

.5”

AA Brain-Friendly GuideBrain-Friendly Guide

Fourth
Edition

C#
A Learner’s Guide to
Real-World Programming
with C# and .NET Core

Andrew Stellman
& Jennifer Greene

Andrew Stellman
Jennifer Greene

Head First C#
Fourth Edition

Wouldn’t it be dreamy if
there was a C# book that was

more fun than memorizing
a dictionary? It’s probably

nothing but a fantasy…

Boston

Head First C#
Fourth Edition

by Andrew Stellman and Jennifer Greene

Copyright © 2021 Jennifer Greene, Andrew Stellman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Series Creators:
Cover Designer:
Brain Image on Spine:
Editors:
Proofreader:
Indexer:
Illustrator:
Page Viewers:

Kathy Sierra, Bert Bates
Ellie Volckhausen

Eric Freeman
Nicole Taché, Amanda Quinn
Rac Headhel
Potomac Indexing, LLC
Jose Marzan
Greta the miniature bull terrier and Samosa the Pomeranian

Printing History:
November 2007: First Edition.
May 2010: Second Edition.
August 2013: Third Edition.
December 2020: Fourth Edition

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#,
and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic, and Visual C# are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN: 978-1-491-97670-8

[LSI] [2020-11-13]

C# Lab 87Head First C# Unity Lab 87https://github.com/head-first-csharp/fourth-edition

Unity Lab #1
Explore C# with Unity

Welcome to your first Head First C# Unity Lab.
Writing code is a skill, and like any other skill, getting
better at it takes practice and experimentation.
Unity will be a really valuable tool for that.

Unity is a cross-platform game development tool
that you can use to make professional-quality games,
simulations, and more. It’s also a fun and satisfying
way to get practice with the C# tools and ideas
you’ll learn throughout this book. We designed these
short, targeted labs to reinforce the concepts and
techniques you just learned to help you hone your C#
skills.

These labs are optional, but valuable practice—even
if you aren’t planning on using C# to build games.

In this first lab, you’ll get up and running with Unity.
You’ll get oriented with the Unity editor, and you’ll
start creating and manipulating 3D shapes.

Unity Lab #1
Explore C# with Unity

Unity Lab #1
Explore C# with Unity

88 https://github.com/head-first-csharp/fourth-edition

Unity is a powerful tool for game design
Welcome to the world of Unity, a complete system for designing professional-
quality games—both two-dimensional (2D) and three-dimensional (3D)—as well as
simulations, tools, and projects. Unity includes many powerful things, including...

Our Unity Labs will focus on using Unity as a tool to explore C#, and practicing with
the C# tools and ideas that you’ve learned throughout the book.
The Head First C# Unity Labs are laser-focused on a developer-centric learning path. The goal of these labs
is to help you ramp up on Unity quickly, with the same focus on brain-friendly just-in-time learning you’ll see
throughout Head First C# to give you lots of targeted, effective practice with C# ideas and techniques.

A cross-platform game engine
A game engine displays the graphics, keeps track of the 2D or 3D
characters, detects when they hit each other, makes them act like
real-world physical objects, and much, much more. Unity will do all
of these things for the 3D games you build throughout this book.

An ecosystem for game creation
Beyond being an enormously powerful tool for creating games, Unity
also features an ecosystem to help you build and learn. The Learn
Unity page (https://unity.com/learn) has valuable self-guided learning
resources, and the Unity forums (https://forum.unity.com) help you
connect with other game designers and ask questions. The Unity Asset
Store (https://assetstore.unity.com) provides free and paid assets like
characters, shapes, and effects that you can use in your Unity projects.

A powerful 2D and 3D scene editor
You’ll be spending a lot of time in the Unity editor. It
lets you edit levels full of 2D or 3D objects, with tools
that you can use to design complete worlds for your
games. Unity games use C# to define their behavior,
and the Unity editor integrates with Visual Studio to
give you a seamless game development environment.

