
 DATA FITTING AND RECONSTRUCTION

MAIN TARGET

Given a DATASET OF VALUES ÉÉÉI E IR da
s t we know that If Ird IR with f xi ti ti
we want to Reconstruct such function f
2 MAIN CASES

INTERPOLATION

STRUCTURED DATA

IF we harm a mope ya y
inmate data
LEAST SQUARES
APPROXIMATION
noisy data

UNSTRUCTURED DATA
2

E we Don't hour a MODEL for f
2 1 SPLINES i e piecewise polynomials

Data Xi Xi i 1 n Xi EIR Yi EIR

knots T a te t Em bis iii

Reconstruction space

dim T n 1
FOR INTERPOLATION WE MUST HAVE M ie t 1

THM
Xi titis s E Xie Xia ti F S E T s t

s interpolates Xiii iff Vietti tits ti

THM
Xi vilite with Xi Distinct F Pu x polynomial s t

dezPm Eun Pu Xi Yi ti



ERROR UPPER BOUND

EE If x Sk I k Eff If x l

where h maximum knot spacing

Examples
FundamentalLagrange Polynomials Lagrange Newtonfour

Example HAAR WAVELET
particular case of Fourier decomposition based on

piecewise constant splines
Signals s t piecewise constant functions t E IR
knots T K

s t Eg Sk flt K t Leoe t unit step
Decompose s t in a TREND and a Detail

s E TIE DIE

TIE I
12K tyke E K

D E E
KK IZKAX E K

where the AMPLITUDE is th 12K Izatt
and t 0122 0 22 1

T t has knots 272 7 REPEAT THIS DECOMPOSITION

s E Tat De
Tat Da De
T Dz Da De
Tm t Dun t Dun e t De

where Tutt has knots 2m72



NUMBER OF OPERATIONS

s has N 2 coefficients Thas Y D has Nz
in total 2N operations

ORTHOGONALITY

4 E KDuey is an 1 family
E KBaez is an 1 family
4 E KBaez E KBaez are 1 W R T eachother
t 0 24 are not I
E KBuen t ZE KI men are I W R T eachother

of E KBaez 12 t KI uez are I w R.t each
other V5 20 BUT NOT An 550

The Haan Decomposition is an I decomposition

MultiRESOLUTION ANALYSIS
Consider a signal s in La IR

S E L IR In EL TL

define

scale spaceof t 23412 t K t 234 2 t Ke piecewise
V s t I askOsu t asuka El 721singalsturth

breaksat 2 KW D t É but u t bulkex El TL
detailspace
La IR Vu Vu so V1 Vo k 0

and Vuhas knots at Z uz

Usta Vs W Vo W
sit FuGutsu t

ÉÉÉÉÉÉÉ vena is there ÉÉiÉpitied
K is the Location parameter and it determines
the location of the support



Example PIXELS BIVARIATE WAVELETS
The JPEG image compression is made using a wavelet
not the Hoar wavelet On every pixel you have a

constant intensity e z in a black andwhite picture

can be described as

P X Y E Pi G x it s

pixel intensity function constant pixel intensity
where 4 x y Ago112 X Y

we group 16 pixels in 4 megapixels
the trend is replacing these 4megapixels by a

megapixel with its amplitude
the detail will be pixel megapixel

a b
Yad

c d

Trend m at by to

Detail D xx a m b m c m d m 3 Doe

we have
Trend I 11,1 1,1
x detail 1,1 1 1

4 nthozmal vectorsdetail 1 1 1 1

xx detail I 1 1 1

we can then write the Detail using this basis

1 A x detail B Y detail C xx detail
A a bye d B at b c d c a bistd



PIECEWISE LINEAR SPLINES
INTERPOLATION

Data Xi Xi i L n Xi E IR Yi EIR

knots T a te t Em 6
Reconstruction space

2 T s E Cla 6 s ti ti linear IF if u 1

dim It IT I u

S x Iaf x Eia H x H x on the Hat Function

THM Optimality CONDITION

z x interpolaut of f x m t s t.ge AC a b and

z E L a b then

z x ok I Ils x ok

ERROR UPPER BOUND
1 Ilf x Iaf x Ilyab I kill f x Ilia6
2 If x Iaf x Ilyab I 3h Ilf x Iliab

where h maximum knot spacing f E 9412,63
Bth formula for the error upper bound is SHARP
i e in general it's not possible to do any better

