Category Theory Course Notes

Ettore Forigo

ii

Chapter 1

1.1 Definition of Category

A category (1-category) \mathcal{C} consists of:

- 1 A class $Ob(\mathcal{C})$ of objects of \mathcal{C}
- 2 $\forall X, Y \in Ob(\mathcal{C})$. a class $Hom_{\mathcal{C}}(X, Y)$ of **morphisms** from X to Y
- 3 $\forall X \in Ob(\mathcal{C})$. an **identity morphism** $id_X \in Hom_{\mathcal{C}}(X, X)$
- 4 $\forall X, Y, Z \in Ob(\mathcal{C})$. a composition rule:

$$\begin{split} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) \times \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \to \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z) \\ (g,f) \mapsto g \circ f \end{split}$$

Such that it satisfies the following axioms:

1 - Associativity of composition:

 $\begin{aligned} \forall X, Y, Z, W \in \operatorname{Ob}(\mathcal{C}). \\ \forall f \in \operatorname{Hom}_{\mathcal{C}}(X, Y), g \in \operatorname{Hom}_{\mathcal{C}}(Y, Z), h \in \operatorname{Hom}_{\mathcal{C}}(Z, W). \\ h \circ (g \circ f) = (h \circ g) \circ f \end{aligned}$

2 - Neutrality:

 $\forall X, Y \in \operatorname{Ob}(\mathcal{C}). \\ \forall f \in \operatorname{Hom}_{\mathcal{C}}(X, Y). \\ id_Y \circ f = f \land f \circ id_X = f$

1.2 Thin Categories

A category is **thin** if parallel morphisms are always the same, meaning that there is only one morphism between two objects.

In a thin category all morphisms are monic and epic.

1.3 Definition of Initial Object

An object I of a category C is **initial** (dual of terminal, special case of a colimit (of a functor from C to the empty category))

 $\begin{array}{l} \updownarrow\\ \forall X \in \operatorname{Ob}(\mathcal{C}).\\ \exists ! f \in \operatorname{Hom}_{\mathcal{C}}(I, X) \end{array}$

1.4 Definition of Terminal Object

An object T of a category C is **terminal** (dual of initial, special case of limit (of a functor from the empty category to C))

 $\begin{array}{l} \updownarrow \\ \forall X \in \mathrm{Ob}(\mathcal{C}). \\ \exists ! f \in \mathrm{Hom}_{\mathcal{C}}(X, T) \end{array}$

1.5 Definition of Monomorphism

A morphism $f : X \to Y$ in a category \mathcal{C} $(f \in \text{Hom}_{\mathcal{C}}(X, Y))$ is a **monomorphism** (or monic in \mathcal{C}) (dual of epimorphism)

 $\begin{array}{l} \uparrow \\ \forall Z \in \operatorname{Ob}(\mathcal{C}). \, \forall p, q \in \operatorname{Hom}_{\mathcal{C}}(Z, X). \\ f \circ p = f \circ q \implies p = q \end{array}$

Example: In **Set** monomorphisms are precisely the injective maps.

Monomorphisms "can be cancelled" from the left.

1.6 Definition of Split Monomorphism

A **split monomorphism** (dual of split epi) is a morphism $f : X \to Y$ such that there exists a morphism $g : Y \to X$ such that:

 $g \circ f = id_X$

Proposition: every split mono is a mono.

Proposition: in **Set**, every mono $f : X \to Y$ where X is inhabited is a split mono, assuming LEM holds.

1.7 Definition of Epimorphism

A morphism $f : X \to Y$ in a category \mathcal{C} $(f \in \operatorname{Hom}_{\mathcal{C}}(X, Y))$ is an **epimor phism** (or epic in \mathcal{C}) (dual of monomorphism) $\stackrel{\uparrow}{\forall} Z \in \operatorname{Ob}(\mathcal{C}). \forall p, q \in \operatorname{Hom}_{\mathcal{C}}(Y, Z).$ $p \circ f = q \circ f \implies p = q$

Example: In **Set** epimorphisms are precisely the surjective maps.

Epimorphisms "can be cancelled" from the right.

