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Abstract

Exploring Structured Sparsity within Data-Flow Architecture on
Reconfigurable Hardware

Deep Neural Networks (DNNs) are gaining crucial importance for modern com-
puting and devices. Memory and compute requirements of state of the art DNNs
are increasing steadily and the requirements of many DNNs impose serious chal-
lenges for running on so-called edge devices. These include devices such as sensors
in the automotive industry or smartphones with slow internet connection. To im-
prove the performance of DNNs on such low-power devices, model compression has
been proposed and evaluated as a possible solution. For Field Programmable Gate
Arrays (FPGAs), FINN is one of the most widely used frameworks for deploy-
ing compressed DNN models on low-power hardware. The compiler framework
provides tools for building data-flow implementations of Convolutional Neural
Networks (CNNs) with quantized weights and activations.
In the central part of this work two methods are proposed for column pruning
in FINN, enabling further compression of CNN based models. The two methods
vary in their pruning granularity. The coarse-grain method only prunes blocks
of columns, while the fine-grained method is able to prune single columns. Both
methods are evaluated with the VGG-like example network of FINN, that was
trained on the CIFAR10 dataset. It is demonstrated that significant throughput
improvements can be accomplished, while keeping the loss in accuracy accept-
able. In order to run these experiments, an optimization procedure to automati-
cally maximize model throughput on a given FPGA is developed and evaluated.
Additionally, a special contribution to the FINN framework is developed for en-
abling parallel transformations, thus significantly speeding up the synthesis time
for large CNNs.
All algorithms developed within this work are published as open source code on
GitHub. Some of them are now integrated into the FINN framework by XILINX,
enabling many users to profit from the performance improvements accomplished
in this work.



Zusammenfassung

Untersuchung von strukturierter Dünnbesetzung in
Datenflussarchitekturen auf rekonfigurierbarer Hardware

Tiefe Neuronale Netzwerke (DNNs, engl.: Deep Neural Network) gewinnen stetig
an Bedeutung in Bereichen des maschinellen Lernens und der modernen Auto-
matisierungstechnik. Gleichzeitig steigen die Speicher- und Rechenanforderungen
aktueller DNNs. Dies stellt eine ernsthafte Herausforderung für den Betrieb dieser
Netzwerke auf sogenannten „edge devices“ dar. Dazu gehören Geräte wie Sensoren
im Automobilbereich oder Smartphones mit langsamer Internetverbindung. Um
die Effizienz von DNNs auf solchen Geräten mit niedriger Leistung zu verbes-
sern, wurde die Kompression von DNNs als mögliche Lösung vorgeschlagen und
evaluiert. Für rekonfigurierbare Logikbausteine (FPGAs, engl: Field Program-
mable Gate Arrays) ist FINN eines der am weitesten verbreiteten Frameworks
für den Einsatz von komprimierten DNN-Modellen auf stromsparender Hardwa-
re. Das Compiler-Framework bietet Werkzeuge zur Erstellung von Datenfluss-
Implementierungen von faltendes neuronalen Netzwerken (CNNs, engl.: Convolu-
tional Neural Networks) mit quantisierten Gewichten und Aktivierungen.
Im zentralen Teil dieser Arbeit werden zwei Methoden für Column Pruningïn
FINN vorgeschlagen, welche eine weitere Kompression von CNN-basierten Model-
len ermöglichen. Die beiden Methoden variieren in ihrer Granularität. Die grob-
körnige Methode kann lediglich Blöcke an Spalten (Columns) prunen, wohingegen
die feingranulare Methode einzelne Spalten prunen kann. Beide Methoden wer-
den mit dem VGG-ähnlichen Beispielnetz von FINN evaluiert. Es wird gezeigt,
dass signifikante Durchsatzverbesserungen erreicht werden können, während der
Verlust an Genauigkeit akzeptabel bleibt. Um diese Experimente durchführen zu
können, wird ein Optimierungsverfahren zur automatischen Maximierung des Mo-
delldurchsatzes auf einem gegebenen FPGA entwickelt und evaluiert. Zusätzlich
wird eine Erweiterung zum FINN-Framework entwickelt, um parallele Transfor-
mationen zu ermöglichen und damit die Synthesezeit für große CNNs deutlich zu
beschleunigen.
Alle hier entwickelten Algorithmen sind als Open Source Code auf GitHub ver-
öffentlicht und für jedermann zugänglich. Einige dieser Algorithmen sind schon
von dem Unternehmen XILINX in FINN integriert. Dies ermöglicht es den vielen
Nutzern bereits jetzt von den Steigerungen in der Leistungsfähigkeit zu profitie-
ren.
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1 Introduction

Over the last decade Deep Neural Networks (DNNs) have become the most ac-
cepted and utilized approach for many machine learning tasks. DNNs are capable
of achieving state of the art performance in many applications, such as robotics
[Len16], speech processing [Hin+12] and most prominently in the field of visual ob-
ject recognition [KSH12]. In recent years, Zhang et al. [Zha+16] have shown that
DNNs are capable of fitting almost any training data for a given task, making them
a possible choice for many classification problems. This success and the high learn-
ing performance are attributed to the over-parametrization of models compared to
the number data points fitted during training. Although unintuitive, together with
Stochastic Gradient Descent (SGD) this leads very good results with low general-
ization error [LL18].
DNNs are being adapted to more and more complex tasks and the number of

parameters present in the deployed models increases to fulfill the required over-
parametrization. This is generally acceptable during training time, where massive
parallelization on steadily improving Graphics Processing Units (GPUs) can be em-
ployed [Yin+18]. However, at the same time the requirements also increase for
devices using these models for inference. In some cases, this can be solved by online
inference in the cloud, thus not demanding any significant resources on the end de-
vice. But when DNNs are operated on so-called edge devices, such as smartphones
and sensors in the automotive industry, the constraint of a generally low-power bud-
get becomes problematic. In many cases additional demands, such as low latency
and high throughput, must be met, imposing further constraints.
This issue is often combatted by employing lossy compression for the parame-

ters of a given DNN, because in theory, a DNN contains unused or unimportant
information due to the previously mentioned over-parametrization. One approach
for this compression is to quantize the activations and weights within a DNN. One
device class for such an application are Field Programmable Gate Arrays (FPGAs),
since they are highly configurable to adapt to the changing demands of DNNs, while
being available as low-power devices. For FPGAs one of the leading frameworks for
deploying quantized DNNs and Convolutional Neural Networks (CNNs) is FINN
([Umu+17], [Blo+18]). FINN was first published in 2017 and is now an open-source
project1 with a quickly growing user and development community, while also receiv-
ing active development from the company XILINX2.
Quantization approaches on Central Processing Units (CPUs) or GPUs are of-

ten limited to a minimum bit-width of eight bits. FINN however is able to utilize

1https://github.com/Xilinx/finn
2https://www.xilinx.com/
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extremely low bit-widths, as low as one bit, while producing optimized hardware
designs for any given bit-width, because the employed FPGAs are highly flexible
and can be reconfigured to resemble almost arbitrary circuits. Through the use of
extreme quantization FINN is able to directly map DNNs into hardware, creating
on-chip data flow architectures. This is in strong contrast to the more generaliz-
able loop-back architectures employed by many neural network accelerators, such as
GPUs or Googles Tensor Processing Unit (TPU). Here activations are usually kept
on-chip, while weights are loaded from external memory. FINN is able to deliver
low latency and high throughput inference by allowing DNNs to stay completely
on-chip. The framework is thus a good fit for applications on edge devices.
In this work different avenues are explored to improve the FINN framework. The

following contributions are made:

• Parallel synthesis
In order to speed up the synthesis time of networks deployed with FINN,
a parallelization algorithm is developed. It separates long running synthesis
tasks into different processes, enabling them to run concurrently. This allows
the end-to-end build times of CNNs to improve by up to a factor of 2.5. The
contributed implementation became part of the official FINN framework since
release 0.3b.

• Automatic tuning of performance parameters
While conducting work on pruning, the requirement for maximizing through-
put performance for a given network on a given FPGA arose. FINN provides
multiple parameters for adjusting the performance per layer of a given CNN
model, which results in a trade-off between resource usage and throughput.
Two algorithms are developed which are capable of automatically adjusting
the performance parameters of a given network to maximize throughput and
resource utilization. Both algorithms are shown to properly adapt to different
bit-widths for weights and activations. They are used in the ensuing work
on pruning in FINN to evaluate the developed approaches for their maximum
throughput performance on the Ultra96V2 FPGA.

• Pruning in FINN
Two different methods for pruning within the data-flow architecture of FINN
are developed. Both are based on column pruning (see definition Chapter 2.1
and visualized example in Figure 2.1a), which has been shown to achieve sig-
nificant resource savings for DNNs, [Han+15] and [GYC16]. This approach to
pruning has previously been studied within this group [Sch+20]. In an earlier
study by XILINX so-called filter pruning without hardware modifications has
been explored [Far+18]. In this work however the hardware is explicitly modi-
fied to improve performance. The presented methods are distinguished by the
granularity with which they can prune a given weight tensor. The coarse-grain
method prunes blocks of columns. The size of these blocks is defined by a per-
formance parameter of FINN. In contrast, the fine-grained method is able to
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prune single columns, but the selection of the sparsity settings is limited. Both
methods are implemented as changes to the low-level code of FINN. Corre-
sponding to each method, different training approaches are explored for the
pruned networks. These are implemented to run with Brevitas, which is the
training frontend used by FINN. An evaluation takes place afterwards for both
methods in terms of achievable throughput and inference accuracy. As CNN a
VGG-like network from the examples provided by FINN is used. The abbrevi-
ation VGG stems from the name of the group inventing this specific network
layout. The network is trained on the CIFAR10 data set [KNH]. CIFAR10
is a data set commonly used for bench-marking machine learning algorithms
for visual image recognition. These evaluation experiments are conducted for
different sparsity settings, as well as for varying bit-widths for weights and
activations.

The thesis is structured following the sequence of the developments produced
during this work. In Chapter 2 necessary background information and defenitions
are given. Then, the approach to the parallelized synthesis is explored in Chapter
3. Here, the implementation strategy is explained and performance improvements
are evaluated.
In Chapter 4, the automatic tuning of performance parameters is discussed. Before

implementing the optimization algorithm, different aspects of how the performance
parameters impact the final circuit design are explored. This knowledge is employed
for an informed decision process during the design of the optimization algorithm. To
verify the capabilities of the optimization process, the resulting algorithm is tested
on networks with different bit-width settings.
The main contribution of this work is described in Chapter 5. Here, two dif-

ferent approaches for pruning in FINN are explored. After implementation, they
are assessed for their performance in terms of throughput and accuracy in different
network bit-widths and sparsity settings.
Chapters 6 and 7 evaluate the results accomplished in this work, possible improve-

ments are discussed and an overall conclusion is drawn.
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2 Background

2.1 Sparsity and pruning

Sparsity describes how many elements of a tensor are zero and is generally measured
as a percent value. For the compression of CNNs, sparsity is applied to the weight
tensors of a given convolutional layer. Sparsity can be structured or unstructured.
Unstructured sparsity means that values in a given tensor are randomly zero without
any pattern, whereas structured sparsity exhibits some pattern. Examples of this are

(a) Weight pruning (b) Column pruning (c) Channel pruning

Figure 2.1: Illustration of unstructured (Figure 2.1a) and two structured forms of
sparsity (Figure 2.1b and 2.1c) for a convolution tensor. The large
squares represent the kernels, and the corresponding horizontal and verti-
cal dimensions represent the number of input feature and output feature
maps, respectively. The individual figure name describes the method by
which the sparsity was introduced.

given in Figure 2.1. While both, unstructured and structured sparsity are possible,
structured sparsity is often favored for CNN applications, because in general it
maps better to parallel processors, such as GPUs. Furthermore, the improvements
of selecting a fitting sparsity structure are two-fold: on one side, it becomes possible
to reduce the amount of memory required by a weight tensor by not storing the zero
values and using an indexing map to pass over large sections of zero values. On the
other side, calculations for zero values can now be skipped, requiring less energy and
time in the process.
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The process by which weight tensors are made sparse is commonly called pruning.
If the tensor contained no sparsity beforehand, then the percentage of values pruned
corresponds to the sparsity percentage. The wording is adapted from the way in
which decision trees in machine learning can be scaled down, similar to how trees in
a garden can be trimmed with a pruning saw. In this work column pruning (Figure
2.1b) is employed to prune the convolution tensors in FINN.

2.2 FINN

Figure 2.2: Schematic high-level description of the FINN tool-flow. Adapted from
the FINN documentation1.

The FINN framework was first published at the FPGA’17 conference [Umu+17]
and an extension was later published in 2018 [Blo+18]. FINN aims to build an
end-to-end deep-learning framework to train and build high throughput, ultra-low
latency DNN compute architectures on FPGAs. The project has received major
structural changes since the original publications. This was primarily triggered by
the decision to move FINN to a fully open-source development model in 20192.

1https://github.com/Xilinx/finn/blob/af783db8dc2a1d2e95bd569d39464b935520b6d2/d
ocs/img/finn-stack.png

2https://xilinx.github.io/finn//2019/10/02/rebuilding-finn-for-open-source.html
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Nowadays FINN is compartmentalized into multiple projects and repositories, as
visualized in Figure 2.2. These are as follows:

• Brevitas
Extension library to PyTorch, which enables the training of quantized DNNs.
A more detailed description will be given in Chapter 2.3. In the context of
FINN Brevitas acts as a frontend to the FINN compiler and produces the
network artifacts, which FINN uses to build and define DNN models.

• FINN Compiler
This is the central part of FINN. The compiler combines multiple repositories
and is used to facilitate the build process of a given DNN. Its functionality is
explained in more detail in the following text.

• Deployment with PYNQ
While PYNQ3 is not directly part of the FINN effort, it facilitates additional
infrastructure on the FPGAs supported by FINN. PYNQ provides Python
libraries for interfacing the FPGA on XILINX ZYNQ and ALVEO devices.
The open-source project is maintained by XILINX and provides pre-build SD
card images for multiple ZYNQ boards as well as documentation for adapting
the project to other boards. PYNQ enables the programmatic creation of
drivers around the DNN accelerators, which FINN builds. These drivers can
be built automatically by FINN and are used for throughput and verification
tests on the target hardware.

As a key concept FINN aims to enable an end-to-end tool-flow. The idea is that
users can define and train their custom DNN architecture in Brevitas, then use the
FINN compiler to build a custom accelerator for a supported FPGA. Afterwards,
FINN can then build a custom driver to run the accelerator remotely on the targeted
FPGA. The end-to-end tool-flow of FINN currently supports multiple devices from
the XILINX ZYNQ and ALVEO product family. A complete list for release version
0.5b is given in Table 2.1. Alternatively, FINN can also build a single IP-block,
which can be integrated into existing projects.

Product family Devices
Zynq Ultra96 Pynq-Z1 Pynq-Z2 ZCU102 ZCU104
Alveo U50 U200 U250 U280

Table 2.1: XILINX FPGAs supported by FINN version 0.5b.

