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1 Control Fundamentals

1 Control Fundamentals
General Control Theory has its roots in the study of dynamical systems. Consider indeed
the following system: {

ẋ = f(x)

x(0) = x0
(1)

where x : R → Rn and f : Rn → Rn.

Assume to introduce a generic control variable u in such a way that the system can be
then written as follows: {

ẋ = f(x, u)

x(0) = x0
(2)

where x : R → Rn, u : R → Rn and f : Rn × Rn → Rn.

Our main target will be the study of the synthesis of u. Let, for example, x be a
solution of the of the dynamical system (1) such that it induces oscillatory trajectories.
We might want to find a suitable control u that, when inserted into (2), renders the
trajectories steady:

Figure 1: Steadiness

1.1 Example: Motorized Pendulum

Consider a generic pendulum system (m, θ) coupled with a motor that is able to generate
an angular displacement via a force u:

Figure 2: Pendulum
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1 Control Fundamentals

From basic Newtonian Mechanics we have the following non-linear ODE system for
the dynamics: {

m · θ̈(t) +m · g · sin(θ(t)) = u(t)

θ(0) = θ0

We can re-write the system in a static-space form as follows: first, we introduce the
state variables {

x1(t) = θ(t)

x2(t) = θ̇(t)

assuming now that m = g = 1, we obtain:

Ẋ =
d

dt

(
x1
x2

)
=

(
x2

− sin(x1) + u(t)

)
where u is the control variable.

This non-linear system has 2 equilibria: θ = 0 (stable) and θ = π (unstable). This
means that, whatever the initial condition, for a sufficiently large t we’ll always have that
the system converges to the stable equilibrium θ = 0. Assume however that we want to
force the system to stabilize at the unstable equilibrium θ = π using the force u. We
linearize the system taking the following approximations:

θ ≈ π =⇒ sin(θ) ≈ −(θ − π)

Therefore we introduce ϕ := θ − π in order to get

ϕ̈(t)− ϕ(t) = u(t)

also called the feedback control.

We want to stabilize the system at the unstable equilibrium, so we take the control
law to be defined as u(t) = −α · ϕ(t), where α > 0. Now we write the closed loop
system as:

ϕ̈− ϕ = −α · ϕ

We can now use linear stability analysis to study the effect of the control law. A very
simple improvement of the above control law is given by the possible introduction of a
damping term by taking

u = −α · ϕ− β · ϕ̇

where β > 0 is the damping. Finally, we can also introduce an integral term to obtain
a so called PID (Proportional - Integral - Derivative):

u = −α · ϕ− β · ϕ̇ − γ ·
∫ T

0

ϕ(t)dt
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2 Introduction to Optimal Control

2 Introduction to Optimal Control
Optimal Control (also referred to as Dynamic Optimization) problems can be formulated
as follows:

min
u

∫ T

0

L(x, u)dt+ V (x(T )) (3)

s.t.

{
ẋ = f(x, u), x ∈ Rn

x(0) = x0, x0 ∈ Rn

where L(·, ·) is called the optimization term and V (·) is called the penalty term.

A solution u∗ of (3) is called an optimal control and the trajectory x∗ induced by
u∗ is called an optimal trajectory. Note that we can discretize the problem as follows:

ẋ = f(x, u) =⇒ xk+1 = xk +∆t · f(xk, uk)
=⇒ x(t) → {xk}, u(t) → {uk}

=⇒
∫ T

0

L(x, u)dt ≈
NT∑
i=1

L(xk, uk)

2.1 Some types of Control

We now briefly present 3 possible types of controls:

• ∞-Horizon Optimal Control:

We take T = +∞, V ≡ 0, so we obtain the following formulation for (3):

min
u

∫ T

0

L(x, u)dt s.t. ẋ = f(x, u)

=⇒ ∃(x∗, u∗) s.t. L(x∗, u∗) →t→+∞ 0

We could for example take L(x, u) := ||x||22 + ||u||22

• Linear-Quadratic Control:

We take L(x, u) := xTQxx+ uTQuu (quadratic cost), V (x(T )) = xT (T )P1x(T ) so
we obtain the following formulation for (3):

min
u

∫ +∞

0

(xTQxx+ uTQuu) · dt+ xT (T )P1x(T ) s.t.

{
ẋ = Ax+Bu,

Qx ≥ 0, Qu ≥ 0

=⇒ L(x, u) →t→+∞ 0
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2 Introduction to Optimal Control

• Time-optimal Control:

We take L = 1, V ≡ 0 and leave T free, we obtain the following formulation
for (3):

min
(u,T )

T =

∫ T

0

1 · dt s.t.


