\n",
" "
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "markdown",
"source": [
"* We see that the minimum number of employees is -26, an impossibility! This indicates that we already have at least one apparent error in our data.\n",
"\n",
"* The median number of employees is around 2100, so a midsize company. The largest in our records has over 600,000 employees.\n",
"\n",
"* The oldest company we have records for was founded in 1800, but the mean year is around 1979.\n",
"\n",
"* The median local wage is \\$70,308.21, and the mean is several thousand higher, indicating some skew toward higher costs of living. There is at least one shockingly low value, as the minimum is just \\$2.14. Perhaps this is hourly wage, though even then \\$2/hr is quite low. This hints that we must diligently explore outliers for potential errors."
],
"metadata": {
"id": "FVQNxg_GgZxg"
},
"id": "FVQNxg_GgZxg"
},
{
"cell_type": "code",
"source": [
"visa.describe(include='object').T"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 332
},
"id": "_iQsP9-ggHe0",
"outputId": "4f808fad-59b0-49ef-f149-6948496e5bfb"
},
"id": "_iQsP9-ggHe0",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count unique top freq\n",
"case_id 25480 25480 EZYV01 1\n",
"continent 25480 6 Asia 16861\n",
"education_of_employee 25480 4 Bachelor's 10234\n",
"has_job_experience 25480 2 Y 14802\n",
"requires_job_training 25480 2 N 22525\n",
"region_of_employment 25480 5 Northeast 7195\n",
"unit_of_wage 25480 4 Year 22962\n",
"full_time_position 25480 2 Y 22773\n",
"case_status 25480 2 Certified 17018"
],
"text/html": [
"\n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
count
\n",
"
unique
\n",
"
top
\n",
"
freq
\n",
"
\n",
" \n",
" \n",
"
\n",
"
case_id
\n",
"
25480
\n",
"
25480
\n",
"
EZYV01
\n",
"
1
\n",
"
\n",
"
\n",
"
continent
\n",
"
25480
\n",
"
6
\n",
"
Asia
\n",
"
16861
\n",
"
\n",
"
\n",
"
education_of_employee
\n",
"
25480
\n",
"
4
\n",
"
Bachelor's
\n",
"
10234
\n",
"
\n",
"
\n",
"
has_job_experience
\n",
"
25480
\n",
"
2
\n",
"
Y
\n",
"
14802
\n",
"
\n",
"
\n",
"
requires_job_training
\n",
"
25480
\n",
"
2
\n",
"
N
\n",
"
22525
\n",
"
\n",
"
\n",
"
region_of_employment
\n",
"
25480
\n",
"
5
\n",
"
Northeast
\n",
"
7195
\n",
"
\n",
"
\n",
"
unit_of_wage
\n",
"
25480
\n",
"
4
\n",
"
Year
\n",
"
22962
\n",
"
\n",
"
\n",
"
full_time_position
\n",
"
25480
\n",
"
2
\n",
"
Y
\n",
"
22773
\n",
"
\n",
"
\n",
"
case_status
\n",
"
25480
\n",
"
2
\n",
"
Certified
\n",
"
17018
\n",
"
\n",
" \n",
"
\n",
"
\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"
\n",
"
\n",
" "
]
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "markdown",
"source": [
"* With 25480 unique case IDs, we can be fairly confident that there are no duplicates in our records.\n",
"\n",
"* The data covers 6 continents of origin, with Asia being the most frequent.\n",
"\n",
"* The plurality of applicants have a Bachelor's level of education. We will explore the other levels on record shortly.\n",
"\n",
"* The majority of applicants do have some job experience, and around 88% of jobs do not require training.\n",
"\n",
"* Nearly all wages are recorded as yearly salaries, though the data dictionary indicates that hourly, weekly, and monthly are options too."
],
"metadata": {
"id": "Fng3k8BkzIhL"
},
"id": "Fng3k8BkzIhL"
},
{
"cell_type": "code",
"execution_count": null,
"id": "right-permit",
"metadata": {
"id": "right-permit",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c6c62a2b-f397-40ed-d203-32615509c19f"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Values in continent feature\n",
"Asia 16861\n",
"Europe 3732\n",
"North America 3292\n",
"South America 852\n",
"Africa 551\n",
"Oceania 192\n",
"Name: continent, dtype: int64\n",
"---------------------------------------------\n",
"Values in education_of_employee feature\n",
"Bachelor's 10234\n",
"Master's 9634\n",
"High School 3420\n",
"Doctorate 2192\n",
"Name: education_of_employee, dtype: int64\n",
"---------------------------------------------\n",
"Values in has_job_experience feature\n",
"Y 14802\n",
"N 10678\n",
"Name: has_job_experience, dtype: int64\n",
"---------------------------------------------\n",
"Values in requires_job_training feature\n",
"N 22525\n",
"Y 2955\n",
"Name: requires_job_training, dtype: int64\n",
"---------------------------------------------\n",
"Values in region_of_employment feature\n",
"Northeast 7195\n",
"South 7017\n",
"West 6586\n",
"Midwest 4307\n",
"Island 375\n",
"Name: region_of_employment, dtype: int64\n",
"---------------------------------------------\n",
"Values in unit_of_wage feature\n",
"Year 22962\n",
"Hour 2157\n",
"Week 272\n",
"Month 89\n",
"Name: unit_of_wage, dtype: int64\n",
"---------------------------------------------\n",
"Values in full_time_position feature\n",
"Y 22773\n",
"N 2707\n",
"Name: full_time_position, dtype: int64\n",
"---------------------------------------------\n",
"Values in case_status feature\n",
"Certified 17018\n",
"Denied 8462\n",
"Name: case_status, dtype: int64\n",
"---------------------------------------------\n"
]
}
],
"source": [
"for col in visa.drop('case_id',axis=1).select_dtypes('object').columns:\n",
" print('Values in',col,'feature')\n",
" print(visa[col].value_counts())\n",
" print('-'*45)"
]
},
{
"cell_type": "markdown",
"source": [
"* The only continent of origin not represented is (predictably) Antarctica. After Asia, the most common continents are Europe and North America (likely Canada and Mexico).\n",
"\n",
"* Other than a Bachelor's degree, many applicants have a Master's. Some also have a high school diploma or a doctorate, but these are less common.\n",
"\n",
"* There are five options for region of employment: Northeast, South, West, Midwest, and Island (in decreasing level of frequency). Northeast and South have nearly the same number of records.\n",
"\n",
"* The dependent variable in this study is ```case_status```, with outcomes Certified or Denied. About two-thirds of cases are Certified."
],
"metadata": {
"id": "EjVl26e93LEX"
},
"id": "EjVl26e93LEX"
},
{
"cell_type": "code",
"source": [
"# quick plotting function\n",