The FINN compiler is built upon multiple key technologies. Python is used as
the central programming language. The ONNX4 format enables importing networks
from Brevitas and is used as an intermediate network representation while building

3https://github.com/Xilinx/Pynq/
4https://onnx.ai/
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an accelerator. For generating Register-Transfer Level (RTL) designs Vivado High
Level Synthesis (HLS)5 is used, which is included in the Vivado Design Suite6. With
Vivado HLS it is possible to build RTL designs by describing them in C++. Vivado
HLS additionally provides compiler pragmas to enable the user to issue RTL specific
commands to the HLS compiler.
The FINN compiler is split into multiple repositories to enable easier and decou-

pled development. The central repository is the FINN repository itself7, here most
of the Python code for building an accelerator is located. This repository is also
used when working with the FINN compiler in practice, as it can be used to launch
a docker container which will setup a complete working environment that includes
commits known to work well from the other repositories of the project. FINN uses
the finn-base repository8 for interacting with ONNX. This repository provides a
wrapper for ONNX models along with basic transformations for interacting with
the model. These functionalities can be used independent of the main FINN project
to enable other acceleration frameworks. As mentioned before, FINN makes use of
HLS to build the RTL design of a given accelerator. The finn-hlslib9 is home to this
HLS code. Here DNN specific operations are defined as templated C++ functions.
FINN uses these functions to create individual IP-blocks for each layer in a DNN.
In summary, FINN is a deep-learning and inference framework for quantized neural

networks, defined in distinct projects. Brevitas is used as the training frontend.
The FINN compiler represents the backend in which a trained model is built into
an accelerator, that can be run on different FPGAs.

2.3 Brevitas

Brevitas10 is designed as an extension library to the DNN training framework Py-
Torch11. It is developed as an open-source project and is maintained by XILINX
[Pap21]. Brevitas is mainly designed as a tool for research with quantized DNNs.
For this purpose, Brevitas provides quantized drop-in replacements for PyTorch
functions. Brevitas supports mixed precisions for activations, weights and biases.
The implementation of these quantizations is kept flexible to enable easier research,
but comes with the trade-off in terms of increased training-time.
Because Brevitas is designed as a frontend for working with quantized networks,

it does not provide any increased performance or memory savings during inference
of quantized networks. Instead, increased performance during inference can be pro-
vided, by using one of the multiple backends to which Brevitas can export models.
It should be noted that not all backends support all features of Brevitas, thus care

5https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
6https://www.xilinx.com/products/design-tools/vivado.html
7https://github.com/Xilinx/finn
8https://github.com/Xilinx/finn-base
9https://github.com/Xilinx/finn-hlslib/

10https://github.com/Xilinx/brevitas
11https://pytorch.org/
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should be taken when choosing which backend to use for a certain quantization
approach. The available backends are:

• FINN, as mentioned in Chapter 2.2, FINN utilizes ONNX files exported by
Brevitas to enable fast inference of quantized DNNs on FPGAs.

• onnxruntime12, which enables fast inference of DNNs on processors and is
build around ONNX.

• PyTorch13, also has support for quantization since version 1.3, however it is
not as extensive as the one provided by Brevitas.

• Apache TVM14 is a compiler framework for machine learning models and
targets different CPUs, GPUs and accelerators.

• XILINX Deep Learning Processor Unit15, which is similar to FINN and
can map quantized DNNs onto FPGAs. However, in contrast to FINN it
implements a loop-back instead of a data-flow architecture and is limited to
an 8-bit fixed-point quantization.

In conclusion, with Brevitas it is possible to explore different quantization ap-
proaches, while using the underlying structure of PyTorch. Models trained with
Brevitas can then be exported to different backends for fast inference.

12https://www.onnxruntime.ai/
13https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
14https://tvm.apache.org/
15https://www.xilinx.com/products/intellectual-property/dpu.html
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3 Parallel synthesis

Beginning of April 2020, when the work on this master thesis began, the rebuild
of FINN had just started [Umu19]. The first release only provided very basic func-
tionality for the framework, meaning that at this point in time the implementation
was focused on completeness and correctness rather than performance. In this chap-
ter a basic investigation into speeding up the framework is conducted. The results
of this study are not only speeding up the experiments in this work, but are also
contributed to the FINN framework, bringing their benefits to all users.
At its core FINN consists of a series of transformations applied to a neural net-

work model. These transformations fulfill varying tasks, such as simplifying the
network or replacing standard layers with their HLS counter parts. In general, these
transformations divide into two categories:

1. Transformations, that affect the whole network graph.

2. Transformations, that only modify individual nodes in the network, without
changing connections between nodes.

The expression "node" here explicitly references a node in the representation of a
model, which FINN uses internally. To be precise, FINN uses the ONNX1 format
to keep an intermediate representation of the model. Nodes are often equivalent to
layers in a neural network, but in some cases they can also fulfill other roles. As an
example, a node can also represent a buffering First In - First Out (FIFO) queue
on the FPGA, which has no equivalent in the original architecture of the neural
network.
Most transformations within FINN fall into the first of these two categories. How-

ever, some of the most time intensive ones fall into the second class. These are in
particular transformations which synthesize individual layers into IP-blocks or com-
pile them for the C++ simulator. The C++ simulator is one of multiple ways to
verify the correctness of networks generated with FINN. Most of the execution time
in these transformations is generally spent on running external programs and as
such not within the Python interpreter. For example, the transformation HLSSyn-
thIP synthesizes each layer of a neural network into an IP-block. Here, the external
command line tool vivado_hls is called for each node to generate an IP-block for
the given layer. The utilized tool vivado_hls is part of the Vivado Design Suite2.
While used by FINN, this tool is distinctly external to the project. The mentioned
HLSSynthIP transformation then changes the nodes on an individual level, the lay-
out of the network and the relation of the nodes to each other does not change.

1https://onnx.ai/
2https://www.xilinx.com/products/design-tools/vivado.html

16

https://onnx.ai/
https://www.xilinx.com/products/design-tools/vivado.html


As such, transformations of the second category are a prime example for a perfectly
parallel problem. Each node can be viewed individually as its own independent
process, which has no communication requirements during execution. Therefore,
these processes can be executed in parallel and it should be possible to significantly
speed-up a given transformation on a modern multi-core system. Additionally, the
observed improvements should scale better with larger networks, because larger
networks provide more layers to be synthesized in parallel, thus allowing for larger
degrees of parallelization.
Although multiple transformations fit in the previous classification, the work fo-

cused on the HLSSynthIP transformation. This is the main task investigated for
the work presented and the resulting implementation was subsequently included in
the pull request to the FINN GitHub project3.

3.1 Implementation

The implementation utilizes Python’s module for working with parallel processes,
aptly called multiprocessing4. Initially, the transformations were first adapted indi-
vidually, but in the interest of code reuse and better readability, the parallel trans-
formation itself is implemented as a class called NodeLocalTransformation. From
this class further transformations can then be sub-classed. At its core, NodeLocal-
Transformation implements an apply member function which is called by a FINN
model to apply a given transformation to itself. The class also forces sub-classing
transformations to implement a member function called applyNodeLocal. Addition-
ally, applyNodeLocal must accept a node from the model. The function can then
perform a transformation on this single node. The applyNodeLocal implementa-
tion is then used by the apply function to realize the parallelization in practice.
When a NodeLocalTransformation is applied to a model, it first spawns a pool
of worker processes. The number of worker processes can be set either by pass-
ing the keyword argument num_workers or by setting the environment variable
NUM_DEFAULT_WORKERS. This allows FINN to freely set the amount of par-
allelism for a given transformation call or for a project as a whole. The individual
nodes of the model are then extracted and passed together with the applyNodeLocal
function to the worker pool. The worker pool executes the node specific transfor-
mations in parallel and at its own ordering. After the node level transformations
have completed, the model is reassembled with the modified nodes and passed back
to the user.
While this implementation works surprisingly well, it exhibits some fundamental

limitations. In particular, the synthesis times between different layers vary a lot.
The synthesis time is primarily influenced by how many resources of the FPGA
are used by a given layer. While the resource requirements vary between layer
types, most resources are occupied by the Matrix-Vector-Threshold Units (MVTUs),

3https://github.com/Xilinx/finn/pull/78
4https://docs.python.org/3.6/library/multiprocessing.html
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which perform most processing in a neural network. The resource demands of these
layers depend primarily on how many processing elements are instantiated by FINN
and how large these elements are. Additionally, the size of the weight matrix is a
significant factor directly related to memory use.
Since these settings vary from one layer to another the synthesis time also varies

significantly between layers. As a consequence of this variation, the scaling of the ob-
served speed-up with the number of workers is not optimal. Figure 3.1 displays these
time variations for a simple example. Here, a small fully-connected network from
the FINN examples library is used. This network consists of three fully-connected
layers, each containing 256 neurons, and an output layer with 10 neurons. Addi-
tionally, as a FINN requirement, the network also contains an output marker. This
layer is used to connect to auxiliary hardware of the FPGA to transfer the resulting
data. A total of five layers can be synthesized in parallel for this network. Figure

Figure 3.1: CPU utilization for the per-layer synthesis of a small network in FINN,
visualized by the Ubuntu System Monitor, x-axis: Time in seconds, y-
axis: CPU utilization of the test system in percent of total available
CPU time.

3.1 shows the CPU utilization for this synthesis on an eight-core system. As ex-
pected, the transformation starts all five synthesis processes almost simultaneously,
using up to 62% of the systems processing power. Whenever a layer completes its
synthesis, the CPU utilization drops by approximately 12.5%, until only the final
layer with the highest resource requirement is left running. This layer finally runs
for approximately two thirds of the total synthesis time without any parallelization.
This highlights how detrimental this imbalance of resource requirements can be for
extrapolating potential time improvements. Nonetheless, the speed-up gained in
this example is still about a factor of two and the results are encouraging to explore
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this approach for parallelization further.
The final Python code of this implementation, as developed within this work, can

be found in pull request 78 to the FINN repository on GitHub5.

6464 28
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Figure 3.2: Architecture of the FINN CNN example, visualization created with Plot-
NeuralNet [Iqb18].

3.2 Performance improvements

In general, the performance improvements achieved by running transformations in
parallel vary from one FINN release to another. Primarily because FINN is still
in an early development state and there are plenty of feature changes or additions.
The implementation for parallelization developed in this work and described above
was integrated into FINN in release 0.3b, published in May 2020. The fast evolution
of FINN is mirrored in the fast increase of version numbers. In the interest of
demonstrating the long-lasting impact of this contribution, all following benchmarks
are conducted with the most recent release version of FINN. At the point of the final
experiments of this work, this is 0.5b, published in December 2020. The ensuing
study is primarily working with the convolutional example network of FINN and,
the speed-ups achieved with this network are highlighted in this thesis. In general,

5https://github.com/Xilinx/finn/pull/78
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the convolutional network can be described as VGG-like, and is loosely based on the
network architecture proposed by [SZ15]. The architecture is visualized in Figure
3.2 with each convolutional layer using 3x3 kernels, and each pooling layer being
configured as a maximum pooling layer with 2x2 kernels. Images from the CIFAR10
dataset [KNH] are used as input. The size is given by 32 x 32 with each pixel
containing three channels of 8-bit color information.

Figure 3.3: Speed-up for the HLS per-layer synthesis (HLSSynthIP) for varying num-
bers of workers, x-axis: Number of workers running in parallel, y-axis:
speed-up as defined in equation 3.1.

As highlighted previously the primary interest of this contribution is the paral-
lelization of the HLSSynthIP transformation. To quantify the performance gain, the
speed-up compared to the serial implementation is measured, where the speed-up
(S) is defined as:

S =
Ts

Tp

, (3.1)

with Ts the wall time for the serial implementation and Tp the wall time for a given
parallel implementation. The number of workers is then varied in multiples of two
up to the maximum number of 24 cores on the test system. The results are shown
in Figure 3.3. At first the speed-up is almost linear, but quickly begins to saturate.
This behavior can be expected because of the previously described imbalance in
synthesis time between different layers. The largest speed-up can be achieved when
all cores of the system are in use with 24 workers and a value of Smax = 4.46 is
accomplished. The initially almost linear increase in speed-up also means that even
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small synthesis systems, such as local workstations can immensely profit from the
speed-up through parallelization. This is very useful while developing for or with
FINN. Consequently, also the rest of this work profited a lot from the speed-ups
achieved here.
To determine the impact of parallelization in a broader context, measurements

for the end-to-end performance of FINN are made. Of particular interest is again
the convolutional network employed before. Figure 3.4 shows the overall wall time
required, when moving from the initial Brevitas model to the finished bit-file, which
can be run on a FPGA. This in particular highlights that the HLSSynthIP transfor-

Figure 3.4: Build-time for the convolutional network. Long running transformations
are given as stacked bars, x-axis: Number of workers running in parallel,
y-axis: Total wall time for the end-to-end build.

mation is not the only long running transformation. Most notably MakeZYNQPro-
ject and CreateStitchedIP are also among the three most time intensive transforma-
tions. MakeZYNQProject creates the final Vivado project and is fully serial without
many options for parallelization. CreateStitchedIP stitches the individual IP-blocks
of different layers together. Since version 0.4b CreateStitchedIP also offers support
for parallelization. In contrast to the implementation developed in this master the-
sis the parallelization is realized through Vivados own support for multi-core CPUs,
because this transformation only involves one single call to Vivado and is executed
on the whole model, not on a per-node basis. When employed together the paral-
lelization of the HLSSynthIP and the CreateStitchedIP realize a maximum speed-up
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of Smax = 2.5 when using all 24 cores of the test system, reducing the build-time
from 59 minutes for the serial implementation down to 24 minutes. From private
communication with Yaman Umuroğlu this speed-up is reported to be even larger
for very large networks, such as ResNet-50 [He+15a]. Here the total build-time goes
down from about a week to less than 24 hours, resulting in a speed-up of about
seven times.
Taking it at face value: the early developments in this work laid the ground work

for parallel transformations in FINN, which invoked major positive impact on the
project and its community until this day.

22



4 Automatic tuning of performance
parameters

After a close look at some of the internal functionalities of FINN, the further work is
focused on trying to understand how FINN handles performance parameters. This
chapter concentrates on how to influence and maximize throughput performance
with FINN. Different internal parameters are explored and finally an optimization
strategy is presented, developed and evaluated.

4.1 Motivation

In this work some of the potential limits of what FINN is able to deliver in terms of
throughput on embedded devices is explored. Therefore, most of the experiments are
run at the limits of what a given FPGA can deliver within its resource budget. This
becomes particularly interesting when evaluating different approaches for sparsity
for FINN in Chapter 5.
In order to achieve this goal of near maximum performance, an optimization

algorithm is designed which can tune the available performance parameters within
FINN to maximize the resource usage for a given FPGA. The algorithm is based
on the estimate of resource utilization and latency for HLS layers in FINN. These
estimates are a central part of [Blo+18] and [Umu+17], in which these estimates
are used to meet a specific performance goal. However, in this work they are used
to optimize towards a given resource goal. While these two goals are similar, the
resulting algorithms differ significantly.

