import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tf from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics from tensorflow import keras def preprocess(x, y): # [0~255] => [-1~1] x = 2 * tf.cast(x, dtype=tf.float32) / 255. - 1. y = tf.cast(y, dtype=tf.int32) return x,y batchsz = 128 # [50k, 32, 32, 3], [10k, 1] (x, y), (x_val, y_val) = datasets.cifar10.load_data() y = tf.squeeze(y) y_val = tf.squeeze(y_val) y = tf.one_hot(y, depth=10) # [50k, 10] y_val = tf.one_hot(y_val, depth=10) # [10k, 10] print('datasets:', x.shape, y.shape, x_val.shape, y_val.shape, x.min(), x.max()) train_db = tf.data.Dataset.from_tensor_slices((x,y)) train_db = train_db.map(preprocess).shuffle(10000).batch(batchsz) test_db = tf.data.Dataset.from_tensor_slices((x_val, y_val)) test_db = test_db.map(preprocess).batch(batchsz) sample = next(iter(train_db)) print('batch:', sample[0].shape, sample[1].shape) class MyDense(layers.Layer): # to replace standard layers.Dense() def __init__(self, inp_dim, outp_dim): super(MyDense, self).__init__() self.kernel = self.add_variable('w', [inp_dim, outp_dim]) # self.bias = self.add_variable('b', [outp_dim]) def call(self, inputs, training=None): x = inputs @ self.kernel return x class MyNetwork(keras.Model): def __init__(self): super(MyNetwork, self).__init__() self.fc1 = MyDense(32*32*3, 256) self.fc2 = MyDense(256, 128) self.fc3 = MyDense(128, 64) self.fc4 = MyDense(64, 32) self.fc5 = MyDense(32, 10) def call(self, inputs, training=None): """ :param inputs: [b, 32, 32, 3] :param training: :return: """ x = tf.reshape(inputs, [-1, 32*32*3]) # [b, 32*32*3] => [b, 256] x = self.fc1(x) x = tf.nn.relu(x) # [b, 256] => [b, 128] x = self.fc2(x) x = tf.nn.relu(x) # [b, 128] => [b, 64] x = self.fc3(x) x = tf.nn.relu(x) # [b, 64] => [b, 32] x = self.fc4(x) x = tf.nn.relu(x) # [b, 32] => [b, 10] x = self.fc5(x) return x network = MyNetwork() network.compile(optimizer=optimizers.Adam(lr=1e-3), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) network.fit(train_db, epochs=15, validation_data=test_db, validation_freq=1) network.evaluate(test_db) network.save_weights('ckpt/weights.ckpt') del network print('saved to ckpt/weights.ckpt') network = MyNetwork() network.compile(optimizer=optimizers.Adam(lr=1e-3), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) network.load_weights('ckpt/weights.ckpt') print('loaded weights from file.') network.evaluate(test_db)