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1 Control Fundamentals

General Control Theory has its roots in the study of dynamical systems. Consider indeed
the following system:
&= f(x)
{ (1)

where z : R — R"” and f: R" — R".

Assume to introduce a generic control variable u in such a way that the system can be
then written as follows:

&= f(x,u)
a (2)
z(0) = xg
where z: R - R", v : R — R" and f: R"” x R* — R".
Our main target will be the study of the synthesis of u. Let, for example, z be a
solution of the of the dynamical system (1) such that it induces oscillatory trajectories.

We might want to find a suitable control u that, when inserted into (2), renders the
trajectories steady:

A

X = %(X,O)
X = f(x,u)
<~ ~~—~

Figure 1: Steadiness

1.1 Example: Motorized Pendulum

Consider a generic pendulum system (m, §) coupled with a motor that is able to generate
an angular displacement via a force u:

( u(t)

)
g

m

—_
%
Figure 2: Pendulum

Data-Driven Methods for Optimal Control 2
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From basic Newtonian Mechanics we have the following non-linear ODE system for
the dynamics:

{m () +m - g-sin(0(t) = u(t)

We can re-write the system in a static-space form as follows: first, we introduce the
state variables

assuming now that m = g = 1, we obtain:

X = % (i;) = (_sin(af? +u(t>>

where u is the control variable.

This non-linear system has 2 equilibria: # = 0 (stable) and # = 7 (unstable). This
means that, whatever the initial condition, for a sufficiently large ¢ we’ll always have that
the system converges to the stable equilibrium # = 0. Assume however that we want to
force the system to stabilize at the unstable equilibrium ¢ = 7 using the force u. We
linearize the system taking the following approximations:

~nm = sin(d) =~ —(0 —n)

Therefore we introduce ¢ := 6 — 7 in order to get

also called the feedback control.

We want to stabilize the system at the unstable equilibrium, so we take the control
law to be defined as u(t) = —a - ¢(t), where @ > 0. Now we write the closed loop
system as:

b—d=—a0
We can now use linear stability analysis to study the effect of the control law. A very

simple improvement of the above control law is given by the possible introduction of a
damping term by taking

u=—a-¢—f¢

where § > 0 is the damping. Finally, we can also introduce an integral term to obtain
a so called PID (Proportional - Integral - Derivative):

T
u=—a-¢— B¢ —v-/o o(t)dt

Data-Driven Methods for Optimal Control 3
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2 Introduction to Optimal Control

Optimal Control (also referred to as Dynamic Optimization) problems can be formulated
as follows:

min /O L, w)dt + V(2(T)) (3)

u

ot T = f(x,u), z=€&R"
- z(0) =g, z9€R”

where L(-,-) is called the optimization term and V(-) is called the penalty term.

A solution u* of (3) is called an optimal control and the trajectory z* induced by
u* is called an optimal trajectory. Note that we can discretize the problem as follows:

&= f(r,u) = 2" =2+ At- f(2a", )
= 2(t) = {z"}, wu(t) = {u"}

T Nt
= / L(z,u)dt ~ Z L(x*, u*)
0 i=1

2.1 Some types of Control
We now briefly present 3 possible types of controls:

e oo-Horizon Optimal Control:

We take T' = 400, V' = 0, so we obtain the following formulation for (3):

T
min/ L(z,u)dt st. &= f(z,u)
0

= J(z",u") s.t. L(z",u") =400 0
We could for example take L(z,u) := ||x||3 + ||ull3

e Linear-Quadratic Control:

We take L(z,u) := 27 Q,z +u” Q,u (quadratic cost), V(z(T)) = 27(T)Px(T) so
we obtain the following formulation for (3):

& = Ax + Bu,
Q: >0, Qu=0

u

min /O+OO(xTsz +urQuu) - dt + 27 (T)Pia(T) s.t. {

— L(z,u) =400 0

Data-Driven Methods for Optimal Control 4
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e Time-optimal Control:

We take L = 1, V = 0 and leave T free, we obtain the following formulation
for (3):