Board (Chip) CLBs [K] BRAM [Mb] DSP slices Max. clock [MHz]
PYNQ-Z1 (Z-7020) 85 4.9 220 200
Ultra96V2 (ZU3EG) 154 7.6 360 300

Table 4.1: Resource key figures for FPGA boards installed in the embedded lab of
the Computing Systems Group at the University of Heidelberg. Further
explanations are included in the text. Information taken from the Z-7020
[Xil19] and ZU3EG [Xil21b] product briefs.

In general, the computing resources on embedded FPGAs for edge applications are
often limited, in comparison to their larger equivalents designed for data centers.
Nonetheless, the overall amount still varies notably between different embedded
devices. FINN currently supports five different devices from the XILINX Zynq
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product line and another four from the Alveo product line1. For example, in the
embedded lab of the Computing Systems Group of the University of Heidelberg,
the PYNQ-Z1 and the Ultra96V2 evaluation boards are installed. Both of these
boards are compatible with FINN. However, as shown in Table 4.1, these boards
have largely varying amounts of resources available. Of major interest are often
the number of processing units, divided into Digital Signal Processors (DSPs) and
Configurable Logic Blocks (CLBs), along with the amount of Block Random-Access
Memory (BRAM).

4.2 Pre-design experiments and insights

Different parameters and settings of FINN are explored before designing the opti-
mization algorithm. This made it easier to understand how to adjust the perfor-
mance parameters of different layers in FINN. Thus providing valuable input on how
to design the final algorithm.

4.2.1 Available performance parameters

Multiple parameters are available within FINN to influence the performance of a
synthesized neural network. In general, the performance of a given implementation
is often characterized in terms of throughput, measured in images per second, and
latency, measured in seconds or cycles when the clock frequency is fixed. In this
work the throughput is used as the main performance indicator.
FINN currently provides two parameters for convolutional and fully-connected

layers to influence performance. These are the Single Instruction Multiple Data
(SIMD) and the Processing Element (PE) parameters and they are part of the
HLS implementation of FINN. The functionality of these two parameters is shown
schematically in Figure 4.1. The PE parameter defines how many computation
elements are instantiated within a layer. These can work in parallel to each other
and each of them produces one output element at a time. The SIMD parameter
on the other hand determines how many input elements can be handled by one PE
in parallel. Each of these parameters can individually linearly scale the amount
of parallelism present in the MVTU. With the combination of both parameters
quadratic scaling can be achieved.
However, when used for a specific network both parameters are subject to con-

straints limiting the range in which they can be set. These limits are given as follows
for the SIMD parameter:

1. SIMD ≤ CHIN

2. CHIN mod SIMD = 0

1https://github.com/Xilinx/finn-base/blob/0d362205b21e48f28e1bfabe6d10c4ecade6b
ef6/src/finn/util/basic.py
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3. SIMD > CHIN/1024,

with SIMD denoting the current setting of the SIMD parameter as an integer and
CHIN the number of input channels. The first limitation is simply a resource related
one: The MVTU cannot handle larger input widths than there are input elements
to process. The second requirement is imposed by FINN itself, requiring that the
SIMD parameter cleanly divides the number of input parameters. The last limi-
tation is imposed by the Vivado HLS synthesis: for each MVTU an input buffer
is constructed. The size of this buffer is defined as CHIN/SIMD, however Vivado
limits the maximum size of these buffers to 1024, thus resulting in a lower limit for
the SIMD parameter.
The constraints for the PE parameter are in general similar, but exist in relation

to the number of output channels (CHOUT):

1. PE ≤ CHOUT

2. CHOUT mod PE = 0.

It is worth to note, that because no internal buffer exists for the output channels,
there is no lower constraint imposed by Vivado.
While the SIMD and PE parameter are the primary settings to manipulate the

performance and resource utilization of a layer, there are also other network settings

Figure 4.1: Schematic HLS implementation of a convolutional layer in FINN, that
contains the so-called sliding window unit and the the Matrix-Vector-
Threshold Unit. In contrast, fully-connected layers only contain the
Matrix-Vector-Threshold Unit, with no sliding window unit in font.
Adapted from [Umu20].
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influencing the throughput more indirectly. These are for example the size of the
FIFO queues between layers and the frequency setting for the FPGA clock. While
those two parameters are also investigated within this work, they are not part of the
final optimization algorithm. A more detailed look into those aspects can be found
in the discussion about possible improvements, in Section 4.5.

4.2.2 Default settings of FINN

Since FINN comes with multiple network and quantization examples, there are also
some default settings available in terms of SIMD and PE parameters. For the
binarized convolutional network these settings are shown in Table 4.2. These defaults
are designed to run on the PYNQ-Z1 board, which is the smallest FPGA supported
by FINN. The implemented algorithm will be mostly demonstrated using binary
quantization for the weights and activations, although the algorithm of course works
for any quantization setting as shown at the very end of Section 4.4.

Layer group Conv 1 Conv 2 Conv 3 Fully connected
SIMD 3 32 32 32 32 32 4 8 1
PE 16 32 16 16 4 1 1 1 5

Table 4.2: Default settings for the SIMD and PE parameters for the convolutional
network included in FINN. As highlighted in Figure 3.2 each convolutional
block contains two layers, resulting in two sets of parameters per convo-
lutional block. In addition, the network contains three fully-connected
layers, resulting in one set of parameters for each fully-connected layer.

4.2.3 Impact on resource usage

While it is clear, how the throughput should behave in dependence on the SIMD
and PE parameters, the same could not be inferred about the resource utilization.
To understand this, different combinations of parameter settings for the first layer
of the convolutional network are tested. In particular, the HLS testbench present
in finn-hlslib2 is employed. Here the test parameters are set to resemble those of
the first convolutional layer. To evaluate the resource usage the testbench with the
convolutional layer is then synthesized and the resource usages in terms of utilized
Lookup Tables (LUTs) and Flip-Flops (FFs) are recorded. Both LUTs and FFs
count towards the logic resource budget of a given FPGA in a similar manner as
they are both implemented with CLBs on the device.
For visualization the results are plotted once in terms of adjusting the PE parame-

ter (Figures 4.2 & 4.3) and a second time by adjusting the SIMD parameter (Figures

2https://github.com/Xilinx/finn-hlslib/blob/5c45a41a755bca534ba737e1b54ec9bbddf
42a41/tb/conv3_tb.cpp
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Figure 4.2: LUT utilization after syn-
thesis for varying SIMD
and PE parameter, x-
axis: PE parameter, y-
axis: Number of LUTs in-
stantiated.

Figure 4.3: FF utilization after syn-
thesis for varying SIMD
and PE parameter, x-
axis: PE parameter, y-
axis: Number of FFs in-
stantiated.

4.4 & 4.5). Note, that both sets of plots contain essentially the same data, but are
drawn in different ways to highlight how each parameter influences the resource
utilization.
When investigating the PE parameter in Figures 4.2 & 4.3, a linear scaling in both

LUTs and FFs is observed. When looking into each line individually it becomes
apparent that the SIMD parameter is only responsible for the slope of each curve
and its offset.
On the other hand, when investigating the SIMD parameter in Figures 4.4 & 4.5,

the linear relation is not as clear anymore. For the FF measurements a monotonic
increase can still be observed, though the linearity is broken up at multiple points.
This is in contrast to the LUT measurements, where the linear relation is still mostly
true for large PE values (greater 16). For smaller values however, an initial decrease
followed by an almost linear increase can be observed.
This demonstrates that during optimization of the performance parameters, one

can expect that the LUT and FF utilization is mostly in a linear relationship to the
SIMD and PE parameter with the PE parameter being more stable and the LUT
and FF utilization increasing with increasing values for SIMD and PE.

4.3 Algorithm description

The primary goal of the implemented algorithm is to optimize a given network for
the highest possible throughput while staying within a given LUT budget. In a
pipelined system, such as a neural network, the throughput is limited by the slowest
element in the pipeline, or reformulated for FINN, the primary goal is to keep the
maximum layer latency as low as possible. The SIMD and PE parameter are used
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Figure 4.4: LUT utilization after syn-
thesis for varying SIMD
and PE parameter, x-axis:
SIMD parameter, y-axis:
Number of LUTs instan-
tiated.

Figure 4.5: FF utilization after syn-
thesis for varying SIMD
and PE parameter, x-axis:
SIMD parameter, y-axis:
Number of FFs instanti-
ated.

as optimization parameters. When looking at different pruning methods in Chapter
5, it also becomes apparent that the investigated pruning methods are linked to
the SIMD and PE parameters of FINN. In particular, one approach is expected
to achieve higher network prediction accuracy for large SIMD parameters, while
the other method is likely to accomplish better prediction accuracy for large PE
parameters. However, the default values in FINN follow a more balanced approach,
where the SIMD and PE parameter are kept approximately the same. Consequently,
a secondary goal for the algorithm is defined, which is to be able to either prioritize
large SIMD or PE parameters or to keep both approximately the same.

The algorithm is then designed around the idea to iteratively increase the perfor-
mance parameters of the specific layer that currently had the highest latency in a
network until a previously set LUT budget is met. The algorithm can be described
with the pseudo-code in Algorithm 1.

This algorithm is able to fulfill all primary goals defined above. In particular it
maximizes the throughput for a given network by reducing the maximum latency in
line 2. The secondary goal of flexibly maximizing either the PE or SIMD parameter
is implemented in line 3 to 21, while the idea to maximize resource usage and
further reduce the latency of the overall network is reflected in lines 8, 14 and 17
to 21. It should be noted that in the final implementation the increase of SIMD
and PE parameters in line 3 to 21 is always done in factors of two. This is done
because it generally fulfills the modulo constraints for both parameters, which are
mentioned in Chapter 4.2.1. Of particular interest is also the choice to first increase
the SIMD parameter before increasing the PE parameter in the balanced case. This
is primarily motivated by how FINN maintainer Yaman Umuroglu described that
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these parameters are normally handled during their internal tuning3.
Running this algorithm for a given LUT budget generally yields good results,

as described in Section 4.4. While the resource budget of a given FPGA is known

3https://gitter.im/xilinx-finn/community?at=5fc5226fba0b7a0fc53b54c8

Algorithm 1: SIMD and PE parameter optimization

Data: LUT budget, parameter priority, model to optimize
Result: Optimized SIMD and PE parameters

1 Calculate latency for all layers in model
2 Select layer with highest latency
3 try:
4 if parameter priority == SIMD then
5 if SIMD is at maximum then
6 Increase PE of layer
7 else
8 Increase SIMD of layer
9 end

10 else if parameter priority == SIMD then
11 if PE is at maximum then
12 Increase SIMD of layer
13 else
14 Increase PE of layer
15 end
16 else if parameter priority == balanced then
17 if SIMD <= PE then
18 Increase SIMD of layer
19 else
20 Increase PE of layer
21 end
22 if Layer cannot be sped up any further then
23 Select next slowest layer
24 Repeat from line 3
25 end
26 Calculate LUT utilization of all layers
27 if LUT utilization is within LUT budget then
28 Repeat from line 1
29 else
30 Discard the most recent speed-up
31 End algorithm here
32 end

29

https://gitter.im/xilinx-finn/community?at=5fc5226fba0b7a0fc53b54c8


precisely, the resource estimates used here suffer from imprecisions. This is expected
since synthesis tools for FPGAs can often employ optimization methods which are
hard to capture with an analytical model. To work around this imprecision the LUT
budget itself is also optimized. This guarantees close to maximum resource usage.
The algorithm employed for this is shown as pseudo code in Algorithm 2. The final
implementation in Python as it is used for the rest of this work can be found in the
GitHub repository for this thesis4 (see also Chapter 9).

Algorithm 2: LUT Budget optimization

Data: Initial LUT budget
Result: Final LUT budget

1 budget = Initial LUT budget;
2 running = True;
3 settings = get optimal SIMD/PE for budget;
4 initalSuccess = test if settings synthesize;
5 success = initalSuccess;
6 while running do
7 if initalSuccess == success then
8 previousBudget = budget;
9 if success == True then

10 budget = budget + 0.1 * Initial LUT budget;
11 else
12 budget = budget- 0.1 * Initial LUT budget;
13 end
14 else
15 if success == True then
16 return budget;
17 else
18 return previousBudget;
19 end
20 end
21 settings = get optimal SIMD/PE for budget;
22 success = test if settings synthesize;
23 end

4https://github.com/HenniOVP/MA_ZITI/tree/main/simd-pe-tuning and https://github
.com/HenniOVP/MA_ZITI/blob/main/simd-pe-tuning/cnv_varied_bit_and_pruning_par
allel_testing-0.4b_dev.ipynb
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4.4 Results

All following tests are run on the Ultra96V2 board, whose resource budget can be
found in Table 4.1.
To confirm that Algorithm 1 works as expected and fulfills its primary goal it

is first verified that the output in terms of per-layer latency corresponds to expec-
tations. At the start of the optimization low SIMD and PE settings are set as a
starting point, much lower than the defaults of FINN. The optimization increased
those parameters to fit the LUT budget of the Ultra96V2 board. The resulting
latency for each layer is expected to obey to the following relation:

Tstart ≤ Tdefault ≤ Tend, (4.1)

with Tstart being the latency for the initial parameter settings, Tdefault the latency
for the default settings by FINN and Tend the latency for the final SIMD and PE
settings at the end of the optimization.
Additionally, the highest latencies present at the end of the optimization should

all be relatively close to each other in value, because the algorithm is supposed
to bring individually high latencies down to a common maximum for most latency
values.
The measurement result is shown in Figure 4.6. For almost all data points the ex-

pected relation according to equation 4.1 is revealed, confirming that the algorithm
fulfills its primary goal of reducing the maximum latency and utilizing more of the
available resources than managed by the FINN defaults. The only data point for
which this is not fulfilled is the ConvolutionInputGenerator_5, here Tstart ≤ Tend is
fulfilled, but Tdefault ≤ Tend is not. The reason for this is, that each ConvolutionInput-
Generator shares its SIMD parameter with the following StreamingFCLayer_Batch,
because they form one combined convolutional layer. Furthermore, only the Stream-
ingFCLayer_Batch exposes both the SIMD and PE parameter, while the Convo-
lutionInputGenerator on the other hand only makes use of the SIMD parameter.
When looking at the StreamingFCLayer_Batch_5 layer following the Convolution-
InputGenerator_5 layer it becomes apparent that the latency of the Convolution-
InputGenerator layer likely was reduced further than required, because the Stream-
ingFCLayer_Batch needed significant reductions in latency from its starting point.
The low latency of the ConvolutionInputGenerator_5 layer is then a side effect,
because the two layers sharing one common SIMD setting. This unexpected behav-
ior is not detrimental to the network performance, because no increased latency is
introduced.
Along with the first expectation, also the second expectation of the latency max-

ima being close together at the end of the optimization is also fulfilled. This is
somewhat in contrast to the default settings of FINN, where the latency maxima
are distributed over a wider range.
After demonstrating that the algorithm can accomplish its primary goal, it is

tested if it can also correctly prioritize between the SIMD and PE parameter. The
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Figure 4.6: Latency for each layer of the convolutional network in binarized form
for the balanced parameter prioritization, x-axis: Layer name, y-axis:
layer latency in cycles in log-scale, with starting settings in blue, FINN
defaults in orange and the finalized optimization in green. The case for
ConvolutionInputGenerator_5 is discussed in detail in the text.

results of these tests are shown for the binarized convolutional network in Tables
4.3, 4.4 and 4.5.
In all three cases the values generally fulfill the expectation: For the balanced

case (Table 4.3) both values are often of similar size, with the SIMD parameter
being favored for individual increments. Here the first and last layers are notable
exceptions compared to this expectation. The reason for this can be traced back
to the constraints on the maximum size of the SIMD and PE parameter, which
are explained in Section 4.2.1. In other words, these exceptions can be viewed as
artifacts from the low number of input channels in the first layer and low number
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Layer group Conv 1 Conv 2 Conv 3 Fully connected
SIMD 3 64 64 64 32 16 8 8 1
PE 64 64 32 64 16 8 4 8 5

Table 4.3: SIMD and PE settings after optimization and balanced parameter prior-
itization for the binarized version of the convolutional example network.
As highlighted in Figure 3.2 each convolutional block contains two layers,
resulting in two sets of parameters per convolutional block. In addition,
the network contains three fully connected layers, resulting in one set of
parameters for each.

