UNIVERSITÀ

 di VERONADipartimento
di INFORMATICA

Università degli Studi di Verona

Master's Degree - Mathematics
Course Report

Data-Driven Methods for Optimal Control

Student:
Michele Benedetti
Student ID:
VR488172

Supervisor(s):
Prof. Dante Kalise
Prof. Giacomo Albi

Contents

1 Control Fundamentals 2
1.1 Example: Motorized Pendulum 2
2 Introduction to Optimal Control 4
2.1 Some types of Control 4
2.2 Example: 2 point BPV (TPBPV) 6
2.3 Reduced Gradient 7
2.4 Example: Control-Affine Setting 8
3 Optimal Feedback 9
3.1 Link between P.M.P. and the H.-J.-B. PDE 10

1 Control Fundamentals

General Control Theory has its roots in the study of dynamical systems. Consider indeed the following system:

$$
\left\{\begin{array}{l}
\dot{x}=f(x) \tag{1}\\
x(0)=x_{0}
\end{array}\right.
$$

where $x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Assume to introduce a generic control variable u in such a way that the system can be then written as follows:

$$
\left\{\begin{array}{l}
\dot{x}=f(x, u) \tag{2}\\
x(0)=x_{0}
\end{array}\right.
$$

where $x: \mathbb{R} \rightarrow \mathbb{R}^{n}, u: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Our main target will be the study of the synthesis of u. Let, for example, x be a solution of the of the dynamical system (1) such that it induces oscillatory trajectories. We might want to find a suitable control u that, when inserted into (2), renders the trajectories steady:

Figure 1: Steadiness

1.1 Example: Motorized Pendulum

Consider a generic pendulum system (m, θ) coupled with a motor that is able to generate an angular displacement via a force u :

Figure 2: Pendulum

From basic Newtonian Mechanics we have the following non-linear ODE system for the dynamics:

$$
\left\{\begin{array}{l}
m \cdot \ddot{\theta}(t)+m \cdot g \cdot \sin (\theta(t))=u(t) \\
\theta(0)=\theta_{0}
\end{array}\right.
$$

We can re-write the system in a static-space form as follows: first, we introduce the state variables

$$
\left\{\begin{array}{l}
x_{1}(t)=\theta(t) \\
x_{2}(t)=\dot{\theta}(t)
\end{array}\right.
$$

assuming now that $m=g=1$, we obtain:

$$
\dot{X}=\frac{d}{d t}\binom{x_{1}}{x_{2}}=\binom{x_{2}}{-\sin \left(x_{1}\right)+u(t)}
$$

where u is the control variable.

This non-linear system has 2 equilibria: $\theta=0$ (stable) and $\theta=\pi$ (unstable). This means that, whatever the initial condition, for a sufficiently large t we'll always have that the system converges to the stable equilibrium $\theta=0$. Assume however that we want to force the system to stabilize at the unstable equilibrium $\theta=\pi$ using the force u. We linearize the system taking the following approximations:

$$
\theta \approx \pi \Longrightarrow \sin (\theta) \approx-(\theta-\pi)
$$

Therefore we introduce $\phi:=\theta-\pi$ in order to get

$$
\ddot{\phi}(t)-\phi(t)=u(t)
$$

also called the feedback control.
We want to stabilize the system at the unstable equilibrium, so we take the control law to be defined as $u(t)=-\alpha \cdot \phi(t)$, where $\alpha>0$. Now we write the closed loop system as:

$$
\ddot{\phi}-\phi=-\alpha \cdot \phi
$$

We can now use linear stability analysis to study the effect of the control law. A very simple improvement of the above control law is given by the possible introduction of a damping term by taking

$$
u=-\alpha \cdot \phi-\beta \cdot \dot{\phi}
$$

where $\beta>0$ is the damping. Finally, we can also introduce an integral term to obtain a so called PID (Proportional - Integral - Derivative):

$$
u=-\alpha \cdot \phi-\beta \cdot \dot{\phi}-\gamma \cdot \int_{0}^{T} \phi(t) d t
$$

