
Module 2
Typical goals of malware and their

implementations

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1

Hooking

Hooking: the idea

•Hooking means intercepting the original execution of the
function with a custom code

•Goal: to create a proxy through which the input/output of the
called function bypasses

•Possible watching and/or interference in the input/output of
the function

Hooking: the idea

• Calling the function with no hook:

Call Function(arg0,arg1)

Function:

(process arg0, arg1)

...

ret

Hooking: the idea

• Calling the hooked function: the high-level goals

Intercept:

Arg0, arg2

Call Function

ret

Call Function(arg0,arg1)

Function:

(process arg0, arg1)

...

ret

Hooking: who?

Hooking is used for intercepting and modifying API calls

• By malware: i.e. spying on data

• By Anti-malware: monitoring execution

• Compatibility patches (Operating System level) - i.e. shimming engine

• Extending functionality of the API

Hooking in malware

•Sample purposes of hooks used by malware:
• Hiding presence in the system (rootkit component)

• Sniffing executions of APIs (spyware)

• Doing defined actions on the event of some API being called (i.e.
propagation to a newly created processes, screenshot on click)

• Redirection to a local proxy (in Banking Trojans)

Hooking: how?

There are various, more or less documented methods of hooking. Examples:

• Kernel Mode (*will not be covered in this course)

• User Mode:
• SetWindowsEx etc. – monitoring system events

• Windows subclassing – intercepting GUI components

• Inline/IAT/EAT Hooking – general API hooking

Monitoring system events

• Windows allows for monitoring certain events, such as:
• WH_CALLWNDPROC – monitor messages sent to a window

• WH_KEYBOARD

• WH_KEYBOARD_LL

• etc.

• The hook can be set via SetWindowsHookEx

• This type of hooks are often used by keyloggers

Monitoring system events

• Example: Remcos RAT

https://www.virustotal.com/gui/file/47593a26ec7a9e791bb1c94f4c4d56deaae25f37b7f77b0a44dc93ef0bca91fd

https://www.virustotal.com/gui/file/47593a26ec7a9e791bb1c94f4c4d56deaae25f37b7f77b0a44dc93ef0bca91fd

Monitoring system events

• Example: Remcos RAT

Windows subclassing

• This type of hooking can be applied on GUI components

• Window subclassing was created to extend functionality of the GUI controls

• You can set a new procedure that intercepts the messages of the GUI controls

• Related APIs:
• SetWindowLong, SetWindowLongPtr (the old approach: ComCtl32.dll < 6)

• SetWindowSubclass/RemoveWindowSubclass, SetProp/GetProp (the new approach: ComCtl>=6)

• Subclassed window gets a new property in: UxSubclassInfo or
CC32SubclassInfo (depending on the API version)

https://docs.microsoft.com/en-us/windows/win32/controls/subclassing-overview

https://docs.microsoft.com/en-us/windows/win32/controls/subclassing-overview

Windows subclassing

• Windows subclassing can also be used by malware

• Example: subclassing the Tray Window in order to execute the injected code

https://github.com/hasherezade/demos/blob/master/inject_shellcode/src/window_long_inject.cpp

https://github.com/hasherezade/demos/blob/master/inject_shellcode/src/window_long_inject.cpp

General API Hooking

• Most common and powerful, as it helps to intercept any API

• Types of userland hooks:
• Inline hooks (the most common)

• IAT Hooks

• EAT Hooks

API Hooking: the idea

Hooking API of a foreign process requires:
1. Implanting your code into the target process

2. Redirecting the original call, so that it will pass through the implant

Implanting a foreign code

MainProgram.exe

Ntdll.dll

Kernel32.dll

implant

Any code that was added to the

original process. It can be a PE (DLL,

EXE), or a shellcode

Implanting a foreign code

MainProgram.exe

Ntdll.dll

Kernel32.dll

implant

Call kernel32.CreateFileA

The implant intercepts the call

IAT Hooking

IAT Hooking

• In case of IAT hooks, the address in the Import Table is altered

• IAT hooks are often used by Windows compatibility patches, shims

• Not as often (but sometimes) used by malware

IAT Hooking: idea

• In case of IAT Hooking we can really implement it in this simple way: by replacing the
address via which the function is called in the IAT

Intercept:

Arg0, arg2

Call Function

ret

Call Function(arg0,arg1)

Function:

(process arg0, arg1)

...

ret

IAT Hooking

The address filled in IAT leads to User32.dll (as the table points)

original

IAT Hooking

The address filled in IAT leads to a different module

hooked

IAT Hooking – the pros

• IAT hooking is much easier to implement than inline hooking

• The original DLL is unaltered, so we can call the functions from it via
the intercepting function directly – no need for the trampoline

IAT Hooking – the cons

• IAT hooking can intercept only the functions that are called via import
table
• Cannot hook lower level functions that are called underneath

• Cannot set hooks globally for the process – each module importing
the function has to be hooked separately

IAT hooking detection

• IAT Hooking is detected i.e. by PE-sieve/HollowsHunter

Pe-sieve.exe /pid <my_pid> /iat

Hollows_hunter.exe /iat

Inline Hooking

Inline Hooking

• In case of Inline hooks, the beginning of the original function is altered

• Inline hooks may also be used in legitimate applications

• Extremely often used in malware

Inline Hooking: idea

• In case of Inline Hooking we need to overwrite the beginning of the function: so, calling the
original one gets more complicated...

