--- title: "Activity_4" author: HBC Training Team date: "`r Sys.Date()`" output: html_document: code_folding: hide toc: true toc_float: toc_collapsed: true --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` # Set-up libraries and data ``` {r libraries} ## Load libraries library(tidyverse) library(pheatmap) ## Load data load("data/Rmarkdown_data.Rdata") ``` # Top 20 significant genes ```{r top_genes} ## Get names of top 20 genes top20_sigOE_genes <- res_tableOE_tb %>% arrange(padj) %>% #Arrange rows by padj values pull(gene) %>% #Extract character vector of ordered genes head(n=20) ## normalized counts for top 20 significant genes top20_sigOE_norm <- normalized_counts %>% filter(gene %in% top20_sigOE_genes) ## Gathering the columns to have normalized counts to a single column gathered_top20_sigOE <- top20_sigOE_norm %>% gather(colnames(top20_sigOE_norm)[2:9], key = "samplename", value = "normalized_counts") gathered_top20_sigOE <- inner_join(mov10_meta, gathered_top20_sigOE) ## plot using ggplot2 ggplot(gathered_top20_sigOE) + geom_point(aes(x = gene, y = normalized_counts, color = sampletype)) + scale_y_log10() + xlab("Genes") + ylab("log10 Normalized Counts") + ggtitle("Top 20 Significant DE Genes") + theme_bw() + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + theme(plot.title = element_text(hjust = 0.5)) ``` Conclusion: Top 20 significantly differentiall expressed genes were ploted, for each three experimental groups etc.. # Create a heatmap of the differentially expressed genes ```{r heatmap} ## Extract normalized expression for significant genes from the OE and control samples (2:4 and 7:9) res_tableOE_tb_sig <- res_tableOE_tb %>% filter(padj < 0.05) ## Return the normalized counts for the significant DE genes norm_OEsig <- normalized_counts %>% filter(gene %in% res_tableOE_tb_sig$gene) meta <- mov10_meta %>% column_to_rownames("samplename") %>% data.frame() ## Run pheatmap using the metadata data frame for the annotation pheatmap(norm_OEsig[2:9], cluster_rows = T, show_rownames = F, annotation = meta, border_color = NA, fontsize = 10, scale = "row", fontsize_row = 10, height = 20) ``` **Conclusion:** Samples were clustered very well based on different experimental conditions etc.. ```{r sessioninfo} sessionInfo() ```