"def plott(col=None):\n",
" '''Quick plot a countplot for categorical\n",
" data and a histogram for numeric data.'''\n",
" plt.figure(figsize=(8,5))\n",
" if col==None:\n",
" return\n",
" elif visa[col].dtype=='object':\n",
" plt.title('Countplot of '+col,fontsize=14)\n",
" sns.countplot(data=visa,x=col,\n",
" order=visa[col].value_counts().index.tolist());\n",
" else:\n",
" plt.title('Histogram of '+col,fontsize=14)\n",
" sns.histplot(data=visa,x=col);"
],
"metadata": {
"id": "OhuPoWJX4zrh"
},
"id": "OhuPoWJX4zrh",
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"plott('continent')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "Iv4GGconqc-R",
"outputId": "10695d26-f495-4cfb-983d-0a6e0b1ab0da"
},
"id": "Iv4GGconqc-R",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAFTCAYAAABYqCT3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfVhUdf7/8dcwCN4vgqCIlUnfEL/eUSSZWSu6oix3aqaSWnlTrZm2aUq4AZlWgNm2mmvbWtbmzVWpmZpird3Z2o2ZeY8tGt4R6CCKd6DM+f3h1/lJeHS4HcTn47q6cj6fOee8z5lh5nXO58w5FsMwDAEAAFyGm6sLAAAAtRdBAQAAmCIoAAAAUwQFAABgiqAAAABMERQAAIApggIAUwcPHlRQUJC2bdvmkuX/8MMPio6OVocOHTR8+HCX1GDG1dsGqCkEBaCaHD16VNOnT1fv3r3VoUMH9ejRQ6NHj9YXX3xR47UkJCTo0UcfrZFlDR8+XNOmTauSec2YMUPt2rXTJ598otmzZ1fJPCvicuvk7++vDRs2KDg4uMbrCQ8P1/z582t8ubg+ubu6AKAuOnjwoIYOHapGjRrpqaeeUrt27WQYhjZu3Kjk5GR9/vnnri7xmrB//3498MAD8vf3d3UpZVitVvn6+rq6DKDacUQBqAbPPfecJGnp0qWKjIxU27ZtFRgYqGHDhumjjz5yPO/w4cN6/PHHFRISopCQEI0bN06//vqro3/27NmKiooqNe9ly5YpJCSkzHNWr16t3r17KyQkRGPHjlV+fr6jf/ny5fr8888VFBSkoKAgffvtt45D5ytXrtTQoUPVsWNH9e3bVxs2bLjiun3//fcaNGiQOnbsqLvuuksvvPCCiouLJV04cvHdd99p4cKFjmUdPHjwsvMpLi7WjBkzdNddd6ljx466//77tWnTJkn//7B+YWGhEhMTFRQUpGXLll12PoZh6M0331SfPn3UoUMH3XPPPXr55Zcd/ZmZmXrooYfUqVMnde3aVQkJCSosLHT0Xzza8vbbb6tHjx6644479Mwzz+jMmTNXXKffDj18++23CgoK0saNGzVo0CB17txZAwYM0I4dO0rVu3nzZg0bNkydO3dWjx49lJycrJMnTzr6hw8frpSUFM2aNUthYWHq1q2bUlNTZbfbHf2HDh1SWlqaox6gOhEUgCpWUFCgr776Sg888IAaNWpUpr9p06aSJLvdrrFjx8pms+mdd97RO++8o7y8PI0dO1blvbL6oUOH9PHHH2vOnDl68803tWvXLv31r3+VJI0cOVL9+vXTXXfdpQ0bNmjDhg2lgkZ6erqGDx+uDz/8UN27d9fYsWOVm5t72eXk5uZqzJgxCg4O1ocffqgZM2Zo9erVmjVrliRp6tSpCgkJ0YABAxzLMjsakJaWpjVr1uiFF17Qhx9+qFtvvVVjxoxRXl6e47B+gwYNlJiYqA0bNigyMvKy85k1a5bmzp2rRx55RKtXr9arr76qli1bSpJOnz6tUaNGqWHDhnr//fc1Z84c/fjjj0pMTCw1j02bNunnn3/WggUL9Morr+iTTz7RO++8U+51kqSXX35ZEydO1LJly9SsWTNNmjTJ8XpmZmZq1KhRCg8P14oVKzRnzhzt3r27TD0rV66U1WrVkiVL9Oyzz+rtt9/Wxx9/LOlC8GvZsqUef/xxRz1AdSIoAFVs//79MgxDgYGBV3zexo0blZmZqZkzZ6pjx47q2LGjXn75Ze3cuVMbN24s1zLPnz+vl156Se3atVNISIjuv/9+xzwaNWqk+vXry8PDQ76+vvL19ZWHh4dj2qFDhyoyMlKBgYGaOnWq/P39tWjRossuZ9GiRfLz81NKSooCAwPVs2dPTZw4Ue+++67OnDmjJk2aqF69emrQoIFjWVartcx8Tp8+rSVLlmjSpEn6/e9/r8DAQD333HPy8fHRwoULHYf1LRaLmjRpIl9fX9WvX7/MfE6dOqUFCxZo4sSJuu+++3TTTTcpJCREDzzwgCRp1apVOnPmjGPvu2vXrpo2bZrWrVun7Oxsx3waN26s5557ToGBgbr77rvVt29fx/Zzdp0umjBhgu68804FBgZq7Nix2rt3ryN4zZ8/X/369dPIkSPVpk0bde7cWSkpKcrIyJDNZnPM45ZbbtGECRN08803KzIyUmFhYY56vLy8ZLVa1ahRI0c9QHXiHAWgijl7NCArK0t+fn5q3bq1o+2GG26Qn5+f/vvf/+quu+5yepmtWrVSkyZNHI/9/PxKffFcSZcuXRz/dnNzU6dOnZSVlWVac+fOneXm9v/3MW6//XadO3dO2dnZateunVPL3L9/v86dO6fbbrvN0Wa1WtWlSxfTZZvVU1xcrG7dupn2BwUFqXHjxo62kJAQubm56b///a9uuukmSRe+mC/98vfz89NPP/3kdB2XunQowM/PT5Jks9nUsmVL7dixQ9nZ2VqzZo3jORffL/v375ePj0+ZeVycj7OvJ1DVCApAFbvppptksViUlZWlP/zhDxWah8Vicfz/t8Hj/PnzZZ5fr169MtPX9I1hL9ZcW+ZTnuW4u7uX6avo9rt0XheXcfH8ArvdrkGDBumhhx4qM12LFi2qpR6gshh6AKqYl5eX7r77br377rs6depUmf4TJ05IkgIDA5WXl1fqZL8DBw4oLy9Pt9xyiyTJ29tbR48eLfUlsWvXrnLXVK9ePZWUlFy279I9Z8MwtHXrVtNhk8DAQP3000+OLz7pwrUO6tWrpxtvvPGqy7roxhtvVL169bR582ZHW0lJibZs2XLVIZtLtW3bVh4eHqZDNYGBgdqzZ0+pkwV//PFH2e32ci3HmXVyRvv27R1HMn773+WGVqq7HsAZBAWgGiQnJ0uSBg4cqDVr1mjv3r3KysrSokWLFBMTI0m66667FBQUpEmTJmnbtm3atm2bJk2apPbt2+vOO++UJIWFhen48eOaN2+e9u/fr/fff18ZGRnlricgIEA///yz9u7dq/z8fJ07d87Rt3jxYq1du1Z79+7VjBkzdPjwYQ0dOvSy84mPj1deXp5SUlKUlZWlzz//XC+//LKGDRumBg0aOJa1bds2HTx4UPn5+aVCxUUNGzbU0KFDNXPmTH3xxRfKyspSSkqKbDab4uPjnV6vxo0ba8SIEZo1a5aWLl2q/fv3a+vWrY5zLKKjo1W/fn1NmTJFmZmZ+v7775WUlKQ+ffo4hh2c3X5XWydnjBkzRlu3blVSUpJ27typ7OxsffbZZ0pKSirXfAICAvTDDz8oNzfX8esWoLoQFIBqcMMNN2jZsmXq3r27Zs6cqZiYGD344INav36948I9FotFc+fOlbe3t0aMGKERI0aoefPmmjt3ruOQdWBgoFJSUvTee+8pJiZG//nPfyp04aT7779fgYGBGjhwoLp161ZqT37ixIlasGCBYmNj9dVXX2nOnDmOXw38VosWLfTGG29o165dio2NVWJiov74xz/qqaeecjxn5MiRqlevnv74xz+qW7duOnz48GXn9fTTT6tfv3565plnFBsbq8zMTL3xxhuOcX1nTZw4UWPGjNHcuXMVGRmpJ554wnHyYIMGDTR//nydPHlSgwYN0tixYxUSEqIXXnihXMtwdp2upl27dnr33Xd16NAhDRs2TLGxsZo1a5bj3ARnjR8/Xjk5Oerdu7fp+RlAVbEYDHwB16WDBw+qV69e+uCDD9SxY0dXlwOgluKIAgAAMEVQAAAAphh6AAAApjiiAAAATBEUAACAKYICAAAwxSWcTRw7dkp2O6dvAADqNjc3i5o1K3un24sICibsdoOgAAC47jH0AAAATBEUAACAKYICAAAwRVAAAACmCAoAAMAUQQEAAJgiKAAAAFMEBQAAYIqgAAAATHFlxnJq0rS+6nvWc3UZNeZs0TkVnjjr6jIAAC5CUCin+p71FD95oavLqDGL0h5QoQgKAHC9YugBAACYIigAAABTBAUAAGCKoAAAAEwRFAAAgCmCAgAAMEVQAAAApggKAADAVI0EhdTUVIWHhysoKEh79uxxtBcVFSk5OVl9+vRRdHS0nn32WUffvn37NHjwYEVERGjw4MH65ZdfKt0HAADKp0aCQq9evbRw4UIFBASUak9PT5enp6cyMjK0cuVKTZgwwdGXnJys+Ph4ZWRkKD4+XklJSZXuAwAA5VMjQSE0NFT+/v6l2k6dOqUPP/xQEyZMkMVikSQ1b95ckmSz2bRz505FRUVJkqKiorRz507l5+dXuA8AAJSfy+71cODAAXl5eWnOnDn69ttv1ahRI02YMEGhoaHKyclRixYtZLVaJUlWq1V+fn7KycmRYRgV6vP29nbVqgIAcM1yWVAoKSnRgQMH1L59e02ZMkU//fSTHnvsMX3yySeuKqkUH5/Gri6h1vD1beLqEgAALuKyoODv7y93d3fHMEHnzp3VrFkz7du3T61atVJubq5KSkpktVpVUlKivLw8+fv7yzCMCvWVl812Una7Uab9evzSPHKk0NUlAACqiZub5Yo7xy77eaS3t7fCwsL09ddfS7rwawWbzaabbrpJPj4+Cg4O1qpVqyRJq1atUnBwsLy9vSvcBwAAys9iGEbZ3eYqNn36dK1bt05Hjx5Vs2bN5OXlpdWrV+vAgQNKTExUQUGB3N3d9eSTT+ree++VJGVlZSkhIUEnTpxQ06ZNlZqaqrZt21aqrzyudEQhfvLCSmyNa8uitAc4ogAAddjVjijUSFC4FhEULiAoAEDdVmuHHgAAQO1HUAAAAKYICgAAwBRBAQAAmCIoAAAAUwQFAABgiqAAAABMERQAAIApggIAADBFUAAAAKYICgAAwBRBAQAAmCIoAAAAUwQFAABgiqAAAABMERQAAIApggIAADBFUAAAAKYICgAAwBRBAQAAmCIoAAAAUwQFAABgqsaCQmpqqsLDwxUUFKQ9e/aU6Z8zZ06Zvi1btigmJkYREREaOXKkbDZbpfsAAIDzaiwo9OrVSwsXLlRAQECZvh07dmjLli2l+ux2u55++mklJSUpIyNDoaGhmjlzZqX6AABA+dRYUAgNDZW/v3+Z9uLiYk2bNk0pKSml2rdv3y5PT0+FhoZKkoYMGaK1a9dWqg8AAJSPu6sLePXVVxUTE6PWrVuXas/JyVGrVq0cj729vWW321VQUFDhPi8vL6fr8vFpXIm1qlt8fZu4ugQAgIu4NCj8+OOP2r59uyZNmuTKMi7LZjspu90o0349fmkeOVLo6hIAANXEzc1yxZ1jlwaF77//XllZWerVq5ck6ddff9WoUaP04osvyt/fX4cPH3Y8Nz8/X25ubvLy8qpwHwAAKB+X/jzykUce0YYNG7R+/XqtX79eLVu21Pz583X33XerQ4cOOnv2rDZt2iRJWrJkifr27StJFe4DAADlU2NHFKZPn65169bp6NGjevjhh+Xl5aXVq1ebPt/NzU1paWlKTk5WUVGRAgIClJ6eXqk+