While these Unity Labs will concentrate on C# development in
Unity, if you’re a visual artist or designer, the Unity editor has
many artist-friendly tools designed just for you. Check them out
here: https://unity3d.com/unity/features/editor/art-and-design.

https://unity.com/learn
https://forum.unity.com
https://assetstore.unity.com
https://unity3d.com/unity/features/editor/art-and-design

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 89

 Unity Hub may look a little different.

The screenshots in this book were taken with Unity 2020.1 (Personal Edition) and Unity
Hub 2.3.2. You can use Unity Hub to install many different versions of Unity on the same
computer, but you can only install the latest version of Unity Hub. The Unity development

team is constantly improving Unity Hub and the Unity editor, so it’s possible that what you see won’t quite
match what’s shown on this page. We update these Unity Labs for newer printings of Head First C#.
We’ll add PDFs of updated labs to our GitHub page: https://github.com/head-first-csharp/fourth-edition.

Download Unity Hub
Unity Hub is an application that helps you manage your Unity projects and your Unity installations,
and it’s the starting point for creating your new Unity project. Start by downloading Unity Hub from
https://store.unity.com/download—then install it and run it.

Click on Installs to
manage the installed

versions of Unity.

Unity Hub helps you manage your Unity
installs and projects. We used Unity

2020.1.3f1 to create these Unity Labs,
so you should install the latest official

release with a version number that starts
with 2020.1. When you click Next, Unity

Hub will ask if you want to install modules.
You don’t need to install any modules, but

make sure to install the documentation.

Unity Hub lets you install multiple versions of Unity on the same computer, so you should install
the same version that we used to build these labs. Click Official Releases and install the latest
version that starts with Unity 2020.1—that’s the same version we used to take the screenshots in
these labs. Once it’s installed, make sure that it’s set as the preferred version.

The Unity installer may prompt you to install a different version of Visual Studio. You can have
multiple installations of Visual Studio on the same computer too, but if you already have one
version of Visual Studio installed there’s no need to make the Unity installer add another one.

You can learn more about installing Unity Hub on Windows, macOS, and Linux here:
https://docs.unity3d.com/2020.1/Documentation/Manual/GettingStartedInstallingHub.html.

All of the screenshots in this book were taken with the free Personal Edition of Unity. You’ll need to enter your unity.com username and password into Unity Hub to activate your license.

Unity Hub lets you
have many Unity
installs on the same
computer. So even
if there’s a newer
version of Unity
available, you can use
Unity Hub to install
the version we used
in the Unity Labs.

https://github.com/head-first-csharp/fourth-edition
https://store.unity.com/download
https://docs.unity3d.com/2020.1/Documentation/Manual/GettingStartedInstallingHub.html

Unity Lab #1
Explore C# with Unity

90 https://github.com/head-first-csharp/fourth-edition

Use Unity Hub to create a new project
Click the button on the Project page in Unity Hub to create a new Unity project.
Name it Unity Lab 1, make sure the 3D template is selected, and check that you’re creating
it in a sensible location (usually the Unity Projects folder underneath your home directory).

Click Create Project to create the new folder with the Unity project. When you create a new
project, Unity generates a lot of files (just like Visual Studio does when it creates new projects
for you). It could take Unity a minute or two to create all of the files for your new project.

Make Visual Studio your Unity script editor
The Unity editor works hand-in-hand with the Visual Studio IDE to make it really easy to
edit and debug the code for your games. So the first thing we’ll do is make sure that Unity
is hooked up to Visual Studio. Choose Preferences from the Edit menu (or from the
Unity menu on a Mac) to open the Unity Preferences window. Click on External Tools on the
left, and choose Visual Studio from the External Script Editor window.

In some older versions of Unity, you may see an Editor Attaching checkbox—if so, make sure that it’s
checked (that will let you debug your Unity code in the IDE).

OK! You’re all ready to get started building your first Unity project.

You can use
Visual Studio
to debug the
code in your
Unity games.
Just choose
Visual Studio
as the
external
script editor
in Unity’s
preferences.

