Data Fitting and Reconstruction
Main Target:
Given a DATASET OF VALUES $\left(x_{i}, Y_{i} \ddot{Y}_{i}^{N}\right)_{i} \in \mathbb{R}^{d+1}$ s.t. We know that $\exists f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{\text {with }} f\left(x_{i}\right)=y_{i} \forall i$, we want to RECONSTRUCT such function $\&$
$\Rightarrow 2$ MAIN CASES:

1) $(\Leftrightarrow$ we have a MODEL for $\ell) \Rightarrow\left\{\begin{array}{l}\text { (} \\ \text { (} \\ \text { 2) }(\Leftrightarrow \text { UNSTRUCTURED DATA } \\ \text { wON'T have a MODEL for } \ell)\end{array}\right.$
2.1) SPLINES (i.e. pieceurise polyuavials):
\Rightarrow piecewise constant splines:
Data: $\left(x_{i}, y_{i}\right), i=1, \ldots, \mu, x_{i} \in \mathbb{R}, y_{i} \in \mathbb{R}$
Runts: $T=\left\{a=t_{1}<\ldots<t_{\mu}=b\right\}$
Reconstruction space:

$$
\begin{aligned}
& \$_{1}(T):=\left\{s(x): s \mid\left[t_{i}, t_{i+1}\right)=c_{i} \in \mathbb{R}, 1 \leqslant i \leqslant m-1\right\} \\
& \operatorname{dim} \Phi_{1}(T)=m-1
\end{aligned}
$$

\Rightarrow For interpolation we must have $\mu=\mu+1$ THY:

$$
\left(x_{i}, y_{i}\right)_{i=1}^{m} \text { st. } x_{i}<x_{i+1} \forall_{i} \Rightarrow \exists!s \in \mathbb{\$}_{1}(T) \text { s.t. }
$$ s interpolates $\left(x_{i}, y_{i}\right)$ iff $x_{i} \in\left[t_{i}, t_{i+1}\right) \forall_{i}$

TH:
$\left(x_{i}, y_{i}\right)_{i=1}^{\mu}$ with $x_{i} \operatorname{Distinct} \Rightarrow \exists!P_{\mu}(x)$ polynomial st. $\operatorname{deg} p_{\mu} \leqslant \mu \wedge p_{\mu}\left(x_{i}\right)=y_{i} \quad \forall i$

ERROR UPPER BOUND:

$$
\sup _{x \in[a, b]}|f(x)-s(x)| \leqslant h \max _{x \in[a, b]}\left|f^{\prime}(x)\right|
$$

where $h:=$ maximum Kurt spacing
Examples:
Fundamental Lagrange Polynanivals (Lagranze/Nenton form)
Example: HAAR WAVELET
\Rightarrow particular case of Fourier decomposition based on piecurise constant splines
Siquals: $s(t)$ pieceurise constant functions, $t \in \mathbb{R}$
Kucts: $T=\mathbb{Z}$
$\Rightarrow s(t)=\sum_{k} s_{k} \cdot \phi(t-k), \phi(t):=\mathbb{1}_{[0,1)}(t)$ UNIT STEP
\Rightarrow Decompose $s(t)$ in a TREND and a DETAIL:

$$
\begin{gathered}
s(t)=T(t)+D(t) \\
T(t):=\sum_{k} \frac{s_{2 k}+s_{2 k+1}}{2} \phi\left(\frac{t}{2}-k\right), \\
D(t):=\sum_{k} \frac{s_{2 k}-s_{2 k+1}}{2} \psi\left(\frac{t}{2}-k\right)
\end{gathered}
$$

where the AMPLITUDE is $t_{k}=\frac{s_{2 k}+s_{2 k+1}}{2}$ and $\psi(t):=\phi(2 t)-\phi(2 t-1)$
$\Rightarrow T(t)$ has kuats $2 \mathbb{Z} \Rightarrow$ REPEAT ThIS DECOMPOSITION:

$$
\begin{aligned}
s(t) & =T_{1}+D_{1} \\
& =\left\{T_{2}+D_{2}\right\}+D_{1} \\
& =\left\{\left\{T_{3}+D_{3}\right\}+D_{2}\right\}+D_{1} \\
& =\ldots=T_{m}+D_{m}+D_{m-1}+\ldots+D_{1}
\end{aligned}
$$

where $T_{\mu}(t)$ has Kudts $2^{\mu} \mathbb{Z}$

Number of Operations:
s has $N=2^{\mu}$ coefficients $\Rightarrow T$ has $\frac{N}{2}, D$ has $\frac{N}{2}$ \Rightarrow in total, $\approx 2 \mathrm{~N}$ operations

Orthogonality:
$\{\phi(t-k)\}_{k \in \mathbb{K}}$ is an 1 family, $\{\mathcal{f}(t-k)\}_{k \in \mathbb{K}}$ is an 1 family, $\{\phi(t-k)\}_{k \in \mathbb{Z}^{\prime}}\{\mathcal{\psi}(t-k)\}_{k \in \mathbb{C}}$ are \perp w.R.T. each at her $\phi(t), \phi(2 t)$ are NOT \perp
$\{\mathcal{f}(t-k)\}_{k \in \mathbb{Z}},\{\mathcal{\psi}(2 t-k)\}_{k \in \mathbb{Z}}$ are \perp w.R.T. each at her $\{\phi(t-k)\}_{k \in \mathbb{Z}},\left\{\psi\left(2^{J} t-k\right)\right\}_{k \in \mathbb{Z}}$ are \perp W.R.T. each other $\forall s \geqslant 0$ BUT NOT f m $s<0$
\Rightarrow The Haar Deconepasition is an 1 decomposition
Multiresolution Analysis:
Consider a signal s in $L^{2}(\mathbb{R})$:

$$
s \in L^{2}(\mathbb{R}) \Leftrightarrow\left\{s_{k}\right\} \in l^{2}(\mathbb{Z})
$$

\Rightarrow define:

$$
\begin{aligned}
& \text {. Scale space } \phi_{J k}(t)=2^{\frac{5}{2}} \phi\left(2^{J} t-k\right), f_{J k}(t)=2^{\frac{5}{2}} f\left(2^{5} t-k\right) \text {, } \\
& \begin{array}{l}
\text { ide. pieceurse } \\
\text { coniseat } L^{2} \\
\text { signals with }
\end{array} V_{J}:=\left\{s(t)=\sum_{k} a_{J k} \phi_{J K}(t):\left\{a_{s k}\right\}_{k \in \mathbb{Z}} \in l^{2}(\mathbb{Z})\right\} \text {, } \\
& \text { breaks at } 2^{-5 \pi} W_{J}:=\left\{D(t)=\sum_{k}^{n} b_{j k} t_{s k}(t):\left\{b_{s k}\right\}_{k \in \mathbb{K}} \in l^{2}(\mathbb{Z})\right\} \\
& \text { detail space } \\
& \Rightarrow L_{2}(\mathbb{R}) \supset \ldots \supset V_{\mu} \supset V_{\mu-1} \supset \ldots \supset V_{1} \supset V_{0} \supset V_{-1} \supset \ldots \supset\{0\}
\end{aligned}
$$

aced V_{μ} has kuats at $2^{-\mu} \mathbb{Z}$

$$
\Rightarrow \underset{\substack{\text { SHOAL } \\
V_{\text {TREND }}}}{V_{s}} \oplus \underset{\text { DETAiL }}{ } W_{s} \Rightarrow V_{0}=\bigoplus_{s=-\infty}^{1} W_{s} \Rightarrow\left\{\begin{array}{l}
s(t)=\sum_{s, k} b_{s k} f_{s k}(t) \\
b_{s k}=\int_{\mathbb{R}} s(t) f_{s k}(t)
\end{array}\right.
$$