AABQPhbDMMoOxOOK5yjET17ogopcY1HaA5yjAAB12NXOUeDKjAAAwBRBAQAAmCIoAAAAUwQFAABgiqAAAABMERQAAIApggIAADBFUAAAAKYICgAAwBRBAQAAmCIoAAAAUwQFAABgiqAAAABMERQAAIApggIAADBFUAAAAKYICgAAwBRBAQAAmCIoAAAAUwQFAABgiqAAAABMERQAAICpGgsKqampCg8PV1BQkPbs2SNJOnbsmMaMGaOIiAhFR0dr3Lhxys/Pd0yzZcsWxcTEKCIiQiNHjpTNZqt0HwAAcF6NBYVevXpp4cKFCggIcLRZLBaNHj1aGRkZWrlypW644QbNnDlTkmS32/X0008rKSlJGRkZCg0NrXQfAAAonxoLCqGhofL39y/V5uXlpbCwMMfjLl266PDhw5Kk7du3y9PTU6GhoZKkIUOGaO3atZXqAwAA5ePu6gIustvtWrx4scLDwyVJOTk5atWqlaPf29tbdrtdBQUFFe7z8vJyuh4fn8ZVsFZ1g69vE1eXAABwkVoTFJ5//nk1bNhQw4YNc3UpkiSb7aTsdqNM+/X4pXnkSKGrSwAAVBM3N8sVd45rRVBITU1Vdna25s2bJze3C6Mh/v7+jmEIScrPz5ebm5u8vLwq3AcAAMrH5T+PnDVrlrZv367XXntNHh4ejvYOHTro7Nmz2rRpkyRpyZIl6tu3b6X6AABA+VgMwyh7fL0aTJ8+XevWrdPRo0fVrFkzeXl56a9//auioqLUpk0b1a9fX5LUunVrvfbaa5KkzZs3Kzk5WUVFRQoICFB6erqaN29eqT5nXWnoIX7ywspsimvKorQHGHoAgDrsakMPNRYUrjUEhQsICgBQt10tKLh86AEAANReBAUAAGCKoAAAAEwRFAAAgCmCAgAAMEVQAAAApggKAADAFEEBAACYIigAAABTBAUAAGCKoAAAAEwRFAAAgCmCAgAAMEVQAAAApggKAADAFEEBAACYIigAAABTBAUAAGCKoAAAAEwRFAAAgCmCAgAAMFUjQSE1NVXh4eEKCgrSnj17HO379u3T4MGDFRERocGDB+uXX36p1j4AAFA+NRIUevXqpYULFyogIKBUe3JysuLj45WRkaH4+HglJSVVax8AACifGgkKoaGh8vf3L9Vms9m0c+dORUVFSZKioqK0c+dO5efnV0sfAAAoP3dXLTgnJ0ctWrSQ1WqVJFmtVvn5+SknJ0eGYVR5n7e3t2tWFACAa5jLgkJt5+PT2NUl1Bq+vk1cXQIAwEVcFhT8/f2Vm5urkpISWa1WlZSUKC8vT/7+/jIMo8r7ystmOym73SjTfj1+aR45UujqEgAA1cTNzXLFnWOX/TzSx8dHwcHBWrVqlSRp1apVCg4Olre3d7X0AQCA8rMYhlF2t/ky5s+fr1GjRpVpf+utt/Twww9fcdrp06dr3bp1Onr0qJo1ayYvLy+tXr1aWVlZSkhI0IkTJ9S0aVOlpqaqbdu2klQtfeVxpSMK8ZMXlnt+16pFaQ9wRAEA6rCrHVFwOijcdttt2rx5c5n2rl276rvvvqt4hbUUQeECggIA1G1XCwpXPUdh48aNkiS73a5vvvlGl+aKgwcPqlGjRlVQJgAAqI2uGhSmTp0qSSoqKlJiYqKj3WKxyNfXV3/5y1+qrzoAAOBSVw0K69evlyRNnjxZaWlp1V4QAACoPZz+eeSlIcFut5fqc3Pj3lIAANRFTgeFHTt2aNq0acrMzFRRUZEkyTAMWSwW7dq1q9oKBAAAruN0UEhISFDPnj31wgsvqH79+tVZEwAAqCWcDgqHDh3Sn//8Z1ksluqsBwAA1CJOn1zwhz/8QRs2bKjOWgAAQC3j9BGFoqIijRs3TrfffruaN29eqo9fQwAAUDc5HRRuueUW3XLLLdVZCwAAqGWcDgrjxo2rzjoAAEAt5HRQuHgp58vp1q1blRQDAABqF6eDwsVLOV907NgxnTt3Ti1atNC///3vKi8MAAC4ntNB4eKlnC8qKSnR3//+d24KBQBAHVbhay9brVY99thj+uc//1mV9QAAgFqkUjdp+Prrr7kAEwAAdZjTQw/33ntvqVBw5swZFRcXKzk5uVoKAwAArud0UEhPTy/1uEGDBrr55pvVuHHjKi8KAADUDk4Hha5du0q6cIvpo0ePqnnz5txeGgCAOs7pb/qTJ09q8uTJ6tSpk+655x516tRJU6ZMUWFhYXXWBwAAXMjpoDB9+nSdOXNGK1eu1NatW7Vy5UqdOXNG06dPr876AACACzk99PDVV1/p008/VYMGDSRJN998s1588UX94Q9/qLbiAACAazl9RMHT01P5+fml2o4dOyYPD49KF/HZZ58pLi5OsbGxiomJ0bp16yRJ+/bt0+DBgxUREaHBgwfrl19+cUxT0T4AAOA8p4PCfffdp5EjR2rx4sX64osvtHjxYo0aNUqDBg2qVAGGYWjy5MlKS0vTihUrlJaWpilTpshutys5OVnx8fHKyMhQfHy8kpKSHNNVtA8AADjP6aDwpz/9SY888ogyMjKUmpqqjIwMjR49Wo8//njli3Bzc5wUWVhYKD8/Px07dkw7d+5UVFSUJCkqKko7d+5Ufn6+bDZbhfoAAED5OH2OwowZMxQZGakFCxY42jZv3qwZM2aUuWFUeVgsFv31r3/V2LFj1bBhQ506dUr/+Mc/lJOToxYtWshqtUq6cMloPz8/5eTkyDCMCvV5e3s7XZePD9eHuMjXt4mrSwAAuIjTQWHVqlWaPHlyqbYOHTro8ccfr1RQOH/+vF5//XXNnTtXt99+u3744Qc9+eSTSktLq/A8q4LNdlJ2u1Gm/Xr80jxyhJ/AAkBd5eZmueLOsdNBwWKxyG63l2orKSkp01Zeu3btUl5enm6//XZJ0u23364GDRrI09NTubm5KikpkdVqVUlJifLy8uTv7y/DMCrUBwAAysfpcxRCQ0P16quvOoKB3W7X7NmzFRoaWqkCWrZsqV9//VV79+6VJGVlZclms+mmm25ScHCwVq1aJenCEY3g4GB5e3vLx8enQn0AAKB8LIZhlD2+fhm//vqrHn30UR05ckStWrVSTk6OfH19NW/ePLVs2bJSRXz00Ud64403HDedGj9+vHr37q2srCwlJCToxIkTatq0qVJTU9W2bVtJqnCfs6409BA/eWGl1vdasijtAYYeAKAOu9rQg9NBQbpwFGHr1q3KycmRv7+/OnXqVGfv90BQuICgAAB1W5Wdo3BhZm7q0qWLunTpUunCAABA7Vc3DwcAAIAqQVAAAACmCAoAAMAUQQEAAJgiKAAAAFMEBQAAYIqgAAAATBEUAACAKYICAAAwRVAAAACmCAoAAMAUQQEAAJgiKAAAAFMEBQAAYIqgAAAATBEUAACAKYICAAAwRVAAAACmCAoAAMAUQQEAAJgiKAAAAFO1IigUFRUpOTlZffr0UXR0tJ599llJ0r59+zR48GBFRERo8ODB+uWXXxzTVLQPAAA4r1YEhfT0dHl6eiojI0MrV67UhAkTJEnJycmKj49XRkaG4uPjlZSU5Jimon0AAMB5Lg8Kp06d0ocffqgJEybIYrFIkpo3by6bzaadO3cqKipKkhQVFaWdO3cqPz+/wn0AAKB83F1dwIEDB+Tl5aU5c+bo22+/VaNGjTRhwgTVr19fLVq0kNVqlSRZrVb5+fkpJydHhmFUqM/b29vpunx8Glf9yl6jfH2buLoEAICLuDwolJSU6MCBA2rfvr2mTJmin376SY899pheffVVl9Zls52U3W6Uab8evzSPHCl0dQkAgGri5ma54s6xy4OCv7+/3N3dHUMFnTt3VrNmzVS/fn3l5uaqpKREVqtVJSUlysvLk7+/vwzDqFAfAAAoH5efo+Dt7a2wsDB9/fXXki78YsFms6lNmzYKDg7WqlWrJEmrVq1ScHCwvL295ePjU6E+AABQPhbDMMoeX69hBw4cUGJiogoKCuTu7q4nn3xS9957r7KyspSQkKATJ06oadOmSk1NVdu2bSWpwn3OutLQQ/zkhZVf6WvEorQHGHoAgDrsakMPtSIo1EYEhQsICgBQt10tKLh86AEAANReBAUAAGCKoAAAAEwRFAAAgCmCAgAAMEVQAAAApggKAADAFEEBAACYIigAAABTBAUAAGCKoAAAAEwRFAAAgCmCAgAAMEVQAAAApggKAADAFEEBAACYIigAAABTBAUAAGCKoAAAAEwRFAAAgCmCAgAAMEVQAAAApmpVUJgzZ46CgoK0Z88eSdKWLVsUExOjiIgIjRw5UjabzfHcivYBAADn1ZqgsGPHDm3ZskUBAQGSJLvdrqefflpJSUnKyMhQaGioZs6cWak+AABQPrUiKBQXF2vatGlKSUlxtG3fvl2enp4KDQ2VJA0ZMkRr166tVB8AACgfd1cXIEmvvvqqYmJi1Lp1a0dbTk6OWrVq5Xjs7e0tu92ugoKCCvd5eXk5XZOPT+NKrlXd4evbxNUlAABcxOVB4ccff9T27ds1adIkV5dSis12Una7Uab9evzSPHKk0NUlAACqiZub5Yo7xy4PCt9//72ysrLUq1cvSdKvv/6qUaNGafjw4Tp8+LDjefn5+XJzc5OXl5f8/f0r1AcAAMrH5ecoPPLII9qwYYPWr1+v9evXq2XLlpo/f75Gjx6ts2fPatOmTZKkJUuWqG/fvpKkDh06VKgPAACUj8uPKJhxc3NTWlqakpOTVVRUpICAAKWnp1eqDzWr2e885O7h6eoyasT54iIdO17s6jIAoMpZDMMoOxCPK56jED95oQsqco1FaQ9U+BwFX98m+iFtdBVXVDvdPvmfnMsB4Jp0tXMUXD70AAAAai+CAgAAMEVQAAAApggKAADAFEEBAACYqrU/jwSuF01/5ylPDw9Xl1EjioqLdeJ4kavLAFAOBAXAxTw9PPTQWxNcXUaNWPDwq5IICsC1hKEHAABgiqAAAABMERQAAIApggIAADBFUAAAAKYICgAAwBRBAQAAmCIoAAAAUwQFAABgiqAAAABMERQAAIApggIAADBFUAAAAKYICgAAwJTLg8KxY8c0ZswYRUREKDo6WuPGjVN+fr4kacuWLYqJiVFERIRGjhwpm83mmK6ifQAAwHkuDwoWi0WjR49WRkaGVq5cqRtuuEEzZ86U3W7X008/raSkJGVkZCg0NFQzZ86UpAr3AQCA8nF5UPDy8lJYWJjjcZcuXXT48GFt375dnp6eCg0NlSQNGTJEa9eulaQK9wEAgPJxeVC4lN1u1+LFixUeHq6cnBy1atXK0eft7S273a6CgoIK9wEAgPJxd3UBl3r++efVsGFDDRs2TJ988olLa/HxaezS5dcmvr5NXF3CNYHt5By2E3BtqTVBITU1VdnZ2Zo3b57c3Nzk7++vw4cPO/rz8/Pl5uYmLy+vCveVh812Una7Uab9evyQO3KksELTXW/biu3knIpuJwDVw83NcsWd41ox9DBr1ixt375dr732mjw8PCRJHTp00NmzZ7Vp0yZJ0pIlS9S3b99K9QEAgPJx+RGFn3/+Wa+//rratGmjIUOGSJJat26t1157TWlpaUpOTlZRUZECAgKUnp4uSXJzc6tQHwAAKB+XB4X/+Z//UWZm5mX7brTUtpkAABL/SURBVLvtNq1cubJK+wAAgPNqxdADAAConQgKAADAFEEBAACYIigAAABTBAUAAGCKoAAAAEwRFAAAgCmCAgAAMEVQAAAApggKAADAFEEBAACYIigAAABTLr8pFAA4w6uJh+rV93R1GTXm3NkiFRQWu7oMgKAA4NpQr76nPh7xsKvLqDGR77wlERRQCzD0AAAATBEUAACAKYICAAAwxTkKAFDH/K5pA3l4Xh8f78VF53X8xBlXl1GnXR/vJAC4jnh4uuuFqR+4uowakTjjPleXUOcx9AAAAEwRFAAAgCmCAgAAMFVnz1HYt2+fEhISVFBQIC8vL6WmpqpNmzauLgsAUEv8rqmHPDyvn6t9FhcV6fiJ8l/Eq84GheTkZMXHxys2NlYrVqxQUlKS3nnnHVeXBQCoJTw8PTXrmUddXUaNeerF1yURFCRJNptNO3fu1FtvvSVJioqK0vPPP6/8/Hx5e3s7NQ83N4tpX/NmjaqkzmvFlbbF1Xg09anCSmq3ymyn5o2de1/WBZXZTg2aXz/vJ6ly2+p3Xg2rsJLarTLbqakX76mrbT+LYRhGdRXkKtu3b9eUKVO0evVqR1tkZKTS09P1v//7vy6sDACAawsnMwIAAFN1Mij4+/srNzdXJSUlkqSSkhLl5eXJ39/fxZUBAHBtqZNBwcfHR8HBwVq1apUkadWqVQoODnb6/AQAAHBBnTxHQZKysrKUkJCgEydOqGnTpkpNTVXbtm1dXRYAANeUOhsUAABA5dXJoQcAAFA1CAoAAMAUQQEAAJgiKAAAAFMEBRc7fvy4OnXqpOnTp1/1uVOnTtWmTZtqoKqaFx4err59+yo2Ntbx38GDB11dVqWFh4crKipKdru9VNuePXvKPa9du3bp448/LtUWFBSkU6dOOT2P9PR0dejQQTabrdzLrwhn3rNr1qxRXFycYmNj1bdvX02cOLFSy6yr26kmXe5zafPmzYqKilJcXJy++eabMtNs27at0q9dbVRcXKyXXnpJvXv3Vt++fRUXF6dPP/20xut49dVXy7yva4wBl3r33XeNYcOGGXfeeadRVFTk6nJcpmfPnkZmZmaFpz937lwVVlN1evbsafTs2dNYtmxZqbbyruu5c+eMpUuXGk888USp9ltvvdU4efKkU/M4f/680b17d2P48OHG/Pnzy7X8ijh//vxVn5Obm2uEhYUZhw8fNgzDMOx2u7Fjx45KLbcubqeadrnPpaSkJOONN9647PNr699fVXjmmWeMCRMmGGfPnjUMwzAyMzONHj16GN99952LK6s5HFFwsaVLl2rs2LEKCgrSv//9b0nSp59+qujoaMXGxioqKkrffvutJGn48OH67LPPJEkrV67UoEGDFBcXp7i4OG3cuNFl61BdDh48qLCwsMs+vvjv1NRU9e/fX++//76ys7P14IMPKjo6Wv3799eXX37pmDYoKEh/+9vfFBsbq4iICGVkZDj6fvrpJw0fPlwDBgzQgAED9Pnnn1fpeowbN05z5sxRcXHZu7ZdrebZs2dr4MCBevHFF/W3v/1N//nPfxQbG1tqT+9f//qXBg4cqF69epVar9/64osvdOONN2r8+PFatmxZqb6goCD9/e9/d8xn48aNevnllxUXF6eoqChlZWU5nrt8+XINGjRIAwYM0IgRI7R3715J0rJly/TQQw/p8ccfV1RUlPbs2VPqPVtYWKhnnnlG0dHRiomJ0bRp03T06FEZhqHx48crLi5OMTEx2rdvn2NZX375peLi4hQdHa0HH3xQ2dnZjmWNHz/e8byLj48dO1Ynt5Mkbdy4UYMHD3Zsj0vvZVPVfvu59M9//lNr1qzRO++8o9jYWJ09e1bh4eGaOXOm7rvvPiUlJenbb7/VgAEDHPP47LPPNGDAAMXExCguLk67d++WJE2cOFEDBgxQdHS0Hn/8cR0/frza1qOyDh06pDVr1iglJUWe/3c76ltvvVWPPfaY5syZI0l6/fXXHa/VkCFDHEcPzV7/zMxMxcfHq3///oqMjNSCBQscy0tISFBSUpJGjBihPn36aPLkyTL+7woGCQkJevfddyXV7HtBEkcUXGnXrl1Gz549DbvdbqxYscIYNWqUYRiGER0dbWzevNkwjAt7G4WFhYZhGMawYcOM9evXG4ZhGPn5+YbdbjcMwzCysrKMHj16uGANqk7Pnj2NiIgIIyYmxoiJiTH69+9vHDhwwOjatavjOZc+PnDggHHrrbcaq1evdvTfd999xnvvvWcYhmH8/PPPRteuXQ2bzWYYxoU9ytmzZxuGcWF7de3a1Th69Khx/PhxIzY21sjNzTUM48Iebo8ePYzjx49X2XplZmYaTzzxhLFgwYJSbc7U/PrrrzvmZban/K9//cswDMPYtGmTcffdd5vWMnbsWOP99983DMMw+vTpY2zZsqXUfN59913DMAzj448/Nrp06eJ4r/3jH/8wJk6caBiGYXz//ffGmDFjHHuZn3/+uTF48GBHfV26dDGys7Md8730PZuQkGBMmzbNKCkpMQzDMGw2m1FSUmKMHj3a6Nq1q/HEE08Yc+bMMbp3724UFBQYR48eNcLCwoyff/7ZMAzDeO+994z77rvvstvi0sd1cTsZhmEUFBQ4jj4cOXLE6NGjh1FQUGC6HhVl9rk0ZcoUxzY0jAvv4+TkZMfjb775xujfv79hGIaxd+9e46677jL27dtnGIZhFBUVOT7HLq6PYRjGrFmzjPT09Cpfh6qyfv16IyYmpkz7jh07jK5duxrLli0z7r//fse65efnG4Zx5de/sLDQ0X7y5EmjX79+xn//+1/DMC5s4yFDhhhnz541ioqKjMjISGPDhg2Ovovbv6beCxfVydtMXys++OADxcbGymKxqE+fPpo+fbpyc3N155136sUXX1SfPn10zz336NZbby0z7YEDBzRx4kTl5ubK3d1dR48e1ZEjR+Tr6+uCNakaf/vb30qt69XOUfD09FS/fv0kSSdPntSuXbs0cOBASdItt9yi4OBgbdmyReHh4ZKkQYMGSZLatm2r9u3ba8uWLXJ3d9fBgwc1ZswYx3wtFouys7PVsWPHKlu3J598UiNGjNB9993naHOm5v79+1913pGRkZKkLl26KC8vT0VFRY69n4tsNpu+++47paamSpLi4uK0dOlSde7c2fGci9vy4h1We/bsKUnq0KGDPvnkE0nS+vXrtXv3bse2NAxDJ06ccMzjtttu04033njZOj/77DMtW7ZMbm4XDmRevKR6YmKiUlJStHnzZn311Vc6ffq0tm3bpuLiYrVr10633HKLJGngwIF67rnndPLkyatuk7q4nfLz85WYmKjs7GxZrVYdP35c+/btU5cuXSq0PcyYfS5dTlxc3GXb//Of/+iee+5RmzZtJEkeHh7y8PCQJK1YsUIrV67UuXPndPr0acdzaiPjKtcj/OyzzzR06FA1btxYktSsWTNJV379z549q5SUFGVmZspisSgvL0+7d+9WYGCgJKl3796O92X79u21f/9+de/evdRya+q9cBFBwUWKi4u1atUqeXh4aMWKFZKkc+fOadmyZUpMTFRmZqa++eYbTZgwQQ8//LDuv//+UtM/9dRTSkhIUO/evWW329W5c2cVFRW5YlWqjbu7e6k/1N+uX4MGDWSxVPw+9NKFP+CgoCAtXLiwUvO5mrZt2+ree+/VW2+9Va7pGjZseNXnXPxQsVqtkqTz58+X+QJcsWKFzp8/r5iYGMdzzpw5o8TERNWvX7/UfNzc3Bwf6hcfnz9/XtKF7TVw4EBNmDDhsrU0atSoPKsnSUpJSVF4eLgWLFggi8WiDh06aMuWLWrfvr3pNFartdQJos689+vKdpozZ44sFosiIiKq/G/+Sp9Ll+PM+/NSmzZt0uLFi7VkyRJ5e3tr5cqVeu+99ypdd3W59dZbtX//fhUUFMjLy8vRvmXLFgUFBZlOd6XXf9asWfL19dVLL70kd3d3jRw5stTreOl70mq1Om5ueKmaeC9cinMUXOTf//63br75Zn355Zdav3691q9frzfffFPLly/X3r17FRQUpAcffFAxMTHatm1bmekLCwvVunVrSRfGEy83/n2ta968uc6dO+cYl754k6/Lady4sYKDg7V8+XJJF+71sXv37lIJe+nSpZKkX375RTt37lSXLl0UEhKi7OzsUmdxb9269ap7EhXxxBNPaNGiRY6z752p+bfrWFhYWKFlL1u2TK+99prjvfbll1+qU6dOWrt2bbnmEx4erhUrVujXX3+VdOHOrNu3b3dq2p49e2r+/PmObZufn6/c3Fzl5uYqICBAFovFsafp6+urLl26aPfu3Y5x/+XLl6t9+/Zq3LixbrrpJmVmZqq4uFjFxcWlzjmoi9tJuvA3f3E7ff31146/i6p0pc+l8ujevbu+/PJL/fLLL5IuBJCTJ0/qxIkTaty4sby8vFRcXOz4m6ytWrdurb59+yolJcXxRbxnzx7NmzdP48aNU8+ePbV48WLHUa5jx45JuvLrX1hYqJYtW8rd3V179uyp0K9dauK9cCmOKLjI0qVLFR0dXaotJCREdrtdycnJOnbsmKxWq5o2baoZM2aUmf6ZZ57R2LFj9bvf/U49evQolXavVePHjy+VpqdPn66pU6fq4Ycflre3t37/+99fcfqZM2cqKSlJCxYskLu7u9LS0krdMbSkpERxcXE6c+aMpk2bJh8fH0nS3LlzlZ6erhdeeEHnzp3TDTfcoHnz5lX6aMVvtWzZUrGxsXrzzTedrvlS3bp105tvvqmYmBh17dpVf/nLX5xa7k8//aSCggLdeeedpdqjo6O1dOlS08PHl3PHHXfoySef1J/+9CeVlJTo3Llz6tu3rzp06HDVaZ955hm98MILioqKktVqVdeuXfXwww+rYcOGmjBhgqxWq+rXr68WLVqoTZs28vb2VlpamiZNmqTz58/L29tb6enpki4MH3Tr1k1//OMf5efnp3bt2unIkSN1djv95S9/0cSJE/Xcc89p9uzZ6tix4xX3aCvqSp9Lhw4dcqp+SWrTpo2ef/55/fnPf1ZJSYmsVqteeukl9ejRQx999JEiIiLUrFkzhYaGXnZHqDZJTk7WrFmzFBkZqXr16snT01NTp05V165dZRiGcnNzNXjwYLm7u6thw4ZauHDhFV//P/3pT5o8ebI++OAD3XzzzbrjjjvKXVNNvBcuxU2hcF0ICgrS5s2bK3TIFwCuZww9AAAAUxxRAAAApjiiAAAATBEUAACAKYICAAAwRVAA4HKjR48u92/1AdQMTmYEUKNmz56t7OxszZw5s8aXPXz4cMXExDgurQvg6jiiAAAATBEUAFxRTk6Oxo0bpzvvvFNhYWGaNm2a7Ha75s6dq549e6pbt26aPHmy47LJBw8eVFBQkJYvX67f//73CgsL09///ndJF24b/frrr2vNmjUKCQlx3FNh+PDhev/99yVduIzy0KFDlZqaqjvuuEPh4eH64osvHPUUFhYqMTFRd999t3r06KFXXnnFcT38K037yiuvaNOmTZo2bZpCQkIct28GcGUEBQCmSkpK9Oijj6pVq1aOex9ERkZq2bJlWr58ud555x19+umnOn36dJkv3h9++EFr167V22+/rddee01ZWVm655579Oijj6pfv3768ccf9dFHH112uVu3btXNN9+sb775RqNHj9bUqVMd9z5ISEiQu7u71q1bpw8//FBff/21I2Rcado///nPCg0NVVJSkn788UclJSVV34YD6hCCAgBTW7duVV5eniZPnqyGDRvK09NToaGhWrlypR566CHdcMMNatSokZ566il9/PHHjrsnStK4ceNUv359tWvXTu3atdPu3budXm6rVq10//33y2q1qn///jpy5IiOHj2qo0eP6osvvlBiYqIaNmwoHx8fPfTQQ1q9evVVpwVQMdwUCoCpnJwctWrVSu7upT8q8vLyFBAQ4HgcEBCg8+fPy2azOdqaN2/u+HeDBg10+vRpp5f722kl6fTp0zp+/LjOnz+vu+++29Fvt9vl7+9/1WkBVAxBAYApf39/5eTk6Pz586XCgp+fnw4dOuR4fPjwYbm7u8vHx8dxa10zlbkrZ8uWLeXh4aFvvvmmTHgBUD0YegBgqlOnTvL19dXLL7+s06dPq6ioSD/88IOioqL09ttv68CBAzp16pReeeUV9evXz6kvbx8fHx06dEh2u73c9fj5+al79+566aWXdPLkSdntdu3fv1/fffedU9M3b95cBw4cKPdygesZQQGAKavVqnnz5ik7O1s9e/bUPffcozVr1mjgwIGKiYnRsGHD1KtXL3l4eOjZZ591ap59+/aVJIWFhal///7lriktLU3nzp1TZGSk7rjjDo0fP15HjhxxatoRI0YoIyNDd9xxh6ZPn17uZQPXIy64BAAATHFEAQAAmCIoAAAAUwQFAABgiqAAAABMERQAAIApggIAADBFUAAAAKYICgAAwBRBAQAAmPp/6zHDCFEmCGUAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"We find that Asia is by far the most frequent continent of origin, while Oceania is the least."