If you don’t see Visual Studio in the External Script Editor dropdown, choose Browse...
and navigate to Visual Studio. On Windows it’s normally an executable called devenv.exe in
the folder C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\Common7\IDE\.

 On a Mac it’s typically an app called Visual Studio in the Applications folder.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 91

Take control of the Unity layout
The Unity editor is like an IDE for all of the parts of your Unity project that aren’t C#. You’ll
use it to work with scenes, edit 3D shapes, create materials, and so much more. Like in Visual
Studio, the windows and panels in the Unity editor can be rearranged in many different layouts.

Find the Scene tab near the top of the window. Click on the tab and drag it to detach the
window:

Try docking it inside or next to other panels, then drag it to the middle of the editor to make it a
floating window.

Choose the Wide layout to match our screenshots
We’ve chosen the Wide layout because it works well for the screenshots in these labs. Find
the Layout dropdown and choose Wide so your Unity editor looks like ours.

Here’s what your Unity editor should look like in the Wide layout:

The Scene view is your
main interactive view

of the world that you’re
creating. You use it to

position 3D shapes,
cameras, lights, and all
of the other objects in

your game.
Once you change the layout with the Layout dropdown on the right side of the toolbar, the dropdown may change its label to match the layout that you selected.

The Hierarchy window
shows you all of the
objects in your scene.

Use the Project window
to work with the files
in your Unity project.

Every object
in your game
has properties,
which you’ll
view and edit
in the Inspector
window.

You’ll use the Scene window to edit the objects in your scene, including lights, cameras, and shapes. Notice the “Game” tab at the top? That lets you switch to the Game window, which lets you see the player’s view of your game when you run it.

Unity Lab #1
Explore C# with Unity

92 https://github.com/head-first-csharp/fourth-edition

Your scene is a 3D environment
As soon as you start the editor, you’re editing a scene. You can think of scenes as levels in your Unity
games. Every game in Unity is made up of one or more scenes. Each scene contains a separate 3D
environment, with its own set of lights, shapes, and other 3D objects. When you created your project,
Unity added a scene called SampleScene, and stored it in a file called SampleScene.unity.

Add a sphere to your scene by choosing GameObject >> 3D Object >> Sphere from the menu:

A sphere will appear in your Scene window. Everything you see in the Scene window is shown from the
perspective of the Scene view camera, which “looks” at the scene and captures what it sees.

The Scene window shows you all of the objects in your scene from the
perspective of the scene camera. It shows a perspective grid to help
you see how far away the objects are from the Scene view camera.

This is a light that illuminates the scene.

When you run your
game, you’ll see it
from the perspective
of this camera.

Here’s the sphere
that you added.

These are called Unity’s
“primitive objects.” We’ll be
using them a lot throughout
these Untiy Labs.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 93

Unity games are made with GameObjects
When you added a sphere to your scene, you created a new GameObject. The
GameObject is a fundamental concept in Unity. Every item, shape, character,
light, camera, and special effect in your Unity game is a GameObject. Any scenery,
characters, and props that you use in a game are represented by GameObjects.

In these Unity Labs, you’ll build games out different kinds of GameObjects, including:

Spheres

Cubes

Planes

Capsules

Cylinders

Lights

Cameras

Each GameObject contains a number of components that provide its shape, set its
position, and give it all of its behavior. For example:

 ≥ Transform components determine the position and rotation of the GameObject.

 ≥ Material components change the way the GameObject is rendered—or how it’s
drawn by Unity—by changing the color, reflection, smoothness, and more.

 ≥ Script components use C# scripts to determine the GameObject’s behavior.

GameObjects
are the
fundamental
objects in
Unity, and
components
are the
basic building
blocks of
their behavior.
The Inspector
window shows
you details
about each
GameObject in
your scene and
its components.

ren-der, verb.
to represent or depict artistically.
Michelangelo rendered his favorite model with
more detail than he used in any of his other drawings.

Unity Lab #1
Explore C# with Unity

94 https://github.com/head-first-csharp/fourth-edition

Use the Move Gizmo to move your GameObjects
The toolbar at the top of the Unity editor lets you choose Transform tools. If the Move tool
isn’t selected, press its button to select it.