ẋ = f(x, u),

x(0) = x0,

x(T ) = xd,

u ∈ U

where xd is the desired final state and U is compact. There are 2 main difficulties
with this formulation:

– it is an optimization problem w.r.t. u and T

– we don’t know if ∃T such that x(T ) = xd

Optimality conditions are given by Pontryagin’s Maximum Principle: given
the optimal control problem

min
u

∫ T

0

L(x, u)dt+ V (x(T )) s.t.

{
ẋ = f(x, u), x ∈ Rn

x(0) = x0, x0 ∈ Rn

we construct the Hamiltonian of the system as follows:

H(x, u, λ) = L(x, u) + λT · f(x, u)

where λ is the adjoint variable of H. The stationary conditions for H are:

∇x(H) = ∇u(H) = ∇λ(H) = 0

By Pontryagin’s Maximum Principle (P.M.P.) there ∃f s.t. (x∗, u∗) is optimal i.e.
there ∃λ∗ ∈ Rn, γ∗ ∈ Rq s.t.:



ẋ = ∂λH,
−λ̇i = ∂xi

H (adjoint equation),
x(0) = x0,

ψ(x(T )) = 0,

λ(T ) = ∂xV (x(T )) + γT∂xψ,

H(x∗, u∗, λ∗) ≤ H(x∗, u, λ∗) ∀u,∀t (⇐⇒ u∗ = argminu H(x∗, u, λ∗))
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2 Introduction to Optimal Control

2.2 Example: 2 point BPV (TPBPV)

Consider the following problem: {
ẋ = a · x+ b · u
x0 = x(t0)

(4)

We have:

J :=
1

2

∫ T

0

u2dt+
1

2
c · x(T )2, c > 0

Therefore:

=⇒ L =
1

2
u2, V (x) =

1

2
c · x(T )2

Which implies the following expression for the Hamiltonian of the system:

=⇒ H(x, u, λ) =
1

2
· u2 + λ · (a · x+ b · u)

Applying P.M.P. conditions to this Hamiltonian we obtain the following problem:
ẋ = a · x+ b · u
x0 = x(t0)

−λ̇ = λ · a
λ(T ) = c · x(T )

(5)

And therefore:

=⇒ H(x∗, u∗, λ∗) ≤ H(x∗, u, λ∗) ∀t ∈ [0, T ]

⇐⇒ u∗ = argmin
u

H(x∗, u, λ∗) = argmin
u

1

2
u2 + λ∗ · a · x∗ + λ∗ · b · u

=⇒ u∗ = −λ · b

Plugging this expression for u∗ into (5) leads to the 2 point Boundary Value Problem:
ẋ = a · x− b2 · λ
x0 = x(t0)

−λ̇ = λ · a
λ(T ) = c · x(T )

(6)

Which consists in an equation forwards in time for x and an equation backwards
in time for λ. The system can be represented in the following way:(

x(0)
?

)
ẋ = ax− b2λ

GGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGG

−λ̇ = aλ

(
?

λ(T )

)
In this particular case we can integrate and obtain:

λ(t) = c · x(T ) · ea(T−t) =⇒ ẋ = a · x− b2c · x(T ) · ea(T−t) ...
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2 Introduction to Optimal Control

2.3 Reduced Gradient

Given an optimal control problem, numerically we have 3 alternatives:

• Proceed as above and obtain a TPBPV. However this procedure is not always
possible and depends on u!

• Discretize everything and obtain the following:{
xk+1 = xk∆t · f(xk, uk), x0 = ...

λk+1 = λk −∆t · ..., λN = ...
=⇒ F (−→x ,

−→
λ ) = 0

which can be resolved using Newton’s Method...

• Reduced Gradient: we have the following

min
u
J(x, u) ( =

∫ T

0

L(x, u)dt+ V (x(T )) ) s.t.

{
ẋ = f(x, u), x ∈ Rn

x(0) = x0, x0 ∈ Rn
(7)

if we fix x0 we have the so-called control-to-state map:

u(·) 7−→ x(t) := x(u)

so in this case the problem (7) becomes:

min
u
J(x(u), u) s.t.

{
ẋ = f(x, u)

x(0) = x0
(8)

given an initial guess u0 of u(t) ∀t ∈ [0, T ], we can use a gradient method:

u0 →k→+∞ u∗ =⇒ uk+1 = uk − δk · ∇uJ(u
k)

Using Calculus of Variations, we can prove that we actually have the following:

∇uJ = ∇uH(x, u, λ)

To compute ∇uJ(u
k) we can use the following algorithm:

1. uk given

2. ẋ = f(x, u) −→ we obtain xk integrating forwards

3. −λ̇ = ∂xH −→ we obtain λk integrating backwards

4. ∇uJ(u
k) = ∇uH(xk, uk, λk)

u is still continuous at this level, so we nave to discretize it further: uk −→ {uki } ...
Moreover, note that in this case we don’t have any constraints on u, but that is not
always the case!
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2 Introduction to Optimal Control

2.4 Example: Control-Affine Setting

Consider the following problem:

ẋ = f(x) + g(x) · u

In this setting P.M.P. is a necessary condition, so we have:

min
u
J(x(u), u) −→ uk(t) ∈ [0, T ] which is the optimal control signal

This map is uniquely determined by the initial condition x(0):

x(0) −→ min
u
J(x(u), u) −→ uk(t) ∈ [0, T ]

However, in reality this almost never happens because we need to take errors/disturbances
into account!

