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● First derived in 1927 by Kermack and McKendrick, it is one of the most common 
models in epidemiology. It serves as a basis for more complex models and it is
capable, in certain formulations, of accounting for contagion phenomena.

● It assumes the population to be split into 3 groups:
○ Susceptible population 𝑠 (assumed to have no immunity to the disease)
○ Infected population 𝑖 (assumed to have the disease)
○ Removed population 𝑟 (assumed to have immunity to the disease)

● The change of 𝑠 in time is the rate at which susceptible persons are infected, and the 
infected compartment 𝑖 must also change, accordingly:

𝑑𝑠

𝑑𝑡
= −

𝛽

𝑛
𝑠𝑖

𝑑𝑖

𝑑𝑡
=

𝛽

𝑛
𝑠𝑖 − 𝛾𝑖

𝑑𝑟

𝑑𝑡
= 𝛾𝑖

where 𝑛 = 𝑠 + 𝑖 + 𝑟 is the total population, 𝛽 is the contact rate and 𝛾 the recovery rate  

SIR Model



Force of Infection

● The term 𝜂 𝑡 =
𝛽

𝑛
𝑖 is called the Force of Infection and has unit

1

𝑡𝑖𝑚𝑒
● It is an epidemiological choice and not a mathematical one (in some cases it is taken to be a constant

function)
● It is often useful to think of 𝜂 as consisting of multiple parts:

𝜂 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 × 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ×
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑖𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑

● Using this definition we can verify that our choice 𝜂 𝑡 =
𝛽

𝑛
𝑖 is coherent with the units (the term

𝑖

𝑛
is the 

percentage of contacts that are infected)
● The contact rate 𝛽 is often empirically estimated in models where number of contacts and transmission 

probabilities are well known



Herd Immunity Fraction

● Analyzing the SIR model we note that
𝛽

𝛾

𝑠

𝑛
> 1 ⟹

𝑑𝑖

𝑑𝑡
> 0 and we therefore

expect the infected population to increase
● This also implies

𝑠

𝑛
>

𝛾

𝛽
=∶ ෩𝑆𝑐 which we call the Herd Immunity Fraction of the 

susceptible population
● For given recovery and contact rates, the fraction of the susceptible population

must be larger than ෩𝑆𝑐 for the epidemic to spread in a sustained manner
● This implies that in order for the epidemic to die down we must have:

𝑠

𝑛
< ෩𝑆𝑐 ⟺

𝑟

𝑛
> 1 − ෩𝑆𝑐

● This means that the suceptible fraction must be less than ෩𝑆𝑐 or, equivalently, 
that the removed fraction must be greater than 1 − ෩𝑆𝑐

● More generally, the population fraction with immunity must be at least 1 − ෩𝑆𝑐



Models for Sexually 
Transmitted Diseases
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Compartmental Models

● The SIR Model belongs to the class of Compartmental Models, in which the total
quantities characterizing the system of interest are decomposed into 2 or more 
homogeneous units called compartments

● These models are ubiubiquitous all over the applied sciences: aside from biology, 
they are extensively used in chemistry, engineering, demography and in the 
social sciences

● Some examples of compartmental models in the applied sciences are:
○ Migration Models in demography
○ Predator-Prey Models and Competing Species Models in the social sciences
○ Reaction Models in chemistry
○ Phase Models in metallurgy

● This framework can be applied to far more complex models. Let us for example
think about a common sexually transmitted disease: HIV



Generic HIV Model - Assumptions

● In order to build a model capable of correctly describing and predicting the behaviour of this disease, we
first have to think about the facts that we already know about the disease itself

● HIV diagnosis can occur many years after infection and many people may not be aware of their infection
● The rate at which people transmit HIV depends heavily on their awareness and treatment status

● Someone may be:
○ Acutely infected
○ Non acutely infected, unaware of infection
○ AIDS, unaware of infection
○ Aware of infection, not virally suppressed
○ Aware of infection, virally suppressed

● When someone is virally suppressed their probability of transmitting the disease is essentially 0, but
people (for various reasons) may not adhere perfectly to their treatment and lose viral suppression



Generic HIV Model - Graphs

● The last and fundamental fact known about HIV is that nobody recovers from it: it is a lifelong condition
● Given this knowledge, it appears that the SIR model framework might not be suitable to describe this

situation
● Indeed, in general, the infected population is not homogeneous as different groups mix and transmit at

different rates. This prevents us from treating them all as «infected», since thiswouldn’t make any sense
● Moreover, nobody recovers from the condition and removal only occurs at death
● Finally, we need to account for dynamics which were not considered in the SIR model, like treatment 

adherence
● We can still use the compartmental framework to build a suitable model, and a way of doing this is to 

use graphs to visualize things a little bit better:



Incidence Functions

● The Incidence Functions (i.e. the functions which are always proportional to the vulnerable population) 
must then be inserted:



Contact Rates

● Now, we can also insert the various contact rates and treatment adherence
parameters:



ODE System

● Eventually, our Generic HIV Model reads as follows:

ሶ𝑠 = − 𝜆𝑎 + 𝜆𝑢 + 𝜆𝑚𝑢
+ 𝜆𝑑𝑛 + 𝜆𝑚𝑑

𝑠 − 𝜇𝑠𝑠

ሶ𝑎 = 𝜆𝑎 + 𝜆𝑢 + 𝜆𝑚𝑢
+ 𝜆𝑑𝑛 + 𝜆𝑚𝑑

𝑠 − 𝜎𝑢𝑎 − 𝜇𝑎𝑎

ሶ𝑢 = 𝜎𝑢𝑎 − 𝜎𝑚𝑢
𝑢 − 𝜙𝑢𝑢 − 𝜇𝑢𝑢

ሶ𝑚𝑢 = 𝜎𝑚𝑢
𝑢 − 𝜙𝑚𝑚𝑢 − 𝜇𝑚𝑢

𝑚𝑢

ሶ𝑑𝑛 = 𝜙𝑢𝑢 + 𝜙𝑚𝑚𝑢 + 𝜉𝑚𝑑 + 𝜂𝑑𝑣 − 𝜎𝑑𝑛𝑑𝑛 − 𝛾𝑑𝑛 − 𝜇𝑑𝑛𝑑𝑛
ሶ𝑑𝑣 = 𝛾𝑑𝑛 − 𝜂𝑑𝑣 − 𝜇𝑑𝑣𝑑𝑣
ሶ𝑚𝑑 = 𝜎𝑑𝑛𝑑𝑛 − 𝜉𝑚𝑑 − 𝜇𝑚𝑑

𝑚𝑑



Model for a generic STD - Assumptions

● We now want to construct a model for an hypothetical Sexually Transmitted Disease (STD), 
using the following assumptions

● We consider 3 groups, each one with their own contact rates:
○ MSM (men who have sex with men) have an average of 5.1 sexual partners per year and 

16 sexual contacts per partner, 84.4% of whom are MSM and 15.2% of whom are HetF
○ HetF (heterosexual females) have an average of 1.4 sexual partners per year and 37 

sexual contacts per partner, 4% of whom are MSM and 96% of whom are HetM
○ HetM (heterosexual men) have an average of 1.8 sexual partners per year and 23 sexual

contacts per partner, 100% of whom are HetF

● Persons can either be diagnosed or undiagnosed
● Disease is identified through a test, and the 3 groups test at rates Φ𝑀𝑆𝑀 , Φ𝐻𝑒𝑡𝐹, Φ𝐻𝑒𝑡𝑀

respectively
● Diagnosed individuals are assumed to be on treatment and are assumed to take precautions

that reduce the probability of transmission by 98%
● The condition is lifelong and does not go away. Undiagnosed individuals die at 2.5 times the 

rate of the general population while diagnosed individuals on treatment have the same
mortality rates (𝜇𝑀𝑆𝑀 , 𝜇𝐻𝑒𝑡𝐹 , 𝜇𝐻𝑒𝑡𝑀) as the general population



Force of Infection Terms

● We now want to write the full expressions for the Force of Infection terms 𝜆𝑀𝑆𝑀 , 𝜆𝐻𝑒𝑡𝐹 , 𝜆𝐻𝑒𝑡𝑀 . 
Probabilities of transmission through a single contact are denoted as follows:
○ Male to Female: 𝑝𝑀→𝐹

○ Female to Male: 𝑝𝐹→𝑀
○ Male to Male: 𝑝𝑀→𝑀

● We assume exponential distribution for all the infection rates. Denoting the Infected Diagnosed and the 
Infected Undiagnosed populations with the subscripts u and d respectively, we have the following: 

𝜆𝑀𝑆𝑀𝑢
= − 𝑀𝑆𝑀𝑢

𝑀𝑆𝑀+𝑀𝑆𝑀𝑢+𝑀𝑆𝑀𝑑
5.1 ∙ 16 ∙ 0.848 ∙ log(1 − 𝑝𝑀→𝑀) + 1.4 ∙ 37 ∙ 0.04 ∙ log(1 − 𝑝𝑀→𝐹)

𝜆𝑀𝑆𝑀𝑑
= − 𝑀𝑆𝑀𝑑

𝑀𝑆𝑀+𝑀𝑆𝑀𝑢+𝑀𝑆𝑀𝑑
5.1 ∙ 16 ∙ 0.848 ∙ log(1 − 0.02 ∙ 𝑝𝑀→𝑀) + 1.4 ∙ 37 ∙ 0.04 ∙ log(1 − 0.02 ∙ 𝑝𝑀→𝐹)

𝜆𝐻𝑒𝑡𝐹𝑢 = − 𝐻𝑒𝑡𝐹𝑢
𝐻𝑒𝑡𝐹+𝐻𝑒𝑡𝐹𝑢+𝐻𝑒𝑡𝐹𝑑

5.1 ∙ 16 ∙ 0.152 ∙ log(1 − 𝑝𝐹→𝑀) + 1.8 ∙ 23 ∙ log(1 − 𝑝𝐹→𝑀)