To find Iz f we must find the coefficients a s t

EIR H Xi Yi If if u
H Willi I I II i J In

THM SCHOENBERG WHITNEY

I H Willi E IR is NON singular Hi Xi O ti
i.e iff Xi E ti e titel IF if u



BEST E APPROXIMATION

Iaf is almostNEVER the best approximation of f
F s E 2 T sit If x s x Ilya I 11ft Iaf x lead
But Iaf is Always verygood
Data Xi Xi i L n Xi E IR Yi EIR

knots T a te t Em 6
Reconstruction space

2 T s E Cla 6 s ti ti linear IF if u 1

dim It IT I u

YS III EYE is sat
We want to find s E s t

Il f s Ilyab I 11 f s lead Vs E 2 T

S x Laf x Eia H x H x on the Hat Functions

Thecoefficients a are given by
I G t f

where b fall 1 x ok Ges Hi x H x ok G GramMatrix
G is symmetric tridiagonal positive definite anddiagonally
dominant

INTERPOLATION us BEST L APPROXIMATION

THM COMPARISON

tf E E ta I we have
1 If IafIlliab I 2 Ez f
2 11 f LatIlliab I 4 Ez f

where Ez f Infallf sIles is the MINIMUM POSSIBLE ERROR



Example RAYLEIGH RITZ VARIATIONAL METHOD
for SelfAdjoint ODE's

analogues to the gradient method for linear
systems It works for equations of the followingfour

play't t gAly ra

with DirichletBoundary Conditions Y a 8161 0

olefin the Differential Operator Ly p x y't t a fly
and the inner product If 33 fix g x ok
We have that L is self adjoint

T Lf 27 I f Lz7
Vf z satisfying the BC

the solution y of the ODE is their the minimizer of

ul LIU LUI LU V7

NBWewouldneed to solve this problem in a SobolevSpace
whereeverything is welldefined
To approximate the minimizer numerically we replaceWFP
with 2 T where we have 2nd meter approximation of
E functions and 1st notesapproximationof theirderivation
Take also into account the BC

Knots T a te t Em 6
Reconstruction space

2 t s E 2IT S x ÉÉa Hs x
The minimizer becomes of s f at GE Itt where

bi liraHg x ok I e IR Z
E e IR 2

Gis 9 x Hi xHg x p x H x Ht xok GE IR
4 21 4 2



CUBIC SPLINES
Data Xi Xi i L n Xi E IR Yi EIR

knots T a te t Em 6
Reconstruction spaces
1 Vi T s EE La b s ti ti cubic IF if u 1

dimWalt 2n 2 ambitious at each interim knot
2 4 T s EE a b s ti ti cubic IF if u 1

dimSalt n 2 3 ambitious at each interim knot
Conditions at the Knots
Existence of s't is guaranteed in the following
conditions

1 NATURAL SPLINE END CONDITIONS
s a s 61 0

2 COMPLETE SPLINE END CONDITIONS

s a f a s b f b
1 In Vi T we impose 2 conditions at each knot

s Eg x tr me 155 In
cubic Hermite polynomial interpolation problem
thevalues in are determinedminimizing the
BENDING ENERGY i e the CURVATURE

Els 1 1111111p ok Linearization Is All walk

where w is taken to be piecewise constant
in the end we find s s t 1 141 4 5 1 u

and it minimizes the WEIGHTED ENERGY

simianEw1 1 Ew s ÉÉwIf's x ok

the OPTIMALITY CONDITION is
Ew A is minimized w x s x E Eoka 6



we get a mxn linear system to edu for me
Ain I

where I I YEEs Esta Wy Ky E IR 5 1 u

and A A Ws ks EIR 5 1 u is tridiagonal
diagonally dominant and hence invertible

2 In T we can use the above system with WAEL
minizing therefore falls x ok or we can use the
2nd derivative values as unknowns We have

S x As B x ts C x ts t D x tsp

where h Este Es As y C ME D s titty ts

B If C h D h

we onlyneed to find c and to do this we use
the PeanoKernel Formula

The COMPLETE SPLINE INTERPOLANT has better
approximation properties and is therefore written as Inf

