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SIR Model

® First derived in 1927 by Kermack and McKendrick, it is one of the most commmon
models in epidemiology. It serves as a basis for more complex models and it is
capable, in certain formulations, of accounting for contagion phenomena.

® |t assumes the population to be split into 3 groups:
O Susceptible population s (assumed to have no immunity to the disease)
O Infected population i (assumed to have the disease)
O Removed population r (assumed to have immunity to the disease)

® The change of s in time is the rate at which susceptible persons are infected, and the
infected compartment i must also change, accordingly:

ds B .
at nSl
<di _ )
dt nSl 4
ar
ac - "

wheren =s+ i+ risthe total population, B is the contact rate and y the recovery rate




Force of Infection

. . . 1
® Theterm n(t) = %l is called the Force of Infection and has unit [time]
® [tisan epidemiological choice and not a mathematical one (in some cases it is taken to be a constant
function)

® |tis often useful to think of n as consisting of multiple parts:

n = Number of contacts per time X Probability of transmission per infected contact X
Probability that the contact is infected

® Using this definition we can verify that our choice n(t) = %i is coherent with the units (the term % is the

percentage of contacts that are infected)

® The contactrate g is often empirically estimated in models where number of contacts and transmission
probabilities are well known



Herd Immunity Fraction

® Analyzing the SIR model we note that g% >1= % > 0 and we therefore

expect the infected population to increase

® Thisalso implies% > % =: §. which we call the Herd Immunity Fraction of the
susceptible population

® [or given recovery and contact rates, the fraction of the susceptible population

must be larger than SA'; for the epidemic to spread in a sustained manner
® Thisimplies that in order for the epidemic to die down we must have:

S ~ T ~
2<§eo->1-§
n n

® This means that the suceptible fraction must be less than S, or, equivalently,
that the removed fraction must be greater than 1 - S,
® More generally, the population fraction with immunity must be at least 1 — S,




Models for Sexually
Transmitted Diseases
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Compartmental Models

® The SIR Model belongs to the class of Compartmental Models, in which the total
guantities characterizing the system of interest are decomposed into 2 or more
homogeneous units called compartments

® These models are ubiubiquitous all over the applied sciences: aside from biology,
they are extensively used in chemistry, engineering, demography and in the
social sciences

® Some examples of compartmental models in the applied sciences are:

Migration Models in demography

Predator-Prey Models and Competing Species Models in the social sciences
Reaction Models in chemistry

Phase Models in metallurgy

O O OO0

® Thisframework can be applied to far more complex models. Let us for example
think about a commmon sexually transmitted disease: HIV




Generic HIV Model - Assumptions

® |norder to build a model capable of correctly describing and predicting the behaviour of this disease, we
first have to think about the facts that we already know about the disease itself

® HIV diagnosis can occur many years after infection and many people may not be aware of their infection

® The rate at which people transmit HIV depends heavily on their awareness and treatment status

® Someone may be:

Acutely infected

Non acutely infected, unaware of infection
AIDS, unaware of infection

Aware of infection, not virally suppressed
Aware of infection, virally suppressed

O OO0OO0O0

® \When someone is virally suppressed their probability of transmitting the disease is essentially O, but
people (for various reasons) may not adhere perfectly to their treatment and lose viral suppression



Generic HIV Model - Graphs

® The last and fundamental fact known about HIV is that nobody recovers from it: it is a lifelong condition

® Given this knowledge, it appears that the SIR model framework might not be suitable to describe this
situation

® Indeed, in general, the infected population is not homogeneous as different groups mix and transmit at
different rates. This prevents us from treating them all as «infected», since this wouldn’'t make any sense

® Moreover, nobody recovers from the condition and removal only occurs at death

° Finally, we need to account for dynamics which were not considered in the SIR model, like treatment
adherence

® \We canstill use the compartmental framework to build a suitable model, and a way of doing this is to
use graphs to visualize things a little bit better:

Susceptible population s Aware AIDS infection mg

Unaware population u
Diagnosed infection, not

virally suppressed d,,

Unaware AIDS infection m,,

Diagnosed infection, not
virally suppressed d,,




INncidence Functions

® The Incidence Functions (i.e. the functions which are always proportional to the vulnerable population)
must then be inserted:

Susceptible population s [+ Aware AIDS infection mg

Aa

Unaware population u
Diagnosed infection, not

virally suppressed d,,

Unaware AIDS infection m,,

Diagnosed infection, not
virally suppressed d,,




Contact Rates

° Now, we can also insert the various contact rates and treatment adherence

parameters:

Susceptible population s

Unaware population u

\Tma

Unaware AIDS infection m,,

Aware AIDS infection mg

94, ¢
Py
Diagnosed infection, not
& virally suppressed d,,
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Diagnosed infection, not
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ODE System

° Eventually, our Generic HIV Model reads as follows:

Susceptible population s

$=—Ag+ Ay + Ay + Ag, + A, )S — UsS

a=(Ag+ Ay + A, + Ag, + A, )s — 0,0 — Uga

U= 0y,a— Oy, U— Pyu — U

ﬂ..lu = O, U — GmMy — thin, My

dp = Py + prymy +§mg + ndy, — 04, dn — ydn — ta,dn
dv =ydn —ndy — .ud,,dv

Mg = 0q,dn — $Mg — Mg
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Model for a generic STD - Assumptions

® \We now want to construct a model for an hypothetical Sexually Transmitted Disease (STD),
using the following assumptions

® \We consider 3 groups, each one with their own contact rates:
O  MSM (men who have sex with men) have an average of 5.1 sexual partners per year and
16 sexual contacts per partner, 84.4% of whom are MSM and 15.2% of whom are HetF
O  HetF (heterosexual females) have an average of 1.4 sexual partners per year and 37
sexual contacts per partner, 4% of whom are MSM and 96% of whom are HetM
O  HetM (heterosexual men) have an average of 1.8 sexual partners per year and 23 sexual
contacts per partner, 100% of whom are HetF

® Persons can either be diagnosed or undiagnosed

® Disease is identified through a test, and the 3 groups test at rates @y, Pretrr Pretm
respectively

® Diagnosed individuals are assumed to be on treatment and are assumed to take precautions
that reduce the probability of transmission by 98%

® The condition is lifelong and does not go away. Undiagnosed individuals die at 2.5 times the
rate of the general population while diagnosed individuals on treatment have the same

mortality rates (Upsys Uretr, Laetm) @S the general population




Force

of Infection Terms

We now want to write the full expressions for the Force of Infection terms Ay, Anetrr Agetm-

Probabilities of transmission through a single contact are denoted as follows:
O  Maleto Female: pyr

O  Female to Male: pr_y
O  Maleto Male: py_um

We assume exponential distribution for all the infection rates. Denoting the Infected Diagnosed and the

Infected Undiagnosed populations with the subscripts u and d respectively, we have the following:

AMSMM =
AMSMd =
AHetFu =
)lHeth =
AHetMu =

AHeth =

—M5M+$MM;+M5M‘1[5.1 +16-0.848 - log(1 — pyoy) + 1.4 -37 - 0.04 - log(1 — ppy—r)]

—MSM+I§,V’SSA"Z7+MSM(1[5.1 16 - 0.848 - log(1 — 0.02 - ppypy) + 1.4 - 37 - 0.04 - log(1 — 0.02 - ppyp)]

—Hem::;{jmewd[s.l 16 0.152 - log(1 — prop) + 1.8 - 23 - log(1 — prom)]

—HetF+H’;§;5+Heth[5.1 16+ 0.152 - log(1 — 0.02 - pp_p) + 1.8 - 23 - log(1 — 0.02 - pr_sp)]

HetMy,
_HetM+HeetMu+Heth[1'4 +37-0.96 - log(1 — pu-r)]

HetM
—HetM+H:tMud+Heth[1.4 -+37-0.96 -log(1 — 0.02 - pyyp)]




ODE System

® The Force of Infection terms are then defined as follows:

Avsm = Ausmy, ™t Amsmy
Ahetr = Atetr, ™ AHetr,
Abetm = Anetm,* Aretmy

® \We can now write the full ODE system:

MSM = —(Aysy + Apeer) - MSM — pygsy - MSM

HetF = —(Aysy + Axetm) - HetF — Uyerr - HetF

HetM = —Aypep - HetM — oy - HetM

MSMy = (Amsm + Anerr) - MSM — ®yrgyp - MSMy, — 2.5 - piyyspy - MSM,
HetE, = (Aysy + Axetm) - HetF — @ pyorp - HetE, — 2.5 - Uyerr - HetE,
HetM,, = Ayorr - HetM — ® oy - HetM,, — 2.5 + tiyorns - HetMy,
MSMy = ® sy - MSMy, — s - MSMyg

HetF; = @y - HetE, — lpecr - HetFy

HetMy = ®pyppny - HetMy, — pigery - HetMy




Test and Mortality Rates

® The probability that MSM, HetF and HetM take a test each month are 25%, 5% and 1% respectively, while
the probability that MSM, HetF and HetM die in a year are 0.8%, 0.25% and 0.4% respectively