Layer group Conv 1 Conv 2 Conv 3 Fully connected
SIMD 3 64 64 128 128 128 32 64 1
PE 64 64 32 32 4 1 1 1 5

Table 4.4: SIMD and PE settings after optimization and prioritization of the SIMD
parameter, for the binarized version of the convolutional example net-
work. As highlighted in Figure 3.2 each convolutional block contains two
layers, resulting in two sets of parameters per convolutional block. In
addition, the network contains three fully connected layers, resulting in
one set of parameters for each.

output channels in the last layer.
For the two cases in which one of the two parameters is prioritized over the other

(Tables 4.4 and 4.5) the prioritized parameter is notably larger than the other.
Exceptions are found again in cases in which the SIMD and PE parameter are
constrained by the number of input and/or output channels, for example for the
second layer, where both parameters are equal to 64.
In conclusion, the test confirms that the developed optimization algorithm for

SIMD and PE values can fulfill both the primary and secondary goal.
Following this accomplishment, it is tested if also the second optimization algo-

rithm for the LUT budget (Algorithm 2) correctly adjusts the LUT budget of a
given FPGA to compensate for estimate inaccuracies and to improve the resource
usage.
For posing the test into the right context: The default SIMD and PE setting

shown in Table 4.2 uses about 38% of all available CLBs when a bit-file is generated
for the Ultra96V2. To test the algorithm, the convolutional network is synthesized
for different bit-widths in terms of activations and weights. The expectation here is
that the CLB utilization should be notably higher than for the default settings and
in good cases above 90%. The optimized maximal LUT budget on the other hand
should vary around 100%.
The results for the CLB utilization are shown in Figure 4.7, while the LUT bud-
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Layer group Conv 1 Conv 2 Conv 3 Fully connected
SIMD 3 64 16 16 2 4 1 1 1
PE 64 64 128 128 128 16 16 32 5

Table 4.5: SIMD and PE settings after optimization and prioritization of the PE
parameter for the binarized version of the convolutional example network.
As highlighted in Figure 3.2 each convolutional block contains two layers,
resulting in two sets of parameters per convolutional block. Summarily,
the network contains three fully connected layers, resulting in one set of
parameters for each.

get which is used to generate these bit-files is shown in Figure 4.8. Notable is that
not all tested settings can be actually synthesized. These are either left blank in
the result plots or marked with 0 LUT budget. The reason for this behavior is
that some settings simply do not fit on the FPGA. Affected are in particular all
settings close to the largest tested weight and activation bit-width. Additionally, at
the time of testing there was still a bug in the FINN framework, which prohibited
the synthesis of weights with a bit-width larger than 1 in combination with binary
activations. Nonetheless, the expectations for the designed algorithms are fulfilled
for all test settings for which the synthesis succeeded. In particular the CLB utiliza-
tion is consistently high, between 80% and 91%. While the adjusted LUT budget is
generally around 100%, ranging from 140% to 70%. The variation in the adjusted
LUT budget shows, that there are certain scenarios where FINN can not properly
estimate the number of LUTs used after synthesis and place-and-route.
These findings demonstrate that the algorithm for optimizing the LUT budget

works consistently well over different bit-widths for weights and activations. Secon-
darily, Figure 4.8 also highlights that FINN currently struggles to correctly estimate
the LUT budget for larger activations and for binarized networks with high SIMD
and PE values. These findings were shared with the FINN maintainers at XILINX
and work towards improving these estimates is currently underway5.
In order to further demonstrate that the presented method maximizes the through-

put on a given FPGA, the goal is set to find the so-called Pareto frontier between
the network prediction accuracy and the throughput on the Ultra96V2.
The Pareto frontier, named after Vilfredo Pareto [Kir16], aims to find possible

trade-offs between two related, but not directly comparable metrics. In the case
of this work they are the network prediction accuracy and the throughput. Both
of these metrics are important, however they are not directly comparable and vary
largely with the bit-widths of weights and activations. To find the Pareto frontier
all possible settings for the given model are now plotted in terms of their accuracy
and throughput. The Pareto frontier is then defined by the number of points, which
maximize accuracy and throughput. This leads to a line on which the most efficient

5https://gitter.im/xilinx-finn/community?at=5fc8e5d2657e0c48225b7fa4
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Figure 4.7: CLB utilization for differ-
ent weight and activation
bit-widths on the Ultra96.
The utilization is given in
percent of the CLB count
of the FPGA, shown in
Table 4.1.

Figure 4.8: Optimized maximum
LUT budget for different
weight and activation bit-
widths on the Ultra96.
The LUT budget is given
in percent of the actual
CLB count of the FPGA,
shown in Table 4.1.

configurations lie. Configurations below this line are then considered inefficient and
configurations above this line are not realizable, with the investigated method.

The result of this procedure is shown in Figure 4.9. Here the convolutional
networks with different weight and activation bit-widths are tuned for maximum
throughput using the presented algorithms, locating them on the x-axis for their
achieved value of throughput. Then, all running networks are trained using the
training script described in Chapter 5, setting their location on the y-axis with the
accomplished accuracy. The resulting points at the outer edge towards the top right
corner then form the Pareto frontier (solid line) and show how trade-offs between
network accuracy and throughput can be made.

In conclusion: These results prove that both algorithms together are able to
improve resource utilization for a given FPGA and network, while also maximizing
the throughput at the same time. Without the development of these algorithms,
many of the following results obtained in Chapter 5 about pruning would not have
been possible. Although neither of the two algorithms were integrated into the
public FINN project, they still constitute a significant contribution by quantifying
inaccuracies for the resource estimation of FINN, which are being investigated by
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Figure 4.9: Pareto frontier discovery on the Ultra96V2 FPGA. All results (blue)
are annotated with their given weight and activation bit-width in the
template form WXAY, where X is the weight bit-width and Y the ac-
tivation bit-width. Additionally, the Pareto frontier is drawn as a solid
line, x-axis: Throughput in thousands of images per second, y-axis: In-
ference accuracy on the test dataset at the end of the training for a given
network.

the FINN maintainers6.

4.5 Possible points of improvement

As mentioned in Section 4.1, the SIMD and PE parameter are not the only settings
in FINN, which influence the inference performance. Notably, there is also the size
of the FIFOs between layers and the clock frequency. Both of these settings are also
investigated extensively during this work, but ultimately neither of them is used in
the final result. Details of the investigations are given below.

4.5.1 Automatic clock tuning

The most intuitive parameter left to influence the performance is likely the FPGA
clock frequency. This frequency defines how quickly the CLBs within the FPGA can
change their state. The throughput is then expected to be directly proportional to

6https://gitter.im/xilinx-finn/community?at=5fc8e5d2657e0c48225b7fa4
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the clock frequency. This expectation is confirmed by early experiments in hardware
and RTL simulations. Figure 4.10 shows one of these experiments when running
the convolutional network with two-bit activations and weights and the respective
default parameters for SIMD and PE.

Figure 4.10: Throughput as a function of the FPGA clock frequency for early exper-
iments. Shown in blue are results from RTL simulations and in orange
the corresponding results from hardware measurements, x-axis: FPGA
clock frequency in MHz, y-axis: Throughput during inference in images
per second.

It is likely that increasing the clock frequency would also drastically improve the
throughput, due to this measured linearity. As shown in Table 4.1 the Ultra96V2,
which is used in almost all experiments supports clock frequencies up to 300 MHz.
Thus, a potential three-fold improvement over all results in this thesis, which are
run at 100 MHz, could be expected.
As an extension to Section 4.2.3, an investigation into the resource usage for

varying clock frequencies is performed. Similarly, Figure 4.11 and 4.12 show the
LUT and FF utilization when varying the clock period and the SIMD parameter.
The FF usage increases with clock frequency, because more buffering is required
to meet the more stringent timing requirements. On the other hand, the LUT
utilization shows no changes at all, which promises that higher clock frequencies
may be reached with little resource overhead.
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Figure 4.11: LUT utilization after
synthesis for varying
the SIMD parameter
and clock period, while
keeping the PE param-
eter fixed at 32, x-axis:
SIMD parameter, y-
axis: Number of LUTs
instantiated.

Figure 4.12: FF utilization after
synthesis for varying
the SIMD parameter
and clock period, while
keeping the PE param-
eter fixed at 32, x-axis:
SIMD parameter, y-
axis: Number of FFs
instantiated.

These very high frequencies are generally hard to reach for complex circuit designs,
such as those produced by FINN. The time between clock cycles can become too
short to perform all required calculations on a signal, before the result needs to be
available on the next clock cycle. This behavior is characterized by the Worst Nega-
tive Slack (WNS). It quantifies by how much time the data signals within the FPGA
lack behind the clock signal in the worst case. By default, the WNS is reported by
Vivado after a given design is placed and routed for a given FPGA. The WNS is
positive when all signal computations are completed faster than one clock period
and the size reflects how much faster these calculations are completed. However,
when the WNS becomes negative, then some calculations are not completed within
one period of the FPGA clock. The routed circuit might still run, but errors which
are hard to debug will often surface. From this metric the theoretical maximum
frequency for a given design can be calculated as follows:

Fmax =
1

Tperiod − TWNS
, (4.2)

with Fmax being the theoretical maximum frequency, Tperiod the clock period for the
placed and routed design and TWNS the WNS for the same design.
Because the WNS also varies with the FPGA clock, equation 4.2 can only be

taken as an estimate. Consequently, a potential optimization of the clock frequency
must take an iterative approach to find the actual Fmax, likely similar to the LUT
budget optimization in the Algorithm 2 realization. This would likely increase the
overall optimization time, since multiple synthesis runs must be started to find a
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good value for Fmax.
Results from tests made for Chapter 5 reveal that the WNS for a clock frequency

of 100 MHz can be as high as 3.0 nanoseconds, suggesting a potential improvement
in throughput of up to 42.8%.
This potential improvement makes the approach a very interesting topic to inves-

tigate in the future. Unfortunately, during the investigation in FINN 0.4b a bug
was discovered, which locked the clock frequency for the Ultra96V2 to 100 MHz7.
Due to time constraints in this work and this aspect being a topic of lower priority
it was not attempted to fix the bug.
As a consequence, all results in this work are accomplished with an FPGA clock

frequency of 100 MHz.

4.5.2 Automatic FIFO buffer sizing

Another approach to improve performance is to optimize the size of FIFOs between
layers. In theory, the pipeline which FINN produces to run on an FPGA does
not require FIFOs to run. However, some layers show burst-like behavior in how
they output their result data8. This can result in the stalling of the following layers
caused by input data not being constantly available, causing an effectively decreased
throughput, because some layers are now idling at certain times. This issue can be
remedied by introducing FIFO buffers after bust-like behaving layers. Data stored
in these buffers can then be output on demand, which reduces the idle time of
downstream layers and improves the overall performance.
This behavior is reproduced in our early experiments. Figure 4.13 shows a par-

ticularly interesting experiment. Here all FIFOs are set to the same size. This
size is then varied from 5 to 255. Because these designs are generally too large to
run on one of our FPGAs, the throughput is measured by running the designs in
a dedicated RTL simulation. The results clearly demonstrate that for most of the
measurement range the throughput increases linearly with increasing FIFO depth,
confirming the expectations. At a FIFO depth of about 230 the throughput then
saturates, likely due to the FIFOs already absorbing all irregularities from burst-like
behaving layers. Below FIFO depths of about 50 a somewhat irregular behavior is
revealed, which might indicate that in this region multiple layers are affected by the
small FIFO sizes.
These early results already indicate that tuning the depth of individual FIFOs is

likely a good measure to increase the performance for a given network overall.
While this is not investigated further in this work, the most recent release of FINN

(0.5b) includes preliminary support for automatically setting these FIFO depths9.
The method works by first setting all FIFOs to a defined maximum size, then the
network is simulated on RTL to find out how far the FIFOs fill up at most. After-

7https://github.com/Xilinx/finn/issues/241
8https://gitter.im/xilinx-finn/community?at=5f0879148342f46274083650
9https://xilinx.github.io/finn//2020/12/17/finn-v05b-beta-is-released.html
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Figure 4.13: Throughput as a function of the FIFO depth for different batch sizes.
The horizontal line labeled "Default setting" shows the maximum FIFO
depth set as FINN defaults, x-axis: FIFO depth for all FIFOs in the
network, y-axis: Throughput for RTL simulations in images per second.

wards the FIFOs are shrunk back down to their measured, maximum fill state. And
finally, miscellaneous edge-cases are handled.
In tests within the experiments of this work, this method showed particularly good

results for the binarized convolutional network. Compared to the default settings,
the throughput increased by about 19% for the binarized network and for higher
bit-width networks improvements of up to 18% are measured, though sometimes
changes as low as 2% are seen.
While these are in general important results, the automatic FIFO sizing is not used

within this thesis. Mainly because the method requires significant time investments
due to the relatively slow RTL simulation involved. In addition, the trade-off be-
tween increased performance and time was not worthwhile for the already extensive
experiments performed for Chapter 5.
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5 Pruning in FINN

With neural network architectures becoming increasingly complex over time, the
inference on low-power devices becomes more difficult and slower. To combat this
issue parameter compression can often be employed to improve inference throughput.
Popular compression methods are for example pruning ([Han+15] and [GYC16]) and
quantization, see [Zha+18].
While FINN was built with support for quantization from the beginning, support

for pruning is currently lacking.
This chapter aims to explore the feasibility of implementing support for sparse

weight tensors and methods to generate an envisioned sparsity through pruning in
FINN. Furthermore, different implementation approaches are tested and different
sparsity structures investigated. These are further analyzed in terms of the trade-
offs in the accuracy of the prediction and the throughput performance.