],
"metadata": {
"id": "Q6Auwmhp8-Pf"
},
"id": "Q6Auwmhp8-Pf"
},
{
"cell_type": "code",
"source": [
"plott('education_of_employee')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "Ii-IjHtVqc6M",
"outputId": "040546c6-c8f3-4e3d-a2e2-ff66aaf3bb64"
},
"id": "Ii-IjHtVqc6M",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAFmCAYAAADEVg8WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3zO9eP/8edmYxi2OZND1JazOYycN0J9bCY5hEkkCSU/OdQnFZWQSiSVQykUZn2RfBI5DI1yKOrjsGJjQmbLzDbb3r8/1nV9du19bTa2a2yP++3mdrP34XV6X9vrel7v9/t6OxmGYQgAAAAAgEycC7sBAAAAAIDbD2ERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEABQrK1asUM+ePdW4cWP5+PjozJkzhd2kfBERESEfHx+tW7eusJsCACgiXAq7AQBQ2CIiIjR06NBs13/55Zdq3rx5gdX/ySefqHz58nr44YcLrA5k+OGHHzR9+nR17dpVI0eOlIuLi7y8vAq7WQAA3JYIiwDwj169eqlTp06m5bVr1y7QepcvX66aNWsSFh1gz549kqQ33nhDHh4ehdwaAABub4RFAPhHw4YN1bt378JuRr66fv260tPTVapUqcJuym3h4sWLkkRQBAAgF7hnEQDyYNOmTXr00Ufl6+urZs2aqV+/ftq8ebPd7Z566il16dJFjRs3Vps2bfT000/rv//9r812Pj4+Onv2rPbt2ycfHx/rP8t9dD4+PpoyZYqp/HXr1snHx0cRERHWZfPnz5ePj49OnDihmTNnqlOnTmratKkOHTokSUpJSdGiRYv0r3/9S02aNFGrVq301FNP6ddffzWVHxMTo8jISF2/fv2GY2Jpy969e7VkyRJ169ZNjRs3Vo8ePRQWFmZ3nzVr1qhPnz5q2rSpWrZsqeHDh+vHH3+8YV3Z+e677zRw4EA1b95cvr6+GjhwoL777jvr+jNnztjcz2cZ55CQkDzVc+XKFc2ZM0cPPPCAGjdurLZt22rChAmKjo622S7zmCxYsED+/v5q2rSp+vXrZz0e+/bt06OPPqrmzZurQ4cOev/99031BQQEKCQkREePHtXQoUPl6+srPz8/TZ48WZcuXcpVmxMTEzV37lzrcWnfvr0mTZqks2fPWrf59ddf5ePjo3feecduGU8++aRatGihxMRE67ILFy7o5Zdftr7GO3TooJdeesluu3I7bsnJyZo/f7569OihZs2aqVWrVgoMDNSsWbNy1VcAQP7izCIA/OPatWuKjY21WVayZEm5u7tLkt555x0tWrRIHTt21LPPPitnZ2dt2bJFzz77rKZNm6bBgwdb9/v888/l4eGh/v37q3LlyoqKitLq1av16KOPKiwsTHXr1pUkzZ49WzNnzpSnp6eeeuop6/63ch/dxIkT5ebmpuHDh0uSKleurOvXr2vEiBE6ePCgevfurcGDByshIcHaps8//1xNmjSxljF58mTt27dPW7du1V133ZWret955x0lJSVpwIABKlmypFatWqUpU6aodu3aatmypXW7OXPmaPHixWratKkmTJhgbcdjjz2mhQsXqnPnznnq74oVKzR9+nTVq1dPTz/9tCQpLCxMY8aM0fTp0zVgwAB5eXlp9uzZWr16tX788UfNnj1bklSpUqVc13PlyhUNHDhQMTEx6tu3r+69915dvHhRK1euVL9+/RQaGqqaNWva7PPWW28pPT1dQ4cO1fXr17V06VINHz5cs2fP1osvvqj+/fsrMDBQ33zzjd577z3dddddprPbf/75p4YNG6bu3burR48e+vXXXxUaGqojR45o7dq1Kl26dLZtthz3AwcOqEePHnr88cd1+vRprVq1Srt371ZoaKiqVaumhg0bqlGjRgoLC9MzzzyjEiVKWMs4f/68wsPD1bdvX5UpU0ZSxocJAwYM0PXr1/XII4+odu3a1nIjIiIUGhqqcuXK5XncXn31VYWGhio4OFi+vr5KS0vTqVOnbD4UAQA4kAEAxdwPP/xgeHt72/03fvx4wzAM48iRI4a3t7cxd+5c0/6jR482fH19jStXrliXXb161bTdyZMnjUaNGhkvv/yyzXJ/f39jyJAhdtvm7e1tTJ482bQ8NDTU8Pb2Nn744Qfrsvfee8/w9vY2hgwZYly/ft1m+2XLlhne3t7Gzp07bZZfuXLF6Ny5s6n+IUOGGN7e3kZ0dLTddtlrS+/evY3k5GTr8j///NNo1KiR8dxzz1mXRUZGGj4+PsbAgQNN27Zs2dLw9/c3UlNTb1inRVxcnNG8eXOjW7duNuN/5coVo2vXrkbz5s2N+Ph46/LJkycb3t7euS4/sxkzZhhNmjQxfvvtN5vlZ86cMXx9fW2Ok2VMgoODbfr53XffGd7e3kbDhg2Nn3/+2bo8OTnZaN++vdG/f3+bsv39/Q1vb29j2bJlNsstx/PDDz+0LrO8jkNDQ63LvvzyS8Pb29uYNWuWzf7ff/+94e3tbUycONG67IsvvjC8vb2N7du322y7cOFCw9vb2zh8+LB12VNPPWW0bdvWOHfunM22P//8s9GgQQPjvffeu6lxa926tfHEE08YAIDbA5ehAsA/BgwYoGXLltn8Gz16tCRpw4YNcnJyUnBwsGJjY23+BQQE6OrVq9bLCyVZz8AYhqGEhATFxsbK09NTd999t37++ecC7cdjjz0mFxfbC0fWr1+vevXqqVGjRjZtT0lJUbt27fTTTz8pKSnJuv1nn32mY8eO5fqsoiQNGjRIJUuWtP5ctWpV3X333Tp16pR12datW2UYhp544gnTtg8//LDOnj1r97LY7OzevVuJiYkKCQmxngGWJHd3d4WEhCgxMdH6pTa3wjAMbdiwQa1bt1aVKlVsxrB06dJq3ry5wsPDTfs9+uijNv1s1aqVJKlp06Y2Z3JLliypJk2a2IxV5r4MGjTIZtmgQYPk7u6uLVu25NjuLVu2yNnZWaNGjbJZ3qVLFzVo0EBbt25Venq6pIwveCpTpozWrl1r0+/Q0FB5e3uradOmkjLOFG7fvl0BAQEqWbKkzVjUrFlTtWvX1u7du29q3Nzd3XXy5EkdP348x34BAByDy1AB4B916tRRu3bt7K6LjIyUYRh68MEHs93/r7/+sv7/119/1bx587Rv3z6b+7wk5SmA3QzLJa6ZRUZGKikpSffff3+2+12+fFnVq1e/6Xpr1aplWubh4WFzb5zlXsx7773XtK1lWXR0tE2Qykluy7tVsbGxiouLU3h4eLZj6Oxs/vw165hUqFBBkv3XQIUKFRQXF2e3jMyBU8oIl7Vq1bph386cOaMqVapY683snnvu0W+//abLly+rYsWKKlu2rHr16qWwsDDFxsbKy8tLERERio6O1gsvvGDd748//lB6errWrl1rEyzt9Tuv4/bCCy9o0qRJCgwMVK1atdSmTRv5+/srICDA7vgCAAoWYREAcsEwDDk5Oenjjz+2uZ8rs3vuuUdSxv1cgwcPlru7u0aPHq169eqpdOnScnJy0htvvGEKjzcjLS0t23Vubm522+/t7a2pU6dmu9+tPm+wKL+ZNwxDktSuXTuNHDky1/tlNybZvYYKW//+/bV69Wp99dVXGj58uNauXauSJUva3EdpGYugoCD16dPHbjmWb9/N67h169ZN27Zt044dO7R//37t2bNHa9euVatWrbRs2TJTaAYAFCzCIgDkQt26dbVr1y7VqFFD9evXz3HbLVu2KDExUR988IHatm1rsy4uLi5Pb3g9PDzsnm3K69myOnXq6PLly2rbtm2hhjrLGacTJ06Ynl958uRJm23yWl7WM1c3U152vLy8VL58eSUkJGR79rmgREdHKyUlxeZ1k5KSoujoaNWrVy/HfWvVqqVdu3bp77//Vvny5W3WRUZGyt3dXZ6entZlTZo0UcOGDbV27Vo98sgj+vbbb9WtWzebR43Url1bTk5Oun79+g3H4mbGzcPDQ71791bv3r1lGIbeeustLV68WFu3bs3xzD4AIP8V3Y+BASAfBQUFSZLefvttu2f1Ml+CajlrZDmrYrF69Wrrc/4yK1u2rN1AKGWE1EOHDunatWvWZfHx8dZHQORWcHCwLl68qGXLltldn7n9Ut4enZEXAQEBcnJy0pIlS2zKvnDhgtatW6eaNWuqYcOGuS6vffv2KlOmjD7//HMlJCRYlyckJOjzzz9XmTJl1L59+1tut7OzswIDA/Xzzz/bfVSKpFw/yiKvEhIStHLlSptlK1euVEJCgrp165bjvt26dVN6ero++ugjm+U7duzQr7/+avfyzn79+ikyMlIzZsxQcnKy+vXrZ7Pe09NTnTt31pYtW2zu07UwDMP6rcJ5Gbe0tDT9/fffNuucnJysr4f4+Pgc+woAyH+cWQSAXGjatKnGjRun+fPnKzg4WD169FDVqlV14cIFHT16VDt37tSRI0ckSZ06dVLp0qU1adIkDRkyROXLl9eBAwe0c+dO1a5d2xQ2mzVrprVr1+rdd99V/fr15ezsLH9/f5UpU0aDBw/W888/r8cee0y9e/fW33//rTVr1qhGjRp2g2d2hg4dqj179mj27Nn64Ycf1LZtW7m7uysmJkY//PCDSpYsqc8++8y6/c08OiM36tWrpxEjRmjx4sUaMmSIHnzwQV29elWrV69WYmKi3nrrrTxdolm+fHlNnDhR06dPV//+/a2XRYaFhen