcat.

Team Information & Planning

The competition ran from 11 AM Las Vegas Time 12th August 2022 until 11 AM Las Vegas
Time 14th August 2022. The competition was sponsored by KoreLogic as per previous years.
Team Hashcat, being distributed in various geographic regions, used our consolidated
platform for managing hashes, completed jobs and team communication.

Certain team members were on-site in LAS, while others operated from their respective
locations. Unlike previous years, we decided to switch communication primarily to Discord.

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

Software Stack
The following software was used in the competition by the Team:

Name Version Link

hashcat 6.2.5+664+LC https://hashcat.net/hashcat/
(internal version that works with our collaboration
platform LC)

hashcat-utils 1.9 https://github.com/hashcat/hashcat-utils

John the Ripper latest GitHub https://github.com/openwall/john

MDXfind 1.112 https://hashes.org/mdxfind.php

princeprocessor 0.22 https://github.com/hashcat/princeprocessor

maskprocessor 0.73 https://github.com/hashcat/maskprocessor

PACK Python3 GitHub https://github.com/Hydraze/pack

rling suite 1.74 https://github.com/Cynosureprime/rling

PACK2 0.1.0 https://github.com/hops/pack2

LC -

Google Sheets -

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/hashcat/
https://github.com/hashcat/hashcat-utils
https://github.com/openwall/john
https://hashes.org/mdxfind.php
https://github.com/hashcat/princeprocessor
https://github.com/hashcat/maskprocessor
https://github.com/Hydraze/pack
https://github.com/Cynosureprime/rling
https://github.com/hops/pack2
https://hashcat.net/discord

Hardware Stack

Keep in mind that in general all of our team members used just their normal hardware since
this particular contest made it really hard to keep the hardware actually busy. So don’t get
discouraged by this quite modest list - everybody can do it.
The following hardware was used in the competition by the Team:

We want to again point out that the hardware used boils down to around 2-3 CPUs and
GPUs per person - we deliberately do not tap into all the resources that would have been
available to us unless necessary, for two reasons: 1. The challenge at CMIYC is about using
brain power - 2. actually utilizing all of the resources in a smart way during a complex
contest is very hard.

Updates to LC

This year our collaboration platform “LC” got significant upgrades which gave us an
enormous productivity boost during the contest itself. Those upgrade include:

- automatic push of founds to LC
- push of metadata like what kind of attack has been run
- push of debug rules
- automatic retrieval of founds from LC (basically an automatic sync of all the potfile of

all clients)
This was made possible by a special version of hashcat which was only available to the team.
There are more advanced analytics features planned in the future but we will talk about
those when we get there.

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

The Competition

The start of the competition

After opening up the first main container
and discovering it contains more
containers…

Container

PRO

halfmd5.zip password

20DollarDumps.odt (-m 18400) homecoming2022

DEFCON-with-key.kdbx keyfile only (base64 -> XML)

list23-Authorities[...].hashes.gpg LasV3gas

LoopAESLoopAESLoopAES (unknown format, 650K) PasswordPasswordPassword

ManMadeSelf.pdf 2022Defcon

riddle_wrapped_up_in_an.zip Enigma22!

web.conf.tgz list5-6023_384s_-0105435TennisShoes.hash (url found)

wopr.7z joshua

fooo (unknown format, 3.9M random, repeated 27 times) n/a [was only a filler file!]

DEFCON.kdbx (from third dl) list2-mssql05-itrustyou.hashes Summer22

new_and_unbroken.rar password

pennysuncle Gadget

STREET

list16-FL_kdIZUGpI.zip Hackers

list17-TOWMINTP.hashes.gpg DEFCON

list18-Thursday17January2021.odt Sunday

list19-paidanextra500000.zip Swordfish

list20-Authoritiesappeartohaveuncoveredavastnefariousconspiracy.7z Queen

list24-ThisYearsWorst.pdf Worst

DEFCON-Street.kdbx ?

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

halfmd5.zip - subterranean / banned
half-MD5 (5100)

The container password was guessed by hand early. This was clearly a challenge designed to
be easy enough to get teams used to the idea of what was happening.

Source lists were in two groups - “subterranean” (common base words with some basic rules
applied, stacked) and “banned” (entirely lower case wordlists)

20DollarDumps.odt - Kingpin
vBulletin (1611)

It took us quite some time to crack this container.

Source list was from the hacking history book “Kingpin”, for which “twenty dollar dumps”
was a chapter name. This was not as easily searched for on the Internet, but we did uncover
it.

DEFCON-with-key.kdbx

This container cost us much - in time and nerves. At the end of the first day, our efforts to
open it were completely in vain - trying a variety of theories to open it, ranging from using
parts of other containers in creative ways, did not result
in anything useful. Unbeknownst to us, the keyfile
wasn’t part of the initial set, but was dropped by KL
during a later stage in the contest, with a hint.

The problem here is that we spend a lot of time (more
than 24 hours utilizing and a little over 10 dedicated
GPUs, lots of our attention and brain power) using the
foofoo file as keyfile, because this file was the only file
that was part of the KL work package and which was not
used in any other way. The .kdbx clearly stated that it
requires a keyfile so we were very sure that this is the
keyfile.