𝜆𝐻𝑒𝑡𝐹𝑑 = − 𝐻𝑒𝑡𝐹
𝐻𝑒𝑡𝐹+𝐻𝑒𝑡𝐹𝑢+𝐻𝑒𝑡𝐹𝑑

5.1 ∙ 16 ∙ 0.152 ∙ log(1 − 0.02 ∙ 𝑝𝐹→𝑀) + 1.8 ∙ 23 ∙ log(1 −0.02 ∙ 𝑝𝐹→𝑀)

𝜆𝐻𝑒𝑡𝑀𝑢
= − 𝐻𝑒𝑡𝑀𝑢

𝐻𝑒𝑡𝑀+𝐻𝑒𝑡𝑀𝑢+𝐻𝑒𝑡𝑀𝑑
1.4 ∙ 37 ∙ 0.96 ∙ log(1 − 𝑝𝑀→𝐹)

𝜆𝐻𝑒𝑡𝑀𝑑
= − 𝐻𝑒𝑡𝑀𝑑

𝐻𝑒𝑡𝑀+𝐻𝑒𝑡𝑀𝑢+𝐻𝑒𝑡𝑀𝑑
1.4 ∙ 37 ∙ 0.96 ∙ log(1 − 0.02 ∙ 𝑝𝑀→𝐹)



ODE System

● The Force of Infection terms are then defined as follows:

𝜆𝑀𝑆𝑀 = 𝜆𝑀𝑆𝑀𝑢
+ 𝜆𝑀𝑆𝑀𝑑

𝜆𝐻𝑒𝑡𝐹 = 𝜆𝐻𝑒𝑡𝐹𝑢+ 𝜆𝐻𝑒𝑡𝐹𝑑
𝜆𝐻𝑒𝑡𝑀 = 𝜆𝐻𝑒𝑡𝑀𝑢

+ 𝜆𝐻𝑒𝑡𝑀𝑑

● We can now write the full ODE system:

ሶ𝑀𝑆𝑀 = −(𝜆𝑀𝑆𝑀 + 𝜆𝐻𝑒𝑡𝐹) ∙ 𝑀𝑆𝑀 − 𝜇𝑀𝑆𝑀 ∙ 𝑀𝑆𝑀
ሶ𝐻𝑒𝑡𝐹 = −(𝜆𝑀𝑆𝑀 + 𝜆𝐻𝑒𝑡𝑀) ∙ 𝐻𝑒𝑡𝐹 − 𝜇𝐻𝑒𝑡𝐹 ∙ 𝐻𝑒𝑡𝐹
ሶ𝐻𝑒𝑡𝑀 = −𝜆𝐻𝑒𝑡𝐹 ∙ 𝐻𝑒𝑡𝑀 − 𝜇𝐻𝑒𝑡𝑀 ∙ 𝐻𝑒𝑡𝑀
ሶ𝑀𝑆𝑀𝑢 = (𝜆𝑀𝑆𝑀 + 𝜆𝐻𝑒𝑡𝐹) ∙ 𝑀𝑆𝑀 −Φ𝑀𝑆𝑀 ∙ 𝑀𝑆𝑀𝑢 − 2.5 ∙ 𝜇𝑀𝑆𝑀 ∙ 𝑀𝑆𝑀𝑢

ሶ𝐻𝑒𝑡𝐹𝑢 = (𝜆𝑀𝑆𝑀 + 𝜆𝐻𝑒𝑡𝑀) ∙ 𝐻𝑒𝑡𝐹 − Φ𝐻𝑒𝑡𝐹 ∙ 𝐻𝑒𝑡𝐹𝑢 − 2.5 ∙ 𝜇𝐻𝑒𝑡𝐹 ∙ 𝐻𝑒𝑡𝐹𝑢
ሶ𝐻𝑒𝑡𝑀𝑢 = 𝜆𝐻𝑒𝑡𝐹 ∙ 𝐻𝑒𝑡𝑀 − Φ𝐻𝑒𝑡𝑀 ∙ 𝐻𝑒𝑡𝑀𝑢 − 2.5 ∙ 𝜇𝐻𝑒𝑡𝑀 ∙ 𝐻𝑒𝑡𝑀𝑢

ሶ𝑀𝑆𝑀𝑑 = Φ𝑀𝑆𝑀 ∙ 𝑀𝑆𝑀𝑢 − 𝜇𝑀𝑆𝑀 ∙ 𝑀𝑆𝑀𝑑

ሶ𝐻𝑒𝑡𝐹𝑑 = Φ𝐻𝑒𝑡𝐹 ∙ 𝐻𝑒𝑡𝐹𝑢 − 𝜇𝐻𝑒𝑡𝐹 ∙ 𝐻𝑒𝑡𝐹𝑑
ሶ𝐻𝑒𝑡𝑀𝑑 = Φ𝐻𝑒𝑡𝑀 ∙ 𝐻𝑒𝑡𝑀𝑢 − 𝜇𝐻𝑒𝑡𝑀 ∙ 𝐻𝑒𝑡𝑀𝑑



Test and Mortality Rates

● The probability that MSM, HetF and HetM take a test each month are 25%, 5% and 1% respectively, while
the probability that MSM, HetF and HetM die in a year are 0.8%, 0.25% and 0.4% respectively