The Move tool lets you use the Move Gizmo to move GameObjects around the 3D space.
You should see red, green, and blue arrows and a cube appear in the middle of the window.
This is the Move Gizmo, which you can use to move the selected object around the scene.

Move your mouse cursor over the cube at the center of the Move Gizmo—notice how each of
the faces of the cube lights up as you move your mouse cursor over it? Click on the upper-left
face and drag the sphere around. You’re moving the sphere in the X-Y plane.

When you click on the upper-left face of the
cube in the middle of the Move Gizmo, its X
and Y arrows light up and you can drag your
sphere around the X-Y plane in your scene.

Move your sphere around the scene to get a feel for how the Move Gizmo works.
Click and drag each of the three arrows to drag it along each plane individually. Try
clicking on each of the faces of the cube in the Scene Gizmo to drag it around all three
planes. Notice how the sphere gets smaller as it moves farther away from you—or really,
the scene camera—and larger as it gets closer.

The Move
Gizmo lets
you move
GameObjects
along any
axis or plane
of the 3D
space in
your scene.

The buttons on the left side of the toolbar let you choose Transform Tools like the Move tool, which displays the Move Gizmo as arrows and a cube on top of the GameObject that’s currently selected.

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 95

Save your scene often! Use File >> Save or Ctrl+S / ⌘S to save the scene right now.

You can learn more about the tools and how to use them to position GameObjects in the Unity
Manual. Click Help >> Unity Manual and search for the “Positioning GameObjects” page.

The Inspector shows your GameObject’s components
As you move your sphere around the 3D space, watch the Inspector window,
which is on the right side of the Unity editor if you’re using the Wide layout. Look
through the Inspector window—you’ll see that your sphere has four components
labeled Transform, Sphere (Mesh Filter), Mesh Renderer, and Sphere Collider.

Every GameObject has a set of components that provide the basic building blocks of
its behavior, and every GameObject has a Transform component that drives its
location, rotation, and scale.

You can see the Transform component in action as you use the Move Gizmo to drag
the sphere around the X-Y plane. Watch the X and Y numbers in the Position row
of the Transform component change as the sphere moves.

Try clicking on each of the other two faces of the Move Gizmo cube and dragging to move the sphere in
the X-Z and Y-Z planes. Then click on the red, green, and blue arrows and drag the sphere along just the
X, Y, or Z axis. You’ll see the X, Y, and Z values in the Transform component change as you move the
sphere.

Now hold down Shift to turn the cube in the middle of the Gizmo into a square. Click and drag on that
square to move the sphere in the plane that’s parallel to the Scene view camera.

Once you’re done experimenting with the Move Gizmo, use the sphere’s Transform component context
menu to reset the component to its default values. Click the context menu button () at the top of the
Transform panel and choose Reset from the menu.

The position will reset back to [0, 0, 0].

If you accidentally
deselect a GameObject,
just click on it again. If

it’s not visible in the
scene, you can select it
in the Hierarchy window,
which shows all of the

GameObjects in the scene.
When you reset the layout

to Wide, the Hierarchy
window is in the lower-left
corner of the Unity editor.

Use the context menu to reset a
component. You can either click the three
dots or right-click anywhere in the top
line of the Transform panel in the Inspector
window to bring up the context menu.

Did you notice the grid in your 3D
space? As you’re dragging the sphere

around, hold down the Control key.
That causes the GameObject that

you’re moving to snap to the grid. You’ll
see the numbers in the Transform

component move by whole numbers
instead of small decimal increments.

Unity Lab #1
Explore C# with Unity

96 https://github.com/head-first-csharp/fourth-edition

Add a material to your Sphere GameObject
Unity uses materials to provide color, patterns, textures, and other visual effects. Your sphere looks pretty
boring right now because it just has the default material, which causes the 3D object to be rendered in a
plain, off-white color. Let’s make it look like a billiard ball.