® Based on these assumptions we now want to find the test rates and the mortality rates for each group

® Recall the cumulative distribution function for the exponential distribution:

log(1—p)

Pey)=1—eTt =y ="

® |n order to be consistent with the time units, we consider the probability of taking a test each month
referred to one month and the probability to die referred to one year:

Gysy = —12-log(1 — pusm)

Dpetr = —12 - 10g(1 — Petr)

Ppeem = —12 -10g(1 — pretm)
tusm = —1og(1 — qusm)
Bretr = —108(1 — Gretr)
Baetm = —108(1 — qreem)

where pysy = 25%, Precr = 5%, Pretm = 1%, qusm= 0.8%, quetr= 0.25%, querm = 0.4%



Model for a generic STD - Results
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Spatial Compartments

The simplest and most natural way to
extend the previous models into space is
via the addition of spatially-designated
compartments. This can be seen as
coupling multiple SIR-type models
together

PDE

It overcomes the limitations of the spatial
compartments approach by
representing a truly space-continuous
dynamics. This comes, however, with
much greater expense of resources for
the numerical simulations



Spatial Compartments

® Thisis avery natural and computationally inexpensive way to model spatial
variation

® Theoretically, one could add arbitrarily many spatial compartments

® However, as we'll se later, this approach is ultimately limited in its ability to
describe spatial dynamics, since it is not able to represent true space-continuous
dynamics

® \We wantto model (using the SIR Model as the basic structure) a situation in
which we have 2 regions (Milano and Codogno) each with its own characteristics:

Ser e 7oy Smo U T
® Atthe beginning of the outbreak we have some infections in Codogno only:
i.(0) >0,i,,(0) =0

® Since some Codogno citizens work in Milano, we assume that there is contact
(hence transmission) between Codogno and Milano




2-Region SIR Model — ODE System

® Following these assumptions, the full ODE system reads as follows:

dsm_ Bem . Pmm
W__Tcsmlc_msmlm
din _fom . Bom
dar N, Smlc N, Smlm —Vim
dny, ]

W_Vlm

@——&si —&Sl

dt N, clm N, cle

dic _fne B
dr N, Sclm N, Scle = VYic
dr, )

dt =Y

where y is the removal rate and f;; is the rate at which an individual in compartment i produces

infections in compartments j



2-Region SIR Model - DDF

® [n order to simplify the notation we take the following substitutions:

Bc_m Bmm _ Bmc _ Bec

= = = —_— = =
NC )/Cm' Nm me' Nm ymc: NC YCC’ y

® \We then obtain the so-called density dependent formulation of the model:

dsm . .
— = “YemSmlc — VmmSmlm

dt

dipy . . ,
W = YemSmlc T VmmSmlm — Ay
dry, ]
— = qal

dt mn

ds. . ,
— = —VmeSelm — YeeScl

dt YmeSclm = YeeScle

di, . . ,
E = YmcSclm T VecScle — Al
dr,

— =i
dt ¢




2-Region SIR Model — Contact Rates

® \We assume the population of Milano and Codogno to be 2e6 and 5e5 respectively. Moreover, the initial

infected pool is 500 in Codogno and O (as seen before) in Milano. The removal rateis y=«a =1—18

® The probability of transmission in a close contact is 1.2e-2, while in a light contact it is 5.3e-4

® Peoplein Milano have an average of 42 light contacts and 6.1 close contacts per day with other Milano
inhabitants, and 3.06e-2 light contacts and 9.1e-3 close contacts per day with people from Codogno

® Peoplein Codogno have an average of 18 light contacts and 3.8 close contacts per day with other Codogno
inhabitants, and 5.1 light contacts and 1.51 close contacts per day with people from Milano

® Aswe did before, we assume all the probabilities to be exponentially distributed, so we have the following
expressions for the contact rates:

B
Bem = —5.1-log(1 — 0.00053) — 1.51 - log(1 — 0.012) = y,, = 126’80
Brm = —42 -log(1 — 0.00053) — 6.1 - log(1 — 0.012) = yop = P _
m m = 2000000
Bme = —0.0306 - log(1 — 0.00053) — 0.0091 - log(1 — 0.012) = Y, = _Pme__
e cm = 2000000
BCC

Bec = =18 - log(1 - 0.00053) — 3.8 - log(1 = 0.012) = Yee = 1555
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2-Region SIR Model - Results
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® \With these parameter values, the following results are obtained:
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Diffusion and Random Walks

® \We would like to describe spatial variation at the macroscopic level (i.e. continuously)
® Assume any given infinitesimal particle to be able to move in one of 8 possible direction or stand still

with equal probability
® At each new position the process repeats independently. This process is called a random walk and it

operates at a microscopic scale:

® At the macroscopic scale, where the particles are represented as a continuum, this proces forms the
basis of the diffusion pehomenon



Diffusion and Reaction

® The most common application of diffusion is the Heat Equation for the
distribution of temperature T(x, t) in a domain .

aT .
pcpa = kAT in ()

° In a conservative form, assuming k to be non-constant, we can write the above
equation as follows:

oT ,
pCpaz V-(kVT) inQ

® Thetermsin red are the diffusive terms

® |nour model, the diseased individuals represent the particles and the diffusion
pehomenon represents the particle motion

® The «chemical reaction» is still similar to what we observed in the ODE models




Diffusion and Reaction - PDE System

We now derive an SIR-like Model with spatial diffusion. We assume that new births enter the susceptible

°
compartment at a rate f§ and that there is a generic (non disease) mortality rate u:
as ] i .
t=ﬂ(S+l+T)—]/Sl+V'(VSVS)—,MS in Q)

at
%zysi—ai+l7-(vil7i) — uiin Q
ar=oci+\7-(vrl7r) — urin Q

at
where the parameters v are the diffusivity coefficients and Q c R?

® This model is obviously incomplete: we need boundary conditions. The most useful type of
boundary conditions for our purposes are the Neumann Boundary Conditions:

(Vs) -m=gondQ

where n is the outward pointing unit normal on 9 (properly understood as flux)



Diffusion and Reaction — BC

® The homogeneous Neumann boundary condition corresponds to complete
isolation of the domain (zero flux: nobody enters or leaves):

(vgVs) - m=0,(v;Vi) - n=0, (v,Vr) -n = 0o0ndQ

° If we wanted to model the influence of susceptible, infected and removed

persons entering and leaving the domain at net flux rates gg, g;, g We would
have written the following boundary conditions:

(vsVs) -n =g, (viVi) -n=g;, v,Vr) -n= g, on 0Q

® Adding the 3 equations together and assuming that we have v = v = v; = v,,
we obtain the following formulation:

an_V .
Frin -(vn) + (B — wn

where n=s+i+r




Continuum Mechanics Framework

® Such models have a natural interpretation in terms of conservation laws and balance of forces, therefore
we can understand them in terms of familiar concepts from Continuum Mechanics
® Consider the following generic continuum mechanics equation:

du—V-F+b=0 (1)

e=Tlu (2)
F=F(u,¢) 3
b = b(u) (4)

Where:

O (1)is aninternal force balance in terms of an internal force F which is thermodynamically conjugate to u
O (2) isthe compatibility relation

O (3) is the constitutive relation: it defines the relation between compatibility and balance equations

O (4) isthe loading relation: it depends algebraically on the unknown terms, describing the interaction
between compartments



COVID-19 Model - Assumptions

® \We now build a generic COVID-19 model using the continuum mechanics framework as a basis and
the following assumptions:

Movement is proportional to population size

No movement occurs among the deceased population

There is a latency period between exposure and development of symptoms

The probability of contagion increases with population size

Some portion of the exposed population never develop symptoms (asymptomatic patients)
Both symptomatic and asymptomatic patients are capable of spreading the disease

All living persons are capable of reproduction (no age-structuring)

The non-COVID-19 mortality rate is independent of population compartment

New births are susceptible to the virus

I NI ENWINES

® \We now use these assumptions to derive the model, starting with the constitutive relation



Contstitutive Relation

Because of assumption 1, movement is proportional to the population size. Weset n=s+e+i+r
as the living population and define the constitutive relation as follows:

F(u, &) =nEg,
Vs 0 0 0 0
0O v, 0 0 O
E=]10 0 v; 0 O
0O 0 0 v O
L0 0 0 0 O

Recall that by equation (2) we have € = Vu
The v have unit [L?T~1P~1] where L, T, P are characteristic length, time and population scales,

respectively
The element E(5,5) is O as a result of assumption 2 (deceased people do not move)



Loading Relation

® \We now define the loading relation described by the vector b = b(u), which defines interaction
between compartments

® By assumption 3, there is a latency period before development of symptoms. All patients exposed
to the virus first move from the susceptible compartment into the exposed compartment:

die < — 0;S

® By assumption 6 each exposed individual could become infected (symptomatic) or exposed and
asymptomatic:

0;s X —y,(e,n)s —y;(i,n)s
dre X y.(e,n)s + y;(i,n)s

® Assume also that the contact rates y,, y; are linear in e and i with unit [T~1P71]