5.1 Convolutions in FINN

Convolutional operations, as they are often employed in modern neural network
architectures, can be reformulated as matrix multiplication operations, see [CPS06].
The same approach is realized in FINN, see [Umu+17]. The implementation is
shown schematically in Figure 4.1. In practice this means that in FINN convolutions
are split into two operations: First the input is converted into an image matrix by
employing the method of a sliding window unit. This operation is often simply called
image2col and the FINN HLS implementation is called ConvolutionInputGenerator.
Afterwards the image matrix is multiplied with the weight matrix in the MVTU, the
corresponding HLS implementation in FINN is called StreamingFCLayer_Batch.
For the study of the impact of sparsity the focus is set on modifying the im-

age2col operation of FINN. In this way the image matrix and the weight matrix can
be shrunk at the same time, while the matrix multiplication of the MVTU is left
untouched. This keeps the pruning implementation relatively simple, while leaving
most of the required calculations to the already existing MVTU. An additional ben-
efit is that leaving the MVTU untouched preserves all performance optimizations,
which already went into this central part of FINN.

5.2 Explored pruning approaches

Both methods, the fine and coarse-grained method, presented within this work mod-
ify which information is given as output from the image2col unit in FINN. Most of
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the original implementation is left untouched and data is only discarded directly
before it would normally be sent to the following MVTU. This allows for the intro-
duction of structured sparsity.
While both the fine and the coarse-grained method use this basic design principle,

the sparsity patterns which they can produce vary a lot.

5.3 Coarse-grained pruning

The coarse-grained pruning method is the first pruning method developed and im-
plemented in this work. In many aspects it can be described as the path finder
method for the fine-grained pruning method, because in general all implementations
and experiments are first completed with the coarse-grained method, before moving
forward with the fine-grained method.

5.3.1 Implementation

As noted previously the implementation modifies the image2col operation of the
finn-hlslib, where this operation is called ConvolutionInputGenerator. Thus, a new
HLS function with the name ConvolutionInputGeneratorPruned is designed for the
first pruning method. Additionally, a testbench is designed to verify functionality
in C++ and RTL simulations. The implementation1 and testbench2 are published
in Hendrik Borras’s public fork3 from the official repository4. Additionally, changes
to code in the FINN main repository had to be made to realize the integration
into the FINN framework. These changes and additions were made on a fork5 to the
development branch of the FINN repository. At the time of forking, the development
branch was just about to be merged into the master branch for release 0.5b. As such
the fork by Hendrik Borras includes all features of release 0.4b and most features
of release 0.5b. A complete overview of where the code developed within this work
can be found given in Chapter 9.
Schematically the implementation is shown in Figure 5.1. At first the input image

is read from an HLS stream6, the main method for the HLS components in FINN
to communicate with each other. The received image data is then saved into an
internal buffer. At the same time data is also read from the buffer. During this
second read process the image data is reordered to fit the column format required
by the following matrix processing unit. Finally, the reordered data is written to an

1https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/slidingwindow
.h#L331

2https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/tb/test_swg_p
runed.tcl and https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning
/tb/swg_pruned_tb.cpp

3https://github.com/HenniOVP/finn-hlslib/tree/feature/col_pruning
4https://github.com/Xilinx/finn-hlslib
5https://github.com/HenniOVP/finn/tree/feature/0.4_cutting_pruning
6https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/hls_stream_library.html
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HLS output stream, which is connected to the matrix processing unit. Both input
and output streams can be implemented as FIFO queues and can optionally fulfill
buffering purposes as discussed in Chapter 4.5.2.
The above description does not yet include any pruning and mirrors how the

image2col operation is already implemented in FINN. Additional instructions are
added, which enable or disable the write call to the output stream. This effectively
skips column data in the output matrix, pruning the data for the next layer. The
algorithm is then setup such that the user can define which columns to skip, better
called to be pruned, by setting an external Boolean array, called ColsToPrune.
Of course, for the correct setup the user needs to know how many columns the

ConvolutionInputGeneratorPruned expects to transmit for the whole image pro-
cessing. At this stage a fundamental limitation in the resulting sparse structure
becomes apparent. The ConvolutionInputGenerator is capable of outputting multi-
ple columns in parallel. To enable this feature the width of the output HLS stream
is modified to fit multiple values at the same time. Consequently, also the write
instruction to the stream requires to write multiple columns in one go. The number
of columns written at the same time is controlled by the SIMD parameter, intro-
duced in Chapter 4.2.1 and is an essential parameter for controlling the amount of
parallelization present in the matrix processing unit. As demonstrated in Chapter
4.4 the SIMD parameter can become very large, especially for binarized networks.
The ConvolutionInputGeneratorPruned will thus generally need to output multi-

ple columns at once. Because the pruning method turns this output on and off, this
inherently limits the granularity with which image data are pruned. Meaning, that
for SIMD > 1 blocks of adjacent columns are pruned. Consequently, the pruning
method is called "coarse-grain", because the resulting structures of sparsity are lim-
ited in minimum size and are inherently coarse. This limitation was clear already
at the early design stages and it was made sure to adapt other parts in the design
layout to better cope with the predicted limitation. As such, this limitation is the
primary driver for introducing flexible parameter prioritization in the design of the
automatic tuning algorithm for the SIMD and PE parameter in Chapter 4.3.

PRUNING VIA SIMD BLOCK 
CUTTING

FIFO

ConvolutionInputGeneratorPruned

Buffer

bool ColsToPrune[]

FIFO write()FIFO read()

enable/

disable

• Im2col before matrix multiplication

• Enable/disable data output on per column basis

Matrix

processing

unit

Image

#8Figure 5.1: Schematic of the image2col operator for coarse-grain pruning, as imple-
mented in HLS.
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For the coarse-grain pruning method specifically, the prioritization of the PE is
favored, because a large PE parameter implies a small SIMD parameter. And a
small SIMD parameter allows for more fine-grained sparsity with this method. The
sparsity becomes finer, because the number of columns in one block, which is pruned,
is reduced.

5.3.2 Impact on throughput

It is expected for pruning methods, which do not adjust the performance parameters
of FINN, that a given convolutional network should become faster by increasing the
sparsity, because less calculations are needed to be performed for each image.
This expectation is confirmed in experiments, where the amount of pruned data

is adjusted from 0% to 90% in 10% increments. To run these experiments without
any training, the ColsToPrune array is filled with random data, which adhered to
the set pruning percentage. The corresponding plot is shown in Figure 5.2.

Figure 5.2: Throughput as function of the pruning percentage for the binarized con-
volutional network with default performance parameters. The through-
put is measured on hardware (blue line and "x"). Additionally a refer-
ence measurement with the original implementation of the Convolution-
InputGenerator is shown with a blue "+", x-axis: Percentage of available
columns pruned in 10% steps, y-axis: Throughput in images per second.

Here the throughput for the binarized convolutional network is measured for differ-
ent percentages of columns pruned. To keep the performance consistent, the default
SIMD and PE parameters (Table 4.2) are used. The throughput is measured on
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hardware (blue line and "x"). Additionally, to confirm consistency with the original
implementation, the throughput is measured with the ConvolutionInputGenerator
instead of the ConvolutionInputGeneratorPruned (blue "+").
As expected the throughput scales in an almost linear relation with the percent-

age of data pruned, exhibiting a slightly increasing slope with increasing pruning
percentage.

5.3.3 Impact on FPGA resources

The primary impact of this method is anticipated to materialize in terms of freeing
up parts of the BRAM, because the size of the weight tensors is reduced. A linear
reduction with the pruning percentage is forecasted, since the weight tensors are
shrunk proportionally to the amount of sparsity achieved through pruning. In terms
of utilization of logic resources on the FPGA, such as for CLBs and LUTs, no change
at all is expected, primarily, because no changes to any performance parameters are
made. A notable exception might be the logic memory, since the ColsToPrune array
is assumed to take up additional space.
For all resource measurements focus is put on metrics which show utilization

larger than 10%, because for these measurements resource requirements below that
threshold are generally not critical.
The results in terms of BRAM and logic utilization for one such measurement

are shown in Figure 5.3 and 5.4. Here the binarized convolutional network is tested
with varying percentages of pruning. Just as before, the defaults for the performance
parameters are used to make the results comparable to each other. Since no pruning
data is trained at this point in time, the ColsToPrune array is filled with random
data, such that it matches the desired pruning percentage.
As expected the BRAM utilization exhibits significant reductions in Figure 5.3.

in particular in the metric for the Block RAM Tile, which reflects the overall BRAM
utilization. Similar behavior is revealed for RAMB36/FIFO, which corresponds
to how the utilized memory is allocated. As expected, a linear decrease for this
parameter can be found for pruning percentages above 50% and slightly slower linear
decrease with smaller slope between 20% and 50%. Below this threshold of 20%
however, there is a sudden step in utilization between 10% and 20%. This behavior
is likely due the process of allocation of BRAM on the FPGA. A given BRAM tile
(Block RAM Tile metric in Figure 5.3) can only be allocated as a single element of 36
kb memory (RAMB36/FIFO metric in Figure 5.3) or two elements of 18 kb memory
(RAMB18 metric in Figure 5.3) [Xil21a, p.7]. Each StreamingFCLayer_Batch layer
in FINN allocates it’s own number of BRAM elements for storing the necessary
weight matrices. As shown in Figure 5.3 the BRAM tiles are mostly allocated as
36 Kb elements. This also means that for each StreamingFCLayer_Batch layer
the pruning has to shrink the weight matrix by 36 Kb before any BRAM tiles can
be freed up, in the worst case. So much memory is likely not freed with the first
10% of sparsity and thus no change is observed, even if in fact the implementation
uses less memory. The very large step from 10% utilization to 20% also fits within
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this explanation, because it is likely that after initially no elements were freed up,
now suddenly a lot more can be left unused. In other words, the non-linearity
seen below 50% sparsity are likely a side effect of how the BRAM allocation is not
continuous, but quantized into distinct steps. While this is a potential and very
fitting explanation to justify the BRAM behavior, it might be worthwhile to follow
up with a more in-depth study in the future.

Figure 5.4 shows how the usage of logic resources develops for the same network
depending on the amount of sparsity. As expected the CLB usage is nearly constant,
as are most other metrics. A notable exception to this expectation is the utilization
of LUTs, which are instantiated as memory (LUT as Memory). Here the utilization
actually increases with sparsity. The reason for this is likely that with more sparsity
more random information gets stored in the ColsToPrune array, which then might
take up significantly more space.

Figure 5.3: BRAM utilization for different metrics as a function of varying amounts
of sparsity for the corase-grained pruning method on the binarized con-
volutional network, x-axis: Sparsity for three different metrics, y-axis:
BRAM utilization in percent.

*Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate
only one FIFO36E2 or one FIFO18E2. However, if a FIFO18E2 occupies a Block RAM Tile, that
tile can still accommodate a RAMB18E2.
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Figure 5.4: Logic utilization as a function of varying amounts of sparsity for the
corase-grained pruning method on the binarized convolutional network,
x-axis: Sparsity for ten different metrics, y-axis: Logic utilization in
percent.

5.3.4 Training methodology and network accuracy

For evaluating the accuracy of the tested pruning methods a pruning class is imple-
mented for PyTorch and the models are trained using PyTorch and Brevitas.
Since Brevitas and FINN are designed to work together, the code for training

the sample convolutional network of FINN was already published in the Brevitas
repository [Ale+21]. This code is employed as the basis for implementing the net-
work training. To be specific, Brevitas version 0.2 and PyTorch 1.4 are used. The
final training script created during this work can be found in the accompanying
repository7 (see also Chapter 9).
In a first attempt a random pruning method is implemented. This method first

calculates which structures the pruning method could create by considering the size

7https://github.com/HenniOVP/MA_ZITI/blob/main/training/Brevitas_train_pruning_f
rom_FINN_json.py
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of the feature map and the SIMD parameter of a given layer. Then the method
randomly prunes some of those structures in the amount corresponding to the given
percentage of sparsity. The model is then trained for a given sparsity setting for
200 epochs and, in each epoch the accuracy is evaluated on a test portion of the
CIFAR10 data set [KNH]. CIFAR10 is a data set commonly used for bench-marking
machine learning algorithms for visual image recognition. It contains 32x32 pixel
color images, that are divided into 10 categories. For each category there are 6000
individual images.
The accuracy (acc) here is defined as the number of correctly classified samples

(C), divided by the total number of samples (N),

acc =
C

N
. (5.1)

Figure 5.5: Random training method for coarse-grain pruning: Test accuracy as
a function of the epoch number for different sparsity settings, x-axis:
Epoch number, y-axis: Test accuracy in percent.

Figure 5.5 shows the training results from this first experiment. Here the binarized
version of the convolutional network is trained with all SIMD parameters set to 4,
which is relatively close to a best-case scenario for this pruning method. For each
sparsity setting a new training run is started and the final test accuracy is calculated
by averaging over the last ten epochs and is shown on the right side of the plot. As
expected the accuracy significantly decreases with increased amount of sparsity.
The experiment reveals that selecting structures randomly for pruning results in

sub-optimal accuracy. To combat this to a certain degree it was decided to change
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the method to select blocks of columns to be pruned. A so-called `1-norm approach,
as outlined by [Sch+20] and [Mao+17] is chosen. The `1-norm is defined as:

‖x‖1 :=
∑
i=1

|xi|, (5.2)

with ‖x‖1 the `1-norm of the vector x and xi the individual values within this
vector. The idea is that weights with smaller `1-norm should contain less important
information and can be pruned more safely resulting in a smaller loss in accuracy.
The `1-norm of the weights for each block of columns is calculated and in the

new method, the blocks with the lowest `1-norms are pruned. This method requires
that the weights of a given network are already trained before any pruning occurs.
Therefore, an iterative approach is followed to train first and then prune a given
network. The Pseudo-Code for this iterative method is shown in Algorithm 3.