● Based on these assumptions we now want to find the test rates and the mortality rates for each group
● Recall the cumulative distribution function for the exponential distribution:

𝑃 𝑡, 𝛾 = 1 − 𝑒−𝛾𝑡 ⟹ 𝛾 = −
log(1 − 𝑝)

𝑡

● In order to be consistent with the time units, we consider the probability of taking a test each month
referred to one month and the probability to die referred to one year:

Φ𝑀𝑆𝑀 = −12 ∙ log(1 − 𝑝𝑀𝑆𝑀)
Φ𝐻𝑒𝑡𝐹 = −12 ∙ log(1 − 𝑝𝐻𝑒𝑡𝐹)
Φ𝐻𝑒𝑡𝑀 = −12 ∙ log(1 − 𝑝𝐻𝑒𝑡𝑀)
𝜇𝑀𝑆𝑀 = − log(1 − 𝑞𝑀𝑆𝑀)
𝜇𝐻𝑒𝑡𝐹 = − log(1 − 𝑞𝐻𝑒𝑡𝐹)
𝜇𝐻𝑒𝑡𝑀 = − log(1 − 𝑞𝐻𝑒𝑡𝑀)

where 𝑝𝑀𝑆𝑀 = 25%, 𝑝𝐻𝑒𝑡𝐹 = 5%, 𝑝𝐻𝑒𝑡𝑀 = 1%, 𝑞𝑀𝑆𝑀= 0.8%, 𝑞𝐻𝑒𝑡𝐹= 0.25%, 𝑞𝐻𝑒𝑡𝑀 = 0.4%



Model for a generic STD - Results
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Spatial Compartments

PDE

The simplest and most natural way to 
extend the previous models into space is
via the addition of spatially-designated

compartments. This can be seen as
coupling multiple SIR-type models 

together

It overcomes the limitations of the spatial
compartments approach by 

representing a truly space-continuous
dynamics. This comes, however, with 

much greater expense of resources for 
the numerical simulations



Spatial Compartments

● This is a very natural and computationally inexpensive way to model spatial
variation

● Theoretically, one could add arbitrarily many spatial compartments
● However, as we’ll se later, this approach is ultimately limited in its ability to 

describe spatial dynamics, since it is not able to represent true space-continuous
dynamics

● We want to model (using the SIR Model as the basic structure) a situation in 
which we have 2 regions (Milano and Codogno) each with its own characteristics:

𝑠𝑐, 𝑖𝑐, 𝑟𝑐, 𝑠𝑚, 𝑖𝑚, 𝑟𝑚

● At the beginning of the outbreak we have some infections in Codogno only:

𝑖𝑐 0 > 0, 𝑖𝑚 0 = 0

● Since some Codogno citizens work in Milano, we assume that there is contact 
(hence transmission) between Codogno and Milano



2-Region SIR Model – ODE System

● Following these assumptions, the full ODE system reads as follows:

𝑑𝑠𝑚
𝑑𝑡

= −
𝛽𝑐𝑚
𝑁𝑐

𝑠𝑚𝑖𝑐 −
𝛽𝑚𝑚

𝑁𝑚
𝑠𝑚𝑖𝑚

𝑑𝑖𝑚
𝑑𝑡

=
𝛽𝑐𝑚
𝑁𝑐

𝑠𝑚𝑖𝑐 +
𝛽𝑚𝑚

𝑁𝑚
𝑠𝑚𝑖𝑚 − 𝛾𝑖𝑚

𝑑𝑟𝑚
𝑑𝑡

= 𝛾𝑖𝑚

𝑑𝑠𝑐
𝑑𝑡

= −
𝛽𝑚𝑐

𝑁𝑚
𝑠𝑐𝑖𝑚 −

𝛽𝑐𝑐
𝑁𝑐

𝑠𝑐𝑖𝑐

𝑑𝑖𝑐
𝑑𝑡

=
𝛽𝑚𝑐

𝑁𝑚
𝑠𝑐𝑖𝑚 +

𝛽𝑐𝑐
𝑁𝑐

𝑠𝑐𝑖𝑐 − 𝛾𝑖𝑐

𝑑𝑟𝑐
𝑑𝑡

= 𝛾𝑖𝑐

where 𝛾 is the removal rate and 𝛽𝑖𝑗 is the rate at which an individual in compartment 𝑖 produces
infections in compartments 𝑗



2-Region SIR Model - DDF

● In order to simplify the notation we take the following substitutions:

𝛽𝑐𝑚

𝑁𝑐
= 𝛾𝑐𝑚,

𝛽𝑚𝑚

𝑁𝑚
= 𝛾𝑚𝑚,

𝛽𝑚𝑐

𝑁𝑚
= 𝛾𝑚𝑐,  

𝛽𝑐𝑐

𝑁𝑐
= 𝛾𝑐𝑐, 𝛾 = 𝛼

● We then obtain the so-called density dependent formulation of the model:

𝑑𝑠𝑚
𝑑𝑡

= −𝛾𝑐𝑚𝑠𝑚𝑖𝑐 − 𝛾𝑚𝑚𝑠𝑚𝑖𝑚

𝑑𝑖𝑚
𝑑𝑡

= 𝛾𝑐𝑚𝑠𝑚𝑖𝑐 + 𝛾𝑚𝑚𝑠𝑚𝑖𝑚 − 𝛼𝑖𝑚

𝑑𝑟𝑚
𝑑𝑡

= 𝛼𝑖𝑚

𝑑𝑠𝑐
𝑑𝑡

= −𝛾𝑚𝑐𝑠𝑐𝑖𝑚 − 𝛾𝑐𝑐𝑠𝑐𝑖𝑐

𝑑𝑖𝑐
𝑑𝑡

= 𝛾𝑚𝑐𝑠𝑐𝑖𝑚 + 𝛾𝑐𝑐𝑠𝑐𝑖𝑐 − 𝛼𝑖𝑐

𝑑𝑟𝑐
𝑑𝑡

= 𝛼𝑖𝑐



2-Region SIR Model – Contact Rates

● We assume the population of Milano and Codogno to be 2e6 and 5e5 respectively. Moreover, the initial
infected pool is 500 in Codogno and 0 (as seen before) in Milano. The removal rate is 𝛾 = 𝛼 =

1

18

● The probability of transmission in a close contact is 1.2e-2, while in a light contact it is 5.3e-4
● People in Milano have an average of 42 light contacts and 6.1 close contacts per day with other Milano 

inhabitants, and 3.06e-2 light contacts and 9.1e-3 close contacts per day with people from Codogno
● People in Codogno have an average of 18 light contacts and 3.8 close contacts per day with other Codogno

inhabitants, and 5.1 light contacts and 1.51 close contacts per day with people from Milano
● As we did before, we assume all the probabilities to be exponentially distributed, so we have the following 

expressions for the contact rates:

𝛽𝑐𝑚 = −5.1 ∙ log 1 − 0.00053 − 1.51 ∙ log 1 − 0.012 ⟹ 𝛾𝑐𝑚 =
𝛽𝑐𝑚
12000

𝛽𝑚𝑚 = −42 ∙ log 1 − 0.00053 − 6.1 ∙ log(1 − 0.012) ⟹ 𝛾𝑐𝑚 =
𝛽𝑚𝑚

2000000

𝛽𝑚𝑐 = −0.0306 ∙ log 1 − 0.00053 − 0.0091 ∙ log(1 − 0.012) ⟹ 𝛾𝑐𝑚 =
𝛽𝑚𝑐

2000000

𝛽𝑐𝑐 = −18 ∙ log 1 − 0.00053 − 3.8 ∙ log(1 − 0.012) ⟹ 𝛾𝑐𝑐 =
𝛽𝑐𝑐

12000



2-Region SIR Model - Results

● With these parameter values, the following results are obtained:



Diffusion and Random Walks

● We would like to describe spatial variation at the macroscopic level (i.e. continuously)
● Assume any given infinitesimal particle to be able to move in one of 8 possible direction or stand still

with equal probability
● At each new position the process repeats independently. This process is called a random walk and it

operates at a microscopic scale:

● At the macroscopic scale, where the particles are represented as a continuum, this proces forms the 
basis of the diffusion pehomenon



Diffusion and Reaction 

● The most common application of diffusion is the Heat Equation for the 
distribution of temperature 𝑇(𝑥, 𝑡) in a domain Ω:

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝜅Δ𝑇 in Ω

● In a conservative form, assuming 𝜅 to be non-constant, we can write the above
equation as follows:

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝛻 ⋅ 𝜅𝛻𝑇 in Ω

● The terms in red are the diffusive terms
● In our model, the diseased individuals represent the particles and the diffusion

pehomenon represents the particle motion
● The «chemical reaction» is still similar to what we observed in the ODE models



Diffusion and Reaction - PDE System

● We now derive an SIR-like Model with spatial diffusion. We assume that new births enter the susceptible
compartment at a rate 𝛽 and that there is a generic (non disease) mortality rate 𝜇:

𝜕𝑠

𝜕𝑡
= 𝛽 𝑠 + 𝑖 + 𝑟 − 𝛾𝑠𝑖 + 𝛻 ⋅ 𝜈𝑠𝛻𝑠 − 𝜇𝑠 in Ω

𝜕𝑖

𝜕𝑡
= 𝛾𝑠𝑖 − 𝛼𝑖 + 𝛻 ⋅ 𝜈𝑖𝛻𝑖 − 𝜇𝑖 in Ω
𝜕𝑟

𝜕𝑡
= 𝛼𝑖 + 𝛻 ⋅ 𝜈𝑟𝛻𝑟 − 𝜇𝑟 in Ω

where the parameters 𝜈 are the diffusivity coefficients and Ω ⊂ ℝ2

● This model is obviously incomplete: we need boundary conditions. The most useful type of 
boundary conditions for our purposes are the Neumann Boundary Conditions:

𝛻𝑠 ⋅ 𝒏 = 𝑔 on 𝜕Ω

where 𝒏 is the outward pointing unit normal on 𝜕Ω (properly understood as flux) 



Diffusion and Reaction – BC

● The homogeneous Neumann boundary condition corresponds to complete 
isolation of the domain (zero flux: nobody enters or leaves):