Inf x complete cubicspline interplant in T

ERROR UPPER BOUND
1 Ilf x Iaf x lies I If If x Iliab
2 If x Inf x lies6 I

3 11 f x Iliab
3 If x I f x liesb I É l f x Iliab

where h maximum knot spacing f E e a b

We also have that Inf x Laf x E t

Mmover we have the following Optimality property



THM OPTIMALITY PROPERTY OF Iu
Given z s t J EAC Ia 6 z ti f til i t ie

g a f a z b f b then we have

z x ok I fillIn f x ok

The NATURALSPLINE INTERPOLANT has worse approximation
properties But it doesnot require the additional
information of f a f b It also has a worse even

upper bound in general Still we have the following
Optimality property

THM OPTIMALITY PROPERTY OFNATURAL SPLINES

Given z s t J EAC Ia 6 z ti f til i t ie

g E Lalla I then we have

z x ok I falls x ok
where s E T is a natural cubic spline interpolaut

We can also use a compromise NOT A KNOT splines
which are not as good as complete splines but
don't introduce conflicts with the function to be
approximated and don't require the derivative
data We simply require that s x Sa x and

Su z x Su e x Join together in such a way that they
are actually the same cubicpolynomial This is equivalent
toaddingthe 2 conditions se ta sa ta Su tu s Sne Ema
For not a knot colicsplines we have the following
even upperbowed Il f s Ilya 01h i.e same
order as for complete splines Theexistence ofsuch
splines is guaranteedbythe general Schoenberg WhitneyThenew



B SPLINES

Theygeneralize the Hat functions to higher degree
knots T Z
B splines of notes K at Kurt ti is

Bin t titu ti x E It ti titu

PROPERTIES
1 Hi t Bi z z t Bi t an LINEARLY INDEPENDENT
2 Bi k E E 2 IR Bi n E is a linear combination

of e 2 IR piecewisepolynomials of degree K 1 and
knots t it is an mater K EK Z splicer

3 supp Bi u t C Cti tital i.e Bi u E 0 HE4 Iti titu
4 Recurrence Formula NUMERICALLYSTABLE PETERTHANDefinition
Birk t tiÉIÉ Bi k e t t zita tita Bite K e t

5 Positivity Bi k t 70 VE E ti titu
6 Integral SBin Elalt tity ti
7 Sum E Bi ult 1 UK
8
Derivative

I Bin E Ck 1 BE É B

9 If ti i ER Bin t Bok t i
We set Nu t Bo u t we have
1 Bi Kt Nuit i

2 Nutt NK e t NK e E 1 Nu t LINK e x ok
3 Na E 0 t I o e E from the Haar Wavelet
4 2 Scale relation

Nutt EsEI E Nn Zt S for K 1

Using these Nu E we can express a spline with knot
at K as a spline with knots at half the integers

s E EIHENKLE it EIditNu lat it



where did E ai z di as the de Bom control

points from the Bezier curves a 241 Y Heon J

e z K 3 Chaikin corner cuttingforquadraticsplines
Ro I 21 Q2 23 f
It I don t 3 dit din't Edin th dit

Ildit di ll IM I to then the sequence of polynes
Pin with vertices di converges to theoriginal curve s t
In the case of closedpolygons we simply define the
additional control points by periodicity The same
method works for surfaces folk Em ai zme asmad me
We can also use B splines to construct a basis for
t if T is the bi infinite knot sequence
distinct knots Bi E CK 2

repeatedknots withmultiplicity in Bin E E
t me

AND it must be in I k i e titu ti to Vi

INTERPOLATION
Data Xi Xi i L n Xi E IR Yi EIR

knots T a te t Em b s t Es I EstK F E Z

find s t É a Bs u t s E s Xi Yi i e m

in the end we have to solve the linear system

Bs k Xi is a E

THM SCHOENBERG WHITNEY

Bs k Xi is is non singular E Bi k Xi 0 it u

Moreover given the knot sequence T te tu and
the interpolationvalues to it u F s E 4 T s t
s satisfies the Not A knot end conditions and it

interpolates the data



GRID INTERPOLATION
Interpolation sites Xi Ys ElR2 i t m 5 1 m

Values Z is E IR

we look for s x y s t s Xi x Z is
To find s it's sufficient to choose an interpolating
notes on thegrid horizontal vertical and proceedas
follows
1 s x interpolauts of Xi Zig it m I fixed