Algorithm 3: Iterative pruning

Data: finalSparsityAmount [0,1], NumStartEpochs,
NumIntermediateEpochs, NumStopEpochs

Result: Pruned and trained model

1 currentAmount = 0.1;
2 model = create neural network model;
3 model.train(epochs=NumStartEpochs);
4 while currentAmount < finalSparsityAmount do
5 model.prune(amount=currentAmount);
6 model.train(epochs=NumIntermediateEpochs);
7 currentAmount += 0.1;
8 end
9 model.prune(amount=finalSparsityAmount);

10 model.train(epochs=NumStopEpochs);
11 return model;

Here, a network is first trained for a set number of epochs NumStartEpochs be-
fore it is pruned to achieve 10% sparsity. Then the network is trained again for
NumIntermediateEpochs before being pruned by an amount 10% higher than the
previous one. This intermediate process of training the network for NumInterme-
diateEpochs then pruning it by increasing amounts is repeated until the targeted
amount of sparsity (finalSparsityAmount) would be overstepped by the intermedi-
ate sparsity amount. In the final step of Algorithm 3, the network is first pruned by
finalSparsityAmount and then trained for NumStopEpochs. The result is a trained
network with a sparsity of finalSparsityAmount.
By using the combination of `1-norm pruning and the iterative approach it is

possible to achieve drastically improved performance. A direct comparison to the
previous procedure to pruning is shown in Figure 5.6.
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Here the random pruning approach from before is marked in blue, while the itera-
tive procedure is shown in green. The parameters of NumStartEpochs, NumInterme-
diateEpochs, NumStopEpochs of Algorithm 3 are all set to 300 epochs in this initial
test. Although all 10% steps in sparsity are trained for the iterative method, only
results for 0%, 25%, 50% and 75% are shown in the picture to enable clear visibility.
Note that some statistical fluctuation between multiple training runs occurs and
thus the results for 0% sparsity do not line up exactly.
As expected the `1-norm pruning method vastly outperforms the randomized one,

by up to 8.4%. By comparing the shape of the curves between both methods it can
be inferred that the iterative method benefits from information learned in previous
iterations. While the random method always starts at a relatively low accuracy
percentage at epoch 0, the iterative procedure starts closer to what the final accuracy
is for that sparsity percentage. This is particularly apparent for the sparsity setting
of 75%, where the random method starts at about 10% accuracy and ends at 37.9%.
Here, the iterative method already starts at about 38% accuracy and ends at 46.3%.
However, the iterative approach is not without issues itself. In particular to

compute the results of Figure 5.6, the training time practically explodes. For a
sparsity of 75%, the iteratively trained network needs to be trained eight times
longer than the one with the random approach: The network needs to be retrained
more often until the final pruning percentage is reached.
Luckily, the iterative Algorithm 3 can be adjusted to significantly speed up the

Figure 5.6: Comparison of training results for the random pruning method (blue)
and iterative `1-norm pruning method (green) for coarse-grain pruning.
For each sparsity setting the percentage of sparsity and final accuracy is
shown on the right in the corresponding colors, x-axis: Epoch number,
y-axis: Test accuracy in percent.
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training process for a given network. In particular the number of epochs for the
intermediate sparsity settings can be significantly reduced, because these networks
do not need to be fully trained. The results of each intermediate training are only
used for a coarse adjustment to the remaining non-pruned weights, and the next
pruning step can be taken, because the pruning structures are relatively coarse
and are only accounting for large changes in the weights. The same argument can
be applied to the initial training at 0% pruning. However, since this first setting
trains from completely random weights without any prior training this first setting
is trained slightly longer than the intermediate ones, as shown below.
For all further experiments the following settings are adapted for the number of

epochs per sparsity percentage:

Parameter Setting Description
NumStartEpochs 100 for 0% sparsity
NumIntermediateEpochs 50 for intermediate sparsity settings
NumStopEpochs 300 for the final sparsity setting

Table 5.1: Parameter settings for Algorithm 3.

Figure 5.7: Training procedure for the iterative `1-norm training method for coarse-
grain pruning. Each sparsity setting is shown as an individual curve.
Here a network with 3-bits weights and 2-bits activations is trained,
x-axis: Epoch number, y-axis: Test accuracy in percent.

The resulting training plot with the modified parameters from Table 5.1 is shown
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in Figure 5.7. Here the convolutional network is setup with 3-bits weights and 2-bits
activations. In contrast to Figure 5.6 all intermediate settings are shown as well.
The resulting training procedure now runs significantly faster, only running 1.5

times longer than the equivalent randomly pruned training. This leads to a speed-up
of 3.6 times compared to the initial settings for Algorithm 3.

5.3.5 Exploring network design space for the Ultra96V2

By now the pruning method is implemented as a proof of concept in both FINN and
Brevitas, such that tests with different network settings can be performed.
In consequence of this implementation, the training script is adapted to run with

data produced by the automatic performance tuning algorithm described in Chapter
4. And a workflow could be established, that allows to first explore a given model
design on hardware and then to train the resulting model settings with Brevitas.
Notably, no end-to-end training took place, however, tests in hardware
are made with random pruning data to explore the corresponding SIMD
settings and these settings are then trained in Brevitas.
The workflow is then used to run an exhaustive search over multiple dimensions.

For the coarse-grain pruning these are as follows:

• Weight bit-widths: 1 to 5 bits

• Activation bit-widths: 1 to 5 bits

• Sparsity percentages: 25%, 50%, 75% and 87.5%

• Performance parameter priority: Balanced and PE (see Chapter 4.3)

Excluding combinations of 1-bit activations and multi-bit weights, which did not
synthesize in FINN, this search tested 168 network settings. Although not all of
the combinations ran on the hardware provided by the Ultra96V2, mostly due to
resource constraints, this created a large data set to be explored.
The very first analysis conducted is to look at how strongly the parameter priority

influences the throughput and accuracy. Table 5.2 shows how much the accuracy
changes in absolute percentage points and how much the throughput in hardware
changes in percent. The change in accuracy is calculated as:

∆i,Accuracy = Xi,PE −Xi,Balanced, (5.3)

with ∆i,Accuracy the change in accuracy, Xi,PE the accuracy in percent for a given
network setup (activation bits, weight bits, pruning percentage) with PE as the
priority parameter and Xi,Balanced the accuracy in percent for the same network
setup but with the balanced parameter priority.
Since the throughput is given in images per second and not percent, this change

is calculated differently:

∆i,Throughput = Yi,PE/Yi,Balanced − 1, (5.4)
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with ∆i,Throughput the change in throughput, Yi,PE the throughput in images per
second for a given network setup (activation bits, weight bits, pruning percentage)
with PE as the priority parameter and Yi,Balanced the throughput in images per second
for the same network setup but with the balanced parameter priority.

Sparsity 25% 50% 75% 87.5% All
Accuracy gain [%] 0.10± 0.27 0.43± 1.04 1.8± 2.4 4.2± 3.9 1.96± 3.06
Throughput gain [%] −76± 23 −78± 22 −85± 16 −53± 30 −72± 27

Table 5.2: Parameter priority comparison

Table 5.2 displays the averages and standard deviations for all ∆i,Throughput and
∆i,Accuracy, as a function of the sparsity percentages. The goal here is to evaluate
how the accuracy and throughput develop from one pruning percentage to the next
one. While the values for throughput and accuracy are next to each other in Table
5.2 it makes little sense to compare them directly to each other.
In general, the data collected is broadly spread as evident by the large standard

deviations for all values. This is due to fact that the whole data set comprises many
different combinations of weight and activation bits, which themselves strongly in-
fluence both throughput and accuracy. Nonetheless, it is possible to identify trends
and to draw conclusions from the aggregated results. In particular the expectation
that prioritizing the PE performance parameter improves network prediction accu-
racy is visible as a tendency for most settings. Though due to the large spread, this
is not particularly significant.
The impact on throughput however is very evident for all settings. Here losses

between 80% and 50% seem to be possible in all cases. While the spread is usually
still large, the distance to the zero hypothesis in sigmas is in general larger than
two, often larger than even three, confirming the impression that the impact on
throughput can be very detrimental.
From this one can conclude that the expected positive impact on accuracy is

hugely out-weighted by the drop in throughput. Consequently, all following results
for the coarse-grain method are analyzed for the balanced parameter priority for
Algorithm 1.
Additionally, these experiments are accompanied by an exhaustive search over

the same parameter region for non-pruned networks. Some of these results were
already shown in Chapter 4.4 in Figure 4.9. To compare the pruned and non-
pruned results, the average differences in accuracy and throughput are calculated,
similar to equation 5.4 and 5.3:

∆i,Accuracy = Xi,pruned −Xi, (5.5)

with ∆i,Accuracy the change in accuracy, Xi,pruned the accuracy in percent for a given
network setup (activation bits, weight bits, sparsity percentage) with coarse-grain
pruning and Xi the accuracy in percent for the same network setup, but without
any sparsity.
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And for the throughput:

∆i,Throughput = Yi,pruned/Yi − 1, (5.6)

with ∆i,Throughput the change in throughput, Yi,pruned the throughput in images per
second for a given network setup (activation bits, weight bits, sparsity percentage)
with coarse-grain pruning and Yi the throughput in images per second for the same
network setup, but without any sparsity.
Table 5.3 displays the averages and standard deviations for all ∆i,Throughput and

∆i,Accuracy, as a function of the sparsity percentage, similar to Table 5.2 before.
Additionally, the data from Table 5.3 are visualized in Figure 5.8a for the accuracy
gain and in Figure 5.8b for the throughput gain.

Sparsity 25% 50% 75% 87.5% All
Accuracy gain [%] −1.2± 0.5 −4.5± 2.3 −18.2± 9.4 −33.0± 9.2 −14.± 14.
Throughput gain [%] 27± 21 83± 44 199± 136 −8± 58 75± 110

Table 5.3: Comparison between experiment results for coarse-grain pruning and non-
pruned training and hardware experiments.

(a) Accuracy gain (b) Throughput gain

Figure 5.8: Visualized data from Table 5.3, x-axis: Sparsity in percent, y-axis: Ac-
curacy or Throughput gain in percent.

As expected the accuracy in Figure 5.8a decreases with increased sparsity. While
the change is relatively manageable for 25% and 50%, the accuracy drastically wors-
ens above 50% sparsity. For these large amounts of sparsity, changes in the network
architecture are likely required to maintain accuracy at an acceptable level, see also
Chapter 5.4.5. A general outlook which kind of changes might be useful will be
given in Chapter 5.7.
The throughput also behaves similar as expected. It increases approximately

linearly from 25% to 75% sparsity. However, at 87.5% sparsity the throughput
suddenly decreases. Similar results are found for the fine-grain implementation in
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Chapter 5.4.5. The cause of this degradation in performance for both implementa-
tions is not clear. One potential reason could be reaching an edge-performance case
with FINN, in which the data-flow implementation reacts strangely, to low band-
width data transmissions between layers. Another reason could be a potential need
for optimization of the modified image2col implementation which could reach some
internal limitation in the present version. In either case more profiling would be
needed to clarify the cause of this unexpected behavior.

Figure 5.9: Pareto frontier discovery on the Ultra96V2 FPGA for coarse-grain prun-
ing. Additionally, results from non-pruned networks are overlaid for
comparison. For each sparsity setting the Pareto frontier is drawn in
the same color as a solid line. Increasing sparsity leads to an increasing
limitation in throughput. X-axis: Throughput in thousands of images
per second, y-axis: Inference accuracy on the test dataset at the end of
the training for a given network.

Along with investigating these general trends, another investigation into the Pareto
frontier discovery is conducted. With the Pareto frontier it is possible to map the
possible trade-offs at maximum value for two otherwise unrelated metrics, in this
case the network accuracy and throughput. The result is shown in Figure 5.9. Here
the data from all experiments from the coarse-grain pruning and the non-pruned
experiments are overlaid in a combined plot, which shows the throughput and ac-
curacy for each experiment. The Pareto frontier is then drawn as a solid line in the
corresponding color. The frontier maps out how trad-offs can be made between the
throughput and accuracy. Additionally, everything above this line is not achievable
by the method it represents, meaning that the frontier also maps out the maximum
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capabilities of a given method.
Thus, if the Pareto frontier of one of the pruning methods is cleanly separated from

the non-pruning results in a positive direction in both axes, then this indicates that
the pruning method outperforms the non-pruning results. Of course the opposite
can also be true, if the frontier of the pruning method is cleanly separated at the
lower end of throughput and accuracy, then the method can not deliver better overall
performance. The pruning needs to be handled with care if special requirements in
accuracy or throughput have to be fulfilled.
Looking at the actual frontiers towards the top of the plot it is visible that both

25% sparsity and 50% sparsity look competitive with the non-pruned results. In
these experiments the errors cannot straightforwardly be specified, however, there is
no point at which the coarse-grain pruning shows clearly better results and cleanly
separates from the frontier created by the non-pruning data.
In contrast and as expected from previous results both the 75% and 87.5% sparsity

settings perform significantly worse in terms of accuracy and the range of results
is strongly spread out. The reason for the very low accuracy here is likely that
for low bit-widths and large amounts of sparsity, not enough data can be saved in
the model to meaningfully learn information from the CIFAR10 dataset. However,
in terms of the throughput something unexpected appears to happen: increasing
sparsity leads to an increasing limitation in throughput. Looking at the frontiers
for 75% and 87.5% sparsity, they both appear to be limited in some way in terms
of throughput. This is particularly visible for 87.5% sparsity, which appears to not
be capable to improve beyond two thousand images per second, mostly independent
of the set configuration. It is likely that the issue, which is occurring here is the
same, as the one visible in Figure 5.8b. And it seems that some fundamental limit
of either the implementation or FINN itself is reached. Unfortunately, there was not
enough time to properly study this issue, so that it is currently unclear what the
exact cause is.
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5.4 Fine-grained pruning

While implementing the coarse-grain pruning method and investigating the SIMD
parameter, another idea on how to implement structured pruning in FINN came up:
Employ the SIMD parameter in a such way to enable smaller sparsity structures
than those created by the coarse-grain pruning. With this idea in mind the second
pruning method is implemented. It explicitly aims for higher prediction accuracy
compared to the first method.