$\Rightarrow 2^{5}$ is the FREQUENCY, T is the FREQUENCY parameter, K is the LOCATION parameter and it determines the location of the support

Example: PixELS (\Rightarrow BiVARIATE WAVELETS)
\Rightarrow The SPEG image compression is made using a wavelet (nor the Hoar wavelet). On every pixel you have a constant intensity (egg. in a black and white picture)
\Rightarrow can be described as:

$$
p(x, y)=\sum_{i, s} p_{i,} \phi(x-i, y-s)
$$

pixel intensity function
constant pixel intensity where $\phi(x, y)=\mathbb{1}_{[0,1)^{2}}(x, y)$
\Rightarrow we group 16 pixels in 4 megapixels
\Rightarrow the trend is replacing these 4 megapixels by a megapixel with its amplitude
\Rightarrow the detail will be (pixel - megapixel):

\Rightarrow Treed: $m=\frac{a+b+c+d}{4}$
\Rightarrow Detail: $D(x, y)=a-m, b-m, c-m, d-m \quad 3$ DOF!!!
\Rightarrow we have:

$$
\left.\begin{array}{l}
\text { Trend }=\frac{1}{4}(1,1,1,1) \\
x \text {-detail }=(1,1,-1,-1) \\
y \text {-detail }=(1,-1,1,-1) \\
x y \text {-detail }=(1,-1,-1,1)
\end{array}\right\} 4 \text { nthargual vectors }
$$

\Rightarrow we can there write the Detail using this basis:

$$
\begin{aligned}
& D=A \cdot x \text {-detail }+B \cdot y \text {-detail }+C \cdot x y \text {-detail } \\
& A=\frac{a-b+c-d}{4}, B=\frac{a+b-c-d}{4}, C=\frac{a-b-c+d}{4}
\end{aligned}
$$

\Rightarrow PIECEWISE LINEAR SPLINES:
Interpolation:
Data: $\left(x_{i}, y_{i}\right), i=1, \ldots, \mu, x_{i} \in \mathbb{R}, y_{i} \in \mathbb{R}$
Keats: $T=\left\{a=t_{1}<\ldots<t_{\mu}=b\right\}$
Reconstruction space:

$$
\begin{aligned}
& \$_{2}(T):=\left\{s \in e[a, b]:\left.s\right|_{\left[t_{i}, t_{i+1}\right]}=\text { linear, } 1 \leqslant i \leqslant \mu-1\right\} \\
& \operatorname{dim} \$_{2}(T)=|T|=\mu
\end{aligned}
$$

$\Rightarrow s(x)=\left(I_{2} f\right)(x)=\sum_{s=1}^{\mu} a_{s} H_{s}(x), H_{s}(x)$ are the Hat Functions Thill. (Optimality Condition):
$g(x)$ interpalant of $f(x)$ an T s.t. $g \in A C([a, b])$ and $g^{\prime} \in L^{2}([a, b])$, then:

$$
\int_{a}^{b}\left(g^{\prime}(x)\right)^{2} d x \geqslant \int_{a}^{b}\left(s^{\prime}(x)\right)^{2} d x
$$

ERROR UPPER BOUND:

1) $\left\|f(x)-\left(I_{2} f\right)(x)\right\|_{[a, b]} \leqslant \frac{h^{2}}{8} \cdot\left\|\not f^{\prime \prime}(x)\right\|_{[a, b]}$
2) $\left\|f^{\prime}(x)-\left(I_{2} f\right)^{\prime}(x)\right\|_{[a, b]} \leqslant \frac{3 h}{4} \cdot\left\|f^{\prime \prime}(x)\right\|_{[a, b]}$
where $h:=$ maximum Kurd spacing, $f \in \varphi^{2}([a, b])$
NB.
The formula for the enron upper bound is SHARP i.e. in general it's NOT passible tor do any better To find $I_{2} \ell$ we unit find the coefficients a_{s} st.

$$
\begin{aligned}
& \sum_{s=1}^{\mu} a_{s} H_{J}\left(x_{i}\right)=y_{i}, \quad 1 \leqslant i \leqslant \mu \\
& \Leftrightarrow\left(H_{s}\left(x_{i}\right)\right)_{i s} \vec{a}=\vec{y}, \quad 1 \leqslant i, s \leqslant \mu
\end{aligned}
$$

THC. (SCHOENBERG - WHITNEY):
$I=\left(H_{J}\left(x_{i}\right)\right)_{i s} \in \mathbb{R}^{\mu \times \mu}$ is NON $\operatorname{singULAR} \Leftrightarrow H_{i}\left(x_{i}\right) \neq 0 \forall i$ (i.e. iff $x_{i} \in\left(t_{i-1}, t_{i+1}\right), 1 \leqslant i \leqslant \mu$)

BEST L² APPROXIMATION:
$\Rightarrow I_{2} \&$ is almost NEVER the best approximation of $f!!!$ $\exists s^{*} \in \mathbb{Z}_{2}(T)$ st. $\left\|f(x)-s^{*}(x)\right\|_{[a, b]} \leqslant\|f(x)-(I / 2 f)(x)\|_{[a, b]}$ But $I_{2} f$ is Always very good!!!

Data: $\left(x_{i}, y_{i}\right), i=1, \ldots, \mu, x_{i} \in \mathbb{R}, y_{i} \in \mathbb{R}$
Keats: $T=\left\{a=t_{1}<\ldots<t_{\mu}=b\right\}$
Reconstruction space:

$$
\begin{aligned}
& \$_{2}(T):=\left\{s \in e[a, b]:\left.s\right|_{\left[t_{i}, t_{i+1}\right]}=\text { linear, } 1 \leqslant i \leqslant \mu-1\right\} \\
& \operatorname{dim} \$_{2}(T)=|T|=\mu \\
& L^{2}([a, b])=\left\{f: \int_{a}^{b} f^{2}(x)<+\infty\right\}, \\
& \|f\|_{L^{2}}=\left(\int_{a}^{b} f^{2}(x) d x\right)^{\frac{1}{2}}\langle<f, g\rangle_{L^{2}}=\int_{a}^{b} f(x) g(x) d x
\end{aligned}
$$

We want to find $s^{*} \in \mathbb{Z}_{2}$ st.:

$$
\left\|\mathscr{f}-s^{*}\right\|_{L^{2}[a, b]} \leqslant\|\mathscr{f}-s\|_{L^{2}[a, b]} \quad \forall s \in \mathbb{X}_{2}(T)
$$

$\Rightarrow s(x)=\left(L_{2} f\right)(x)=\sum_{s=1}^{\mu} a_{s} H_{s}(x), H_{s}(x)$ are the Hat Functions The cafficients a_{s} are given by:

$$
\vec{a}=G^{-1} \cdot \vec{b}
$$

where $b_{s}=\int_{a}^{b} f(x) H_{J}(x) d x, G_{i s}=\int_{a}^{b} H_{i}(x) H_{J}(x) d x, G:=$ GRAM MATRIX G is symmetric, tridiagonal, positive definite and diagonally dmuivant !!!