Select the sphere.
When the sphere is selected, you can see its material as a component in the Inspector window:

We’ll make your sphere more interesting by adding a texture—that’s just a simple image file
that’s wrapped around a 3D shape, almost like you printed the picture on a rubber sheet and
stretched it around your object.

Go to our Billiard Ball Textures page on GitHub.
Go to https://github.com/head-first-csharp/fourth-edition and click on the Billiard Ball
Textures link to browse a folder of texture files for a complete set of billiard balls.

Download the texture for the 8 ball.
Click on the file 8 Ball Texture.png to view the texture for an 8 ball. It’s an ordinary 1200 × 600
PNG image file that you can open in your favorite image viewer.

Download the file into a folder on your computer.

(You might need to right-click on the Download button to save the file, or click Download to open it and then
save it, depending on your browser.)

1

2

3

We designed this
image file so that it
looks like an 8 ball
when Unity “wraps”
it around a sphere.

https://github.com/head-first-csharp/fourth-edition

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 97

Import the 8 Ball Texture image into your Unity project.
Right-click on the Assets folder in the Project window, choose Import New Asset... and
import the texture file. You should now see it when you click on the Assets folder in the
Project window.

You right-clicked inside
the Assets folder in
the Project window to
import the new asset,
so Unity imported
the texture into that
folder.

Add the texture to your sphere.
Now you just need to take that texture and “wrap” it around your sphere. Click on 8 Ball
Texture in the Project window to select it. Once it’s selected, drag it onto your sphere.

4

5

Your sphere now looks like an 8 ball. Check the
Inspector, which is showing the 8 ball GameObject. Now
it has a new material component:

Unity Lab #1
Explore C# with Unity

98 https://github.com/head-first-csharp/fourth-edition

I’m learning C# for my job,
not to write video games. Why

should I care about Unity?

Unity is a great way to really “get” C#.
Programming is a skill, and the more practice you get writing C# code,
the better your coding skills will get. That’s why we designed the Unity
Labs throughout this book to specifically help you practice your C#
skills and reinforce the C# tools and concepts that you learn in each
chapter. As you write more C# code, you’ll get better at it, and that’s
a really effective way to become a great C# developer. Neuroscience
tells us that we learn more effectively when we experiment, so we
designed these Unity Labs with lots of options for experimentation, and
suggestions for how you can get creative and keep going with each lab.

But Unity gives us an even more important opportunity to help get
important C# concepts and techniques into your brain. When you’re
learning a new programming language, it’s really helpful to see how that
language works with lots of different platforms and technologies. That’s
why we included both console apps and WPF apps in the main chapter
material, and in some cases even have you build the same project using
both technologies. Adding Unity to the mix gives you a third perspective,
which can really accelerate your understanding of C#.

The GitHub for Unity extension (https://unity.github.com) lets you save your Unity projects in GitHub. Here’s how:
• To install GitHub for Unity: Go to https://assetstore.unity.com and add GitHub for Unity to your assets. Go back to

Unity, choose Package Manager from the Window menu, select “GitHub for Unity” from “My Assets,” and import it.
You’ll need to import GitHub into each new Unity project.

• To push your changes to a GitHub repo: Choose GitHub from the Window menu. Each Unity project is stored in
a separate repository in your GitHub account, so click the Initialize button to initialize a new local repo (you’ll be
prompted to log into GitHub), then click the Publish button to create a new repo in your GitHub account for your
project. Any time you want to push your changes to GitHub, go to the Changes tab in the GitHub window, click
All, enter a commit summary (any text will do), and click Commit at the bottom of the GitHub window. Then click
Push (1) at the top of the GitHub window to push your changes back to GitHub.