1.8 Definition of Split Epimorphism

A split epimorphism (dual of split mono) is a morphism $f: X \to Y$ such that there exists a morphism $g: Y \to X$ such that:

 $f \circ g = id_Y$

Proposition: every split epi is an epi. Proposition: in **Set**, every epi is a split epi \iff assuming LEM holds.

1.9 Definition of Isomorphism

A morphism $f: X \to Y$ in a category \mathcal{C} $(f \in Hom_{\mathcal{C}}(X, Y))$ is an **isomorphism**

 $\begin{aligned} & & \\ \exists g \in \operatorname{Hom}_{\mathcal{C}}(Y, X). \\ & f \circ g = id_Y \wedge g \circ f = id_X \end{aligned}$

 $id_X \forall X \in \operatorname{Ob}(\mathcal{C})$ is always an isomorphisms for every category \mathcal{C} . Objects X and Y in a category \mathcal{C} are **isomorphic** \updownarrow there exists an isomorphism between X and Y (X \cong Y) In **Set**, if there exists an isomorphism between X and Y, X and Y are called equinumerous.

1.10 Definition of Opposite Category

"The mother of all dualities"

Let \mathcal{C} be a category. Then its opposite category \mathcal{C}^{op} is the following category:

-
$$\operatorname{Ob}(\mathcal{C}^{op}) \coloneqq \operatorname{Ob}(\mathcal{C})$$

- $\operatorname{Hom}_{\mathcal{C}^{op}}(X, Y) \coloneqq \operatorname{Hom}_{\mathcal{C}}(Y, X)$

- identities and composition inherited from C $id_X \in \operatorname{Hom}_{\mathcal{C}}(X, X) = id_X^{op} \in \operatorname{Hom}_{\mathcal{C}^{op}}(X, X)$ $f \circ g \coloneqq g^{op} \circ f^{op}$

Observations / Remarks:

- An object I of C is initial in C \uparrow I is terminal when regarded as an object of C^{op}

- A morphism in C is a monomorphism \uparrow
- it is an epimorphism in \mathcal{C}^{op}

1.11 Dualities

injective maps in **Set** (monomorphism in **Set**) \leftrightarrow surjective maps in **Set** (epimorphism in **Set**)

$$\leq \leftrightarrow \geq$$

 $\cap \leftrightarrow \cup$
 $\{x\} \leftrightarrow \varnothing$

 \times (cartesian product) \leftrightarrow disjoint union (tagged)

 $f\circ g \quad \leftrightarrow \quad g\circ f$

1.12 Definition of Product

A **product** (dual of coproduct, special case of limit) of two objects X and Y in a category C consists of:

- an object P of \mathcal{C}
- a morphism $\pi_X : P \to X$ in \mathcal{C}
- a morphism $\pi_Y : P \to Y$ in \mathcal{C}

such that for every object Q of C together with morphisms $\varphi_X : Q \to X, \varphi_Y : Q \to Y$ there is exactly one morphism $Q \to P$ such that the following diagram commutes:

Remarks:

- π_X and π_Y are called projection morphisms (also in limits).
- Products are always associative and commutative up to isomorphism.

- There is also the notion of the (co) product of zero, one, three, four, ... objects.

- The zero case of a product is just a terminal object, an object with exactly one morphism from each object.

1.13 Definition of Coproducts

A **coproduct** (dual of product, special case of colimit) of two objects X and Y in a category C consists of:

- an object C of \mathcal{C}
- a morphism $\iota_X : X \to C$ in \mathcal{C}
- a morphism $\iota_Y : Y \to C$ in \mathcal{C}

such that for every object D of C together with morphisms $\chi_X : X \to D, \chi_Y : Y \to D$ there is exactly one morphism $C \to D$ which renders the following diagram commutative:

Remarks:

- Products in \mathcal{C}^{op} are precisely coproducts in \mathcal{C}
- The zero case of a coproduct is the same as an initial object.