Figure 3: Errors and disturbances

We have the following distinction:

• Open-Loop Control:
u(t) −→ ẋ = f(x, u)

• Closed-Loop Control:
ẋ = f(x, u) ⇄ u = F (x)

This is also referred to as model predictive control (MPC), u = F (X) is called the
Feedback.
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3 Optimal Feedback

3 Optimal Feedback
Consider the problem:{

ẋ = u(t), u ∈ Ω = [−1, 1]

x(0) = x0 ∈ Ω = [−1, 1]
=⇒ ∂Ω = {−1, 1}

We want to minime the following:

minT s.t x(T ) ∈ ∂Ω

Figure 4: Problem dynamics

We have:

min

∫ T

0

1dt =⇒ H := 1 + λT (u),

{
ẋ = u

−λ̇ = 0

=⇒ u∗ = arg min
u∈[−1,1]

1 + λ · u = −sgn(λ) =

{
1 λ > 0

−1 λ < 0

Which means that we have an optimal solution in feedback form:

u∗(x) =

{
1 x ≥ 0

−1 x < 0

We now introduce the arrival time to ∂Ω, T (x):

Figure 5: Arrival time

T (x) solves the Hamilton-Jacobi-Bellman PDE (also called the Eikonal equation):{
||∇T || = 1

T (−1) = T (1) = 0
=⇒

{
T (x) := infu J(x̃(u), u)

x̃(0) = x
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3 Optimal Feedback

Summarizing, we have the following scheme:

Figure 6: Optimal Feedback scheme

Provided that we can solve the PDE, we obtain the optimal Feedback map:

u∗(x) := −∇V (x)

If we have:

T (x) = inf
u
J(x̃(u), u)

then:

T (x) = inf
u
{τ + T (x(u, τ))} ∀x ∈ Ω, ∀τ ∈ [0, T (x)]

where T (x(u, τ)) is departing at τ . Dividing by τ and taking τ → 0 we obtain:

−1 = inf
u
{T (x(u, τ))− T (x)

τ
} −→τ→0 inf

u
{∇T · f} = inf

u
{∇T · ẋ}

⇐⇒ 1 = sup
u
{−∇T · f} = sup

u
{−∇T · ẋ} =⇒

{
ẋ = u, u ∈ [−1, 1]

1 = ||∇u||

So, if we solve the Hamilton-Jacobi-Bellman PDE for T (x), we have the following:

u∗(x(t)) = argmax
u

{−∇T (x) · f(x, u)}

where u∗(x(t)) is the current state.

3.1 Link between P.M.P. and the H.-J.-B. PDE

Consider the following problem (Finite Horizion/Unconstrained Problem):

min
u

∫ T

t

L(x(s), u(s))ds where L(x, u) := ℓ(x) + β(u)2 (9)

s.t.


ẋ = f(x) + g(x) · u(s)
x(t) = x0

s ∈ [t, T ]

We can study it in different ways:
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3 Optimal Feedback

1. P.M.P.
Following the same procedure of section (2.1) we obtain the following:

H = L(x, u) + λT · (f(x) + g(x) · u)
ẋ = f(x) + g(x) · u
x(t) = x0

Which then implies

=⇒

{
−λ̇ = ∂xH
λ(T ) = 0

=⇒ u∗ = argmin
u

{L(x, u) + λT · (f(x) + g(x) · u(s))}

Which means that finally we have the following:

=⇒ (u∗, x∗, λ∗(s)) −→ (u∗(t), x∗(t), λ∗(t)), s ∈ [t, T ]

2. Hamilton-Jacobi-Bellman PDE
We follow the same steps of section (3) and obtain:

V (x, t) = inf J(x, u) :=

∫ T

t

L(x, u)ds =

∫ T

t

ℓ(x) + β(u)2ds

The Hamilton-Jacobi-Bellman PDE is:{
∂tV (x, t) = 1

4β
∇V T · g(x) · g(x)T · ∇V −∇V · f(x)− ℓ(x)

V (t, x) = 0

Which implies:

u∗(x, t) := argmin
u
... = − 1

2β
g(x)T · ∇V (x, t) ∀x ∈ Rn,∀t ∈ [0, T ]