06dOaPn269REOt+q5557TgQMHNH78eD344INq1qyZXF1dFRMTo507d6pRo0Z6880386WuzGrXrq33339fJ06cUKNGjXT06FGFhoaqXr16N3xOZJ8+fRQWFqaPP/5YZ8+eVatWrRQVFaWVK1eqUqVKmjBhgmmfoKAgzZkzR+vXr9ddd91l917DV155RYMGDdKQIUPUu3dvNWzYUOnp6YqOjtbWrVsVHByscePGScr9uF29elUdOnRQQECAGjZsKC8vL505c0arVq1ShQoV5O/vnz8DCgDINcIiAOTS2LFj1bhxY3322Wdavny5EhMTVbFiRd1777168cUXrdvVrl1bH3/8sd5++20tWrRIJUqUUIsWLfTZZ59pxowZNl/4ImW8mY6Pj9fKlSv1999/yzAMbd26VWXKlFFQUJAuXLigFStWaObMmapVq5aefvppOTs76/Dhw7luu6urqz788EOtXLlS//d//6f58+dLkqpUqaImTZpke+9ZQXj++edVp04drVy5UnPnzpWrq6uaNWumuXPnWr8tNC8GDx6sKlWqaMmSJdYH29933316//33b3jmLS/KlSunVatWaenSpdq8ebO2bt2qEiVKqFq1amrZsqXpDFx+qVatmt59913NmjVLX3/9tVxdXRUYGKjJkydbv3U3O66urlqyZIk++OADbdq0SVu2bFG5cuXUs2dPjR8/3u4XGrm7u+vBBx9UaGioHn74YTk5OZm2qV69ukJDQ/Xxxx9r27ZtWr9+vUqVKqXq1avL39/f5nLR3I6bm5ubHnvsMe3du1d79+7V1atXVaVKFQUEBGjUqFGqWrXqLY4kACCvnIys10kBAIDbQkBAgGrWrGlz1tcRXnnlFa1evVrbtm1TtWrVHFo3AOD2wT2LAADA6sqVK1q/fr06depEUASAYo7LUAEAt524uLgbfrmOm5vbLd+PmJSUpCtXrtxwu8qVK99SPXeC48eP69dff9VXX32lxMREjRo1qrCbBAAoZIRFAMBtZ9y4cdq3b1+O2/Tp0+eWv1Bm06ZNOT570uLYsWO3VM+d4D//+Y8WLFigqlWr6uWXX5avr29hNwkAUMi4ZxEAcNs5cuSI6TEKWVWpUkX33HPPLdVz4cIF6/MYc+LoZysCAHA7ICzijhcSEqJ7771X06ZNK5Dyp06dqpo1a2rs2LF53jciIkJDhw7V3r175eXlle12AQEBGjx4sEaMGJGn8r/88kt98MEH+vPPPzVmzBjVrFlTM2bM0MGDByVJ69ats/m5oDzzzDNq3ry5hg8fXqD1AAAcw9Fz67Vr1zR58mTt3r1bCQkJ2rp1q6ZOnWrThoJuU3G3ZMkSrVixQtu2bZMkzZo1SykpKXrppZcKuWUoTHzBDW7KlClT5OPjY/3Xpk0bjRo1SpGRkYXdtBtat25dri+vOnbsmL777jsNGzbspury9fVVeHi4PD0981z3jcTHx2v69OkaMWKEdu7caTeoPfTQQ/ruu+/ypb6cjBkzRosWLcrVvV8AAPuK89waGhqq/fv3a+XKlQoPD7f7WJf58+fbfTYoCsbIkSMVFham6Ojowm4KChFhETetXbt2Cg8PV3h4uJYuXaqkpKSbOvt2O/v888/VvXt3ubu739T+JUuWVOXKle0+p+xWxcTEKDU1VV26dFGVKlVUtmxZ0zZubm6qWLHiLdWTkpJyw218fHx01113af369bdUFwAUd8V1bj19+rTq168vHx8fVa5cWSVKlDDt5+HhcdPzscWNvjgrN3IzLxYFXl5e6tChg1auXFnYTUEhIiziplmCUOXKldWoUSMNGzZMv//+u5KSkqzbHDt2TMOGDVPTpk3l5+enKVOmWM8+7du3T40aNVJERIR1+y+++EItWrSwfooVEhKiadOm6bXXXlPr1q3VunVrzZo1S+np6dm2Kz4+XpMnT1br1q3VtGlTDRs2TCdOnJCUcVno1KlTlZiYaP3k1vJw8qzS0tL0zTffyN/f37ps1apV6tmzp/XnPXv2yMfHRx999JF12cSJE60PaI+IiJCPj49iY2NvWHdycrKmTZumFi1aqFOnTlq8eHG2fVy3bp2Cg4MlSd26dZOPj4/OnDljd7usn/Ru27ZNDz/8sJo0aaKAgAC98847NhNfQECA5s+fr6lTp6pVq1aaOHGiJGnBggXy9/dX48aN1b59e02aNMmm3ICAAG3cuDHbNgMAbqw4zq0hISFavny59u/fLx8fH4WEhNjdNyQkRNOnT7f+nJKSojlz5qhTp05q1qyZ+vbtq127dlnXW+bgHTt26JFHHlHjxo0VHh6uc+fOafTo0fLz81OzZs3Us2dPff3119n2fcqUKRo1apQ++ugjderUSZ07d5YknT9/Xs8995x1DJ988kmdOnXKut/8+fPVq1cvhYWFKSAgQM2bN9fUqVOVkpKiFStWqHPnzmrTpo1mzpxpM/Y5jXVCQoKaNm1qvVTUIjw8XI0aNdKlS5dy1TZJ+vjjj9W+fXv5+vpq0qRJSkxMNPU9ICAgx7FB0UdYRL5ISEjQpk2b5O3tLTc3N0lSYmKiRowYoTJlymjNmjVasGCBDh48qBdeeEGS5OfnpxEjRmjSpEmKj49XZGSk3nzzTb300kuqVauWtewNGzbIMAx98cUXevXVV7V69Wp9+umn2bZlypQpOnz4sBYuXKg1a9bIzc1NTzzxhJKSkuTr66sXXnhBpUuXtn5ym919dseOHdOVK1fUpEkT6zI/Pz/98ccfunjxoqSMicjT09NmUt6/f7/8/PxM5d2o7k8//VTe3t4KCwvTyJEjNWfOnGzvNXzooYesYXLNmjXZXrKT1a5duzRx4kQNHjxYX3/9td544w1t3rxZ77zzjs12y5YtU7169RQaGqoJEyboP//5j5YuXaqXX35Z3377rRYtWqSmTZva7NO0aVP98ssvNm9oAAA3r7jMrfPnz9fDDz9svXUju6CZ1dSpU7V//37NnTtXGzduVJ8+fTR69Gj997//tdnurbfe0vjx4/XNN9+oWbNmevXVV5WUlKTly5dr48aNeuGFF274GJ59+/bp2LFjWrx4sT755BNdu3ZNQ4cOValSpfTZZ5/piy++UOXKlfX444/r2rVr1v3Onj2rrVu3atGiRZo/f742b96s0aNH68iRI1q6dKlee+01ff7559qyZUuuxtrd3V3+/v7asGGDTfs2bNigdu3aqWLFirlq26ZNmzRv3jyNGzdO69at0913361ly5aZ+t2kSROdP39eUVFRuTomKHp4dAZu2q5du6xnrRITE1W9enWbM2wbN27UtWvXNHv2bOtlI9OnT9fQoUN1+vRp1alTR+PGjdPu3bv14osv6uzZs+rSpYv69OljU0+VKlX073//W05OTqpfv75OnTqlZcuW6fHHHze16dSpU9q2bZs+//xztW7dWpI0Z84cdenSRRs2bFC/fv1Urlw5OTk53fC5aTExMabt6tevr8qVKysiIkK9evXSvn37NHz4cH3wwQdKTU3V2bNn9eeff6pNmzam8kqWLJlj3e3bt9eQIUMkZXx6+tlnn2nv3r127wFxc3OTh4eHpIzLRHL7DLhFixZpxIgR6tu3rySpdu3aev755/X8889r0qRJ1stl/fz8NHLkSOt+33//vSpXrqz27dvL1dVVNWrUsJnopYzjdP36dV24cEG1a9fOVXsAALaK49zq4eGh0qVLy9XVNdfzWVRUlL7++mtt27ZNNWrUkCQNGTJEe/bs0RdffKFXXnnFuu3YsWPVoUMH689nz55Vjx49dN9990mSTYjOTqlSpTRz5kyVLFlSkrR27VoZhqGZM2da587p06erXbt2+v777/XQQw9JyjiTOnPmTJUrV07e3t7q2LGj9u3bpw8++EAlS5ZU/fr11aJFC0VERKhHjx65GuugoCBNmDBBCQkJcnd3V1JSkrZs2aJXX31VkvT111/fsG3Lly9XcHCwBg4cKEkaPXq0IiIiTKGwatWq1jFjbi+eCIu4aa1atdKMGTMkZVwysWrVKg0fPlxr1qxR9erVFRkZKR8fH5v7C3x9feXs7KyTJ0+qTp06cnV11dy5c9WrVy95eXnZ/VSzWbNmNvf8+fr6at68edY/kplFRkbK2dlZzZs3ty6z/IHOzdfjZ5aUlCQXFxc5O9uegG/durX27dunrl276pdfftH8+fP1xRdf6JdfftHJkydVu3ZtVatWLU91SRn3/WVWpUoVxcbG5rmcnBw9elQ///yzzSWu6enpSkpK0sWLF1WlShVJUuPGjW3269mzp5YvX66uXbuqQ4cO6tixo7p27WqdNCVZP/XmzCIA3LziOrfm1dGjR2UYhv71r3/ZLE9JSVHbtm1tlmWd04YOHapXXnlFu3btUtu2bfXAAw+Ytsnq3nvvtZnzjh49qjNnzqhFixY22127ds3mC2GqV69uc9ayYsWKqlu3rk1ZFStWtF4+mpux7tSpk9zc3PTdd98pODhY27Ztk2EY6tatW67bFhkZqUceecRmffPmzU1hsVSpUpKY24szwiJuWunSpVWnTh3rz40aNVKrVq305Zdfavz48Tnum3mCOnTokNLT03XlyhXFxsaqfPnyBdLevH7JjKenp65fv65r166pdOnS1uV+fn765JNPdPDgQdWpU0eVKlWSn5+fIiIidPLkSbuXoOaGi4vtr6OTk1OO94/cjPT0dI0dO9bmvkuLzI/2yNxfKWOy27x5s/bu3as9e/Zo1qxZev/997V69WqVKVNGUsabmqzlAADyprjOrXllGIacnJy0du1a0/xp+fDSIms9/fr1U8eOHbVjxw7t2bNHAwcO1KhRozRu3Lhs67PMdRbp6em67777TLdxSFKFChWs/3d1dbVZ5+TkZHdZbuZ7y1i7urrqwQcf1IYNGxQcHKz169frgQcesPYzt23LDeZ2cM8i8o2Tk5OcnJysnz7