1.14 Definition of Functor

A (covariant) **functor** $F : \mathcal{C} \to \mathcal{D}$ from a category \mathcal{C} to a category \mathcal{D} consists of:

- an object $F(X) \in Ob(\mathcal{D})$ for each object $X \in Ob(\mathcal{C})$

- a morphism $F(f):F(X)\to F(Y)$ in ${\mathcal D}$ for each morphism $f:X\to Y$ in ${\mathcal C}$

such that:

- $\forall X \in \operatorname{Ob}(\mathcal{C}). F(id_X) = id_{F(X)}$

- $\forall X, Y, Z \in Ob(\mathcal{C}). \forall f : X \to Y \in \mathcal{C}, g : Y \to Z \text{ in } \mathcal{C}. F(g \circ f) = F(g) \circ F(f)$

Motto: Functors $\mathcal{I} \to \mathcal{C}$ are \mathcal{I} -shaped **diagrams** in \mathcal{C}

6

Functors preserve commutative diagrams Functors preserve isomorphisms

1.15 Definition of Contravariant Functor

A contravariant functor $\mathcal{C} \to \mathcal{D}$ is a covariant functor $\mathcal{C}^{op} \to \mathcal{D}$

1.16 Definition of Identity Functor

The identity functor $Id_{\mathcal{C}}$ on a category \mathcal{C} is the following functor:

$$\begin{aligned} Id_{\mathcal{C}} &: \mathcal{C} \to \mathcal{C} \\ X \mapsto X \\ f \mapsto f \end{aligned}$$

1.17 Definition of Constant Functor

Let X_0 be an object of a category C. The **constant functor** Id_C on X_0 is the following functor:

$$Id_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$$
$$X \mapsto X$$
$$f \mapsto f$$

1.18 Forgetful Functors

A forgetful functor 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output.

Examples:

- From vector space category to group category
- From vector space category to set category
- From abelian group category to group category

1.19 Definition of Discrete Category

The **discrete category** associated with a set X, written $\mathcal{D}(X)$, is a category containing all the objects of X as objects, and no morphisms between different objects, just the identity morphisms.

1.20 Definition of Induced Functors

Claim:

Any map between sets can be turned into a functor.

Let $f: X \to Y$ be a map between sets.

Consider the discrete categories $\mathcal{D}(X), \mathcal{D}(Y)$.

Then f induces the following functor $\mathcal{D}(X) \to D(Y)$: $x \mapsto f(x)$ $id_x \mapsto id_{f(x)}$

1.21 Definition of Essentially Surjective Functor

A functor $F : \mathcal{C} \to \mathcal{D}$ is essentially surjective iff:

 $\forall Y \in \operatorname{Ob}(\mathcal{D}). \exists X \in \operatorname{Ob}(\mathcal{C}) | F(X) \cong Y$

1.22 Definition of Faithful Functor

A functor $F : \mathcal{C} \to \mathcal{D}$ is **faithful** iff:

 $\forall X, Y \in \operatorname{Ob}(\mathcal{C}). \\ \forall f, g : X \to Y \text{ in } \mathcal{C} \\ F(f) = F(g) \implies f = g$

Reformulation: iff

 $\begin{aligned} \forall X, Y \in \operatorname{Ob}(\mathcal{C}). \\ \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y)) \\ f \mapsto F(f) \end{aligned}$

is injective.

1.23 Definition of Full Functor

A functor $F : \mathcal{C} \to \mathcal{D}$ is **full** iff:

 $\begin{aligned} \forall X, Y \in \operatorname{Ob}(\mathcal{C}). \\ \forall g : F(X) \to F(Y) \text{ in } \mathcal{D} \\ \exists f : X \to Y \text{ in } \mathcal{C} | F(f) = g \end{aligned}$

Reformulation: iff

$$\begin{aligned} \forall X, Y \in \operatorname{Ob}(\mathcal{C}). \\ \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y)) \\ f \mapsto F(f) \end{aligned}$$

is surjective.

1.24 Definition of Fully Faithful Functor

A functor is **fully faithful** iff it is full and faithful.

Reformulation: iff

$$\forall X, Y \in \operatorname{Ob}(\mathcal{C}). \\ \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y)) \\ f \mapsto F(f)$$

is bijective.