T = f(xau)v
T _
mmT:/‘Lﬁ or, 70 =,
(u,T) 0 x(T) = zq,
ueuU

where x4 is the desired final state and I/ is compact. There are 2 main difficulties
with this formulation:

— it is an optimization problem w.r.t. v and T

— we don’t know if 37" such that z(T) = x4

Optimality conditions are given by Pontryagin’s Maximum Principle: given
the optimal control problem

= f(z,u), x€R"
x(0) =x9, w9 €R"

u

min/TL(x,u)dt+V(x(T)) s.t. {

we construct the Hamiltonian of the system as follows:

H(w,u,\) = L(v,u) + AT - fz,u)

where A is the adjoint variable of H. The stationary conditions for ‘H are:

V.(H)=V,(H)=V\H)=0

By Pontryagin’s Maximum Principle (P.M.P.) there 3f s.t. (z*,u*) is optimal i.e.
there IN* € R", v* € R? s.t.:

(& = O\H,

—)\; = 9,1 (adjoint equation),
z(0) = xo,
VD) -
ANT) = ( (1)) + 0.1,
| H (2, u*,)\*) < H(z* u, \*) Yu,Vt (<= u* = argmin, H(z*, u, \*))

Data-Driven Methods for Optimal Control 5
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2.2 Example: 2 point BPV (TPBPV)

Consider the following problem:

We have:

Therefore:

= L= %uQ, V(z) = %c - x(T)?

Which implies the following expression for the Hamiltonian of the system:

1
= H(m,u,)\)z§-u2+)\-(a-x+b-u)

Applying P.M.P. conditions to this Hamiltonian we obtain the following problem:

To = (to)
“A=\-a (%)
MNT)=c-x(T)

And therefore:

= H(z",u", ") < H(z", u,\*") Vtel0,T]
1
<= u" = argmin H(z", u, \*) = arg min §u2 + A a2t + N b
= u'=-\-b

Plugging this expression for «* into (5) leads to the 2 point Boundary Value Problem:

t=a-xr—0b-\

To = x(to)
“A=X\-a (6)
MNT)=c-x(T)

Which consists in an equation forwards in time for z and an equation backwards
in time for A\. The system can be represented in the following way:

(V) == (i)

In this particular case we can integrate and obtain:

A(t) =cC- ZL‘(T) . ea(T—t) _— T =q- -7 — bQC . fE(T) . ea(T_t)

Data-Driven Methods for Optimal Control 6
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2.3 Reduced Gradient

Given an optimal control problem, numerically we have 3 alternatives:

e Proceed as above and obtain a TPBPV. However this procedure is not always
possible and depends on u!

e Discretize everything and obtain the following:

oF = gk At - f(aF ub), 20 = .. —
ML AR Af. L AN =

which can be resolved using Newton’s Method...

e Reduced Gradient: we have the following

= f(x,u), xeR"
z(0) = xy, w9 €R"

(7)

u

min J(z,u) (= /0 L(z,u)dt +V(z(T))) s.t. {

if we fix x( we have the so-called control-to-state map:

u() — z(t) == z(u)

so in this case the problem (7) becomes:

T = f(x,u)

s s (151

given an initial guess u® of u(t) Vt € [0,T], we can use a gradient method:

U ot = uFT =uF — 6%V, T (uF)

Using Calculus of Variations, we can prove that we actually have the following:

Vol =V, H(z,u,\)
To compute V,.J(u*) we can use the following algorithm:
u® given
i = f(x,u) — we obtain z* integrating forwards

1.
2.
3. A= 0, H —> we obtain \* integrating backwards
4. Vo J(u*) = V, H(xk, uk \F)

u is still continuous at this level, so we nave to discretize it further: u* — {ul} ...
Moreover, note that in this case we don’t have any constraints on u, but that is not
always the case!

Data-Driven Methods for Optimal Control 7
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2.4 Example: Control-Affine Setting

Consider the following problem:

i = f()+ g(x) -u
In this setting P.M.P. is a necessary condition, so we have:
min J(z(u),u) — u*(t) € [0, T] which is the optimal control signal

This map is uniquely determined by the initial condition z(0):

2(0) — min J (2 (u), u) — u*(t) € [0, 7]

u

However, in reality this almost never happens because we need to take errors/disturbances
into account!