The keyfile included the substring “# changed from 70617373776f7264” where the
70617373776f7264 is just the hex representation of “password”. First we thought that this is
a hint for the password that typically is used in combination with a keyfile so we tried many
different versions of “password” as password. Another problem was that the XML standard
doesn’t allow comments using the # - so what actually happened is that the XML was
rendered defective. If a clean XML parser would be used to extract the required sha256 later
used as salt for the password from that XML, it would have failed. This approach was

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://twitter.com/CrackMeIfYouCan/status/1558569650887311364
https://hashcat.net/discord

therefore very risky and also very unreal, because in a real world situation this would not
occur. It is unclear to us what KL wanted to achieve with this.

However, cracking a KDBX with a keyfile only (that is,
without a password in combination) failed with both
hashcat and JtR. The reason here is that KeePass
selects a different algorithm to calculate the KDF.
Thanks to KL we have adopted this new algorithm to
hashcat mode 29700 which was introduced with this
commit. There is also a new tool added to hashcat
called tools/recursivefiles2sha256sum.pl that
recursively scans a given folder and creates a wordlist
of sha 256 values of all the files inside and which then
can be used to brute force an unknown keyfile.

list23-Authoritiesappeartohaveuncoveredavastnefariousconspiracy.hashes.gpg
SHA2-224 (1300)

The container’s filename was a hint towards the opening sentence of a Gizmodo story about
a ‘hacker’ homecoming queen (and so in sync with the DEFCON theme).
We wasted a bit of time on this one though, since we got a false-positive crack with
"kingpinK1ngp1nKINGPIN" - thanks KL for verifying that this was in fact a collision.

The wordlist/source - only two words, ‘hacker’ and ‘homecoming’ - were simple, but the
method to generate the target hashes was definitely not - or at least, the results were not
easy to crack.

(We figured that it has to be continuously generating
combinations of insert, overwrite and delete rules and
feeding the plains and found rules back into itself but
the limited time didn’t allow for more exploration. -
After the contest we managed to create an attack that
would crack a big portion of the list just starting with the
two original plains.)

Also this is where the actual competition went down
once all containers have been opened - you just had to
go about solving this one intelligently and not by just
throwing a lot of GPU power and money at the problem.
This was a really cool throwback to an older contest. We
gotta hand it to you KL, good job!

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://github.com/hashcat/hashcat/commit/7ca2627bc2397a3d4e3e03ee9a5fc508b5330647
https://gizmodo.com/stop-the-steal-hacker-homecoming-queen-charged-as-ad-1846822348
https://hashcat.net/discord

LoopAESLoopAESLoopAES
SHA2-256 (1400)

For this we prepared an arch linux VM with the loop-aes packages to discover that any
password would “successfully” mount the image. To find the correct one we initially tried to
look for a partition table after a mount but switched to looking at the entropy with “binwalk
-E”. After the switch to the entropy-method it didn’t take long to discover the actual
password “PasswordPasswordPassword”.

ManMadeSelf.pdf
MySQL CRAM SHA1 (11200)

It was determined later that the title was actually supposed to be a hint for one of the other
puzzles.

The single salt shared across all hashes (33313333376c33337433313333376c3333746430)
is hex for the ASCII 31337l33t31337l33td0, which we thought might be a hint.

riddle_wrapped_up_in_an.zip / Imitation Game
SHA2-512 (1700)

The container’s name derives from a Winston Churchill quote. Once we randomly did a few
cracks we discovered that the plains are based on the movie The Imitation Game, set in
World War II and therefore broadly in the theme of the container quote. The screenplay was
processed like so:

list6_riddle:

get imitation game transcript
extract all single words in order > imitation_game.txt_1
remove symbols > sed -e 's/[#$%*@\.\?\!:]$//' imitation_game.txt_1 >
imitation_game.txt_1_1

iterate over all the words, output every word plus 4 previous words + in reverse:
while read i; do printf '%s\n' "$i"; printf '%s %s\n' "$b $i"; printf '%s %s %s\n' "$a $b $i";
printf '%s %s %s %s\n' "$c $a $b $i"; printf '%s %s %s %s %s\n' "$d $c $a $b $i"; printf
'%s %s\n' "$b $i"; printf '%s %s %s\n' "$i $b $a"; printf '%s %s %s %s\n' "$i $b $a $c";
printf '%s %s %s %s %s\n' "$i $b $a $c $d"; d=$c; c=$a; a=$b; b=$i; done <
imitation_game.txt_1 > imitation_game.txt_4

replace space with symbols:
hashcat.exe --potfile-disable -a0 --stdout imitation_game.txt_5 -r replace_space.rule >
imitation_game.txt_5_replaced

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

replace_space.rule:
@
s
s !
s "
s #
s $
s %
s &
s '
s (
s)
s *
s +
s ,
s -
s .
s /
s :
s ;
s <
s =
s >
s ?
s @
s [
s \
s]
s ^
s _
s `
s {
s |
s }
s ~