1.25 Definition of Elementary Equivalence

An **elementary equivalence** is a fully faithful, essentially surjective functor.

1.26 Definition of Equivalence of Categories

Categories are called **equivalent** iff there is an elementary equivalence between them.

Remark:

Equivalent categories have exactly the same categorical properties.

1.27 Definition of Natural Transformation

A natural transformation $\eta: F \Rightarrow G$ between two functors $F, G: C \rightarrow D$

consists of:

- for each object $X \in Ob(\mathcal{C})$ a morphism $\eta_X : F(X) \to G(X)$ in \mathcal{D}

such that for all morphisms $f: X \to Y$ in \mathcal{C} , the **naturality square** commutes:

Motto: Natural transformations are **uniform** families of morphisms.

1.28 Definition of Functor Category

Let \mathcal{C}, \mathcal{D} be categories. The **functor category** $[\mathcal{C}, \mathcal{D}]$ has:

- as objects: all functors $\mathcal{C} \to \mathcal{D}$
- as morphisms: $\operatorname{Hom}_{[\mathcal{C},\mathcal{D}]}(F,G) \coloneqq \{h: F \Rightarrow G | h \text{ is a natural transformation}\}$
- as identity: for the object F, the identity $id_F: F \Rightarrow F$ $(id_F)_X: F(X) \to F(X)$ given by $id_{F(X)}$

- as composition rule:

 $(\omega \circ \eta)_X \coloneqq \omega_X \circ \eta_X$

 $(\omega \circ \eta)_X : F(X) \to H(X)$

and $\omega \circ \eta$ should be natural.

1.29 Definition of Small Category

A category \mathcal{C} is small when $Ob(\mathcal{C})$ is just a set and not a proper class.

1.30 Definition of Category of Categories

The 1-category of 1-categories, Cat has:

- as objects: all categories
- as morphisms: $\operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}, \mathcal{D}) \coloneqq \{F : \mathcal{C} \to \mathcal{D} | F \text{ is a functor}\}$
- as identities $Id_{\mathcal{C}}$ (the identity functor)
- as composition rule: $F: \mathcal{C} \to \mathcal{D}$ $G: \mathcal{D} \to \mathcal{E}$ $G \circ F: \mathcal{C} \to \mathcal{E}$ $X \mapsto G(F(X))$ $f \mapsto G(F(f))$

There are two issues with this definition:

- Size issue (in ZFC). (it's too big, the objects don't fit in a proper class?) Remedies:
 - just consider the category of small categories
 - switch foundations
- It ignores natural transformations Remedy: Consider the 2-category of 1-categories

The 2-category of 1-categories has:

- as objects: all 1-categories
- as morphisms: functors
- as -2-morphisms / 2-cells: natural transformations

1.31 Definition of Cone

A **cone** (dual of cocone) of a diagram (functor) $F : \mathcal{I} \to \mathcal{C}$ in a category \mathcal{C} consists of:

- an object A of \mathcal{C} (the "tip" of the cone)

- for each object $X \in Ob(\mathcal{C})$, a morphism $\pi_X : A \to F(X)$

such that for all morphisms $f: X \to Y$ in \mathcal{I} , the triangle:

commutes.

1.32 Definition of Cocone

A **cocone** (dual of cone) of a diagram (functor) $F : \mathcal{I} \to \mathcal{C}$ in a category \mathcal{C} consists of:

- an object A of \mathcal{C} (the "tip" of the cocone)
- for each object $X \in Ob(\mathcal{C})$, a morphism $\pi_X : F(X) \to A$

such that for all morphisms $f: X \to Y$ in \mathcal{I} , the triangle:

$$\pi_X = \pi_Y \circ F(f)$$

commutes.

1.33 Definition of Morphism Between Cones

A morphism between a cone $(A, (\pi_X)_X)$ and a further cone $(B, (\phi_X)_X)$ of a diagram $F : \mathcal{I} \to \mathcal{C}$ consists of a morphism $f : A \to B$ in \mathcal{C} such that:

commutes.