5.4.1 Implementation

Seen from a high-level, the way in which the fine-grained pruning method is im-
plemented is similar to the previous implementation. Here as well, the image2col
implementation is modified and pruning takes place when data is output to the
next layer. Again, a new HLS function is implemented, called ConvolutionInput-
GeneratorSIMDPruned. Accompanying the image2col implementation a testbench
is designed to verify correctness. Both, the implementation8 and testbench9 are
published in Hendrik Borras’s public fork10 from the official repository11, see also
the links in Chapter 9.
The implementation is shown schematically in Figure 5.10. In contrast to thePRUNING VIA SIMD REDUCTION

FIFO

SIMD=M

ConvolutionInputGeneratorSIMDPruned

Buffer

SIMD=N

bool SIMDColsToPrune[][N]

FIFO write()

SIMD=M

FIFO read()

SIMD=N

From N 

elements 

select M

• No implementation so far

• High granularity, but also larger memory requirements #48

Matrix

processing

unit

Image

Figure 5.10: Schematic of the image2col operator for fine-grain pruning, as imple-
mented in HLS.

previous implementation, this schematic also highlights the value of the SIMD pa-
rameter in each step. In the coarse-grain implementation these values are the same
in all steps and thus not highlighted. Similar to the first implementation, an input

8https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/slidingwindow
.h#L175

9https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/tb/test_swg_S
IMD_pruned.tcl and https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pru
ning/tb/swg_SIMD_pruned_tb.cpp

10https://github.com/HenniOVP/finn-hlslib/tree/feature/col_pruning
11https://github.com/Xilinx/finn-hlslib

57

https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/slidingwindow.h#L175
https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/slidingwindow.h#L175
https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/tb/test_swg_SIMD_pruned.tcl
https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/tb/test_swg_SIMD_pruned.tcl
https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/tb/swg_SIMD_pruned_tb.cpp
https://github.com/HenniOVP/finn-hlslib/blob/feature/col_pruning/tb/swg_SIMD_pruned_tb.cpp
https://github.com/HenniOVP/finn-hlslib/tree/feature/col_pruning
https://github.com/Xilinx/finn-hlslib


image is first read into the buffer, both the input stream and the buffer having a
SIMD value of N and thus each stored element has a width of N data. From these
N elements M are selected and passed to the output. Which of these elements are
selected, is defined by the SIMDColsToPrune boolean array. The FIFO between
the im2col and the matrix processing unit then has a SIMD width of M .
This step of going from a SIMD width of N to M effectively allows to prune

single columns within one block of columns. In contrast, the coarse implementation
can only prune blocks of columns, not single columns. In order to give the fine-
grained implementation the highest flexibility in choosing which columns to prune
a large SIMD parameter is preferred. Therefore, a corresponding priority setting is
introduced for the automatic performance tuning algorithm in Chapter 4.3.
However, both N and M can not be chosen freely and are bound to an extended

sub-set of the constraints presented in Chapter 4.2.1. These are in particular:

1. M < N

2. N > CHIN/1024

3. N ≤ CHIN

4. CHIN mod N = 0

5. CHIN mod M = 0,

where N and M represent the integer values of the SIMD parameters shown in
Figure 5.10 and CHIN represents the number of input channels for a given layer.
This in particular means that the allowed percentages of sparsity for this method

are defined by the following equation:

Si =

(
1− 1

2i

)
· 100, (5.7)

with i a natural number, indicating the degree of sparsity and Si the percentage
of sparsity in percent for a given degree i. The minimum N for a given sparsity
percentage Si is further constrained by:

N ≥ 2i (5.8)

These constraints severely limit the sparsity settings, which can be chosen for a
given network. Thus, in this work only 50%, 75% and 87.5% sparsity are explored
for the fine-grained method.
A different but non-obvious limitation, which can be derived from the list of

constraints concerns the maximum amount of parallelism in a convolutional layer.
The maximum amount of parallelism for previous methods can be defined as:

Pmax, coarse = Nmax · PEmax, (5.9)
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with Pmax, coarse the maximum amount of parallelism for the coarse-grain implemen-
tation and also the non-pruned implementation, Nmax the maximum of N with the
constraints given above and PEmax the maximum for the PE parameter according
to the constraints given in Section 4.2.1. For the fine-grained pruning method Pmax

now shrinks to:

Pmax, fine = Mmax · PEmax, (5.10)

with Pmax, fine the maximum amount of parallelism for the fine-grain implementation
and Mmax the maximum of M with the constraints given above. Because M < N ,
the following is also enforced: Pmax, fine < Pmax, coarse.
While this constraint only sets an upper limit to the amount of parallelism in a

convolutional layer, it is still important to keep in mind when setting performance
goals.

Figure 5.11: Throughput as a function pruning percentage for the binarized convo-
lutional network with default performance parameters. The hardware
throughput is shown once for the coarse-grain pruning (blue line) and
another time for the fine-grain pruning (orange line). Additionally, the
reference measurements with the original implementation of the Con-
volutionInputGenerator are shown (blue and orange "+"), x-axis: Per-
centage of columns pruned, y-axis: Throughput in hardware in images
per second.
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5.4.2 Impact on throughput

Similar to the approach in the previous sections, the throughput is the first metric
explored. In particular the throughput for the binarized convolutional network is
studied for varying sparsity settings and for using only the default SIMD and PE
parameters, as presented in Table 4.2.
The result from this experiment is shown in Figure 5.11, which now also contains

the results from Figure 5.2. Here it becomes evident, that the method does not in-
fluence the throughput of a given network at all when the SIMD and PE parameters
are kept constant. This is a very much expected behavior, because the method also
reduces the SIMD parameter for the StreamingFCLayer_Batch, which follows the
ConvolutionInputGeneratorSIMDPruned. This is the result of reducing the SIMD
parameter from N to M within the ConvolutionInputGeneratorSIMDPruned. As a
consequence this reduces the amount of parallelism contained in the StreamingF-
CLayer_Batch by the ratio M/N . At the same time the amount of data that needs
to be processed is reduced by exactly the same ratio due to the introduced sparsity.
Thus, the reduction in data to process and the reduction in parallelism cancel each

Figure 5.12: BRAM utilization for different metrics as a function of varying amounts
of sparsity for the fine-grained pruning method on the binarized con-
volutional network, x-axis: Sparsity for three different metrics, y-axis:
BRAM utilization in percent.

*Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate
only one FIFO36E2 or one FIFO18E2. However, if a FIFO18E2 occupies a Block RAM Tile, that
tile can still accommodate a RAMB18E2.
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other resulting in no throughput change.
Additionally, Figure 5.11 highlights how the possible settings in terms of sparsity

are much more constrained for the fine-grained method. For the the fine-grained
method the crosses, indicating measurement points, follow the Equation 5.7. Thus,
the measurements are not as frequent in sparsity as for the coarse-grained method.

5.4.3 Impact on resources

In order to investigate the resource impact of this pruning method the results shown
in Figure 5.11 are also investigated for their resource utilization on the Ultra96V2.
Figure 5.12 shows the utilization for the BRAM and Figure 5.13 for the logic re-
sources.

Figure 5.13: Logic utilization as a function of varying amounts of sparsity, x-axis:
Sparsity for ten different metrics, y-axis: Logic utilization in percent.

In similarity to Figure 5.3 the amount of memory used in Figure 5.12 is reduced
in a linear fashion. This is in-line with the expectation that the required memory
for weights should be negative proportional to the sparsity in percent.
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However, in contrast to Figure 5.4, the equivalent Figure for the fine-grained prun-
ing (Fig. 5.13) shows notably different results. While there are still some metrics
which show no change, there are now several which are revealed to be negative pro-
portional to the sparsity setting. The reason for this reduction can be traced back
to the implementation of the fine-grained pruning as described in Section 5.4.1. Be-
cause the fine-grained method reduces the parallelism contained in convolutional
layers by M/N , the resource utilization in these layers should also decrease linearly
as demonstrated in Chapter 4.2.3. Thus, the decrease in logic resources is fully
expected and explained by previous experiments.

5.4.4 Training methodology and accuracy

In contrast to the coarse-grained method fewer intermediate steps are taken when
implementing the training for the fine-grained method. Consequently, the training
is directly implemented with the iterative `1-norm pruning approach explained in
Chapter 5.3.4.
An example of the resulting epoch plot for the iterative `1-norm pruning approach

is shown in Figure 5.14. In fact, this figure shows the same network as highlighted

Figure 5.14: Training procedure for the iterative `1-norm pruning method for fine-
grain pruning. Each sparsity setting during training is shown as an
individual curve. Here a network with three-bit weights and two-bit
activations is trained. It is of note, that the constraint for the possible
amounts of sparsity from Equation 5.7 is not present during training.
X-axis: Epoch number, y-axis: Test accuracy in percent.
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in Figure 5.7. While the general shape of all curves is similar in both figures, the
final test accuracy is notably higher in Figure 5.14, which highlights, that the fine-
grain pruning can achieve a notably better test accuracy than the coarse-grained
approach.
A less obvious feature of the implemented training method is that it can selec-

tively enable or disable adherence to the constraints imposed by FINN as described
in Chapter 5.4.1. This is particularly important, since the network needs to be
trained in sparsity increments of 10%, which would generally not be possible with
the constraints imposed on the parameter M , see Equation 5.7. However, because
Brevitas and PyTorch do not have any requirement for these constraints most of
them can be safely ignored during the intermediate training steps.

5.4.5 Exploring network design space for the Ultra96V2

Similar to the experiments conducted for the coarse-grain pruning, an exhaustive
search is run for the fine-grain pruning as well. This search covered the following
parameters:

• Weight bit-widths: 1 to 5 bits

• Activation bit-widths: 1 to 5 bits

• Sparsity percentages: 50%, 75% and 87.5%

• Performance parameter priority: Balanced and SIMD

Excluding again combinations of 1-bit activations and multi-bit weights, which did
not run, this search tested 128 network settings, providing a large data set to be
explored.
The first analysis conducted with this data is to answer the question if chang-

ing the parameter priority from Balanced to SIMD would yield better results in
throughput and accuracy. Calculation wise equations 5.3 and 5.4 are adapted for
this purpose. The results are shown in Table 5.4. As expected the accuracy tends

Sparsity 50% 75% 87.5% All
Accuracy gain [%] 0.0± 0.2 0.5± 1.6 0.6± 1.2 0.46± 1.29
Throughput gain [%] −45± 25 −5± 24 −12± 27 −14± 29

Table 5.4: Parameter priority comparison

to increase, when prioritizing the SIMD parameter. However, this increase is very
small and barely noticeable in the spread. Similar to the coarse-grain pruning, the
throughput also decreases when switching to the specialized parameter priority. Al-
though the decrease is not as large, the conclusion is the same. Overall it seems that
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the trade-off between the accuracy gained and decreased throughput is not worth-
while. Therefore, all following experiments are run with the balanced parameter
priority.
Next it is investigated how the throughput and accuracy is influenced by the fine-

grained pruning itself, when compared to non-pruned results. Here the same results
for the non-pruned networks are used as in Section 5.3.5. Consequently, also the
same metrics for calculating the change in accuracy (Equation 5.5) and throughput
(Equation 5.6) are adapted. The results are presented numerically in Table 5.5 and
graphically in Figures 5.15a and 5.15b. Additionally, Figures 5.15a and 5.15b

Sparsity 50% 75% 87.5% All
Accuracy gain [%] −3.7± 3.0 −12.2± 9.7 −23± 16 −13± 13
Throughput gain [%] 30± 39 43± 72 −24± 42 17± 60

Table 5.5: Comparison between experiment results for fine-grain pruning and non-
pruned training and hardware experiments.

(a) Accuracy gain (b) Throughput gain

Figure 5.15: Visualized data from Tables 5.3 and 5.5. For better visual clarity the
two data sets are slightly offset from each other in x-direction. In
reality the sparsity setting is the same for both methods and the points
would normally overlap, x-axis: Sparsity in percent, y-axis: Accuracy
or Throughput gain in percent.

contain data from the experiments performed with coarse-grain pruning in order to
allow a better comparison between the two methods.
In general, the results are as expected. Figure 5.15b shows that the through-

put increases with sparsity, although the increase is significantly lower than for the
coarse-grain pruning it is still notable. A significant exception is again the through-
put result at 87.5% sparsity. This is consistent with the result for coarse-grain
pruning. At the moment it is not entirely clear why this decrease is observed. Both
SIMD and PE parameter values indicate that the throughput should increase and
not decrease for these networks. However, this is not the case and more in-depth
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profiling will be required to clarify what is happening and how the issue can be
prevented.
The test accuracy on the other hand behaves exactly as expected. It decreases

with increased sparsity and at the same time performs significantly better than
the coarse-grain pruning method. As the fine-grained pruning method is explicitly
designed to improve accuracy these measurements confirm that the design indeed
works as intended. The improvement is most notable for the sparsity settings above
50%.
Finally, the Pareto frontier of the fine-grained pruning approach is investigated in

order to determine the maximum possible values for the trade-off between accuracy
and throughput. The results are shown in Figure 5.16. Similar to the coarse-

Figure 5.16: Pareto frontier discovery on the Ultra96V2 FPGA for fine-grain prun-
ing. Additionally, results from non-pruned networks are overlaid for
comparison. For each sparsity setting the Pareto frontier is drawn in
the same color as a solid line. A similar limitation in throughput as
for the coarse-grained pruning can be observed. X-axis: Throughput in
thousands of images per second, y-axis: Inference accuracy on the test
dataset at the end of the training for a given network.

grain pruning, the new method is competitive to networks without pruning for 50%
sparsity. However, at no point is the fine-grained pruning clearly better. And as
expected, the 75% sparsity setting for the fine-grained pruning is much closer to the
non-pruning data in terms of accuracy, when compared to the same sparsity with
coarse-grain pruning in Figure 5.9.
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However, similar to the coarse-grain pruning networks with 75% and 87.6% spar-
sity appear to to be limited in their throughput performance. For the fine-grain
pruned networks with 75% sparsity, the constraint seem to be at about 3.4 thou-
sand images per second and for networks with 87.6% sparsity the constraint lies at
about 1.8 thousand images per second. The cause for this limit is likely the same
in both cases as well as for the coarse grain pruning, which is unfortunately due to
time constraints left undetermined.

5.5 Implementation comparison

While Figure 5.15a and 5.15b already compare the two pruning implementations to
a certain degree, a direct comparison is still to be conducted.
Similar to before, the average changes in accuracy and throughput are calculated.

With the change in accuracy calculated as:

∆i,Accuracy = Xi,coarse −Xi,fine, (5.11)

with ∆i,Accuracy the change in accuracy, Xi,coarse the accuracy in percent for a given
network setup (activation bits, weight bits, sparsity) with coarse-grain pruning and
Xi,fine the accuracy in percent for the same network setup but with fine-grain prun-
ing.
The change in throughput is then calculated with

∆i,Throughput = Yi,coarse/Yi,fine − 1, (5.12)

with ∆i,Throughput the change in throughput, Yi,coarse the throughput in images per
second for a given network setup (activation bits, weight bits, sparsity) with coarse-
grain pruning and Yi,fine the throughput in images per second for the same network
setup but with fine-grain pruning.
Both ∆i,Throughput and ∆i,Accuracy now become positive when the coarse-grain prun-

ing performs better than the fine-grained one. Table 5.6 displays the averages and
standard deviations for all ∆i,Throughput and ∆i,Accuracy, broken down the by sparsity
settings.

Sparsity 50% 75% 87.5% All
Accuracy gain [%] −0.7± 0.8 −4.7± 3.6 −10.1± 6.8 −5.5± 6.0
Throughput gain [%] 51± 37 112± 48 16± 16 61± 55

Table 5.6: Comparison of coarse- and fine-grained pruning.

As expected the fine-grained method clearly outperforms the coarse-grained method
in terms of the accuracy. This becomes most evident for sparsities of 75% and above.
A bit less expected is that the coarse method outperforms the fine method in terms
of throughput. This is especially significant, when neglecting the 87.5% sparsity
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point, for which the throughput is likely suffering from an a yet to be identified
issue for both methods.
In conclusion, this gives a clear trade-off to choose from. In cases where higher

accuracy is preferred over raw performance, the fine-grained method can be cho-
sen. For other cases, where throughput is paramount, the coarse-grained method is
clearly favored.