Interpolation us. Best la Approximation:
THY. (COMPARISON):
$\forall \ell \in C([a, b])$ we have:

1) $\left\|\notin-\left(I_{2} \notin\right)\right\|_{[a, b]} \leqslant 2 \cdot E_{2}(\not l)$
2) $\left\|\mathscr{\not}-\left(L_{2} \notin\right)\right\|_{[a, b]} \leqslant 4 \cdot E_{2}(f)$
where $E_{2}(f)=\inf _{s \in \mathbb{I}(T)}\|f-s\|_{[a, b]}$ is the MiNIMUM POSSiBLE ERROR

Example: RAYLEIGH-RITZ VARIATIONAL METHOD for Self-Adjoint ODE's
\Rightarrow aualorzues to the gradient method for linear systems. It wonks for equations of the following form:

$$
\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=v(x)
$$

with Dirichlet Boundary Conditions $Y(a)=Y(b)=0$
\Rightarrow define the Differential Operator $\mathcal{Z} y:=\left(p(x) y^{\prime}\right)^{\prime}+q(x) y$ and the inner product $\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d x$
$\Rightarrow W_{e}$ have that \mathcal{L} is self \mathcal{l}-adjoint:

$$
\langle\mathcal{Z} f, g\rangle=\left\langle f, Z_{g}\right\rangle
$$

$\forall \ell, g$ satisfying the $B C$
\Rightarrow the solution y of the $O D E$ is then the minimizer of:

$$
\phi(u):=\frac{1}{2}\langle u, \mathcal{Z} u\rangle-\langle u, v\rangle
$$

N.B. We would need to solve this problem e in a Sabolev Space where everything is well defined
\Rightarrow To approximate the minimizer muerically, we replace $W^{1, p}$ with $\$_{2}(T)$ where we have $2^{\text {rd }}$-adder approximation of φ^{2} functions and $1^{\text {st }}$-oder approximation of their derivative Take also into account the BC!!!

Keats: $T=\left\{a=t_{1}<\ldots<t_{\mu}=b\right\}$
Reconstruction space:

$$
\tilde{\mathbb{X}}_{2}(T):=\left\{s \in \mathbb{X}_{2}(T): s(x)=\sum_{J=2}^{\mu-1} a_{J} H_{J}(x)\right\}
$$

\Rightarrow The minimizes becomes $\phi(s):=\frac{1}{2} \vec{a}^{\top} G \vec{a}-\vec{a}^{\top} \vec{b}$, where:

$$
\begin{gathered}
b_{i}=\int_{a}^{b} r(x) H_{J}(x) d x, \vec{b} \in \mathbb{R}^{\mu-2}, \vec{a} \in \mathbb{R}^{\mu-2} \\
G_{i J}=\int_{a}^{b} g(x) H_{i}(x) H_{J}(x)-p(x) H_{i}^{\prime}(x) H_{J}^{\prime}(x) d x, \quad G \in \mathbb{R}^{(\mu-2) x(\mu-2)}
\end{gathered}
$$

\Rightarrow CUBIC SPLINES:
Data: $\left(x_{i}, y_{i}\right), i=1, \ldots, \mu, x_{i} \in \mathbb{R}, y_{i} \in \mathbb{R}$
Keats: $T=\left\{a=t_{1}<\ldots<t_{\mu}=b\right\}$
Reconstruction spaces:

1) $V_{4}(T):=\left\{s \in C^{1}[a, b]:\left.s\right|_{\left[t_{i}, t_{i+1}\right]}=\right.$ cubic, $\left.1 \leqslant i \leqslant \mu-1\right\}$ $\operatorname{dim} V_{4}(T)=2 \mu \quad(2$ conditions at each interion Knot)
2) $\oiint_{4}(T):=\left\{s \in C^{2}[a, b]:\left.s\right|_{\left[t_{i}, t_{i+1}\right]}=c u b i c, 1 \leqslant i \leqslant \mu-1\right\}$ $\operatorname{dim} \$_{4}(T)=\mu+2$ (3 conditions at each interior Knot)
Conditions at the Kuats:
Existence of s^{*} is guaranteed in the follouring conditions:
3) Natural Spline -End Conditions:

$$
s^{\prime \prime}(a)=s^{\prime \prime}(b)=0
$$

2) Complete Spline -End Conditions:

$$
s^{\prime}(a)=f^{\prime}(a), s^{\prime}(b)=f^{\prime}(b)
$$

1) In $V_{4_{1}}(T)$ we impose 2 conditions at each kurt:

$$
s^{*}\left(t_{s}\right)=y_{s}, s^{*}\left(t_{s}\right)=\mu_{s} \quad 1 \leqslant s \leqslant \mu
$$

\Rightarrow cubic Hessite polynomial interpolation problem.
\Rightarrow the values ms are determined minimizing the BENDING ENERGY (i.e. The CURVATURE):

$$
E\left(s^{*}\right)=\int_{a}^{b} \frac{\left(s^{* \prime \prime}(x)\right)^{2}}{\left(1+s^{*}(x)^{2}\right)^{3}} d x \stackrel{ }{\text { LiNEARIZATION }} \int_{a}^{b}\left(s^{* \prime \prime}(x)\right)^{2} w(x) d x
$$

where w is taken to be piecourise constant
\Rightarrow in the end we find s^{*} st. $s^{*}\left(t_{J}\right)=y_{s} \quad s=1, \ldots, \mu$ and it minimizes the WEiGHTED ENERGY:

$$
\min _{s^{*} \in V_{4}(T)} E_{w}\left(s^{*}\right), \quad E_{w}(s):=\sum_{s=1}^{\mu-1} w_{s} \int_{t_{s}}^{t_{s+1}}\left(s_{s}^{\prime \prime}(x)\right)^{2} d x
$$

\Rightarrow the OPTIMALITY CONDITION is:

$$
E_{\omega}\left(s^{*}\right) \text { is minimized } \Leftrightarrow w(x)\left(s^{*}(x)^{\prime \prime}\right) \in \varphi^{0}([a, b])
$$

