import tensorflow as tf from tensorflow.keras import layers, optimizers, datasets, Sequential import os from resnet import resnet18 os.environ['TF_CPP_MIN_LOG_LEVEL']='2' tf.random.set_seed(2345) def preprocess(x, y): # 将数据映射到-1~1 x = 2*tf.cast(x, dtype=tf.float32) / 255. - 1 y = tf.cast(y, dtype=tf.int32) # 类型转换 return x,y (x,y), (x_test, y_test) = datasets.cifar10.load_data() # 加载数据集 y = tf.squeeze(y, axis=1) # 删除不必要的维度 y_test = tf.squeeze(y_test, axis=1) # 删除不必要的维度 print(x.shape, y.shape, x_test.shape, y_test.shape) train_db = tf.data.Dataset.from_tensor_slices((x,y)) # 构建训练集 # 随机打散,预处理,批量化 train_db = train_db.shuffle(1000).map(preprocess).batch(512) test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)) #构建测试集 # 随机打散,预处理,批量化 test_db = test_db.map(preprocess).batch(512) # 采样一个样本 sample = next(iter(train_db)) print('sample:', sample[0].shape, sample[1].shape, tf.reduce_min(sample[0]), tf.reduce_max(sample[0])) def main(): # [b, 32, 32, 3] => [b, 1, 1, 512] model = resnet18() # ResNet18网络 model.build(input_shape=(None, 32, 32, 3)) model.summary() # 统计网络参数 optimizer = optimizers.Adam(lr=1e-4) # 构建优化器 for epoch in range(100): # 训练epoch for step, (x,y) in enumerate(train_db): with tf.GradientTape() as tape: # [b, 32, 32, 3] => [b, 10],前向传播 logits = model(x) # [b] => [b, 10],one-hot编码 y_onehot = tf.one_hot(y, depth=10) # 计算交叉熵 loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True) loss = tf.reduce_mean(loss) # 计算梯度信息 grads = tape.gradient(loss, model.trainable_variables) # 更新网络参数 optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step %50 == 0: print(epoch, step, 'loss:', float(loss)) total_num = 0 total_correct = 0 for x,y in test_db: logits = model(x) prob = tf.nn.softmax(logits, axis=1) pred = tf.argmax(prob, axis=1) pred = tf.cast(pred, dtype=tf.int32) correct = tf.cast(tf.equal(pred, y), dtype=tf.int32) correct = tf.reduce_sum(correct) total_num += x.shape[0] total_correct += int(correct) acc = total_correct / total_num print(epoch, 'acc:', acc) if __name__ == '__main__': main()