5.6 Possible points of improvement

The most obvious point of improvement for both methods is likely an investigation
of the throughput limitation at high sparsity. As highlighted in Figure 5.15b both
implementations seem to suffer from significant throughput degradation at 87.5%
sparsity. Similar behavior is also visible in Figures 5.9 and 5.16. It is likely that
an in-depth investigation using multiple RTL simulations would lead to important
results. These would possibly be able to reveal where a bottleneck might occur,
further pointing towards where to optimize the HLS code of either the modified
image2col implementation or FINN itself.
It is somewhat more likely that the issues lie with the modified image2col im-

plementation since this is what was primarily modified during this work. If this
turns out to be true, then there are multiple points at which the performance could
be improved. For the fine-grain pruning one could try to leverage automatic HLS
parallelization for selecting the channels to prune. This is likely to use more logic
resources on the device, but it is also very likely to improve performance. For the
coarse-grain pruning the optimization is a bit more difficult, because the implemen-
tation is already very simple. However, one thing that is likely improvable is the
indexing overhead. This indexing overhead is similar for both methods, so improve-
ments could be applied for the fine- and coarse-grain pruning at the same time. The
index for the pruning mask (ColsToPrune and SIMDColsToPrune) is recalculated
for each new block of columns. This operation is quite complex. In fact in both
cases the calculation results in two additions, three multiplications and two divisions
per block of columns. No other index calculation in the original image2col unit is
this expensive. Thus, it is likely possible to simplify the calculation and it is likely
possible to circumvent most multiplications and divisions required for each block of
columns.
If however the limiting factor turns out to be the FINN framework itself, then

the first points to investigate are likely the sizes of the FIFOs within the data-
flow architecture. As mentioned in Chapter 4.5.2, since release 0.5b it is possible to
automatically size these through the use of an RTL simulation. To properly integrate
the automatic FIFO sizing it would likely be required to also add the BRAM as an
optimization parameter to the automatic parameter tuning algorithm. However, for
first tests whether the FIFOs are actually the issue, RTL simulations with larger
FIFO sizes would likely be enough to determine their impact on the throughput for
pruning settings with high sparsity.
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Whatever the final result of this investigation might be, it is sure to lead to a
better understanding of how both pruning methods interact with the overall FINN
framework.
Alongside these general improvements in performance, better integration into

FINN itself is certainly an important topic for future work, because the code is
presently mostly in a proof of concept stage. In particular the ConvolutionInputGen-
eratorPruned and ConvolutionInputGeneratorSIMDPruned are not yet integrated
into FINNs Python verification path and also not covered by the ONNX export
capabilities of Brevitas. Especially the integration with Brevitas would allow for
end-to-end training and verification of sparse networks. At the moment the test
accuracy is extracted during training with Brevitas, but with an end-to-end tool
flow, this could instead be done directly on the FPGA.

5.7 Outlook

An idea which could not be explored in this work is to adjust the network architecture
to take advantage of the iteratively learned sparsity introduced in this chapter. Of
particular interest would be to implement long distance correlation kernels in a more
resource efficient fashion. This would increase the receptive field of a given kernel,
while using less parameters.

Figure 5.17: Standard 3x3 kernel on an
7x7 image.

Figure 5.18: Dilated 3x3 kernel on an
7x7 image.

As an example, Figure 5.17 shows a 3x3 kernel schematically on a 7x7 image.
Kernels of this size are also used in this work. If one now wants to correlate pixels
over a longer range than 3 pixels one would need to stack multiple 3x3 kernels on
top of each other. As example a 7x7 receptive field could be achieved by stacking
three layers of 3x3 kernels. With each kernel requiring a parameter for each pixel,
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the 3x3 kernel needs 9 parameters per layer to function. In total equating to 27
parameters for a 7x7 receptive field.
One approach to improve long-range correlation would work with dilated kernels,

as proposed by [YK16]. Here a 3x3 kernel can cover a 9x9 receptive field while
only requiring 9 parameters. Schematically this is shown in Figure 5.18. The down-
side is that now short-range correlations can no longer be employed imposing the
requirement of additional kernels to regain the coverage of shorter ranges.
To fill this short-range gap, one could revert to larger kernels in stacked layers.

For example, using two stacked 5x5 kernels a 9x9 receptive field can be achieved.
While this keeps short-range correlations intact, the number of parameters increases
drastically to 25 parameters per layer, totaling to 50 for two layers. Here sparsity
can come into play to reduce the number of parameters per layer. For example,
in pruning both layers by a total of 50% only 25 parameters remain. The nice

Figure 5.19: Sparse 5x5 kernel with
short range correlations
on an 7x7 image.

Figure 5.20: Sparse 5x5 kernel with
long range correlations on
an 7x7 image.

side-effect is then that the pruned structures can also be learned, meaning that a
network can effectively select if short-range correlations, long-range correlations or
a mixture of both are kept per kernel. A schematic example for keeping short-range
correlations in a sparse 5x5 kernel is given in Figure 5.19, which is contrasted by
the schematic 5x5 kernel for long-range correlations in Figure 5.20.
In conclusion, comparing two layers of sparse 5x5 kernels to three layers of 3x3

kernels results in about the same number of parameters, 25 and 27 respectively.
However, the two sparse 5x5 kernels can now cover a significantly larger receptive
field of 9x9 pixels, compared to the three 3x3 kernels, which could only cover 7x7
pixels.
This idea of course depends on how efficient the implemented pruning method is

in practice. In particular, the memory usage and operations required per parameter
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should be kept constant during pruning. The coarse-grain pruning method presented
in this work might approximately fulfill this requirement, but to which extent this is
true remains to be seen. Additionally, adjusting the kernel size in a similar manner
as shown before requires significant changes to the neural network architecture.
Following the example above one would start by increasing the kernel size, while
decreasing the number of layers. However, in which fashion this is done best is a
non-trivial question.
Investigating such modified network architectures is thus a potential next step to

further explore the implemented pruning methods in FINN.
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6 Discussion

In this chapter the results accomplished within this work are surveyed and critically
examined. In particular it is investigated where each major contribution shows good
results or short-comings and how further work could lead to improvements.

6.1 Parallel synthesis

Many experiments within this work are drastically accelerated by the use of par-
allel transformations in FINN. As such the NodeLocalTransformation, developed in
Chapter 3 fulfills its goal with strong impact. However, during the further work
with FINN and applying the implementation it became clear that there are still
cases, where limitations are visible. One particular disadvantage is that the number
of workers is statically allocated to a transformation during its complete run-time.
Even if the transformation uses less than the number of allocated workers, there is
currently no way to make use of these free resources. This is especially problematic
when multiple synthesis jobs run in parallel. In this case multiple NodeLocalTrans-
formation are executed at the same time, each with their own budget of parallel
workers. This can quickly lead to unused resources, because, as shown in Figure
3.1, the number of workers in use can quickly drop and will stay below the max-
imum for a significant part of the overall run-time. Instead of a static setting, it
would be beneficial if there would be a central scheduler for FINN, with which the
number of active workers could be centrally managed. With such a feature the
scheduler could dynamically allocate workers to NodeLocalTransformations as they
become available. This in turn could lead to a better overall resource usage. While
Python’s multiprocessing1 module has no support for such a centralized scheduler,
Dask 2 might be a viable alternative, that provides such a feature. However, switch-
ing to Dask would require significant changes to the NodeLocalTransformation, but
the basic ideas presented in Chapter 3 would stay the same.

6.2 Automatic tuning of performance parameters

Similar to the NodeLocalTransformation, the automatic tuning of SIMD and PE
parameters presented in Chapter 4 works overall well and fulfills its design goals.
Nonetheless, the presented solution also has a fair share of details, which could be
improved or extended. One such aspect is, that in some cases the algorithm takes

1https://docs.python.org/3.6/library/multiprocessing.html
2https://docs.dask.org/en/latest/
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relatively long to produce results. There are potentially two independent solutions to
improve the situation. On one side the estimates provided by FINN could be further
refined, thus requiring less adjustments to the overall LUT budget. This solution
is already being investigated by XILINX3. On the other hand, it appears that in
some cases the algorithm tries to optimize for a design, which is bound to never fit
onto a given FPGA, even with very small SIMD and PE settings. This may happen
for example, when the design will never fit into the BRAM. Here a recognition for
such "doomed" configurations would be very useful and would significantly speed
up potential further exhaustive searches.
Additionally, it would be interesting if the optimization could take more param-

eters into account. One of these is the FPGA clock frequency, as explained in
Section 4.5.1. Another one would be to also optimize for the BRAM and Ultra-
RAM (URAM) utilization. However, the considerations, which need to go into the
utilization of the two memory systems are rather complicated, especially since both
systems can be used by multiple elements within a network synthesized by FINN.
These are: the layer weights, the FIFO queue sizes and the buffers required in im-
age2col units. The amount of weight memory required for a given model is fixed in
size and location and thus less of a consideration. More important are the FIFOs
and image2col buffers. While the buffers are also fixed in size, their location is not.
In-fact for each image2col unit in a given network one can configure this buffer to
be in LUT memory, BRAM or URAM. The configuration of these buffers thus influ-
ences all three resource utilizations. The FIFO sizes are somewhat on the opposite
spectrum: their location is fixed in the BRAM, but their size is not. And as shown
in Section 4.5.2 their size significantly influences the inference performance.
As such, combining the optimization of FIFO sizes and image2col buffer locations

makes the resource optimization problem highly non-trivial. Nonetheless, automat-
ically optimizing these parameters as well would enable FINN designs to run faster
per default, while making the whole FINN framework easier to use. Thus, the focus
of future work in this area should likely be to also take the BRAM and URAM into
consideration during optimization.

6.3 Sparsity

The work on sparsity successfully explores how structured sparsity can be imple-
mented in FINN. Two different approaches for pruning were developed and explored
for their impact on throughput, resource usage and inference accuracy for the con-
volutional example network of FINN. Both methods produce comparable results at
the Pareto frontier, when compared to equivalent experiments without pruning.
However, in order to improve in performance up to the level of the non-pruned

results further work is needed. In particular changes to the network architecture
are required. As explained in Section 5.7 employing larger kernels, while reducing
the number of convolutional layers might lead to higher accuracy results. At the

3https://gitter.im/xilinx-finn/community?at=5fc8e5d2657e0c48225b7fa4
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same time, it would be interesting to reduce the number of fully-connected layers
at the end of the network. There are two main arguments for changing the fully-
connected layers. The first being, that none of the fully-connected layers can be
pruned by the implemented pruning approaches. Thus, when employing less fully-
connected layers the pruning would affect more of the overall required resources
of the network. Secondly, modern network architectures rarely employ more than
one fully-connected layer at the end of a network. For example ResNet [He+15b]
utilizes a final global average pooling layer, followed by a fully-connected layer for
classification. Taking a similar approach in future experiments would thus be of
great significance for the prediction accuracy and overall resource utilization.
Finally, further work is needed to move both pruning approaches away from the

proof of concept stage. In addition, it would be beneficial to have both methods run
in an end-to-end mode.
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7 Conclusion

Over the course of this work major contributions to the FINN framework have been
made and novel experiments are conducted. In particular this work enables the
introduction of parallel transformations into FINN. The contribution significantly
speeds up the build time for large networks, and corresponding code was contributed
directly to the official XILINX repository. Since then it has been a part of all major
releases of FINN. Even within this work the possibility for parallelizing the synthe-
sis of networks was extremely helpful, and the development time was significantly
reduced for all developments within this work.
Alongside the experiments on sparsity two methods are developed, which can au-

tomatically tune SIMD and PE parameters to achieve maximum throughput on a
given FPGA with a given network. It is further shown that these automatic opti-
mizations work well for varying quantization bit-widths. Finally, it is demonstrated
that by using these algorithms it is possible to explore the Pareto frontier between
inference accuracy and throughput for a given network and FPGA.
During the final part of this work two approaches are developed and explored to

introduce structured pruning in FINN. These are evaluated for their performance in
terms of throughput and inference accuracy. It is shown that both pruning methods
can achieve significant throughput improvements (Figure 5.15b), which are to be
considered as a trade-off to the accuracy loss incurred by the structured sparsity
(Figure 5.15a). During the analysis of the Pareto frontier it is revealed that both
approaches show comparable results to non-pruned networks, although the exper-
iments are conducted on a convolutional network, which is not yet optimized for
the use with sparsity. These results finally justify a positive conclusion towards ex-
ploring pruning for FINN further in future work. In particular with changes in the
network architecture significant performance improvements above the already good
results presented are expected.
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9 Code developed in this work

For each contribution in this work significant work was put into developing code to
run the presented experiments. This code is published as open-source for the public
to inspect and use. In this chapter a short summary will be given of where this code
is published.

• Parallel synthesis, Chapter 3
The code for the parallel synthesis has been integrated into the official FINN
repository. The pull request by Hendrik Borras, that contains this code, can
be found here: https://github.com/Xilinx/finn/pull/78

• Automatic tuning of performance parameters, Chapter 4
This contribution can be found in the repository for this thesis, created by
Hendrik Borras. The script implementing the algorithms of Chapter 4 also
interacts with parts of the Chapter on Pruning. Thus the script is designed
to be run within the Docker container created by FINN. More information on
this can be found in the read-me of the repository. The script itself can be
found here: https://github.com/HenniOVP/MA_ZITI/tree/main/simd-pe-
tuning

• Pruning in FINN, Chapter 5
In this chapter multiple repositories of FINN were forked and different parts
modified. The script developed for the training of pruned networks with the
iterative `1-norm pruning method can be found here: https://github.com
/HenniOVP/MA_ZITI/tree/main/training

The modified HLS code can, which implements the fine- and coarse-grain prun-
ing can be found in the Hendrik Borras’s fork of the finn-hlslib repository:

– Coarse-grain pruning: https://github.com/HenniOVP/finn-hlslib/
blob/feature/col_pruning/slidingwindow.h#L331

– Testbench for the coarse-grain pruning: https://github.com/HenniOV
P/finn-hlslib/blob/feature/col_pruning/tb/test_swg_pruned.tc
l and https://github.com/HenniOVP/finn-hlslib/blob/feature/c
ol_pruning/tb/swg_pruned_tb.cpp

– Fine-grain pruning: https://github.com/HenniOVP/finn-hlslib/bl
ob/feature/col_pruning/slidingwindow.h#L175

– Testbench for the fine-grain pruning: https://github.com/HenniOVP/
finn-hlslib/blob/feature/col_pruning/tb/test_swg_SIMD_prune
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d.tcl and https://github.com/HenniOVP/finn-hlslib/blob/featu
re/col_pruning/tb/swg_SIMD_pruned_tb.cpp

The modified code of the FINN main repository can be found in Hendrik
Borras’s fork of the official repository: https://github.com/HenniOVP/finn
/tree/feature/0.4_cutting_pruning

The repository was forked from the development branch of the offical FINN
repository1. At the time of forking, the development branch was just about to
be merged into the master branch for release 0.5b. As such the fork by Hendrik
Borras includes all features of release 0.4b and most features of release 0.5b.

1https://github.com/Xilinx/finn/tree/dev
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