2 Introduction to Optimal Control

Optimal Control (also referred to as Dynamic Optimization) problems can be formulated as follows:

$$
\begin{array}{ll}
\min _{u} & \int_{0}^{T} L(x, u) d t+V(x(T)) \tag{3}\\
\text { s.t. } & \left\{\begin{array}{l}
\dot{x}=f(x, u), \quad x \in \mathbb{R}^{n} \\
x(0)=x_{0}, \quad x_{0} \in \mathbb{R}^{n}
\end{array}\right.
\end{array}
$$

where $L(\cdot, \cdot)$ is called the optimization term and $V(\cdot)$ is called the penalty term.
A solution u^{*} of (3) is called an optimal control and the trajectory x^{*} induced by u^{*} is called an optimal trajectory. Note that we can discretize the problem as follows:

$$
\begin{aligned}
\dot{x}= & f(x, u) \Longrightarrow x^{k+1}=x^{k}+\Delta t \cdot f\left(x^{k}, u^{k}\right) \\
& \Longrightarrow x(t) \rightarrow\left\{x^{k}\right\}, \quad u(t) \rightarrow\left\{u^{k}\right\} \\
& \Longrightarrow \int_{0}^{T} L(x, u) d t \approx \sum_{i=1}^{N_{T}} L\left(x^{k}, u^{k}\right)
\end{aligned}
$$

2.1 Some types of Control

We now briefly present 3 possible types of controls:

- ∞-Horizon Optimal Control:

We take $T=+\infty, V \equiv 0$, so we obtain the following formulation for (3):

$$
\begin{aligned}
& \min _{u} \int_{0}^{T} L(x, u) d t \quad \text { s.t. } \quad \dot{x}=f(x, u) \\
& \Longrightarrow \exists\left(x^{*}, u^{*}\right) \quad \text { s.t. } L\left(x^{*}, u^{*}\right) \rightarrow_{t \rightarrow+\infty} 0
\end{aligned}
$$

We could for example take $L(x, u):=\|x\|_{2}^{2}+\|u\|_{2}^{2}$

- Linear-Quadratic Control:

We take $L(x, u):=x^{T} Q_{x} x+u^{T} Q_{u} u$ (quadratic cost), $V(x(T))=x^{T}(T) P_{1} x(T)$ so we obtain the following formulation for (3):

$$
\begin{gathered}
\min _{u} \int_{0}^{+\infty}\left(x^{T} Q_{x} x+u^{T} Q_{u} u\right) \cdot d t+x^{T}(T) P_{1} x(T) \text { s.t. }\left\{\begin{array}{l}
\dot{x}=A x+B u \\
Q_{x} \geq 0, \quad Q_{u} \geq 0
\end{array}\right. \\
\Longrightarrow L(x, u) \rightarrow_{t \rightarrow+\infty} 0
\end{gathered}
$$

- Time-optimal Control:

We take $L=1, V \equiv 0$ and leave T free, we obtain the following formulation for (3):

$$
\min _{(u, T)} T=\int_{0}^{T} 1 \cdot d t \quad \text { s.t. } \quad\left\{\begin{array}{l}
\dot{x}=f(x, u) \\
x(0)=x_{0} \\
x(T)=x_{d} \\
u \in \mathcal{U}
\end{array}\right.
$$

where x_{d} is the desired final state and \mathcal{U} is compact. There are 2 main difficulties with this formulation:

- it is an optimization problem w.r.t. u and T
- we don't know if $\exists T$ such that $x(T)=x_{d}$

Optimality conditions are given by Pontryagin's Maximum Principle: given the optimal control problem

$$
\min _{u} \int_{0}^{T} L(x, u) d t+V(x(T)) \quad \text { s.t. } \quad\left\{\begin{array}{l}
\dot{x}=f(x, u), \quad x \in \mathbb{R}^{n} \\
x(0)=x_{0}, \quad x_{0} \in \mathbb{R}^{n}
\end{array}\right.
$$

we construct the Hamiltonian of the system as follows:

$$
\mathcal{H}(x, u, \lambda)=\mathcal{L}(x, u)+\lambda^{T} \cdot f(x, u)
$$

where λ is the adjoint variable of \mathcal{H}. The stationary conditions for \mathcal{H} are:

$$
\nabla_{x}(H)=\nabla_{u}(H)=\nabla_{\lambda}(H)=0
$$

By Pontryagin's Maximum Principle (P.M.P.) there $\exists f$ s.t. $\left(x^{*}, u^{*}\right)$ is optimal i.e. there $\exists \lambda^{*} \in \mathbb{R}^{n}, \gamma^{*} \in \mathbb{R}^{q}$ s.t.:

$$
\left\{\begin{array}{l}
\dot{x}=\partial_{\lambda} \mathcal{H}, \\
-\dot{\lambda}_{i}=\partial_{x_{i}} \mathcal{H} \quad \text { (adjoint equation), } \\
x(0)=x_{0}, \\
\psi(x(T))=0 \\
\lambda(T)=\partial_{x} V(x(T))+\gamma^{T} \partial_{x} \psi, \\
\mathcal{H}\left(x^{*}, u^{*}, \lambda^{*}\right) \leq \mathcal{H}\left(x^{*}, u, \lambda^{*}\right) \quad \forall u, \forall t \quad\left(\Longleftrightarrow u^{*}=\arg \min _{u} \mathcal{H}\left(x^{*}, u, \lambda^{*}\right)\right)
\end{array}\right.
$$

2.2 Example: 2 point BPV (TPBPV)

Consider the following problem:

$$
\left\{\begin{array}{l}
\dot{x}=a \cdot x+b \cdot u \tag{4}\\
x_{0}=x\left(t_{0}\right)
\end{array}\right.
$$

We have:

$$
J:=\frac{1}{2} \int_{0}^{T} u^{2} d t+\frac{1}{2} c \cdot x(T)^{2}, \quad c>0
$$

Therefore:

$$
\Longrightarrow L=\frac{1}{2} u^{2}, \quad V(x)=\frac{1}{2} c \cdot x(T)^{2}
$$

Which implies the following expression for the Hamiltonian of the system:

$$
\Longrightarrow \mathcal{H}(x, u, \lambda)=\frac{1}{2} \cdot u^{2}+\lambda \cdot(a \cdot x+b \cdot u)
$$

Applying P.M.P. conditions to this Hamiltonian we obtain the following problem:

$$
\left\{\begin{array}{l}
\dot{x}=a \cdot x+b \cdot u \tag{5}\\
x_{0}=x\left(t_{0}\right) \\
-\dot{\lambda}=\lambda \cdot a \\
\lambda(T)=c \cdot x(T)
\end{array}\right.
$$

And therefore:

$$
\begin{gathered}
\Longrightarrow \mathcal{H}\left(x^{*}, u^{*}, \lambda^{*}\right) \leq \mathcal{H}\left(x^{*}, u, \lambda^{*}\right) \quad \forall t \in[0, T] \\
\Longleftrightarrow u^{*}=\arg \min _{u} \mathcal{H}\left(x^{*}, u, \lambda^{*}\right)=\arg \min _{u} \frac{1}{2} u^{2}+\lambda^{*} \cdot a \cdot x^{*}+\lambda^{*} \cdot b \cdot u \\
\Longrightarrow u^{*}=-\lambda \cdot b
\end{gathered}
$$

Plugging this expression for u^{*} into (5) leads to the 2 point Boundary Value Problem:

$$
\left\{\begin{array}{l}
\dot{x}=a \cdot x-b^{2} \cdot \lambda \tag{6}\\
x_{0}=x\left(t_{0}\right) \\
-\dot{\lambda}=\lambda \cdot a \\
\lambda(T)=c \cdot x(T)
\end{array}\right.
$$

Which consists in an equation forwards in time for x and an equation backwards in time for λ. The system can be represented in the following way:

$$
\binom{x(0)}{?} \stackrel{\dot{x}=a x-b^{2} \lambda}{\stackrel{\dot{\lambda}=a \lambda}{\rightleftharpoons}}\binom{?}{\lambda(T)}
$$

In this particular case we can integrate and obtain:

$$
\lambda(t)=c \cdot x(T) \cdot e^{a(T-t)} \Longrightarrow \dot{x}=a \cdot x-b^{2} c \cdot x(T) \cdot e^{a(T-t)}
$$