S x Izzi LI x Lagrange form
2 interpolauts of Ys S a 5 1 m

IIs a 25 y Lagrange four
s la b É zit LF a L b

and the inversenotes returns the saver result

UNIVARIATE THIN PLATE SPLINES

They are a generalization of cubic splines which will
then be further generalized to the multivariate case

We want to minimize the bending energygiven by
E f If112 Splf x ok innerproduct sf zz fpf z ok
finding representatives for function evaluation i e si x

s t I f sit f xi i 1 n tf E B L z IR when
BLa IR f I f a e n f E L IR on the Beppo
LEVI SPACES

the minimizer is a linear combination of unmal
vectors which express the constraints The coefficients
of the linear combination an obtained solving the
linear system with the Grain Matrix of the
renewal vectors G tri mi Iti E IR mu



we construct the evaluation representativestarting ly
s x Ena lx x 13

which belongs to BLz IR iff the BEPPO Levi
conditions hold

1 at É a x 0

if sa x lx a 13 then I f sat f a so we

use s x defined as above to get the evaluator

Ix x a IX X P

where ai 12 a 1 12 le xi an Ezln Xi a o

and li x is the i th degree Lagrange polynomial
we have Tf Tx f xi le xi f xx lm xi f xn
to solve this problem together with the fact that
11.112 is not a true noun we proceed as follows
consider 612 IR f E BLz IR f x e f xu o
11.112 is a true noun on 612 IR therefor we take

Tx Ii x Axe ta la x Avi xu lml x

Tx E bl IR n tf ix t f xi tf E bl IR

To solve the original interpolation problem

A E BLz IR s t f Xi Yi a Ilf11 is min

ur replace f with

f x f x f xa le x tf Kullu x E ble IR

which interpolates the data Fi Yi Yale xi tYulin xi



this yields the solution 5 x ai Fil x when
the coefficients ai are to be found via the system

GE I

where G Tx Xi is E IR
te
Finally to

get the interpolout of the original data we use

s x S x a la x Yulee x

s x Iga lx X l t ante t an tax

To find a we impose the interpolation conditions
and the Beppo Levi Conditions to get a retz x utz

dimensional linear system Theresulting interpolation
matrix is non singular

BIVARIATE THIN PLATE SPLINES
Sauer as above we want to minimize the bendingenergy

E s Ip 12 s t 212 s t Is PIA

BL z IR 2 A If If If E L R2
with the inner product

If 37 p f z t 22 12 3 23 423 z da
s t Elf 114112
As in the univariate case we look for sa xx in

612 IR s t Isa ft f a tf E bl R2

a distributional PDE arises involving the ITERATED
LAPLACIAN D for which we look for Radial
solutions given that A is rotational invariant
First we solve It So which grants us



to xx IT log v 1

Then we solve Asa to which leads us to the
general solution

so xx IT VE log ra

Va 1 2112 1 2212
1

The energy minimizer will be a linear combination

s X X EE ai Vilog Vi
Vi x XiP X XeF

We have that s xx EI airily ve E La IR lift
the Beppo Levi conditions hold

ai II ai Xi ai te 0

In this case if f E BL z IR 2 we have that

FEI Ipkf Is 22h Is 23h s da o

So we have that if s xx It É ai vialeg vi
satisfies the Beppo Levi Conditions in ai then

for f E BL z IR I f 17 E ai f x i ti Now

we repeat the steps of the univariate case

1 Given Si x Y IT Vlog ri we find Si xx

the modification of s with 3 momentconditions
which will have a subtraction of 3 others xiii
We choose the first 3 S1 S2 S3 So we need to
add the condition that X1 X1 Xz Yz X3,43
must not all be on the same line they need
to form a non degenerate triangle



2 Si x y Si x y E ly Xiii Ss x Y E BL z R2
3 We reduce to

612 IR 2 f E Ble R2 f x F 0 5 1 2,3
Here 11 112 is a trees rerun

4 Just as the univariate case we set

Ji Si EE Si Xs Yells X Y

and reduce the data I Zi EE z ls xiii
The optimal interpolaut in 6h R2 is then

T X Y EE as I x Y

s t T Xi Xi E i 4 in

5 Finally to get the Thin Plate Spline we add
the correction

S xx F XX EEZ l ski
which means that

s x y FI A V log k ants tantz X tan 37

with the interpolation conditions and the 3

Beppo Levi Cuditimes This is an ut 3 utz

linear system whose Interpolation matrix is
NON singular

ERROR UPPER BOUND

If f E BLz R2 I E D Es Ia Ie then

I f I s E I I EYE Elf h

when h is the lengthof the longest triangle side



There are other functions whichenable us to write
the Thin Plate Spline interpolout as a linear
combination of their translations we only require
the interpolation matrix to be non singular