You can also back up and share your Unity projects with Unity Collaborate, which lets you publish your projects to
their cloud storage. Your Unity Personal account comes with 1 GB of cloud storage for free, which is enough for all of
the Unity Lab projects in this book. Unity will even keep track of your project history (which doesn’t count against your
storage limit). To publish your project, click the Collab () button on the toolbar, then click Publish. Use the
same button to publish any updates. To see your published projects, log into https://unity3d.com and use the account
icon to view your account, then click the Projects link from your account overview page to see your projects.

https://unity.github.com/
https://assetstore.unity.com/
https://unity3d.com

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 99

Rotate your sphere
Click the Rotate tool in the toolbar. You can use the Q, W, E, R, T, and Y keys to quickly switch
between the Transform tools—press E and W to toggle between the Rotate tool and Move tool.

Click on the sphere. Unity will display a wireframe sphere
Rotate Gizmo with red, blue, and green circles. Click the red
circle and drag it to rotate the sphere around the X axis.

Click and drag the green and blue circles to rotate around the Y and Z axes.
The outer white circle rotates the sphere along the axis coming out of the Scene view camera.
Watch the Rotation numbers change in the Inspector window.

Open the context menu of the Transform panel in the Inspector window. Click
Reset, just like you did before. It will reset everything in the Transform component back to
default values—in this case, it will change your sphere’s rotation back to [0, 0, 0].

Use these options from further down
in the context menu to reset the
position and rotation of a GameObject.

Click the three dots (or right-click anywhere in
the header of the Transform panel) to bring up the
context menu. The Reset option at the top of the
menu resets the component to its default values....

1

2

3

Use File >> Save or Ctrl+S / ⌘S to save the scene right now. Save early, save often!

 It’s easy to reset
your windows and
scene camera.

If you change your Scene view so
you can’t see your sphere anymore,
or if you drag your windows out of
position, just use the layout dropdown
in the upper-right corner to reset
the Unity editor to the Wide
layout. It will reset the window
layout and move the Scene view
camera back to its default position.

Unity Lab #1
Explore C# with Unity

100 https://github.com/head-first-csharp/fourth-edition

Move the Scene view camera with the Hand tool and Scene Gizmo
Use the mouse scroll wheel or scroll feature on your trackpad to zoom in and out, and toggle between the Move
and Rotate Gizmos. Notice that the sphere changes size, but the Gizmos don’t. The Scene window in the editor
shows you the view from a virtual camera, and the scroll feature zooms that camera in and out.

Press Q to select the Hand tool, or choose it from the toolbar. Your cursor will change to a hand.

The Hand tool pans around the scene by changing the position and rotation of the scene camera. When the
Hand tool is selected, you can click anywhere in the scene to pan.

Click and
drag the Hand tool around
the scene to
pan the scene camera.

Hold down Alt (or Option on a Mac) while
dragging the Hand tool to rotate the scene
camera around the center of the scene.

When the Hand tool is selected, you can pan the scene camera by clicking and dragging, and you can
rotate it by holding down Alt (or Option) and dragging. Use the mouse scroll wheel to zoom. Holding
down the right mouse button lets you fly through the scene using the W-A-S-D keys.

When you rotate the scene camera, keep an eye on the Scene Gizmo in the upper-right corner of the Scene
window. The Scene Gizmo always displays the camera’s orientation—check it out as you use the Hand tool to
move the Scene view camera. Click on the X, Y, and Z cones to snap the camera to an axis.

The Unity Manual has great tips on navigating scenes: https://docs.unity3d.com/Manual/SceneViewNavigation.html.

Click any of the cones in
the Scene Gizmo to snap the
camera to an axis. Drag them
around to rotate the camera.

Hold down Alt (or Option on
a Mac) while dragging and the
Hand tool turns into an eye
and rotates the view around
the center of the window

https://docs.unity3d.com/Manual/SceneViewNavigation.html

Unity Lab #1
Explore C# with Unity

Head First C# Unity Lab 101

When you click on the Directional Light GameObject
in the Hierarchy window, the Inspector shows you its
components. It just has two: a Transform component
that provides its position and rotation and a Light
component that actually casts the light.

You can click on the Help icon
for any component to bring up

the Unity Manual page for it.

Q: I’m still not clear on exactly what a component is. What
does it do, and how is it different from a GameObject?