2.3 Reduced Gradient

Given an optimal control problem, numerically we have 3 alternatives:

- Proceed as above and obtain a TPBPV. However this procedure is not always possible and depends on u !
- Discretize everything and obtain the following:

$$
\left\{\begin{array}{l}
x^{k+1}=x^{k} \Delta t \cdot f\left(x^{k}, u^{k}\right), \quad x^{0}=\ldots \\
\lambda^{k+1}=\lambda^{k}-\Delta t \cdot \ldots, \quad \lambda^{N}=\ldots
\end{array} \quad \Longrightarrow F(\vec{x}, \vec{\lambda})=0\right.
$$

which can be resolved using Newton's Method...

- Reduced Gradient: we have the following

$$
\min _{u} J(x, u)\left(=\int_{0}^{T} L(x, u) d t+V(x(T))\right) \text { s.t. } \quad\left\{\begin{array}{l}
\dot{x}=f(x, u), \quad x \in \mathbb{R}^{n} \tag{7}\\
x(0)=x_{0}, \quad x_{0} \in \mathbb{R}^{n}
\end{array}\right.
$$

if we fix x_{0} we have the so-called control-to-state map:

$$
u(\cdot) \longmapsto x(t):=x(u)
$$

so in this case the problem (7) becomes:

$$
\min _{u} J(x(u), u) \quad \text { s.t. } \quad\left\{\begin{array}{l}
\dot{x}=f(x, u) \tag{8}\\
x(0)=x_{0}
\end{array}\right.
$$

given an initial guess u^{0} of $u(t) \forall t \in[0, T]$, we can use a gradient method:

$$
u^{0} \rightarrow_{k \rightarrow+\infty} u^{*} \Longrightarrow u^{k+1}=u^{k}-\delta^{k} \cdot \nabla_{u} J\left(u^{k}\right)
$$

Using Calculus of Variations, we can prove that we actually have the following:

$$
\nabla_{u} J=\nabla_{u} \mathcal{H}(x, u, \lambda)
$$

To compute $\nabla_{u} J\left(u^{k}\right)$ we can use the following algorithm:

1. u^{k} given
2. $\dot{x}=f(x, u) \longrightarrow$ we obtain x^{k} integrating forwards
3. $-\dot{\lambda}=\partial_{x} \mathcal{H} \longrightarrow$ we obtain λ^{k} integrating backwards
4. $\nabla_{u} J\left(u^{k}\right)=\nabla_{u} \mathcal{H}\left(x^{k}, u^{k}, \lambda^{k}\right)$
u is still continuous at this level, so we nave to discretize it further: $u^{k} \longrightarrow\left\{u_{i}^{k}\right\} \ldots$ Moreover, note that in this case we don't have any constraints on u, but that is not always the case!

2.4 Example: Control-Affine Setting

Consider the following problem:

$$
\dot{x}=f(x)+g(x) \cdot u
$$

In this setting P.M.P. is a necessary condition, so we have:

$$
\min _{u} J(x(u), u) \longrightarrow u^{k}(t) \in[0, T] \text { which is the optimal control signal }
$$

This map is uniquely determined by the initial condition $x(0)$:

$$
x(0) \longrightarrow \min _{u} J(x(u), u) \longrightarrow u^{k}(t) \in[0, T]
$$

However, in reality this almost never happens because we need to take errors/disturbances into account!

Figure 3: Errors and disturbances
We have the following distinction:

- Open-Loop Control:

$$
u(t) \longrightarrow \dot{x}=f(x, u)
$$

- Closed-Loop Control:

$$
\dot{x}=f(x, u) \rightleftarrows u=F(x)
$$

This is also referred to as model predictive control (MPC), $u=F(X)$ is called the Feedback.