Intercept:

Arg0, arg2

Call Trampoline

...

ret
Call Function(arg0,arg1)

Function:

JMP Intercept

Function+OFFSET:

(process arguments)

...

ret

Trampoline:

<beginning of the

original Function>

Jmp Function+OFFSET

6

1

2

3

4

5

Inline Hooking: example

• Example of an inline hook installed by a malware in function CertGetCertificateChain

original

Inline Hooking: example

• Example of an inline hook installed by a malware in function CertGetCertificateChain

infected

Original: CertGetCertificateChain

call crypt32.CertGetCertificateChain

Hooked: CertGetCertificateChain

call crypt32.CertGetCertificateChain

Hooked: CertGetCertificateChain

call crypt32.CertGetCertificateChain

Hooked: CertGetCertificateChain

call crypt32.CertGetCertificateChain

Hooked: CertGetCertificateChain

call crypt32.CertGetCertificateChain

Hooked: CertGetCertificateChain

call crypt32.CertGetCertificateChain

Hooked: CertGetCertificateChain

call crypt32.CertGetCertificateChain

Inline Hooking: Hotpatching

• Inline hooking is officially supported

• The hotpatching support can significantly simplify the operation of setting the inline hook

• If the application is hotpatchable, then just before the prolog we can find: additional instructions:
• MOV EDI, EDI, and 5 NOPs

Inline Hooking: Hotpatching

• MOV EDI,EDI -> 2 BYTEs : can be filled with a short jump

• 5 NOPS -> 5 BYTEs : can be filled with a CALL

Inline Hooking: Hotpatching

• Hotpatching support can be enabled in the compiler options:

Inline hooking: common steps

1. GetProcAddress(<function_to_be_hooked>)

2. VirtualAlloc: alloc executable memory for the trampoline

3. Write the trampoline: copy the beginning of the function to be hooked, and
the relevant address (common opcode: 0xE9 : JMP)

4. VirtualProtect – make the area to be hooked writable

5. Write the hook (common opcode: 0xE9 : JMP)

6. VirtualProtect – set the previous access

Inline Hooking – the pros

• The hook works no matter which way the function was called

• Hook once, execute by all the modules loaded in the process

Inline Hooking – the cons

•We need to overwrite the beginning of the function, which means:
• Parsing assembly is required (in order not to corrupt any instructions, and

make a safe return)

• Additional space must be used for the trampoline (where the original
beginning of the function will be copied, allowing to call the original version
of the function)

• Making a stable hooking engine requires solving the concurrency issues:
the function that we are just hooking may be called from another thread

Inline Hooking – libraries

• There are ready-made open source libraries for inline hooking.
Examples:
• MS Detours: https://github.com/microsoft/Detours

• MinHook: https://github.com/TsudaKageyu/minhook

• ...and others

• Those libraries are also used by malware!

https://github.com/microsoft/Detours
https://github.com/TsudaKageyu/minhook

Inline hooking detection

• Inline Hooking is detected i.e. by PE-sieve/HollowsHunter

Pe-sieve.exe /pid <my_pid> (detects inline hooks by default)

Hollows_hunter.exe /hooks (hook detection can be enabled by /hooks)

Exercise 1

• The sample hooked application:
• https://drive.google.com/file/d/1CJL4tLlnbaMj-

nC9Mw7BOqc9KhNZGTH1/view?usp=sharing

• Run the crackme that has both inline hooks, and IAT hooks installed

• Scan the application by PE-sieve

• Analyze the reports, and see what can we learn about the hooks

https://drive.google.com/file/d/1CJL4tLlnbaMj-nC9Mw7BOqc9KhNZGTH1/view?usp=sharing

Exercise 2

• Sphinx Zbot
• 52ca91f7e8c0ffac9ceaefef894e19b09aed662e

• This malware installs variety of inline hooks in available applications

• Scan the system with Hollows Hunter to grab the hook reports

• Examine the hooks

• Compare them with the sourcecode of the classic Zeus – find all the hooks
that overlap in both

https://www.virustotal.com/gui/file/07ff5290bca33bcd25f479f468f9a0c0371b3aac25dc5bb846b55ba60ca658ed/detection
https://github.com/malwarezone/Zeus