A: A GameObject doesn’t actually do much on its own. All a
GameObject really does is serve as a container for components.
When you used the GameObject menu to add a Sphere to your scene,
Unity created a new GameObject and added all of the components
that make up a sphere, including a Transform component to give it
position, rotation, and scale, a default Material to give it its plain white
color, and a few other components to give it its shape, and help your
game figure out when it bumps into other objects. These components
are what make it a sphere.

Q: So does that mean I can just add any component to a
GameObject and it gets that behavior?

A: Yes, exactly. When Unity created your scene, it added two
GameObjects, one called Main Camera and another called Directional
Light. If you click on Main Camera in the Hierarchy window, you’ll see
that it has three components: a Transform, a Camera, and an Audio
Listener. If you think about it, that’s all a camera actually needs to
do: be somewhere, and pick up visuals and audio. The Directional
Light GameObject just has two components: a Transform and a Light,
which casts light on other GameObjects in the scene.

Q: If I add a Light component to any GameObject, does it
become a light?

A: Yes! A light is just a GameObject with a Light component. If you
click on the Add Component button at the bottom of the Inspector and
add a Light component to your ball, it will start emitting light. If you
add another GameObject to the scene, it will reflect that light.

Q: It sounds like you’re being careful with the way you
talk about light. Is there a reason you talk about emitting and
reflecting light? Why don’t you just say that it glows?

A: Because there’s a difference between a GameObject that emits
light and one that glows. If you add a Light component to your ball, it
will start emitting light—but it won’t look any different, because the
Light only affects other GameObjects in the scene that reflect its
light. If you want your GameObject to glow, you’ll need to change its
material or use another component that affects how it’s rendered.

Unity Lab #1
Explore C# with Unity

102 https://github.com/head-first-csharp/fourth-edition

 ¢ The Scene view is your main interactive view of the
world that you’re creating.

 ¢ The Move Gizmo lets you move objects around
your scene. The Scale Gizmo lets you modify your
GameObjects’ scale.

 ¢ The Scene Gizmo always displays the camera’s
orientation.

 ¢ Unity uses materials to provide color, patterns, textures,
and other visual effects.

 ¢ Some materials use textures, or image files wrapped
around shapes.

 ¢ Your game’s scenery, characters, props, cameras, and
lights are all built from GameObjects.

 ¢ GameObjects are the fundamental objects in Unity,
and components are the basic building blocks of their
behavior.

 ¢ Every GameObject has a Transform component that
provides its position, rotation, and scale.

 ¢ The Project window gives you a folder-based view of
your project’s assets, including C# scripts and textures.

 ¢ The Hierarchy window shows all of the GameObjects in
the scene.

 ¢ GitHub for Unity (https://unity.github.com) makes it
easy to save your Unity projects in GitHub.

 ¢ Unity Collaborate also lets you back up projects to free
cloud storage that comes with a Unity Personal account.

Get creative!
We built these Unity Labs to give you a platform to experiment on
your own with C# because that’s the single most effective way for you to
become a great C# developer. At the end of every Unity Lab, we’ll include
a few suggestions for things that you can try on your own. Take some time
to experiment with everything you just learned before moving on to the next
chapter:

 ≥ Add a few more spheres to your scene. Try using some of the other billiard
ball maps. You can download them all from the same location where you
downloaded 8 Ball Texture.png from.

 ≥ Try adding other shapes by choosing Cube, Cylinder, or Capsule from the
GameObject >> 3D Object menu.

 ≥ Experiment with using different images as textures. See what happens to
photos of people or scenery when you use them to create textures and add
them to different shapes.

 ≥ Can you create an interesting 3D scene out of shapes, textures, and lights?

The more C# code
you write, the
better you’ll get
at it. That’s the
most effective
way for you to
become a great
C# developer. We
designed these
Unity Labs to give
you a platform
for practice and
experimentation.

When you’re ready to move on
to the next chapter, make sure
you save your project, because
you’ll come back to it in the
next lab.. Unity will prompt
you to save when you quit.

https://unity.github.com/