3 Optimal Feedback

Consider the problem:

$$
\left\{\begin{array}{l}
\dot{x}=u(t), u \in \Omega=[-1,1] \\
x(0)=x_{0} \in \Omega=[-1,1]
\end{array} \quad \Longrightarrow \partial \Omega=\{-1,1\}\right.
$$

We want to minime the following:

$$
\min T \quad \text { s.t } \quad x(T) \in \partial \Omega
$$

Figure 4: Problem dynamics
We have:

$$
\begin{gathered}
\min \int_{0}^{T} 1 d t \Longrightarrow \mathcal{H}:=1+\lambda^{T}(u),\left\{\begin{array}{l}
\dot{x}=u \\
-\dot{\lambda}=0
\end{array}\right. \\
\Longrightarrow u^{*}=\arg \min _{u \in[-1,1]} 1+\lambda \cdot u=-\operatorname{sgn}(\lambda)= \begin{cases}1 & \lambda>0 \\
-1 & \lambda<0\end{cases}
\end{gathered}
$$

Which means that we have an optimal solution in feedback form:

$$
u^{*}(x)= \begin{cases}1 & x \geq 0 \\ -1 & x<0\end{cases}
$$

We now introduce the arrival time to $\partial \Omega, T(x)$:

$$
{ }^{\prime \prime}-\nabla T=u+\varepsilon \Delta u "
$$

Figure 5: Arrival time
$T(x)$ solves the Hamilton-Jacobi-Bellman PDE (also called the Eikonal equation):

$$
\left\{\begin{array} { l }
{ \| \nabla T \| = 1 } \\
{ T (- 1) = T (1) = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
T(x):=\inf _{u} J(\tilde{x}(u), u) \\
\tilde{x}(0)=x
\end{array}\right.\right.
$$

Summarizing, we have the following scheme:

Figure 6: Optimal Feedback scheme

Provided that we can solve the PDE, we obtain the optimal Feedback map:

$$
u^{*}(x):=-\nabla V(x)
$$

If we have:

$$
T(x)=\inf _{u} J(\tilde{x}(u), u)
$$

then:

$$
T(x)=\inf _{u}\{\tau+T(x(u, \tau))\} \forall x \in \Omega, \forall \tau \in[0, T(x)]
$$

where $T(x(u, \tau))$ is departing at τ. Dividing by τ and taking $\tau \rightarrow 0$ we obtain:

$$
\begin{aligned}
& -1=\inf _{u}\left\{\frac{T(x(u, \tau))-T(x)}{\tau}\right\} \longrightarrow \longrightarrow_{\tau \rightarrow 0} \inf _{u}\{\nabla T \cdot f\}=\inf _{u}\{\nabla T \cdot \dot{x}\} \\
& \Longleftrightarrow 1=\sup _{u}\{-\nabla T \cdot f\}=\sup _{u}\{-\nabla T \cdot \dot{x}\} \Longrightarrow\left\{\begin{array}{l}
\dot{x}=u, u \in[-1,1] \\
1=\|\nabla u\|
\end{array}\right.
\end{aligned}
$$

So, if we solve the Hamilton-Jacobi-Bellman PDE for $T(x)$, we have the following:

$$
u^{*}(x(t))=\arg \max _{u}\{-\nabla T(x) \cdot f(x, u)\}
$$

where $u^{*}(x(t))$ is the current state.

3.1 Link between P.M.P. and the H.-J.-B. PDE

Consider the following problem (Finite Horizion/Unconstrained Problem):

$$
\begin{align*}
& \min _{u} \int_{t}^{T} L(x(s), u(s)) d s \text { where } L(x, u):=\ell(x)+\beta(u)^{2} \tag{9}\\
& \text { s.t. }\left\{\begin{array}{l}
\dot{x}=f(x)+g(x) \cdot u(s) \\
x(t)=x_{0} \\
s \in[t, T]
\end{array}\right.
\end{align*}
$$

We can study it in different ways:

1. P.M.P.

Following the same procedure of section (2.1) we obtain the following:

$$
\left\{\begin{array}{l}
\mathcal{H}=L(x, u)+\lambda^{T} \cdot(f(x)+g(x) \cdot u) \\
\dot{x}=f(x)+g(x) \cdot u \\
x(t)=x_{0}
\end{array}\right.
$$

Which then implies

$$
\Longrightarrow\left\{\begin{array}{l}
-\dot{\lambda}=\partial_{x} \mathcal{H} \\
\lambda(T)=0
\end{array} \quad \Longrightarrow u^{*}=\arg \min _{u}\left\{L(x, u)+\lambda^{T} \cdot(f(x)+g(x) \cdot u(s))\right\}\right.
$$