𝜈𝑠𝛻𝑠 ⋅ 𝒏 = 0, 𝜈i𝛻𝑖 ⋅ 𝒏 = 0, 𝜈𝑟𝛻𝑟 ⋅ 𝒏 = 0 on 𝜕Ω

● If we wanted to model the influence of susceptible, infected and removed 
persons entering and leaving the domain at net flux rates 𝑔𝑠, 𝑔𝑖 , 𝑔𝑟 we would 
have written the following boundary conditions:

𝜈𝑠𝛻𝑠 ⋅ 𝒏 = 𝑔𝑠, 𝜈i𝛻𝑖 ⋅ 𝒏 = 𝑔𝑖 , 𝜈𝑟𝛻𝑟 ⋅ 𝒏 = 𝑔𝑟 on 𝜕Ω

● Adding the 3 equations together and assuming that we have 𝜈 = 𝜈𝑠 = 𝜈𝑖 = 𝜈𝑟 , 
we obtain the following formulation:

𝜕𝑛

𝜕𝑡
= 𝛻 ⋅ 𝜈𝛻𝑛 + 𝛽 − 𝜇 𝑛

where 𝑛 = 𝑠 + 𝑖 + 𝑟



Continuum Mechanics Framework

● Such models have a natural interpretation in terms of conservation laws and balance of forces, therefore
we can understand them in terms of familiar concepts from Continuum Mechanics

● Consider the following generic continuum mechanics equation:

𝜕𝑡𝒖 − 𝛻 ⋅ 𝑭 + 𝒃 = 𝟎 (1)
𝜺 = 𝛻𝒖 (2)
𝑭 = 𝑭 𝒖, 𝜺 (3)
𝒃 = 𝒃 𝒖 (4)

Where:
○ (1) is an internal force balance in terms of an internal force 𝑭 which is thermodynamically conjugate to 𝒖
○ (2) is the compatibility relation 
○ (3) is the constitutive relation: it defines the relation between compatibility and balance equations 
○ (4) is the loading relation: it depends algebraically on the unknown terms, describing the interaction 

between compartments



COVID-19 Model - Assumptions

● We now build a generic COVID-19 model using the continuum mechanics framework as a basis and 
the following assumptions:

1. Movement is proportional to population size
2. No movement occurs among the deceased population
3. There is a latency period between exposure and development of symptoms
4. The probability of contagion increases with population size
5. Some portion of the exposed population never develop symptoms (asymptomatic patients)
6. Both symptomatic and asymptomatic patients are capable of spreading the disease
7. All living persons are capable of reproduction (no age-structuring)
8. The non-COVID-19 mortality rate is independent of population compartment
9. New births are susceptible to the virus

● We now use these assumptions to derive the model, starting with the constitutive relation



Contstitutive Relation

● Because of assumption 1, movement is proportional to the population size. We set  𝑛 = 𝑠 + 𝑒 + 𝑖 + 𝑟
as the living population and define the constitutive relation as follows:

𝑭(𝒖, 𝜺) = 𝑛 𝑬𝜺,

𝑬 =

ҧ𝜈𝑠 0 0 0 0
0 ҧ𝜈𝑒 0 0 0
0 0 ҧ𝜈𝑖 0 0
0 0 0 ҧ𝜈𝑟 0
0 0 0 0 0

● Recall that by equation (2) we have 𝜺 = 𝛁𝐮
● The 𝜈 have unit 𝐿2𝑇−1𝑃−1 where 𝐿, 𝑇, 𝑃 are characteristic length, time and population scales, 

respectively
● The element 𝑬(5,5) is 0 as a result of assumption 2 (deceased people do not move)



Loading Relation

● We now define the loading relation described by the vector 𝒃 = 𝒃 𝒖 , which defines interaction 
between compartments

● By assumption 3, there is a latency period before development of symptoms. All patients exposed
to the virus first move from the susceptible compartment into the exposed compartment:

𝜕𝑡𝑒 ∝ − 𝜕𝑡𝑠

● By assumption 6 each exposed individual could become infected (symptomatic) or exposed and 
asymptomatic:

𝜕𝑡𝑠 ∝ − 𝛾𝑒 𝑒, 𝑛 𝑠 − 𝛾𝑖 𝑖, 𝑛 𝑠
𝜕𝑡𝑒 ∝ 𝛾𝑒(𝑒, 𝑛)𝑠 + 𝛾𝑖 𝑖, 𝑛 𝑠

● Assume also that the contact rates 𝛾𝑒 , 𝛾𝑖 are linear in 𝑒 and 𝑖 with unit  𝑇−1𝑃−1



Loading Relation (continued)

● Dependence on 𝑛 is given through a depensation effect or Allee term 𝐴 (unit 𝑃 ):

𝜕𝑡𝑠 ∝ − 1 −
ҧ𝐴

𝑛
ҧ𝛾𝑒 𝑒𝑠 − 1 −

ҧ𝐴

𝑛
ҧ𝛾𝑖𝑠𝑖

𝜕𝑡𝑒 ∝ 1 −
ҧ𝐴

𝑛
ҧ𝛾𝑒𝑒𝑠 + 1 −

ҧ𝐴

𝑛
ҧ𝛾𝑖𝑠𝑖

■ When 𝑛 is large the effect of this term is small, consistently with assumption 4