1.34 Definition of Limit

A limit (dual of colimit) of a diagram $F : \mathcal{I} \to \mathcal{C}$ is a terminal cone of F, that is, a terminal object in the category of of cones of cones of F.

Remark:

A terminal object of C is the limit of the unique functor from the empty category to C.

1.35 Definition of Colimit

A colimit (dual of limit) of a diagram $F : \mathcal{I} \to \mathcal{C}$ is an initial cocone of F.

Remark:

An initial object of C is the colimit of the unique functor from the empty category to C.

1.36 Definition of Equalizer of Two Set-Theoretic Maps

Let $f, g: X \to Y$. Then the **equalizer** of f and g is the following function:

$$Eq(f,g) = x \in X | f(x) = g(x)$$

1.37 Definition of Pullback

A **pullback** P (also called fiber product of the domains over the codomain) (dual of pushout) is the limit of a diagram consisting of two morphisms $f: X \to Z$ and $g: Y \to Z$ with a common codomain.

It comes equipped with two natural morphisms $P \to X$ and $P \to Y$.

1.38 Definition of Pushout

A **pushout** P (also called fibered coproduct) (dual of pullback) is the colimit of a diagram consisting of two morphisms $f : Z \to X$ and $g : Z \to Y$ with a common domain.

It comes equipped with two morphisms $X \to P$ and $Y \to P$.

1.39 Definition of Small Diagram

A small diagram in \mathcal{C} is a diagram $\mathcal{I} \to \mathcal{C}$ where \mathcal{I} is a small category.

1.40 Definition of Complete Cateogory

A category C is **complete** (dual of cocomplete) iff every small diagram in C has a limit (it has all small limits).

Assuming LEM, the only categories which have **all** limits or **all** colimits are (some) thin categories.

1.41 Definition of Cocomplete Category

A category C is **cocomplete** (dual of complete) iff every small diagram in C has a colimit (it has all small colimits).

 \mathcal{C} complete $\iff \mathcal{C}^{op}$ cocomplete.

1.42 Definition of Presheaf

A **presheaf** (plural presheaves) on a category \mathcal{C} is a functor $\mathcal{C}^{op} \to \mathbf{Set}$

Motto:

we picture a presheaf F on C as an "ideal, fictional, object of C" in that we know its relation to actual objects of C

1.43 Definition of \hat{X}

 \hat{X} (**X** hat) is a presheaf:

 $\mathcal{C}^{op} \to \mathbf{Set} \\ T \mapsto \operatorname{Hom}_{\mathcal{C}}(T, X)$

1.44 Definition of Representable Presheaf

A presheaf $F : \mathcal{C}^{op} \to \mathbf{Set}$ is representable iff:

 $\exists X \in \operatorname{Ob}(\mathcal{C}) : F \cong \hat{X}$

1.45 Definition of Adjoint Functors

Let $F: C \to D, G: D \to C$

Then, $F \dashv G$ "F is left adjoint to G" (or $G \vdash F$ ("G is right adjoint to F"))

iff for every object $X \in Ob(\mathcal{C}), Y \in Ob(\mathcal{D})$ there is an isomorphism:

 $\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \cong \operatorname{Hom}_{\mathcal{C}}(X, G(Y))$

naturally in X and Y.

Every adjunction $L \dashv R$ gives rise to a monad:

The monad functor will be: $M \coloneqq R \circ L$

The natural transformation: $\eta: Id \Rightarrow M$

will be given by: $\eta_X : X \to R(L(X))$

which is in 1:1 correspondence with: $id_{RL(X)}: RL(X) \to RL(X)$

since:

 $\operatorname{Hom}(LA, B) \cong \operatorname{Hom}(A, RB)$

which means that:

 $LA \rightarrow B$

is in 1:1 correspondence with: $A \rightarrow RB$

The natural transformation: $\mu: M \circ M \Rightarrow M$

will be given by: $\mu_X : RLRL(X) \to RL(X)$

induced from: $LRL(X) \rightarrow L(X)$

which is in 1:1 correspondence with: $id_{RL(X)}: RL(X) \to RL(X)$

Remark: The monad axioms should also be checked.