A

Lo / DMWLM 2

ol % = P (x,u*) FEL) B xb) # (L)

Figure 3: Errors and disturbances

We have the following distinction:

e Open-Loop Control:
ut) — i = f(z,u)

e (Closed-Loop Control:
&= f(z,u) 2 u=F(z)

This is also referred to as model predictive control (MPC), u = F(X) is called the
Feedback.

Data-Driven Methods for Optimal Control 8
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3 Optimal Feedback

Consider the problem:

l.':U(t),uEQ:[_ljl] B
{$W)—a@e$2_[—L1] = 00 ={-11;

We want to minime the following;:

minT st z(T) € 99

u(t)<o  x(0)=xXo u(t)>o
| <+ | —>

| 1
-4 O

Figure 4: Problem dynamics

We have:

min ldt = H =1+ X\ (u), .
0 -A=0

1 A>0
= y*=arg min 1+ \-u= —sgn(\) =
gue[—l,l] gn(Y) {—1 A<O0

Which means that we have an optimal solution in feedback form:

u*(x):{1 x>0

-1 <0

We now introduce the arrival time to 09, T'(z):

A

(AN

T(X ) /" —_ A\
~NT =u+Au

| 5 >
-1 4

Figure 5: Arrival time

T'(x) solves the Hamilton-Jacobi-Bellman PDE (also called the Eikonal equation):

VT =1 T(x) = infy J(#(u), u)
{T(—l) —T1)=0 {5:(0) s

Data-Driven Methods for Optimal Control 9
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Summarizing, we have the following scheme:

Canlodd Volue  Fanckcou Houw llioe = Soacol - V3ellron
Bl [ V/x) ] PRE  for V(x)

Figure 6: Optimal Feedback scheme

Provided that we can solve the PDE, we obtain the optimal Feedback map:

u*(z) = =VV(x)

If we have:
T(x)= ir&f J(z(u),u)
then:
T(x) = i%f{T + T(x(u, 7))} Ve € Q, V7 € [0,T(x)]

where T'(z(u, 7)) is departing at 7. Dividing by 7 and taking 7 — 0 we obtain:

u, 7)) — T(x)

1= inf{T(x< Y~ Inf{VT - f} = inf{VT - &}

T=u, ue|[—1,1]

<~ 1 =sup{-VT: f} =sup{-VT i} =

So, if we solve the Hamilton-Jacobi-Bellman PDE for T'(z), we have the following:

u*(2(t)) = argmax{—VT(z) - f(z,u)}

where u*(z(t)) is the current state.

3.1 Link between P.M.P. and the H.-J.-B. PDE

Consider the following problem (Finite Horizion/Unconstrained Problem):

min/t L(z(s),u(s))ds where L(z,u):={(z)+ f(u)? (9)

u

&= f(z)+g(x) - uls)
s.t. .Z‘(t) =Xy
s € [t,T)

We can study it in different ways:

Data-Driven Methods for Optimal Control 10



a UNIVERSITA
i VERONA

1. P.M.P.
Following the same procedure of section (2.1) we obtain the following:

H = L(z,u) + A" (f(z) + g(z) - u)
&= fx)+9(x)- u
x(t) = xo

Which then implies

—A=0,H . , .
- {/\(T) —0 - u = argmuln{L(x,u) + A\ (f(x) + g(m) . u(s))}

Which means that finally we have the following:

= (u*, 2", \"(s)) — (u*(t), 2" (), \*(t)), se€lt,T]

2. Hamilton-Jacobi-Bellman PDE

We follow the same steps of section (3) and obtain:

T T
V(z,t) =inf J(z,u) := / L(z,u)ds = / {(x) + B(u)?ds
t t
The Hamilton-Jacobi-Bellman PDE is:

OV (x,t) = ﬁVVT g(z) - g(x)t - VV —=VV - f(z) — ()
V(t,z) =0

Which implies:

1
%g(x)T -VV(z,t) VoeeR"Vtel0,T]

u*(z,t) == argmin... = —
u

We want to study the existing link between the 2 approaches. P.M.P. conditions are
far easier to compute numerically, but they are also completely dependent on the current
state of the system. The Hamilton-Jacobi-Bellman PDE approach is extremely precise,
but it involves solving a high-dimensional non-linear PDE! In this particular setting we
have:

L(z,u) = l(x) + B(u)* = &= f(z)+g(x) -u (Control-Affine dynamics)

Therefore, if we solve the P.M.P. conditions with initial condition x(¢y) = & and we
obtain the optimal trajectory (u*(t),z*(t), \*(t)), we have:

{v< “(t).t) = [T 6a*(s)) + B - [Ju*(s)|[2ds
V(@ (t),t) = A*(t) ¥t € [to, T]

Data-Driven Methods for Optimal Control 11
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A

/_///\\_/?\QkﬁJTU

x;’fz(ﬂ

Figure 7: Control-Affine dynamics

Assuming ¢ = 0 and approximating V' (z,0) (i.e. solving the H.-J.-B. PDE) we obtain
a sub-optimal feedback:

i(z) = —=—g(x)" - VV(x,0)
Finally, we can use the following algorithm to solve the problem numerically:

1. Generate samples {7}, on R"

2. Solve the P.M.P. conditions with initial condition z;:

2 — (ui (1), 2 (1), A7 (t), t€[0,T]
where 2} is originating from z(0) = z;
3. Construct a synthetic dataset:

Vi = V(&:,0) = [y 0@ () + B8 - [[up (1)) dt
vw__vvgw)_xxm

4. Use supervised learning (regression) or unsupervised learning to obtain V' (z)
(equivalent to learning a model for V(x,0) := V(x)):
In the supervised case we can proceed in different ways

Data-Driven Methods for Optimal Control 12
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e Neural Networks:
We have
V(z) = V,(z) := NN(x,0,0)

where 0 are the parameters and ¢ are the layers. The training data is:
{f’b ‘/:L'a v‘/;}i\él

while the loss function is:
N
00) = ||V = Vo()|?
i=1

In the gradient augmented case the loss function becomes:
N,

00) =Y 1IVi = Va(@)II” + 7 - |V = Vo(&:)[]
i=1

Learning a model is equivalent to solving 6* = argming £(#), however this is a
large scale, non-convex optimization problem!

e Polynomial approximation:
We have

m

V(z) = V,(z) = Z@-@

where {®;}7, are a polynomial basis for functions R* — R (e.g. monomial
basis, orthogonal polynomials (Legendre/Hermite etc. ...) ...)
Here we have the advantage that the gradient of V,, can be trivially computed:

va - i 91 . V(I)z
i=1

Moreover, training this model is equivalent to solving a linear least squares
problem:

Vo(£i) =) 0; - Oi(dy) =< 0, B(d;) >
=1

— 0(0) = [|A0 — (Vi, WV, DT A= | ®u(a)

where we note that A is a Vandermonde Matrix. We can also use a sparsity
promoting loss function:

0(0) =140 = V|[* +~ - (1611

where V' is the dataset and the term - ||0]|; is the sparsity /penalization
term. Notice that this problem is still convex but it is non-smooth! This
means that we need to adopt a Lasso/Proximal Gradient method to solve it.
We also need to think how to scale this problem properly in high dimensional
cases. If & = Az + Bu, {(z) = 2TQz with Q > 0, then V(z) = 2"Tllx
(linear-quadratic control, where IT > 0 solves a Riccati equation) can be
retrieved by polynomial approximation.

Data-Driven Methods for Optimal Control 13
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e Physics Informed Neural Networks/Deep Galerkin Method
In this case we are in an unsupervised setting and we have:

V(z) =~ Vy(x) = NN(z,0)
The Hamilton-Jacobi-Bellman PDE is:
IVV][=1 = ||[VV||—=1=0 = Res(V) :=||VV]| -1

Therefore, solving the PDE is equivalent to solving Res(V) = 0. We introduce
the residual loss:
((0) = ||Res(Vp)l |72

Finally, training this model is equivalent to solving the following optimization
problem:
min{|| [[VV3]| = 1l[Z20)}

Data-Driven Methods for Optimal Control 14
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