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

web.conf.tgz

The `runme.sh` script in the archive contained a file with the
interesting filename `contest_plaintexts.dic`. Our first thought
was that this is kind of the golden package that if we crack this
one, we can open all the (at that time) unopened other container
files. We thought the encryption framework in this archive
(jasypt) is of particular interest for KL and they want us to add a
new plugin to hashcat. So we started looking into the output file
caused by the runme.sh script which is the `output.txt` file and it contained lines like this:

pJ4Jv4eYI1KLQQgYNlhMUw==
A3EDzAVP1fJtjye1icCEJH5t7YMJmwL4
pAbFrZMxTMq4Dkx6FpALzw==

With a bit of an experienced eye you could see that this encryption is using some sort of
padding, so we are dealing with an encryption/decryption system, not a hash. That made
sense, since the input file is `contest_plaintexts.dic`. A closer look to the `runme.sh` script
revealed the main issue here, and that is that KL (intentionally) used the password for both
the encryption key but also the encrypted data in this section:

input=${id} password=${id}

The main difference between hashing and
encryption when it comes to cracking is
that for the encryption you have two
unknown factors instead of one. You need
to know either the key or the plaintext data
in order to make a "test" if the key (or data)
is the "correct" one (with exception to stuff
like GCM). Since we know that the
passwords are also the plaintext, we can

assume that only two of them have a length of 8 or more. That also means that all the
remaining ones had to be of length 7 or less. At that time we already had some of the other
containers opened and since we assumed that all the encrypted strings in `output.txt` were
encrypted passwords we assumed that one of them had to be `password`, because that was
the password to the main container. That theory turned out later to be invalid, since it
wasn't the passwords to all containers, but at that time we believed so. So we reduced the
12 entries down to just 2, because of the password length.

We had to step a bit into how `jasypt` works and it's really straight forward. To decrypt the
content, one just uses `JasyptPBEStringDecryptionCLI` instead of
`JasyptPBEStringEncryptionCLI` and that's it. We then downloaded the libraries from here:
https://github.com/jasypt/jasypt/releases/download/jasypt-1.9.3/jasypt-1.9.3-dist.zip

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://github.com/jasypt/jasypt/releases/download/jasypt-1.9.3/jasypt-1.9.3-dist.zip
https://hashcat.net/discord

We unpacked it in the parent folder and had to copy the lib folder from there to the current
folder. We rewrote the existing `encryt.sh` to a new file `decrypt.sh` and replaced the java
class to decrypting mode. Now we could run `decrypt.sh` and do our testing. We just
manually tried both of them and one actually worked, exactly as we expected, because at
that point we still believed to get all the container passwords from that one file.

The command line looked like this:

./decrypt.sh algorithm=PBEWITHMD5ANDDES input=4fk7bYelWbQlrsU1zPitfbISvKTEsluN
password=password

and if the password is successful, the output is something like this:

----OUTPUT----------------------

password

However, if the password is invalid, the output was like this:

Operation not possible (Bad input or parameters)

So we just built the command into a for looping shell script and started some easy
passwords. For every crack we had, we stopped the shell script and replaced the hash we
were looking for. It quickly turned out that some of the cracks contain pieces of a URL, for
instance:

```
wWZpBNLEiXGmzgV+k5+aYQ== https
pAbFrZMxTMq4Dkx6FpALzw== .com
```

So we knew that after we cracked them all, we could form a URL and get something new
from it. The final URL was:

https://contest-2022.korelogic.com/password/abcd

which redirected to:

https://contest-2022.korelogic.com/password/list5-6023_384s_-0105435TennisShoes.hash

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

wopr.7z -
The container password was ‘joshua’, as WOPR was the name of the computer in the movie
WarGames.

inside was a list of yescrypt. We utilized JtR with ‘crypt’ format (xlibcrypt passthrough to the
OS) to crack them. A couple fell pretty quickly, with the last two taking more time as people
made guesses by hand or ran small lists for such a slow hash.

DEFCON.kdbx
list2-mssql05-itrustyou.hashes

The wordlist theme was a specific list of three-word inspirational phrases, with various rules
applied.

new_and_unbroken.rar
Password “passwordd”

pennysuncle

The container password - ‘Gadget’ - was derived from the hint that Inspector Gadget’s
niece’s name was Penny in the 80s cartoon. The method used to discover this was basically
identical to the one used to open the loopaes-container.

Street hashes

We often have some members explore these in
case they prove to be useful later. We opened up
the container through some manual guessing
pretty quickly and cracked almost all of the
hashes directly but didn’t use them since we
didn’t see an obvious connection on how to
apply the cracked plains.

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

Conclusion

Figure 13 – Final Scores

Figure 14 – Final Stats

This year's challenge was all about having creative people collaborating - it was awesome
seeing and hearing the team working on the different challenges together. One moment you
felt defeated and frustrated because nothing worked, while the next moment everybody on
the team was excited because something new opened up - collectively, this is what this
contest was all about.

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

Thank you KL for being an awesome host of this contest, it was a lot of “fun” for all of us.
Also a thank you to all of the other teams for attending and giving us a good fight!

Team Hashcat
Please direct any questions or comments to hashcat Discord:

https://hashcat.net/discord

https://hashcat.net/discord

