{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# What is an atom?\n", "## 4. A rational?\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As if inevitably, the dialectic carries on. If we can iterate counting up to get addition, we should be able to iterate addition to get: multiplication, whose \"all-at-once\" inverse is division. And just as before, we graduate to a new notion of number, a new interpretation of atoms: the rational numbers, which can be regarded as \"piles of piles.\" Here's how it works.\n", "\n", "If we have two piles of pebbles $A$ and $B$, we can multiply them by iterating the addition of $A$ by the number of pebbles in $B$, or vice versa.\n", "\n", "$ \\Large \\{ \\Large\\bullet, \\Large\\bullet \\} \\times \\Large \\{ \\Large\\bullet, \\Large\\bullet, \\Large\\bullet \\} = \\Large \\{ \\Large\\bullet, \\Large\\bullet \\} + \\Large \\{ \\Large\\bullet, \\Large\\bullet \\} + \\Large \\{ \\Large\\bullet, \\Large\\bullet \\} = \\Large \\{ \\Large\\bullet, \\Large\\bullet, \\Large\\bullet \\} + \\Large \\{ \\Large\\bullet, \\Large\\bullet, \\Large\\bullet \\} $\n", "\n", "$ \\Large \\{ \\Large\\bullet, \\Large\\bullet \\} \\times \\Large \\{ \\Large\\bullet, \\Large\\bullet, \\Large\\bullet \\} = \\Large \\{ \\Large\\bullet, \\Large\\bullet, \\Large\\bullet, \\Large\\bullet, \\Large\\bullet, \\Large\\bullet \\} $\n", "\n", "$ 2 \\times 3 = 3 \\times 2 = 6 $\n", "\n", "If we wanted we could display the last identity like this:\n", "\n", "$ 2 \\times 3 = 3 \\times 2 = \\begin{matrix} \\Large\\bullet & \\Large\\bullet \\\\\\ \\Large\\bullet & \\Large\\bullet \\\\\\ \\Large\\bullet & \\Large\\bullet \\end{matrix} = \\begin{matrix} \\Large\\bullet & \\Large\\bullet & \\Large\\bullet \\\\\\ \\Large\\bullet & \\Large\\bullet & \\Large\\bullet \\end{matrix} $\n", "\n", "And correspondingly: $\\frac{6}{3} = 2 $ and $ \\frac{6}{2} = 3$. And we have it that $\\frac{n}{1} = n$ for any $n$.\n", "\n", "