Which means that finally we have the following:

$$
\Longrightarrow\left(u^{*}, x^{*}, \lambda^{*}(s)\right) \longrightarrow\left(u^{*}(t), x^{*}(t), \lambda^{*}(t)\right), \quad s \in[t, T]
$$

2. Hamilton-Jacobi-Bellman PDE

We follow the same steps of section (3) and obtain:

$$
V(x, t)=\inf J(x, u):=\int_{t}^{T} L(x, u) d s=\int_{t}^{T} \ell(x)+\beta(u)^{2} d s
$$

The Hamilton-Jacobi-Bellman PDE is:

$$
\left\{\begin{array}{l}
\partial_{t} V(x, t)=\frac{1}{4 \beta} \nabla V^{T} \cdot g(x) \cdot g(x)^{T} \cdot \nabla V-\nabla V \cdot f(x)-\ell(x) \\
V(t, x)=0
\end{array}\right.
$$

Which implies:

$$
u^{*}(x, t):=\arg \min _{u} \ldots=-\frac{1}{2 \beta} g(x)^{T} \cdot \nabla V(x, t) \quad \forall x \in \mathbb{R}^{n}, \forall t \in[0, T]
$$

We want to study the existing link between the 2 approaches. P.M.P. conditions are far easier to compute numerically, but they are also completely dependent on the current state of the system. The Hamilton-Jacobi-Bellman PDE approach is extremely precise, but it involves solving a high-dimensional non-linear PDE! In this particular setting we have:

$$
L(x, u)=\ell(x)+\beta(u)^{2} \Longrightarrow \dot{x}=f(x)+g(x) \cdot u \quad \text { (Control-Affine dynamics) }
$$

Therefore, if we solve the P.M.P. conditions with initial condition $x\left(t_{0}\right)=\hat{x}$ and we obtain the optimal trajectory $\left(u^{*}(t), x^{*}(t), \lambda^{*}(t)\right)$, we have:

$$
\left\{\begin{array}{l}
V\left(x^{*}(t), t\right)=\int_{t}^{T} \ell\left(x^{*}(s)\right)+\beta \cdot\left\|u^{*}(s)\right\|^{2} d s \\
\nabla V\left(x^{*}(t), t\right)=\lambda^{*}(t) \quad \forall t \in\left[t_{0}, T\right]
\end{array}\right.
$$

3 Optimal Feedback

Figure 7: Control-Affine dynamics
Assuming $t=0$ and approximating $V(x, 0)$ (i.e. solving the H.-J.-B. PDE) we obtain a sub-optimal feedback:

$$
\tilde{u}(x)=-\frac{1}{2 \beta} g(x)^{T} \cdot \nabla V(x, 0)
$$

Finally, we can use the following algorithm to solve the problem numerically:

1. Generate samples $\left\{\hat{x}_{i}\right\}_{i=1}^{N_{s}}$ on \mathbb{R}^{n}
2. Solve the P.M.P. conditions with initial condition $\hat{x_{i}}$:

$$
\hat{x_{i}} \longrightarrow\left(u_{i}^{*}(t), x_{i}^{*}(t), \lambda_{i}^{*}(t)\right), \quad t \in[0, T]
$$

where x_{i}^{*} is originating from $x(0)=\hat{x_{i}}$
3. Construct a synthetic dataset:

$$
\left\{\begin{array}{l}
V_{i}:=V\left(\hat{x}_{i}, 0\right)=\int_{0}^{T} \ell\left(x_{i}^{*}(t)\right)+\beta \cdot\left\|u_{i}^{*}(t)\right\|^{2} d t \\
\nabla V_{i}:=\nabla V\left(\hat{x_{i}}, 0\right)=\lambda_{i}^{*}(0)
\end{array}\right.
$$

4. Use supervised learning (regression) or unsupervised learning to obtain $V(x)$ (equivalent to learning a model for $V(x, 0):=V(x)$):
In the supervised case we can proceed in different ways

- Neural Networks:

We have

$$
V(x) \approx V_{\sigma}(x):=N N(x, \theta, \ell)
$$

where θ are the parameters and ℓ are the layers. The training data is:

$$
\left\{\hat{x}_{i}, V_{i}, \nabla V_{i}\right\}_{i=1}^{N_{s}}
$$

while the loss function is:

$$
\ell(\theta):=\sum_{i=1}^{N_{s}}\left\|V_{i}-V_{\theta}\left(\hat{x_{i}}\right)\right\|^{2}
$$

In the gradient augmented case the loss function becomes:

$$
\ell(\theta):=\sum_{i=1}^{N_{s}}\left\|V_{i}-V_{\theta}\left(\hat{x}_{i}\right)\right\|^{2}+\gamma \cdot\left\|V_{i}-V_{\theta}\left(\hat{x_{i}}\right)\right\|^{2}
$$

Learning a model is equivalent to solving $\theta^{*}=\arg \min _{\theta} \ell(\theta)$, however this is a large scale, non-convex optimization problem!

- Polynomial approximation:

We have

$$
V(x) \approx V_{\sigma}(x):=\sum_{i=1}^{m} \theta_{i} \cdot \Phi_{i}
$$

where $\left\{\Phi_{i}\right\}_{i=1}^{m}$ are a polynomial basis for functions $\mathbb{R}^{n} \longrightarrow \mathbb{R}$ (e.g. monomial basis, orthogonal polynomials (Legendre/Hermite etc. ...) ...)
Here we have the advantage that the gradient of V_{σ} can be trivially computed:

$$
\nabla V_{\sigma}=\sum_{i=1}^{m} \theta_{i} \cdot \nabla \Phi_{i}
$$

Moreover, training this model is equivalent to solving a linear least squares problem:

$$
\begin{gathered}
V_{\sigma}\left(\hat{x_{i}}\right):=\sum_{i=1}^{m} \theta_{i} \cdot \Phi_{i}\left(\hat{x_{i}}\right)=<\theta, \Phi\left(\hat{x_{i}}\right)> \\
\Longrightarrow \ell(\theta):=\left\|A \theta-\left(V_{i}, \nabla V_{i}, \ldots\right)^{T}\right\|^{2}, \quad A=\left(\begin{array}{ccc}
\Phi_{1}\left(\hat{x_{1}}\right) & \Phi_{1}\left(\hat{x_{2}}\right) & \ldots \\
\Phi_{2}\left(\hat{x_{1}}\right) & \Phi_{2}\left(\hat{x_{2}}\right) & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)
\end{gathered}
$$

where we note that A is a Vandermonde Matrix. We can also use a sparsity promoting loss function:

$$
\ell(\theta)=\|A \theta-\bar{V}\|^{2}+\gamma \cdot\|\theta\|_{1}
$$

where \bar{V} is the dataset and the term $\gamma \cdot\|\theta\|_{1}$ is the sparsity/penalization term. Notice that this problem is still convex but it is non-smooth! This means that we need to adopt a Lasso/Proximal Gradient method to solve it. We also need to think how to scale this problem properly in high dimensional cases. If $\dot{x}=A x+B u, \quad \ell(x)=x^{T} Q x$ with $Q \geq 0$, then $V(x)=x^{T} \Pi x$ (linear-quadratic control, where $\Pi \geq 0$ solves a Riccati equation) can be retrieved by polynomial approximation.

- Physics Informed Neural Networks/Deep Galerkin Method

In this case we are in an unsupervised setting and we have:

$$
V(x) \approx V_{\theta}(x)=N N(x, \theta)
$$

The Hamilton-Jacobi-Bellman PDE is:

$$
\|\nabla V\|=1 \Longrightarrow\|\nabla V\|-1=0 \Longrightarrow \operatorname{Res}(V):=\|\nabla V\|-1
$$

Therefore, solving the PDE is equivalent to solving $\operatorname{Res}(V)=0$. We introduce the residual loss:

$$
\ell(\theta):=\left\|\operatorname{Res}\left(V_{\theta}\right)\right\|_{L^{2}(\Omega)}^{2}
$$

Finally, training this model is equivalent to solving the following optimization problem:

$$
\min _{\theta}\left\{\| \| \nabla V_{\theta}\|-1\|_{L^{2}(\Omega)}^{2}\right\}
$$