■ This parameter must be carefully chosen as it can accurately capture severe contagion in urban 
areas and mild contagion in rural ones



Loading Relation (continued)

● By assumption 3 there is a latency period before the development of the 
symptoms: all patients exposed to the virus first move from the susceptible
compartment into the infected compartment after a period of time ത𝜎:

𝜕𝑡𝑖 ∝ ത𝜎𝑒
𝜕𝑡𝑒 ∝ −ത𝜎𝑒

● Assumption 5, however, states that some patients will be asymptomatic and 
never enter the infected compartment, moving instead to the recovered
compartment after a period of time ത𝛼𝑒 :

𝜕𝑡𝑒 ∝ −ത𝛼𝑒𝑒
𝜕𝑡𝑟 ∝ ത𝛼𝑒𝑒

● Both ത𝜎 and ത𝛼𝑒 have unit 𝑇−1



Loading Relation (continued)

● Some portion of the infected population will move into the recovered compartment:

𝜕𝑡𝑖 ∝ −ത𝛼𝑟𝑖
𝜕𝑡𝑟 ∝ ത𝛼𝑟𝑖

● Meanwhile, some portion of the infected patients will die, entering the deceased compartment
(this only considers COVID-19 deaths):

𝜕𝑡𝑖 ∝ − ത𝜙𝑑𝑖
𝜕𝑡𝑑 ∝ ത𝜙𝑑𝑖

● Assumption 7 implies that compartment 𝑠 grows proportionally to total population 𝑛 with a 
reproduction rate ҧ𝛽 (unit 𝑇−1 )

● Assumption 9 implies that these new births go to the susceptible compartment
● Assumption 8 implies that all compartments have a non-COVID-19 mortality rate ҧ𝜇 (unit 𝑇−1 )



COVID-19 Model - PDE System

● The complete COVID-19 model reads as follows:

𝜕𝑡𝑠 = ҧ𝛽𝑛 − 1 −
ҧ𝐴

𝑛
ҧ𝛾𝑒 𝑒𝑠 − 1 −

ҧ𝐴

𝑛
ҧ𝛾𝑖𝑠𝑖 − ҧ𝜇𝑠 + 𝛻 ⋅ 𝑛 𝜈𝑠𝛻𝑠

𝜕𝑡𝑒 = 1 −
ҧ𝐴

𝑛
ҧ𝛾𝑒 𝑒𝑠 + 1 −

ҧ𝐴

𝑛
ҧ𝛾𝑖𝑠𝑖 − ത𝛼𝑒𝑒 − ҧ𝜎𝑒 − ҧ𝜇𝑒 + 𝛻 ⋅ 𝑛 𝜈𝑒𝛻𝑒

𝜕𝑡𝑖 = 𝑒 − ത𝜙𝑑𝑖 − ത𝛼𝑟𝑖 − ҧ𝜇𝑖 + 𝛻 ⋅ (𝑛 𝜈𝑖𝛻𝑖)

𝜕𝑡𝑟 = ത𝛼𝑒𝑒 + ത𝛼𝑟𝑖 − ҧ𝜇𝑟 + 𝛻 ⋅ (𝑛 𝜈𝑟𝛻𝑖)

𝜕𝑡𝑑 = ത𝜙𝑑𝑖

● Written in the continuum mechanics notation, the loading relation term becomes: 

𝑩(𝒖) =

ҧ𝜇 − ҧ𝛽 1 −
ҧ𝐴

𝑛
ҧ𝛾𝑒𝑠 − ഥ𝛽 1 −

ҧ𝐴

𝑛
ҧ𝛾𝑖𝑠 − ഥ𝛽 ҧ𝛽 0

0 𝜇 − 1 −
ҧ𝐴

𝑛
ҧ𝛾𝑒𝑠 + ҧ𝜎 + ത𝛼𝑒 − 1 −

ҧ𝐴

𝑛
ҧ𝛾𝑖𝑠 0 0

0 − ҧ𝜎 ҧ𝜇 + ത𝜙𝑑 + ത𝛼𝑟 0 0
0 −ത𝛼𝑒 −ത𝛼𝑟 ҧ𝜇 0

0 0 − ത𝜙𝑑 0 0



Nonlinear Diffusion

● Adding all the terms together and assuming that all the diffusivity rates are equal we obtain:

𝜕𝑡𝑛 − 𝛻 ⋅ ҧ𝜈 𝑛 𝛻 𝑛 = ҧ𝛽 − ҧ𝜇 𝑛 − ത𝜙𝑑𝑖

● This means that the whole model can be interpreted as a nonlinear continuity equation over the living 
population 𝑛

● Using the product rule we get:

𝜕𝑡𝑛 − 𝛻 ⋅ ҧ𝜈 𝑛 𝛻 𝑛 = ҧ𝛽 − ҧ𝜇 𝑛 − ത𝜙𝑑𝑖

𝜕𝑡𝑛 − ҧ𝜈 𝑛 Δ 𝑛 − 𝛻 ҧ𝜈 𝑛 ⋅ 𝛻 𝑛 = ҧ𝛽 − ҧ𝜇 𝑛 − ത𝜙𝑑𝑖

● The term highlighted in red shows that the nonlinear diffusion doesn’t only act as a diffusion in the 
traditional sense, but it also has some characteristics of a convection phenomenon



Derivation of 𝑅𝑡
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Derivation of 𝑅𝑡
● We want now to derivate an expression for the effective viral reproduction number

𝑅𝑡 using the next-generation matrix method. We use the previous 2-region SIR 
Model (Milano – Codogno) written in the density dependent formulation:

𝑑𝑠𝑚
𝑑𝑡

= −𝛾𝑐𝑚𝑠𝑚𝑖𝑐 − 𝛾𝑚𝑚𝑠𝑚𝑖𝑚

𝑑𝑖𝑚
𝑑𝑡

= 𝛾𝑐𝑚𝑠𝑚𝑖𝑐 + 𝛾𝑚𝑚𝑠𝑚𝑖𝑚 − 𝛼𝑖𝑚

𝑑𝑟𝑚
𝑑𝑡

= 𝛼𝑖𝑚

𝑑𝑠𝑐
𝑑𝑡

= −𝛾𝑚𝑐𝑠𝑐𝑖𝑚 − 𝛾𝑐𝑐𝑠𝑐𝑖𝑐

𝑑𝑖𝑐
𝑑𝑡

= 𝛾𝑚𝑐𝑠𝑐𝑖𝑚 + 𝛾𝑐𝑐𝑠𝑐𝑖𝑐 − 𝛼𝑖𝑐

𝑑𝑟𝑐
𝑑𝑡

= 𝛼𝑖𝑐



Derivation of 𝑅𝑡 (continued)

● The diseased portions of the population (i.e. anyone capable of spreading the disease) are identified by 
the infected compartments:

𝑑𝑖𝑚
𝑑𝑡

= 𝛾𝑐𝑚𝑠𝑚𝑖𝑐 + 𝛾𝑚𝑚𝑠𝑚𝑖𝑚 − 𝛼𝑖𝑚

𝑑𝑖𝑐
𝑑𝑡

= 𝛾𝑚𝑐𝑠𝑐𝑖𝑚 + 𝛾𝑐𝑐𝑠𝑐𝑖𝑐 − 𝛼𝑖𝑐

● We can write the above equations like follows:

𝑑

𝑑𝑡

𝑖𝑚
𝑖𝑐

=
𝛾𝑚𝑚𝑠𝑚 − 𝛼 𝛾𝑐𝑚𝑠𝑚

𝛾𝑚𝑐𝑠𝑐 𝛾𝑐𝑐𝑠𝑐 − 𝛼
𝑖𝑚
𝑖𝑐

= (𝑁 − 𝑉)
𝑖𝑚
𝑖𝑐

where:

𝑁 ≔
𝛾𝑚𝑚𝑠𝑚 𝛾𝑐𝑚𝑠𝑚
𝛾𝑚𝑐𝑠𝑐 𝛾𝑐𝑐𝑠𝑐

is the matrix corresponding to new cases,

V ≔ 𝛼 0
0 𝛼

is the matrix corresponding to existing cases



Derivation of 𝑅𝑡 (continued)

● We now compute the Next-Generation Matrix:

𝑁𝑉−1 =
𝛾𝑚𝑚𝑠𝑚 𝛾𝑐𝑚𝑠𝑚
𝛾𝑚𝑐𝑠𝑐 𝛾𝑐𝑐𝑠𝑐

∙
1
𝛼

0

0 1
𝛼

=
𝛾𝑚𝑚𝑠𝑚 ∙ 1

𝛼
𝛾𝑐𝑚𝑠𝑚 ∙ 1

𝛼

𝛾𝑚𝑐𝑠𝑐 ∙
1
𝛼

𝛾𝑐𝑐𝑠𝑐 ∙
1
𝛼

where we note that the element 𝑁𝑉−1(𝑖, 𝑗) corresponds to the average amount of 
infections at time 𝑡 produced by an individual entering the 𝑗 − 𝑡ℎ infected
compartment and spreading the infection into the 𝑖 − 𝑡ℎ city at rate 𝛽𝑗𝑖

● Finally, 𝑅𝑡 is defined as follows:

𝑅𝑡 ≔ 𝜌 𝑁𝑉−1 = max 𝜆 ∶ 𝜆 eigenvalue of 𝑁𝑉−1

which, in our case, leads to the following expression:

𝑅𝑡 =
𝛾𝑐𝑐𝑠𝑐 + 𝛾𝑚𝑚𝑠𝑚 + (𝛾𝑐𝑐𝑠𝑐)2+(𝛾𝑚𝑚𝑠𝑚)2−2𝛾𝑐𝑐𝑠𝑐𝛾𝑚𝑚𝑠𝑚 + 4𝛾𝑐𝑚𝑠𝑚𝛾𝑚𝑐𝑠𝑐

2𝛼
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