\Rightarrow we get a $\mu \times \mu$ linear systeul $t o$ salve ton ms:

$$
A \vec{u}=\stackrel{\rightharpoonup}{b}
$$

where $\vec{b}=\vec{b}\left(y\left[t_{s}, t_{s+1}\right], w_{s}, h_{s}\right) \in \mathbb{R}^{\mu}, s=1, \ldots, \mu$ and $A=A\left(w_{s}, h_{s}\right) \in \mathbb{R}^{\mu \times \mu}, s=1, \ldots, \mu$ is Eridiagoual, diagonally dominant and hence uvertible!!!
2) I $\mu \$_{4}(T)$ we care use the above system with $w(x) \equiv 1$ (minizing therefore $\int_{a}^{b}\left(s^{* \prime \prime}(x)\right)^{2} d x$) OR we can use the $2^{\text {ed }}$ derivative values as unknowns !!! We have:

$$
s_{5}(x)=A_{5}+B_{5}\left(x-t_{5}\right)+C_{5}\left(x-t_{5}\right)^{2}+D_{5}\left(x-t_{5}\right)^{3}
$$

where $h_{s}=t_{s+1}-t_{s}, A_{s}=y_{s}, \quad C_{s}=\frac{s_{s}^{\prime \prime}\left(t_{s}\right)}{2}, \quad D_{s}=\frac{s_{s}^{\prime \prime}\left(t_{s+1}\right)-s_{s}^{\prime \prime}\left(t_{s}\right)}{6 h_{s}}$, $B_{s}=\frac{Y_{s+1}-Y_{s}}{6 h_{s}}-C_{S} h_{5}-D_{S} h_{s}^{2}$
\Rightarrow we only need tor find C_{3} and tor do this we use the Peaur Kernel Fnumula...

The COMPLETE SPLINE INTERPOLANT has belter approximation properties and is therefore written as ($I_{4} \ell$)
$\Rightarrow(I, \mathcal{\ell})(x):$ complete cultic spline intespolaut in $\mathbb{\$}_{4}(T)$
ERROR UPPER BOUND:

1) $\left\|f(x)-\left(I_{4} f\right)(x)\right\|_{[a, 6]} \leqslant \frac{h^{4}}{16} \cdot\left\|f^{(4)}(x)\right\|_{[a, 6]}$
2) $\left\|f^{\prime}(x)-\left(L_{4} f\right)^{\prime}(x)\right\|_{[a, b]} \leqslant \frac{3 h^{3}}{8} \cdot\left\|f^{(4)}(x)\right\|_{[a, 6]}$
3) $\left.\| f^{\prime \prime}(x)-\left(I_{4} f\right)\right)^{\prime \prime}(x)\left\|_{[a, b]} \leqslant \frac{h^{2}}{2} \cdot\right\| f^{(4)}(x) \|_{[a, b]}$
where $h:=$ maximum e Kun spacing, $f \in \ell^{4}([a, b])$ We also have that $\left(I_{1} f\right)^{\prime \prime}(x)=\left(L_{2} f\right)^{\prime \prime}(x) \in \$_{2}(T)$
Moreover, we have the following Optimality property:

THM. (Optimality Property of Ir $)$:
Given g s.t. $g^{\prime} \in A C[a, b], g\left(t_{i}\right)=f\left(t_{i}\right) \quad i=1, \ldots, \mu$, $g^{\prime}(a)=f^{\prime}(a), g^{\prime}(b)=\mathscr{f}^{\prime}(b)$, then we have:

$$
\int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} d x \geqslant \int_{a}^{b}\left(\left(I_{4} f\right)^{\prime \prime}(x)\right)^{2} d x
$$

The NATURAL SPLINE INTERPOLANT has ware approximation properties BUT it does ut require the additional information of $\mathcal{H}^{\prime}(a), \mathcal{H}^{\prime}(b)$. It also has a worse error upper bound, in general. Still, we hove the following Optimality property:
THM. (Optimality property of natural splines): Giver g s.t. $g^{\prime} \in A C[a, b], g\left(t_{i}\right)=f\left(t_{i}\right) \quad i=1, \ldots, \mu$, $g^{\prime \prime} \in L_{2}([a, b])$, then we have:

$$
\int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} d x \geqslant \int_{a}^{b}\left(s^{\prime \prime}(x)\right)^{2} d x
$$

where $s \in \$_{4}(T)$ is a natural cubic spline interpolaut
We can also use a compromise: NOT-A-KNOT splines which are nt as good as complete splines hut don't introduce conflicts with the fuectione tor be approximated and dan't require the derivative data. We simply require that $s_{1}(x), s_{2}(x)$ and $s_{\mu-2}(x), s_{\mu-1}(x)$ join together in such a way that they are actually the same cultic polynomial. This is equivalent tor adding the 2 conditions $s_{1}^{\prime \prime}\left(t_{2}\right)=s_{2}^{\prime \prime}\left(t_{2}\right), s_{\mu-2}^{\prime \prime}\left(t_{\mu-1}\right)=s_{\mu-1}^{\prime \prime}\left(t_{\mu-1}\right)$ For rat-a-Kuat cubic splines we have the follouring essen upper baud: $\|\notin-s\|_{[a, b]}=O\left(h^{4}\right)$ (i.e. same oder as for complete splines !!!). The existence of such splines is guaranteed by the general Schauberg-Whituey Theorem
$\Rightarrow B$-SPLINES:
They geveralize the Hat fuectiones to higher degree Kuats: $T=\mathbb{Z}$
$\Rightarrow B$-splines of oder K at kuat t_{i} is:

$$
B_{i, k}(t):=\left(t_{i+k}-t_{i}\right) \cdot(x-t)_{+}^{k-1}\left[t_{i}, \ldots, t_{i+k}\right]
$$

properties:

1) $H_{i}(t)=B_{i-2,2}(t), B_{i, k}(t)$ are LINEARLY INDEPENDENT
2) $B_{i, k} \in e^{k-2}(\mathbb{R})\left(B_{i, k}(t)\right.$ is a linear coulrivation of $e^{k-2}(\mathbb{R})$ pieceurise polyuanials of degree $K-1$ and Kurtis t, \Rightarrow it is an order k, c^{k-2} spline)
3) $\operatorname{supp}\left(B_{i, k}(t)\right) \subset\left[t_{i}, t_{i+k}\right)\left(i, e . B_{i, k}(t)=0 \forall t \notin\left[t_{i,}, t_{i+k}\right)\right)$
4) Recurrence Fonuula (numerically stable, better than definition)

$$
B_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} B_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} B_{i+1, k-1}(t)
$$

5) Positivity: $B_{i, k}(t)>0 \quad \forall t \in\left(t_{i}, t_{i+k}\right)$
6) Integral: $\int_{\mathbb{R}^{+\infty}} B_{i, k}(t) d t=\frac{t_{i+k}-t_{i}}{k}$
7) Sum e: $\sum_{-\infty}^{+\infty} B_{i, k}(t) \equiv 1 \forall k$
8) Derivative: $\frac{d}{d t} B_{i, k}(t)=(k-1)\left[\frac{B_{i, k-1}(t)}{t_{i+k-1}-t_{i}}-\frac{B_{i+1, k-1}(t)}{t_{i+k}-t_{i+1}}\right]$
9) \& $t_{i}=i \in \mathbb{Z}, B_{i, k}(t)=B_{0, k}(t-i)$

We set $N_{k}(t):=B_{0, k}(t)$, we have:

1) $B_{i, k}(t)=N_{k}(t-i)$
2) $\frac{d}{d t} N_{k}(t)=N_{k-1}(t)-N_{k-1}(t-1), N_{k}(t)=\int_{t-1}^{t} N_{k-1}(x) d x$
3) $N_{1}(t)=\phi(t)=\mathbb{1}_{[0,1)}(t)$ tram the Haar Wavelet
4) 2-Scale relation:

$$
N_{k}(t)=\frac{1}{2^{k-1}} \sum_{s=0}^{k}\binom{k}{s} N_{k}(2 t-s) \text { for } k \geqslant 1
$$

Using these $N_{k}(t)$ we can express a spline with Kuats at \mathbb{Z} as a spline with Knots at half the integers!!!

$$
s(t)=\sum_{-\infty}^{+\infty} d_{i}^{(0)} N_{k}(t-i)=\ldots=\sum_{-\infty}^{+\infty} d_{i}^{(1)} N_{k}(2 t-i)
$$

where $d_{i}^{(\mu)}=\sum_{s=-\infty}^{+\infty} a_{i-2 s} d_{s}^{(\mu-1)}$ are the de-Boncoutral paints frau the Beziér curves, $a_{s}=\frac{1}{2^{k-1}}\left(\frac{k}{s}\right) \cdot \mathbb{1}_{[0, k]}(J)$ e.g. $K=3$ (Chaitin conner cutting for quadratic splines):

$$
\begin{aligned}
& a_{0}=\frac{1}{4}, a_{1}=\frac{3}{4}, a_{2}=\frac{3}{4}, a_{3}=\frac{1}{4} \\
& \Rightarrow d_{2 m}^{(1)}=\frac{1}{4} d_{m}^{(0)}+\frac{3}{4} d_{m-1}^{(0)}, d_{2 m+1}^{(1)}=\frac{3}{4} d_{m}^{(0)}+\frac{1}{4} d_{m-1}^{(0)} .
\end{aligned}
$$

$\left\|d_{i+1}^{(0)}-d_{i}^{(0)}\right\|_{2} \leqslant M<+\infty$ then the sequence of polyons P_{μ} with vertices $d_{i}^{(\mu)}$ converges to the niginal curve $s(t)$ (Lu the case of closed polygons we simply define the additional coutial paints by periodicity). The save wethord wanks for surfaces $\left(d_{i, 5}^{(1)}=\sum_{m_{1}, m_{2}} a_{i-2 m_{1}}, a_{s-m_{2}} d_{m_{1}, m_{2}}^{(0)}\right)$ We can also use B-splines to construct a basis for $\$_{4}(T)$ if T is the bi-iufinte kurt sequence:
\Rightarrow distinct knots: $B_{i, k} \in e^{k-2}$
\Rightarrow repeated Kuats with multiplicity ms: $B_{i, k} \in \varphi^{k-1-m_{s}}$ AND it must be $m_{j} \leqslant k$ (i.e. $t_{i+k}-t_{i}>0 \quad \forall_{i}$)

INTERPOLATION
Data: $\left(x_{i}, y_{i}\right), i=1, \ldots, \mu, \quad x_{i} \in \mathbb{R}, y_{i} \in \mathbb{R}$
Keats: $T=\left\{a=t_{1}<\ldots<t_{\mu}=b\right\}$ st. $t_{s}<t_{s+k} \forall_{s} \in \mathbb{Z}$ \Rightarrow find $s(t)=\sum_{1}^{\mu} a_{s} B_{s, k}(t)$ s.t. $s\left(x_{i}\right)=y_{i}, i=1, \ldots, \mu$ \Rightarrow in the end we have to solve the linear system:

$$
\left(B_{s, k}\left(x_{i}\right)\right)_{i s} \vec{a}=\vec{y}
$$

THY. (SCHOENBER G-WHITNEY):
$\left(B_{s, k}\left(x_{i}\right)\right)_{i s}$ is NON singular $\Leftrightarrow B_{i, k}\left(x_{i}\right) \neq 0 \quad i=1, \ldots, \mu$
Moreover, given the Kun sequence $T=\left\{t_{1}, \ldots, t_{\mu}\right\}$, and the interpolation values $y_{i} i=1, \ldots, \mu, \exists$! s* $\in \mathbb{\$}_{4}(T)$ s.t. s satisfies the NOT-A-KNOT end conditions and it interpolates the data.
\Rightarrow GRID INTERPOLATION:
Luterpolation sites: $\left(x_{i}, y_{s}\right) \in \mathbb{R}^{2}, i=1, \ldots, \mu, s=1, \ldots, m$ Values: $z_{i s} \in \mathbb{R}$
\Rightarrow we lark for $s(x, y)$ s.t. $s\left(x_{i}, y_{s}\right)=z_{i s}$ To find s it's sufficient tor choose an interpolating order on the grid (honizurtal / vertical) and proceed as follows:

1) $s_{J}(x)$ interpalauts of $\left(x_{i}, z_{i j}\right), i=1, \ldots, \mu, j$ fixed $\Rightarrow s_{s}(x)=\sum_{i=1}^{\mu} z_{i s} L_{i}^{x}(x)$ (Lagrange tome)
2) interpolauts of $\left(y_{s}, s_{s}(a)\right), s=1, \ldots, m$

$$
\begin{aligned}
& \Rightarrow \sum_{s=1}^{M \prime} s_{s}(a) L_{j}^{Y}(y) \text { (Lagrange tone) } \\
& \Rightarrow s(a, b)=\sum_{i=1}^{M} \sum_{s=1}^{M} z_{i j} L_{i}^{\times}(a) L_{s}^{Y}(b)
\end{aligned}
$$

and the inverse oder retires the save result !!!
\Rightarrow Univariate thin plate splines:
They are a generalization of cultic splines, which will then be further generalized to the multivariate case We want to miviurize the bending energy given by $E(f)=\|f\|^{2}=\int_{\mathbb{R}}\left(f^{\prime \prime}(x)\right)^{2} d x$ (ives product: $\langle\mathscr{f}, g\rangle=\int_{\mathbb{R}} \mathcal{f}^{\prime \prime} \cdot g^{\prime \prime} d x$) finding representatives for function evaluation $i . e . s_{i}(x)$ s.t. $\left\langle\mathcal{f}, s_{i}\right\rangle=f\left(x_{i}\right) \quad i=1, \ldots, \mu \quad \forall f \in B L_{2}$ (IR) where $B L_{2}(\mathbb{R})=\left\{f: \exists f^{\prime \prime}\right.$ a.e. $\left.\wedge f^{\prime \prime} \in L^{2}(\mathbb{R})\right\}$ are the BEPPOLevi spaces.
\Rightarrow the miminizer is a linear coulination of usual vectors which express the constraints. The coefficients of the linear caubination are obtained salving the linear system with the Gram Matrix of the somual vectors $G=\left(\left\langle\vec{\mu}_{i}, \vec{\mu}_{s}\right\rangle\right)_{i s} \in \mathbb{R}^{\mu \times \mu}$
\Rightarrow we construct the evaluation representative starting by:

$$
s(x)=\sum_{j=1}^{\mu} a_{J}\left|x-x_{J}\right|^{3}
$$

which belongs to $B L_{2}$ (IR) iff the BEPPO-LEVi Conditions hold:

$$
\sum_{s=1}^{\mu} a_{s}=\sum_{s=1}^{\mu} a_{s} x_{s}=0
$$

\Rightarrow if $s_{a}(x)=\frac{1}{12}|x-a|^{3}$ then $\left\langle\ell, s_{a}\right\rangle=\ell(a)$, so we use $s(x)$ defined as above to get the evaluator:

$$
\hat{s}_{x_{i}}(x)=\sum_{s=1}^{\mu} a_{s}\left|x-x_{s}\right|^{3}
$$

where $a_{i}=\frac{1}{12}, a_{1}=-\frac{1}{12} l_{1}\left(x_{i}\right), a_{\mu}=-\frac{1}{12} l_{\mu}\left(x_{i}\right), a_{s}=0$ and $l_{i}(x)$ is the $i-t h$ degree Lagrange polyuanial
\Rightarrow we have $\left\langle f, \hat{s}_{x_{i}}\right\rangle=f\left(x_{i}\right)-l_{1}\left(x_{i}\right) f\left(x_{1}\right)-l_{\mu}\left(x_{i}\right) f\left(x_{\mu}\right)$ tor salve this prablewe (together with the fact that $\|\cdot\|^{2}$ is ut a true unur) we proceed as follows:
consider $\left.b\right|_{2}(\mathbb{R})=\left\{\mathscr{f} \in B L_{2}(\mathbb{R}): \mathcal{f}\left(x_{1}\right)=f\left(x_{\mu}\right)=0\right\}$ $\Rightarrow\|\cdot\|^{2}$ is a true none si $b l_{2}(I R)$, therefore we take

$$
\begin{aligned}
& \tilde{s}_{x_{i}}:=\hat{s}_{x_{i}}(x)-\left(\hat{s}_{x_{i}}\left(x_{1}\right) l_{1}(x)+\hat{s}_{x_{i}}\left(x_{\mu}\right) l_{\mu}(x)\right) \\
\Rightarrow & \widetilde{s}_{x_{i}} \in G l_{2}(\mathbb{R}) \wedge\left\langle\ell, \hat{s}_{x_{i}}\right\rangle=f\left(x_{i}\right) \quad \forall \ell \in G_{2}(\mathbb{R})
\end{aligned}
$$

\Rightarrow To salve the sigival interpolation problem:

$$
f \in B L_{2}(\mathbb{R}) \text { st. } f\left(x_{i}\right)=y_{i} \wedge\|f\|^{2} \text { is min }
$$ we replace f with

$$
\hat{f}(x)=f(x)-\left(f\left(x_{1}\right) l_{1}(x)+f\left(x_{\mu}\right) l_{\mu}(x)\right) \in b l_{2}(\mathbb{R})
$$

which int expdates the data $\hat{y}_{i}=y_{i}-\left(y_{1} l_{1}\left(x_{i}\right)+y_{\mu} l_{\mu}\left(x_{i}\right)\right)$
\Rightarrow this yields the solution $\hat{s}(x)=\sum_{i=2}^{\mu-1} a_{i} \tilde{\Lambda}_{x_{i}}(x)$ where the coefficients a_{i} are to be foul via the system

$$
G \vec{a}=\vec{y}
$$

where $G=\left(\widetilde{\Lambda}_{x_{s}}\left(x_{i}\right)\right)_{i s} \in \mathbb{R}^{(\mu-2) \times(\mu-2)}$. Ficcally, to get the interpdaut of the nigival data, we use:

$$
\begin{aligned}
s(x) & :=\hat{s}(x)+\left(y_{1} l_{1}(x)+y_{\mu} l_{\mu}(x)\right) \\
\Rightarrow s(x) & =\sum_{s=1}^{\mu} a_{s}\left|x-x_{s}\right|^{3}+a_{\mu+1}+a_{\mu+2} x
\end{aligned}
$$

Tor find as we impose the interpolation conditions and the Beppo-Luri Conditions to get a $(\mu+2) \times(\mu+2)$ dimensional linear system. The resulting interpolation matrix is NON singular
\Rightarrow Bivariate thin plate splines:
Same as above, we want to minimize the bending energy:

$$
\begin{aligned}
E(s) & =\int_{\mathbb{R}^{2}}\left(\partial_{x x}^{2} s\right)^{2}+2\left(\partial_{x y}^{2} s\right)^{2}+\left(\partial_{y y}^{2} s\right)^{2} d A \\
\Rightarrow B L_{2}\left(\mathbb{R}^{2}\right) & =\left\{f: \partial_{x x}^{2} f, \partial_{x y}^{2} f, \partial_{y y}^{2} f \in L^{2}\left(\mathbb{R}^{2}\right)\right\}
\end{aligned}
$$

with the imuer product:

$$
\begin{aligned}
& \langle\ell, g\rangle=\int_{\mathbb{R}^{2}} \partial_{x x}^{2} f \partial_{x x}^{2} z+2 \partial_{x y} f \partial_{x y} z+\partial_{x y}^{2} f \partial_{y y}^{2} g d A \\
& \text { s.t. } E(f)=\|f\|^{2}
\end{aligned}
$$

\Rightarrow As in the univariate case, we look for $s_{a}(x, y)$ ie $b I_{2}\left(\mathbb{R}^{2}\right)$ s.t. $\left\langle s_{a}, \notin\right\rangle=f(a) \quad \forall f \in b I_{2}\left(\mathbb{R}^{2}\right)$
\Rightarrow a distributional PDE arises, iuvalring the iTERATED LAPLACIAN Δ^{2}, for which we lorak for RADIAL SOLUTions (given that Δ is rotational invariant). First we salve $\Delta \tilde{s}=$ So which grants us:

$$
\widetilde{S}_{0}(x, y)=\frac{1}{2 \pi}(\log 2+1)
$$

Then we salve $\Delta s_{a}=\widetilde{s}_{a}$ which leads us tor the general solution:

$$
\begin{aligned}
& s_{a}(x, y)=\frac{1}{8 \pi} r_{a}^{2} \log \left(r_{a}\right) \\
& r_{a}=\sqrt{\left(x-a_{1}\right)^{2}-\left(y-a_{2}\right)^{2}}
\end{aligned}
$$

\Rightarrow The energy minimizer will be a linear combination

$$
\begin{aligned}
& s(x, y)=\sum_{i=1}^{u} a_{i} v_{i}^{2} \log \left(v_{i}\right) \\
& v_{i}=\sqrt{\left(x-x_{i}\right)^{2}-\left(y-y_{i}\right)^{2}}
\end{aligned}
$$

We have that $s(x, y)=\sum_{i=1}^{u} a_{i} v_{i}^{2} \log \left(v_{i}\right) \in L_{2}\left(\mathbb{R}^{2}\right)$ iff the Beppor-Livi Conditions hold:

$$
\sum_{i}^{\mu} a_{i}=\sum_{i}^{\mu} a_{i} x_{i}=\sum_{i}^{\mu} a_{i} X_{i}=0
$$

In this case, if $f \in B L_{2}\left(\mathbb{R}^{2}\right)$ we have that

$$
\lim _{R \rightarrow+\infty} \int_{r \geqslant R} \partial_{x x}^{2} \mathcal{R} \partial_{x x}^{2} s+2 \partial_{x y} f \partial_{x y} s+\partial_{y y}^{2} \mathcal{H} \partial_{y y}^{2} s d A=0
$$