1 POSITIVE DEFINITE FUNCTIONS
Ird d is pas def on IR if the matrices

10 E Fl is a n
E 6mm

are pas def Acollection of distinct points Ii i
in IRd M 1 2 3

Sour examples of pos def functions
1 THM BOCHNER

a IRd IR s t a w 20 VW E IR d a w o

on a NON trivial cube in IRd aud a E Le IR
then 4 I a I Sir a w e n'die i e

the Fourier Transform of a is a pos def
function on Ird

2 By the above Three Gaussian functions
ta I e

d t
a o

are pas def functions me IR Hd If we use the

Gaussian functions for Thin Plate Interpolation
we have that the Interpolation Matrix is a

constant times the Grain Matrix of the Gaussian
themselves ex pl LIII E 112 E C fate Fill
These functions are linearly independent We
define the Gaussian Native Space

N ta f E La Ird exp I HERE E L IRN



with the innerproduct

t.az help.twIEf se
Then the Gaussian Interpolant

s E EI ai f LE Fi
minimizes theenergy IIs IL t.sk Note that
it might be needed to evaluate the Gaussian
Interpolaut at many points Using a direct
method would cost Of u x nil operations so it's
better to approximate thevalues using the Fast
GauseTransform which costsonly Olu tu't Define
now pl f e f E Et f E Elli E Z Etf
I f E Elli E IR The followingholds

ERROR UPPER BOUND

If E s I II NAIL PA x E VE E IR

mm
III III

me
where Pfa x I min Offset is the Power
Function Xm a set of neighbouringpoints to I
Axn I É Ii Ell the LEBESGUE Function
Nine d MT him the smallest diameter i t

Xin C E HE E Iz E Fhun

3 f x 11 2 f x f e d f x I Allt
are pas def m IR



4 THM SCHOENBERG

Given a E 20 VEZO s t 214 0 me a NON

trivial interval a 6 CEO to and set
IR O IR s t

s ft a e stole La s

Then f x 4 v2 in a RADIAL POS DEF function
m IRd Vol A radial function whose translates
can be used for interpolation is called a

RADIAL BASIS FUNCTION

5 By the above Them the function
s E EI as IthIst

is radial pos def and it is the Hardy Inverse
Multiquadric interpolaut

6 COMPACTSUPPORT RBF's

If a function is pas def on IR then it is

pas def on IRM Vuk ol The function
f E I 11Ella

is pas def on IR t l LES 1
We note that for a function f 51 0 11 112

i.e radial its Fourier transform is

I E III ft of v Jeans vitellaldr
when I I are the Bessel Functions
The problem with flu e r tf is that it is
ett at v1 in any dimension This is why
Wendland introduced a calculus for smooth



Compact Support RBF's given of E IR IR
s t E414E L IR o define the operators

Id x I E0 Holt Dd x ft x

Notice that Id x is even and that the
2 operators are inverse to each other Moreover
if supp fo T R R then supp I supp D

T R R Define the Wendland Functions
as follows

Polk v I chestualr
when Ole v 1 r I d is the dimension and
K is the smoothness order They are pas def m
IR V k 0 Moreover they are piecewise
polynomials in v V E 0,1 of degree E 3kt 1

and are CZK Ird

2 CONDITIONALLY DEFINITE FUNCTIONS
Sometimes we can get non singular interpolation
matrices f X Fi is just requiring them to

be conditionally definite
THM MICHELLI

given a s t a E 20 HE 20 a t o m a

um degenerate interval a b C 11270 and s t

s 0101 It E act lot

with 410120 we have that the interpolation
matrices In G IE E 113 is E IR are

rear singular t Ii CIR Vdimension d



Sour examples of such functions are the distance

function of II I I 112 i.e A III Ella is
is non singular and the function then
Laterplants of the form

S E II as IthEiENT
are called the HARDY MULTIQuadrics