1.46 Currying Adjunction

The "product-Hom adjunction" or currying adjunction is the following:

 $_{-} \times S \dashv \operatorname{Hom}_{\operatorname{\mathbf{Set}}}(S, _{-})$

 $\operatorname{Hom}_{\mathbf{Set}}(X \times S, Y) \cong \operatorname{Hom}_{\mathbf{Set}}(X, Hom_{\mathbf{Set}}(S, Y))$

1.47 Adjunction of Logical Connectives

" \exists " \dashv "extending the context" \dashv " \forall "

The left adjunctions means that it is possible to freely convert between proofs of the following kind:

"Assume $\exists x \in X : A(x) \dots$ Hence B." $(\exists x \in X : A(x) \vdash B)$

and

"Let
$$x \in X$$
 be arbitrary. Assume $A(x)$... Hence B ." $(A(x) \vdash_{x \in X} B)$

16

The right adjunction means that it is possible to freely convert between proofs of the following kind:

"Let $x \in X$ be arbitrary. Assume A ... Hence B(x)." $(A \vdash_{x \in X} B(x))$

and

"Assume A. ... Hence $\forall x \in X : B(x)$." $(A \vdash (\forall x \in X. B(x)))$

1.48 Monoids

A monoid consists of:

- a set ${\cal M}$

- an element $e \in M$
- an operation $\circ: M \times M \to M$

such that:

$$- \forall x \in M. \ x \circ e = x = e \circ x$$

$$- \forall x, y, z \in M. (x \circ y) \circ z = x \circ (y \circ z)$$

1.49 Monoids Categorically

Equivalently, a **monoid** consists of:

- an object M
- a morphism 1 from a terminal object to every other object.
- a map $M \times M \to M$

such that certain diagrams commute.

1.50 Definition of Monoidal Category

A monoidal category (sometimes called tensor category) consists of:

- a category \mathcal{C}
- a functor $*:\mathcal{C}\times\mathcal{C}\rightarrow\mathcal{C}$
- an object $1 \in Ob(\mathcal{C})$
- natural isomorphisms:

$$-1 * X \cong X$$
$$-X * 1 \cong X$$
$$-X * (Y * Z) \cong (X * Y) * Z$$

such that certain coherence conditions are satisfied.

Remark:

In any monoidal category one can speak of monoid objects.

1.51 Definition of Monad

A monad over a category \mathcal{C} consists of:

- a functor $M:\mathcal{C}\rightarrow\mathcal{C}$
- a natural transformation $\eta: Id_{\mathcal{C}} \Rightarrow M$
- a natural transformation $\mu: M \circ M \Rightarrow M$

such that certain diagrams commute.

Every monad is given rise to by an adjunction (always of a free and forgetful functor pair).

There are two ways of factorizing a monad into adjoint functors, one is the Kleisli category.

1.52 Definition of Kleisli Category

The **Kleisli category** C_M of a monad M in a category C is the following category:

- objects: objects of \mathcal{C}
- morphisms: $\operatorname{Hom}_{\mathcal{C}_M}(X, Y) \coloneqq \operatorname{Hom}_{\mathcal{C}}(X, M(Y))$

1.53 Definition of Cobordism Category

The category **nCob** ("the **cobordism category**") has:

- as objects (n-1)-dimensional oriented manifolds
- as morphisms: n-dimesional cobordisms between those

1.54 Definition of Category of Hilbert Spaces

Hilb is the **category of Hilbert spaces** (vector spaces with additional structure).

Hilbert spaces are important in quantum physics, because they can be used to model "slices" of spacetime.

1.55 Definition of Topological Quantum Field Theory

A topological quantum field theory (in spacetime dimension n) is a monoidal functor between the monoidal categories **nCob** and **Hilb**:

$Z: \mathbf{nCob} \to \mathbf{Hilb}$

Z maps each (n-1)-dimensional slice of *n*-dimensional spacetime to the Hilbert space modelling that slice, and Z maps a morphism $X \to Y$ in **nCob** to the "propagator" $Z(X) \to Z(Y)$.