import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, Sequential class BasicBlock(layers.Layer): # 残差模块 def __init__(self, filter_num, stride=1): super(BasicBlock, self).__init__() # 第一个卷积单元 self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same') self.bn1 = layers.BatchNormalization() self.relu = layers.Activation('relu') # 第二个卷积单元 self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same') self.bn2 = layers.BatchNormalization() if stride != 1:# 通过1x1卷积完成shape匹配 self.downsample = Sequential() self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride)) else:# shape匹配,直接短接 self.downsample = lambda x:x def call(self, inputs, training=None): # [b, h, w, c],通过第一个卷积单元 out = self.conv1(inputs) out = self.bn1(out) out = self.relu(out) # 通过第二个卷积单元 out = self.conv2(out) out = self.bn2(out) # 通过identity模块 identity = self.downsample(inputs) # 2条路径输出直接相加 output = layers.add([out, identity]) output = tf.nn.relu(output) # 激活函数 return output class ResNet(keras.Model): # 通用的ResNet实现类 def __init__(self, layer_dims, num_classes=10): # [2, 2, 2, 2] super(ResNet, self).__init__() # 根网络,预处理 self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1)), layers.BatchNormalization(), layers.Activation('relu'), layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding='same') ]) # 堆叠4个Block,每个block包含了多个BasicBlock,设置步长不一样 self.layer1 = self.build_resblock(64, layer_dims[0]) self.layer2 = self.build_resblock(128, layer_dims[1], stride=2) self.layer3 = self.build_resblock(256, layer_dims[2], stride=2) self.layer4 = self.build_resblock(512, layer_dims[3], stride=2) # 通过Pooling层将高宽降低为1x1 self.avgpool = layers.GlobalAveragePooling2D() # 最后连接一个全连接层分类 self.fc = layers.Dense(num_classes) def call(self, inputs, training=None): # 通过根网络 x = self.stem(inputs) # 一次通过4个模块 x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) # 通过池化层 x = self.avgpool(x) # 通过全连接层 x = self.fc(x) return x def build_resblock(self, filter_num, blocks, stride=1): # 辅助函数,堆叠filter_num个BasicBlock res_blocks = Sequential() # 只有第一个BasicBlock的步长可能不为1,实现下采样 res_blocks.add(BasicBlock(filter_num, stride)) for _ in range(1, blocks):#其他BasicBlock步长都为1 res_blocks.add(BasicBlock(filter_num, stride=1)) return res_blocks def resnet18(): # 通过调整模块内部BasicBlock的数量和配置实现不同的ResNet return ResNet([2, 2, 2, 2]) def resnet34(): # 通过调整模块内部BasicBlock的数量和配置实现不同的ResNet return ResNet([3, 4, 6, 3])