So r we have that if $s(x, y)=\frac{1}{8 \pi} \sum_{1}^{\mu} a_{i} v_{i}^{2} \log \left(v_{i}\right)$ satisfies the Beppor-Levi Conditions in a_{i}, then for $f \in B L_{2}\left(\mathbb{R}^{2}\right)\langle f, s\rangle=\sum_{1}^{\mu} a_{i} f\left(x_{i}, y_{i}\right)$. Now we repeat the steps of the mivariate case:

1) Given $s_{i}(x, y)=\frac{1}{8 \pi} v_{i}^{2} \log \left(v_{i}\right)$ we find $\hat{s}_{i}(x, y)$ the modification of s with 3 moment conditions, which will have a subtraction of 3 cher $s_{s}\left(x_{i}, y_{i}\right)$ We chase the first $3: s_{1}, s_{2}, s_{3}$. So we reed to add the couditime that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ must NOT all be au the save live: they meed tor Ainu a NON degenerate triangle.
2) $\hat{s}_{i}(x, y)=s_{i}(x, y)-\frac{\sum_{s}^{3}}{s} l_{5}\left(x_{i}, y_{i}\right) s_{s}(x, y) \in B L_{2}\left(\mathbb{R}^{2}\right)$
3) We reduce t_{r} :

$$
b l_{2}\left(\mathbb{R}^{2}\right)=\left\{\mathscr{f} \in B L_{2}\left(\mathbb{R}^{2}\right): \mathscr{f}\left(x_{5}, y_{5}\right)=0, s=1,2,3\right\}
$$

Here $11 \cdot \|^{2}$ is a true usu
4) Just as the mivariate case we set:

$$
\widetilde{s}_{i}=\hat{s}_{i}-\sum_{s=1}^{3} \hat{s}_{i}\left(x_{s}, y_{s}\right) l_{s}(x, y)
$$

and reduce the data $\hat{z}_{i}=z_{i}-\sum_{j=1}^{3} z_{j} l_{s}\left(x_{i}, y_{i}\right)$ The opticual interpalaut in $G l_{2}\left(1 R^{2}\right)$ is them:

$$
\tilde{s}(x, y)=\sum_{J=4}^{\mu} a_{s} \tilde{s}_{s}(x, y)
$$

s.t. $\tilde{s}\left(x_{i}, y_{i}\right)=\hat{z}_{i} \quad i=4, \ldots, \mu$
5) Finally, tor get the Thin Plate Spline, we add the correction:

$$
s(x, y)=\widetilde{s}(x, y)+\sum_{y=1}^{3} z_{3} l_{5}(x, y)
$$

which wears that:

$$
s(x, y)=\sum_{s=1}^{\mu} a_{s} v_{J}^{2} \log \left(v_{s}\right)+a_{\mu+1}+a_{\mu+2} x+a_{\mu+3} y
$$

with the interpolation couditious and the 3 Beppor-Leir Cruditious. This is an $(\mu+3) \times(\mu+3)$ linear system whose buterpalation matrix is NON singular
ERROR UPPER BOUND:
If $f \in B L_{2}\left(\mathbb{R}^{2}\right), \vec{x} \in \Delta\left(\vec{x}_{3}, \vec{x}_{k}, \vec{x}_{l}\right)$, then:

$$
|f(\vec{x})-s(\vec{x})| \leqslant\left[\frac{\log 3}{24 \pi} E(f)\right]^{\frac{1}{2}} \cdot h
$$

where h is the length of the longest triangle side

There are at her functions which enable us to write the Thin Plate Spline interpolaut as a linear conchication of their translations: we only require the interpolation matrix tor be NON singular!!!

1) Positive definite functions $\phi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is pos. def. an \mathbb{R}^{d} if the matrices

$$
\left(\phi\left(\vec{x}_{i}-\vec{x}_{J}\right)\right)_{i J=1, \ldots, \mu} \in \mathbb{C}^{\mu \times \mu}
$$

are pos. def. \forall collection of distinct paints $\left\{\vec{x}_{i}\right\}_{i=1}^{\mu}$ in $\mathbb{R}^{d}, \mu=1,2,3, \ldots$
Sone examples of pas. def. flections:

1) THM. (BOCHNER):
$a: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s.t. $a(\vec{w}) \geqslant 0 \quad \forall \vec{w} \in \mathbb{R}^{d}, a(\vec{w})>0$ on a NON trivial cube in \mathbb{R}^{d} and $a \in L_{1}(\mathbb{R})$, then $\phi(\vec{x}):=\hat{a}(\vec{x})=\int_{\mathbb{R}^{d}} a(\vec{w}) e^{-i \vec{\omega} \cdot \vec{x}} d \vec{w}$ i.e the Fourier Transfomic of a is a pos. def. fruition on $\|^{d}$
2) By the above Thur., Gaussian functions

$$
\mathscr{f}_{\alpha}(\vec{x})=e^{-\alpha\|\vec{x}\|_{2}^{2}}, \alpha>0
$$

are pas. def. functions on $\mathbb{R}^{d} \forall d$. If we use the Gaussian functions ton Thin Plate beterpalation we have that the luterpolation Matrix is (a constant times) the Grave Matrix of the Gaussian themselves: $\left(\exp \left(-\alpha\left\|\vec{x}_{i}-\vec{x}_{J}\right\|_{2}^{2}\right)\right)_{i s}=c\left(\ell_{2 \alpha}\left(\vec{x}-\vec{x}_{i}\right)\right)_{i}$ These functions are linearly inde pendent. We define the Gaussian Native Space:

$$
N\left(f_{\alpha}\right):=\left\{f \in L_{2}\left(\mathbb{R}^{d}\right): \hat{f} \exp \left(\frac{1}{8 \alpha}\|\vec{\omega}\|_{2}^{2}\right) \in L^{2}\left(\mathbb{R}^{d}\right)\right\}
$$

with the ines product

$$
\langle\notin, g\rangle_{\alpha}:=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} \frac{\hat{f}(\vec{\omega}) \overline{\hat{g}(\vec{\omega})}}{\hat{f_{\alpha}(\vec{\omega})}} d \vec{\omega}
$$

Then the Gaussian luterpolaut

$$
s(\vec{x})=\sum_{i=1}^{\mu} a_{i} f_{\alpha}\left(\vec{x}-\vec{x}_{i}\right)
$$

minimizes the energy $\|s\|_{\alpha}:=\sqrt{\langle s, s\rangle \alpha}$. Nate that it might be weeded to evaluate the Yaussiare buterpalaut at many paints. Using a direct method would cast $\theta(\mu \times \mu$ ') operations, so it's better to approximate the values using the Fast Gauss Transit mu which casts only $\theta\left(\mu+\mu^{\prime}\right)$. Define now $\phi(\mathscr{f}, \vec{c})=\ell(\vec{O})+\vec{C}^{\top}\left(\notin\left(\vec{x}_{i}-\vec{x}_{s}\right)\right)_{i,} \vec{C}-2 \vec{c}^{\top} \vec{b}$, $\vec{b}=\left(\mathscr{H}\left(\vec{x}-\vec{x}_{i}\right)\right)_{i} \in \mathbb{R}^{\mu}$. The fall owing holds:

ERROR UPPER BOUND:
Given $X=\left\{\vec{x}_{i}\right\}_{i=1}^{\mu} \subset \mathbb{R}^{d}$ we have:

$$
\begin{aligned}
|\mathscr{f}(\vec{x})-s(\vec{x})| & \leqslant\|\mathscr{f}\|_{\alpha} \cdot P_{\mathcal{L}_{\alpha} \times}(\vec{x}) \quad \forall \vec{c} \in \mathbb{R}^{\mu} \\
& \leqslant\|f\|_{\alpha} \frac{\alpha^{\frac{\mu}{2}}}{\sqrt{m!}}\left(\Lambda_{x_{m}}(x)+1\right) h_{m}^{m}
\end{aligned}
$$

where $P_{f_{\alpha}, x}(\vec{x})=\min \sqrt{\phi\left(f_{\alpha}, \vec{c}\right)}$ is the PowER Function, X_{m} a set of neighbouring paints $t o r \vec{x}$, $\Lambda_{X_{m}}(\vec{x}):=\sum_{i=1}^{N(m ; d)} l_{i}(\vec{x}) \mid$ the LEBESGUE Function, $N($ me; $d)=\binom{i=1}{d}, h_{m}$ the smallest diameter sit.:

$$
X_{\mu} \subset\left\{\vec{u}:\|\vec{u}-\vec{x}\|_{2} \leqslant \frac{1}{2} h_{m}\right\}
$$

3) $f(x)=\frac{1}{1+x^{2}}, f(x)=\frac{1}{2} e^{-|x|}, f(x)=(1-|x|)_{+}$ are pas. def. ne \mathbb{R}
4) THM. (SCHOENBERG):

Given $a(t) \geqslant 0 \quad \forall t \geqslant 0$ s. t. $a(t)>0$ an a NON trivial interval $[a, b] \subset[0,+\infty)$ and set $\phi: \mathbb{R}^{\geqslant 0} \rightarrow \mathbb{R}$ s.t.:

$$
\phi(s):=\int_{0}^{+\infty} a(t) e^{-s t} d t=(\mathcal{Z} a)(s)
$$

Then $f(x)=\phi\left(v^{2}\right)$ is a RADIAL pOS. DEF. function mu $\mathbb{R}^{d} \forall d$. A radial function whose translates can be used for interpolation is called a Radial Basis function
5) By the above The., the function:

$$
s(\vec{x})=\sum_{s=1}^{\mu} a_{s} \frac{1}{\sqrt{1+\left\|\vec{x}-\vec{x}_{5}\right\|_{2}^{2}}}
$$

is radial pas. def and it is the Hardy luvesse Multiquadric iuterpalaut
6) COMPACT SUPPORT RBF's:

If a function is pas def. an \mathbb{R}^{d}, then it is pas. def. on $\mathbb{R}^{\mu} \forall \mu \leqslant d$. The function

$$
\notin(\vec{x})=\left(1-\|\vec{x}\|_{2}\right)_{+}^{l}
$$

is pas. def. on $\mathbb{R}^{d} \forall \ell \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1$.
We ute that f a a function $f(\vec{x})=\phi\left(\|\vec{x}\|_{2}\right)$ (i.e. radial) its Fourier Transf omer is:

$$
\hat{f}(\vec{x})=\frac{(2 \pi) \frac{d}{2}}{\|\vec{x}\|_{2}^{(d-2) / 2}} \int_{0}^{+\infty} v^{\frac{d}{2}} \phi(v) J_{(d-2) / 2}\left(v\|\vec{x}\|_{2}\right) d v
$$

where $J_{\alpha}(\vec{x})$ are the Bessel Functions.
The prablewe with $f(v)=(1-v)_{+}^{l}$ is that it is e^{l-1} at $v=1$ in any dimension. This is why Wendland introduced a calculus fr suroth

Compact Support RBF's: given $\phi(t): \mathbb{R} \geqslant 0 \rightarrow \mathbb{R}$ s.t. $t \cdot \phi(t) \in L^{1}\left(\mathbb{R}^{\geqslant 0}\right)$ define the operators

$$
(\tau \phi)(x):=\int_{|x|}^{+\infty} t \phi(t) d t, \quad(D \phi)(x):=-\frac{1}{x} \phi^{\prime}(x)
$$

Notice that $(\tau \phi)(x)$ is even and that the 2 operations are inverse to each doer. Moreover, if $\operatorname{supp}(\phi)=[-R, R]$ then $\operatorname{supp}(\tau)=\operatorname{supp}(\Delta)$ $=[-R, R]$. Define the Weudland Frictions as fallows:

$$
\phi_{d, k}(v):=I^{k} \phi_{\left\lfloor\frac{d}{2} \downarrow+k+1\right.}(v)
$$

where $\phi_{l}(v)=(1-r)_{+}^{l}, d$ is the dimension and K is the surathuess order. They are pas. def. m $\mathbb{R}^{d} \forall k \geqslant 0$. Moreover they are pieceurise polyuanials in $V, v \in[0,1]$, of degree $\left\lfloor\frac{d}{2}\right\rfloor+3 k+1$ and are $\varphi^{2 k}\left(\mathbb{R}^{d}\right)$
2) CONDITIONALLY DEFINITE FUNCTIONS:

Sanctives we can get nom-singular interpolation matrices $\left(f\left(\vec{x}_{s}-\vec{x}_{i}\right)\right)$ is just requiring them to be conditionally definite
THM. (MiCCHELLi):
Given a s.t. $a(t) \geqslant 0 \quad \forall t \geqslant 0, a(t)>0$ on a non degenerate interval $[a, b] \subset \mathbb{R}^{>0}$ and st.

$$
\phi(s)=\phi(0)+\int_{0}^{+\infty} \frac{1-e^{-s t}}{t} a(t) d t
$$

with $\phi(0) \geqslant 0$, we have that the interpolation matrices $I_{\mu}:=\left(\phi\left(\left\|\vec{x}_{i}-\vec{X}_{T}\right\|_{2}^{2}\right)\right)_{i s} \in \mathbb{R}^{\mu \times \mu}$ are use singular $\forall\left\{\vec{x}_{i}\right\}_{i=1}^{\mu} \subset \mathbb{R}^{d} \quad \forall$ dimension d

Sane examples of such tuuctions are the distance function $\phi=\left\|\vec{x}_{i}-\vec{x}_{s}\right\|_{2}$ (i.e. $A=\left(\left\|\vec{x}_{i}-\vec{x}_{s}\right\|_{2}\right)_{i s}$ is NON singular) arced the function $\sqrt{1+\left\|\vec{x}_{i}-\vec{x}_{3}\right\|_{2}^{2}}$. Luterpalauts of the thou

$$
s(\vec{x})=\sum_{s=1}^{\mu} a_{s} \sqrt{1+\left\|\vec{x}_{i}-\vec{x}_{s}\right\|_{2}^{2}}
$$

are called the Hardy Multiquadrics