Loading Relation (continued)

® Dependenceon nis given through a depensation effect or Allee term A (unit [P]):

A\ _ A\ _ .
atsoc—<1—5>yees—<1—5>yi51
i A
dre « <1 — ;) Ye€S + <1 — ;) Y;St

[ | When n is large the effect of this term is small, consistently with assumption 4

[ | This parameter must be carefully chosen as it can accurately capture severe contagion in urban
areas and mild contagion in rural ones



Loading Relation (continued)

® Byassumption 3 there is a latency period before the development of the
symptoms: all patients exposed to the virus first move from the susceptible

compartment into the infected compartment after a period of time a:
0:i < ge
die X —ge
® Assumption 5, however, states that some patients will be asymptomatic and
never enter the infected compartment, moving instead to the recovered

compartment after a period of time @,:

die X —a e
07 X Ay e

® Both g and @, have unit [T71]




Loading Relation (continued)

Some portion of the infected population will move into the recovered compartment:

0il X —a, i
07 X @yl

Meanwhile, some portion of the infected patients will die, entering the deceased compartment
(this only considers COVID-19 deaths):

0,1 X —pyi
0,d o pyi

Assumption 7 implies that compartment s grows proportionally to total population n with a
reproduction rate § (unit [T~1])

Assumption 9 implies that these new births go to the susceptible compartment

Assumption 8 implies that all compartments have a non-COVID-19 mortality rate  (unit [T1])



COVID-19 Model - PDE System

® The complete COVID-19 model reads as follows:

_ A A
ats=En—<1—;)fees—<1—;)7i5i—ﬂs+|7-(nvs|75)
A A
d;e = 1—£ Vo €S + 1—; Visi — @.e —de — file +V - (nv,Ve)
Oi=e—pgi —ayi — i +V-(mnvVi)
Oir =age+a,i —pr +V-(mv Vi)

® \Written in the continuum mechanics notation, the loading relation term becomes:

i-§ (1—3:))765—3_ (1_%_)]755_3_ 70
B - 0 M—(1—§)7_35+6+&e —_(1_—3)1?5 0 0
0 ¢ g+¢g+a, 0 0
0 ~Ge —ay g 0
0 0 —Pq 0 0




Nonlinear Diffusion

® Addingall the terms together and assuming that all the diffusivity rates are equal we obtain:

on —V-(vnVn)=(B—ig)n— ¢yl

® This means that the whole model can be interpreted as a nonlinear continuity equation over the living
populationn
® Using the product rule we get:

on —V-(Wnvn)=(B—pig)n— ¢yl
on —vnAn—-vV@n)- Vn=(B—-a)n—pgi

® Theterm highlighted in red shows that the nonlinear diffusion doesn't only act as a diffusion in the
traditional sense, but it also has some characteristics of a convection phenomenon






Derivation of R;

® \We want now to derivate an expression for the effective viral reproduction number
R; using the next-generation matrix method. We use the previous 2-region SIR
Model (Milano — Codogno) written in the density dependent formulation:

dsm . .
dt = —YemSmlc — YmmSmlm

diy . . .
dt = YemSmlc T VmmSmlm — Ay

= —VYmeSclm — YeeScle

= VYmeSclm + VeeScle — i




Derivation of R; (continued)

The diseased portions of the population (i.e. anyone capable of spreading the disease) are identified by
the infected compartments:

dim . . .

W = YemSmlc T YmmSmim — Qlm
dic . . .

E = YmcSclm T VeeScle — @l¢

We can write the above equations like follows:
d (im YmmSm — &  VemSm im Iim
E ( ic) B ( VYmeSc YeeSe — a) ic ==V ic

where:

s Sm . . .
N = (me m Yem m) is the matrix corresponding to new cases,
YmCSC YCCSC

V= (g 2) is the matrix corresponding to existing cases



Derivation of R; (continued)

® \We now compute the Next-Generation Matrix:
1 1

YmmSm g VemSm * §>
1

- YmmSm  YemSm 2 0
NV~ = (2 =
( VmeSe VeeSe ) (O %) ( YmeSc '% YeeSe " g

where we note that the element NV~1(i, j) corresponds to the average amount of
infections at time t produced by an individual entering the j — th infected
compartment and spreading the infection into the i — th city at rate ,Bji

° Finally, R; is defined as follows:
R; == p(NV™1) = max{|1] : 1 eigenvalue of NV~1}

which, in our case, leads to the following expression:

2a

— YCCSC + ymmsm + \/(VCCSC)Z+(ymmsm)2_2)/CCSCymmSm + 4‘)/cmsmymcsc

Ry
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