We want to study the existing link between the 2 approaches. P.M.P. conditions are
far easier to compute numerically, but they are also completely dependent on the current
state of the system. The Hamilton-Jacobi-Bellman PDE approach is extremely precise,
but it involves solving a high-dimensional non-linear PDE! In this particular setting we
have:

L(x, u) = ℓ(x) + β(u)2 =⇒ ẋ = f(x) + g(x) · u (Control-Affine dynamics)

Therefore, if we solve the P.M.P. conditions with initial condition x(t0) = x̂ and we
obtain the optimal trajectory (u∗(t), x∗(t), λ∗(t)), we have:{

V (x∗(t), t) =
∫ T

t
ℓ(x∗(s)) + β · ||u∗(s)||2ds

∇V (x∗(t), t) = λ∗(t) ∀t ∈ [t0, T ]
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3 Optimal Feedback

Figure 7: Control-Affine dynamics

Assuming t = 0 and approximating V (x, 0) (i.e. solving the H.-J.-B. PDE) we obtain
a sub-optimal feedback:

ũ(x) = − 1

2β
g(x)T · ∇V (x, 0)

Finally, we can use the following algorithm to solve the problem numerically:

1. Generate samples {x̂i}Ns
i=1 on Rn

2. Solve the P.M.P. conditions with initial condition x̂i:

x̂i −→ (u∗i (t), x
∗
i (t), λ

∗
i (t)), t ∈ [0, T ]

where x∗i is originating from x(0) = x̂i

3. Construct a synthetic dataset:{
Vi := V (x̂i, 0) =

∫ T

0
ℓ(x∗i (t)) + β · ||u∗i (t)||2dt

∇Vi := ∇V (x̂i, 0) = λ∗i (0)

4. Use supervised learning (regression) or unsupervised learning to obtain V (x)
(equivalent to learning a model for V (x, 0) := V (x)):
In the supervised case we can proceed in different ways
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3 Optimal Feedback

• Neural Networks:
We have

V (x) ≈ Vσ(x) := NN(x, θ, ℓ)

where θ are the parameters and ℓ are the layers. The training data is:

{x̂i, Vi,∇Vi}Ns
i=1

while the loss function is:

ℓ(θ) :=
Ns∑
i=1

||Vi − Vθ(x̂i)||2

In the gradient augmented case the loss function becomes:

ℓ(θ) :=
Ns∑
i=1

||Vi − Vθ(x̂i)||2 + γ · ||Vi − Vθ(x̂i)||2

Learning a model is equivalent to solving θ∗ = argminθ ℓ(θ), however this is a
large scale, non-convex optimization problem!

• Polynomial approximation:
We have

V (x) ≈ Vσ(x) :=
m∑
i=1

θi · Φi

where {Φi}mi=1 are a polynomial basis for functions Rn −→ R (e.g. monomial
basis, orthogonal polynomials (Legendre/Hermite etc. ...) ...)
Here we have the advantage that the gradient of Vσ can be trivially computed:

∇Vσ =
m∑
i=1

θi · ∇Φi

Moreover, training this model is equivalent to solving a linear least squares
problem:

Vσ(x̂i) :=
m∑
i=1

θi · Φi(x̂i) =< θ,Φ(x̂i) >

=⇒ ℓ(θ) := ||Aθ − (Vi,∇Vi, ...)T ||2, A =

Φ1(x̂1) Φ1(x̂2) ...
Φ2(x̂1) Φ2(x̂2) ...
... ... ...


where we note that A is a Vandermonde Matrix. We can also use a sparsity
promoting loss function:

ℓ(θ) = ||Aθ − V ||2 + γ · ||θ||1
where V is the dataset and the term γ · ||θ||1 is the sparsity/penalization
term. Notice that this problem is still convex but it is non-smooth! This
means that we need to adopt a Lasso/Proximal Gradient method to solve it.
We also need to think how to scale this problem properly in high dimensional
cases. If ẋ = Ax + Bu, ℓ(x) = xTQx with Q ≥ 0, then V (x) = xTΠx
(linear-quadratic control, where Π ≥ 0 solves a Riccati equation) can be
retrieved by polynomial approximation.
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3 Optimal Feedback

• Physics Informed Neural Networks/Deep Galerkin Method
In this case we are in an unsupervised setting and we have:

V (x) ≈ Vθ(x) = NN(x, θ)

The Hamilton-Jacobi-Bellman PDE is:

||∇V || = 1 =⇒ ||∇V || − 1 = 0 =⇒ Res(V ) := ||∇V || − 1

Therefore, solving the PDE is equivalent to solving Res(V ) = 0. We introduce
the residual loss:

ℓ(θ) := ||Res(Vθ)||2L2(Ω)

Finally, training this model is equivalent to solving the following optimization
problem:

min
θ
{|| ||∇Vθ|| − 1||2L2(Ω)}

Data-Driven Methods for Optimal Control 14
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