Vr19fx48fV0JCgnWbgwcPKj09XfXr15ckRUdHa8aMGZo2bZratWun559/XqmpqTblHj58WJkfB3ro0CFVqVLF7jei1a9fX+np6Tp06JB1WUJCgo4fP26t09XVVWlpaTfsT4MGDSTJ9Kmpn5+fTp06pQ0bNliDoSUsZne/okVu6y4oDRs21O+//646deqY/mWdbLMqVaqUunTpohdeeEFr167ViRMndODAAev648ePq2rVqqpUqVJBdwMAio3iMrfmVYMGDWQYhi5evGiazyyXTuakWrVqGjBggObNm6dnnnlGX375ZZ7qb9SokaKiouTp6Wmq33KbyM3IzVhLUlBQkPbu3auTJ08qPDxcQUFBeWpb/fr1dfjwYZu6s/4sSSdOnJCrq6u8vb1vuk+4sxEWcdNSUlJ08eJFXbx4UZGRkZoxY4YSExOt33AWGBgoNzc3TZ48WceOHdP+/fs1bdo0de/eXXXq1FFaWpomTZqk1q1ba+DAgXrttdd07tw5LViwwKaeCxcu6PXXX9fvv/+uzZs3a8mSJdk+97Bu3brq2rWrpk2bph9//FHHjh3TxIkT5e7ursDAQElSzZo1lZycrN27dys2NtbmRvTMvLy81KhRI/300082yy33La5fv956b6Kfn5/27duX7f2KFrmtu6CMGTNGGzdu1Lx583T8+HFFRkZq8+bNmj17do77rVu3TmvWrNGxY8cUHR2tdevWydXV1ebT759++snmnhAAQN4V17k1r+6++24FBgZq6tSp2rx5s6Kjo/XLL79oyZIl+vbbb3Pc97XXXtPOnTsVHR2t3377Tbt27dI999yTp/oDAwNVsWJFPf3009q3b5+io6O1f/9+vfnmm6ZvHc2L3Iy1JLVo0UI1atTQ//t//08eHh66//7789S2oUOHKiwsTKtXr9apU6f04Ycf2g2LP/74o1q2bHlLZ4FxZ+MyVNy0PXv2WMNB2bJlVa9ePc2bN88alkqXLq0lS5bojTfeUL9+/VSqVCl17drV+liJRYsWKSoqyvqNXp6enpo1a5aefPJJdejQQa1atZKU8UcvPT1d/fv3l5OTkx555JFsJzRJmjlzpt544w2NHj1aycnJatGihRYvXmy9LKVFixYaOHCgJkyYoLi4OI0dOzbbS0/69++vNWvWmOpr3bq1vvnmG+tZxLvuuktVq1ZViRIlcrxfMS91F4SOHTvqww8/1MKFC7V06VKVKFFCdevW1cMPP5zjfuXLl9fHH3+sWbNmKTU1VfXr19f8+fOtXwqQnJysLVu2aMmSJY7oBgAUWcV5bs2rmTNnatGiRZozZ47Onz+vChUqqEmTJjl+aCtlXMJqCdFly5bV/fffrylTpuSp7tKlS2vFihWaO3eunn32WV25ckVVqlRRmzZtbvmS3xuNtUVgYKAWLlyoYcOG2afwNvcAACAASURBVDyXMjdte+ihhxQdHa133nlHSUlJCggI0OOPP66wsDCbOjZu3KhnnnnmlvqDO5uTkfkaBOA2ExISonvvvVfTpk0rlPqTk5P14IMPavbs2dYJFmYrVqzQ1q1btXTp0sJuCgDgBphbkRvbt2/X7NmztX79+hveqoKii8tQgRyUKlVKs2bNUlxcXGE35bbm4uKif//734XdDADAHYC59c6QmJiomTNnEhSLOY4+cAOW5xwhewMGDCjsJgAA7iDMrbc/y7MiUbxxGSoAAAAAwITLUAEAAAAAJoRFAAAAAIAJYREAAAAAYHLDL7i5fPmq0tNv/bbGihXddelSwi2Xcyehz8VDceyzVDz7TZ9vjbOzkzw9y+ZLWcVdfs3NUtF6XdOX2xN9uT0Vpb5IRas/juzLjebmG4bF9HQj3yak/CrnTkKfi4fi2GepePabPuN2kJ9zs6W8ooK+3J7oy+2pKPVFKlr9uV36wmWoAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADBxcUQlK1cu12+//aK0tHQ1btxMgwYNdUS1AACgGPn444917NiJwm5GvnB1LaHr19NslsXHx0mSKlTwKIwm3TR7fSkItWrV4T0mkM8cEhajo0/r7NkYSXfeHzgAAHBn+P3333XsxEmVcCua7zXSkjLC4sW/Uwu5Jbcfy9gAyF8OCYuSJGfHVQUAAIqnEm4eKlOna2E3o0Aknt4qSUW2f7fCMjYA8hf3LAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwMQhYTE+Pk4y0q0/7969U7t373RE1QAAwA7mYgC4cznqb7iDwmK8TVgMD9+h8PAdjqgaAADYwVwMAHcuR/0N5zJUAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEAAAAAJgQFgEAAAAAJoRFAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEAAAAAJgQFgEAAAAAJoRFAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEAAAAAJgQFgEAAAAAJoRFAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEAAAAAJgQFgEAAAAAJoRFAAAAAICJS2FUeuzYb5Kk4cMHFUb1RYK7u7sSEhLk7Oys9PR0m3WBgUHauHGDhgwZrjVrVsjDw1NxcZc1derLMgxDs2bN0GOPPaFPP12sKVOmqVatOpKkqKhTmjVrhnVZXNxlLVo0X6NHP6MKFTwkSXFxl7VgwTtycpJCQoZr+fKlSklJ1l9/XdTUqS+rcuXG1nZY9h806DEtX75EaWmpSktL019/XdTYsc9p/fowDRo0VMuXL5WTkzR27ARrPZnLWLDgHaWlpalEiRIaOnSEVq78VKNHPyPDMPTuu3N04cKfGjNmglau/ETnzsWoWrXqGjx4mBYufFdTpkxTuXLl/2nHUK1cuVyBgcFauHCeTd8zt9dStr3/Zx2H1NRUlS5dSk899ayp7bkZz6z12ut/5rZnbk/mZRUqeFjbJEnjxk2wWZaamipXVxeNHTtB8fFxNu3Kyl6dmcuyHKvKlctlW2du+pnd6yu7sbDXxpz6nt/i4i5r7tzX9cQTY25Yfm77kZs686OczGUNGvSY9XfIXpm3clwAAEDRUuKVV155JacNrl1LkWHcWiWbNq1Xamqq5OSsShW9dOnSX7dWIJSSkiJJMuwcnOPHj0mSfv75kFJTU5WQkKDU1FQdP/5f/fTTfl2+HKuDBw8oJSVFx4//VwEB3SVJc+a8rsuXY63L1qxZpQMH9is5OVnNmvlKktasWaWDB3+0bhcVdVp///23tfzAwF5KTEyxbnvgwH4dP/6boqJOKz4+zrrtoUMHdf78n9YyLl+OVUrK/+qxsNQXHx9nrfP06VNKTk7W8eP/1eHDB5SamqrDhw/o8uVYSVJCQoIOHz6oa9cSdfz4f3Xp0l//tCNj30OH/rfO0vfM7bWUbe//WcchPj5Oly5dstv23Ixn1nrt9T9z2zO3J/OyZs18bY6NpT1Zxy8lJVnffrvJpl1Z2avTXvn3399Wn376id06c9PP7F5f2Y2FvTbm1Pf8tmbNKu3fv++GbbPXvlupMz/KyVzW8eO/2RzXG9VZtmwpffrpJ/nSDicnJ5UpU/JWuoF/5MfcvHv3TklS9+4PWP9u3+n27t2lvy5flatHvcJuSoG4Hv+HJBXZ/t2K6/F/yKtCGXXo0LlA6ylbtlSR+X0pSn2RilZ/ctMXy9/wW33N32hudvhlqJazinAE23cSMTFnFRNzVpKUlpZqXRYdfVpRUaes62Jizuro0V8UHr5DhmEoPHyn4uPjFBd3Wbt2bbcpL2v5f/yRMZHFxV227p91O0lKTLxqWhcevkPx8XHWn7PWZ6kjo007tGPH9zblZS3fsv2uXdutdRmGYbMuOvq0qb3h4Tus++zatUO7dtkbhx029WVte27G01zvTlP/M49h1vb8byx2KirqtE2bdu3aYVomSTt3fm/TLkv/c6ozo/xTNsciPHyH/vjjDzt1nspVP+1tl9NYZNfG7Pqe3b43K7dty+u2+VVnXsrKfFyzlmmvztjY2HxrBwAAuLM49jJUI/3G28DhPvxwgWnZBx+8p/T0jLCZnp6u9evXSZJSU9NyLOutt97SK6+8qQ0bwqz751ZqaqrWr1+nkJDhkqQNG8KyrS81NdXuWdXsts3Ohx8u0GuvzbFpb0bZ/9vXySnj/5nHwRK2s2v7Rx+9b7Pe3niGhAy3qTfzckv/s45h5vZYpKen66OPFti0KTU11bQso92242npv4W9OjPKf9/mWKSmpuqtt96yU+f7ueqnve0y/m9/LDIzl2Xue3b73qycjtOtbJtfdealLAt7Zdqr083NNd/agdtLfHyc4uPjNXXqVF2/nvPf9jtFdPRppaeWKOxmoBCkpyYpKuq0Zs2aUaD1uLqWKDK/L0WpL1LR6k9u+hIVdVoVKlQo8LbwBTewOeNokZh41foGPC0tVXv37tbevbuV9WxlVlFRUZKkvXt3m4LKjRiG8U8dspaRXX25DYo3Yul35vZmlG0p37DWlXkcstafte25Gc+s9WZennVdpppMdaelpVrPFmXezrws+/7nVKel/MzHwjAMRUVF2a0zN/20t11OY5FdG7Pre3b73qzcti2v2+ZXnXkpy8Jemfbq3L59e761AwAA3Fkce2bRyVkyikbiL0pq1KgpyTY4lClTVsnJyUpLS1WJEi66//72kqTvv9+qnAJj7dq1JUn3399eO3dutxN2sufk5GStx1JGdvU5OTnlS2C09D1zezPK1j/1OsnJKSMcZR6H7du32tSfte01atTM1Xhmrjfz8qzrMvXc2h6LEiVcVLVqVZ07F5NpuZNq1KiRZVn2/c+pTkv5MTExshwLJycn1apVS9HR0aY6z58/f8N+Vq1a1e522Y1Fdm3Mru/Z7XuzcjpOt7JtftWZl7Is7JVpr043N1d9++2WfGkHbi8VKnioQgUPzZw5UxcvXins5uSLt99+Q7/9fr6wm4FC4Oziptq1Kmny5JcKtJ7KlcsVmd+XotQXqWj1Jzd9Keiz6BacWYRGjRqrJ58cY7Ns9Ohn5Oyccb2js7OzgoIeVmBgH7m45Hx5z8SJEyVJgYF9rPvnlouLi4KCHrb+nFN9Li4ucnbO3aVGLi7ZfyYyatRYa12W9rq4uFjrdXFxUYkSGftnHgfLsuzanpvxzFpv5uVZ12WuJ2vdzs7OevLJsTbLXVxcTMskqUQJ2zGz9D+nOjPKH2NzLFxcXDRx4kQ7dY7JVT/tbZfTWGTXxuz6nt2+Nyu3bcvrtvlVZ17KsrBXpr06Bw4cmG/tAAAAdxaHh0UfnwaOrrIYs31zWKNGTeuZJMub6xo1aqpWrTqqXbuudV2NGjXVqFETdejQWU5OTurQoZMqVPCQh4enOnbsYlNe1vLvvvtuSZKHh6d1/6zbSRln2rKu69Chs83X8metz1JHRps6q3Nnf5vyspZv2b5jxy7WujK+8el/6yyPjsjc3g4dOlv36dixszp2tDcOtt88lbXtuRlPc72dTP3PPIZZ2/O/seik2rXr2LSpY8fOpmWS1KmTv027sj46w16dGeXXtTkWHTp01t13322nzrq56qe97XIai+zamF3f8/vxDrltW163za8681JW5uOatUx7dXp5eeVbOwAAwJ2FR2fcodzd3ZWSkiJnZ2fTZYaBgUE6ceK4QkKG6/jx31SpUmWlpqZq/PhJatmytSIi9mj48FE6evQXjR//vPXN3z33eCsiYo91WZ06dfXHH5EaMmSY3NzcJEl16tTViRPH5eXlpeHDRykq6rTKli2rlJQUjR8/SdWrV7F+1a9l/2HDnlRU1GmVL19e5cqVU0pKisaMGa+//rqoYcNGKirqtLy8vBQSMtxaj4WlvvLlK6hixUoaPvwpxcSc0ZAhw+TtfZ9+++1XJScn6emnn9OpU5FKSLiiatWqa/jwUTp06CeNH/+8mjRp/k87Riom5qwGD37Mui7zG9/M/fX2vs/u/7OOQ7ly5VWtWlUNHvy4qe25Gc+s9drrf+a2Z25P5mVubm7WNnl6emno0OE2y8qVK69KlSopJGS4GjduatOurOzVmbksy7Hy8qqgSpVq2K0zN/3M7vWV3VjYa2NOfc9vderU1Zkzp/Too4/dsPzc9iM3deZHOZnLGjbsSevvkL0ys9ZZtmwpVapUI1/awaMz8g+PzrCPR2cUXzw6I++KUl+kotWf2+nRGU7GDW78unQpIc/fapnVmDFP6Nq1a5Kzi3zuvce6vKCvKy9sRena6dyiz8VHcew3fb41zs5OqljRPV/KKu7yY2623O/y1luzi8zr2nLPYpk6XQu7KQUi8fRWSSqy/bsViae36h7uWcyTotQXqWj1Jy/3LN7qa/5GczP3LAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATFwcUUmFChV0LSnZ+nOHDp0dUS0AAMgGczEA3Lkc9TfcQWHRQ39e+Mv6c/v2nRxRLQAAyAZzMQDcuRz1N5zLUAEAAAAAJoRFAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEAAAAAJgQFgEAAAAAJoRFAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEAAAAAJgQFgEAAAAAJoRFAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEAAAAAJgQFgEAAAAAJoRFAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBAWAQAAAAAmhEUAAAAAgAlhEQAAAABgQlgEAAAAAJgQFgEAAAAAJoRFAAAAAIAJYREAAAAAYOLisJrSUx1WFQAAKJ7SkuKUeHprYTejQKQlxUlSke3frcgYm0qF3QygyHFIWKxVq44SEv5WWlq6atWq44gqAQBAMVOvXj1dv55W2M3IF66uJUx9iY/PeNtWoYJHYTTpptnrS/6rxHtMoAA4JCwOGjRUlSuX08WLVxxRHQAAKIZGjhxZZN5rFKX3TUWpL0Bxwz2LAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATAiLAAAAAAATwiIAAAAAwISwCAAAAAAwISwCAAAAAEwIiwAAAAAAE8IiAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLAIAAAAADAhLAIAAAAATFxutIGzs1O+VZafZd0p6HPxUBz7LBXPftPnwi8H+T+WRenY0JfbE325PRWlvkhFqz+O6suN6nEyDMNwSEsAAAAAAHcMLkMFAAAAAJgQFgEAAAAAJoRFAAAAAIAJYREAAAAAYEJYBAAAAACYEBYBAAAAACaERQAAAACACWERAAAAAGBCWAQAAAAAmBR4WPzjjz80YMAA9ejRQwMGDNCpU6cKusqbNmvWLAUEBMjHx0fHjx+3Ls+pD45el98uX76skSNHqkePHgoMDNTYsWMVGxsrSTp06JCCgoLUo0cPDR8+XJcuXbLu5+h1+e3pp59WUFCQgoODNWjQIP3222+SivaxtliwYIHNa7woH2dJCggIUM+ePdW7d2/17t1bu3btKvL9Tk5O1ssvv6zu3bsrMDBQL730kqTi8fpG7t3ux8eRc3JBc/RcW9AcOYc6iiPmxoLmyPmuoDlyHitIZ86csR6P3r17KyAgQH5+fndWX4wCFhISYnz11VeGYRjGV199ZYSEhBR0lTdt//79RkxMjOHv728cO3bMujynPjh6XX67fPmy8cMPP1h/fvPNN42pU6caaWlpRrdu3Yz9+/cbhmEY77//vjFlyhTDMAyHrysIf//9t/X/W7ZsMYKDgw3DKNrH2jAM48iRI8aIESOsr/GifpwNwzD9PhdG3xzd7xkzZhivv/66kZ6ebhiGYVy8eNEwjKL/+kbe3O7Hx5FzckFz5FzrCI6cQx3BEXOjIzhqvnMER85jjvTaa68Zr7766g3bdDv1pUDD4l9//WW0bNnSSE1NNQzDMFJTU42WLVsaly5dKshqb1nmX7ac+uDodY6wefNm47HHHjMOHz5s/Otf/7Iuv3TpktG8eXPDMAyHrytoYWFhRp8+fYr8sU5OTjb69+9vREdHW1/jxeE425s8i3K/ExISjJYtWxoJCQk2y4v66xt5cycdn4KekwtDQc61jlaQc6gjOGpudARHzXcFzZHzmCMlJycbbdq0MY4cOXJH9cWlIM9anjt3TlWrVlWJEiUkSSVKlFCVKlV07tw5eXl5FWTV+SanPhiG4dB1BT1m6enpWrVqlQICAnTu3DnVqFHDus7Ly0vp6emKi4tz+DoPD48C6e+LL76o3bt3yzAMLV68uMgf63nz5ikoKEh33XWXdVlxOM6SNHHiRBmGoZYtW2rChAlFut/R0dHy8PDQggULFBERobJly+rZZ5+Vm5tbkX59I2/u1Pm5IP5OO7q/BT3XFuTf0swcMYc64tg4am501HFxxHxX0H1x5DzmyN//bdu2qWrVqmrUqJGOHDlyx/SFL7iB1YwZM1SmTBkNGTKksJviEK+//rq2b9+u5557TrNnzy7s5hSogwcP6siRIxo0aFBhN8XhVqxYofXr1ys0NFSGYWj69OmF3aQClZaWpujoaDVs2FDr1q3TxIkTNW7cOCUmJhZ20wCo6My1RWEOLWpzY1GZ74rqPBYaGqq+ffsWdjPyrEDDYvXq1XX+/HmlpaVJyjj4Fy5cUPXq1Quy2nyVUx8cva4gzZo1S6dPn9a7774rZ2dnVa9eXTExMdb1sbGxcnZ2loeHh8PXFbTg4GBFRESoWrVqRfZY79+/X5GRkeratasCAgL0559/asSIETp9+nSRP86W8SxZsqQGDRqkAwcOFOnXd/Xq1eXi4qJevXpJkpo1ayZPT0+5ubkV2dc38u5OPT53+uvREXOtoxXkHFrQHDk3OoKj5jtH9MNR85ijnD9/Xvv371dgYKC1j3dKXwo0LFasWFENGjTQxo0bJUkbN25UgwYNbutLXLLKqQ+OXldQ3n77bR05ckTvv/++SpYsKUlq3LixkpKS9OOPP0qSvvjiC/Xs2bNQ1uW3q1ev6ty5c9aft23bpgoVKhTpY/3kk08qPDxc27Zt07Zt21StWjUtWbJETzzxRJE9zpKUmJioK1euSJIMw9CmTZvUoEGDIv369vLyUps2bbR7925JGd+adunSJdWtW7fIvr6Rd3fq8bmTX4+OmmsLmiPn0ILmyLmxoDlyvitojpzHHCUsLEydO3eWp6enpDvsb1mB3Q35j5MnTxqPPPKI0b17d+ORRx4xIiMjC7rKmzZjxgyjY8eORoMGDYx27doZDz30kGEYOffB0evy2/Hjxw1vb2+je/fuRlBQkBEUFGQ8/fTThmEYxk8//WT06tXLeOCBB4xhw4ZZv4mqMNblp4sXLxr9+vUzevXqZQQFBRkhISHGkSNHDMMo2sc6s8w3wRfV42wYhhEVFWX07t3b6NWrl/HQQw8Z48aNM86fP18s+j1kyBCjV69eRnBwsLF9+3bDMIrP6xu5c7sfH0fOyQXN0XNtQXL0HOpIBT03FiRHz3eO6I+j5jFH6N69u7Fjxw6bZXdKX5wMwzAKLooCAAAAAO5EfMENAAAAAMCEsAgAAAAAMCEsAgAAAABMCIsAAAAAABPCIgAAAADAhLCIYuGvv/7S4MGD5evrqzfffLOwmyNJCgkJ0Zo1awq7GQAAFArmZuD251LYDQAc4csvv5Snp6cOHDggJyenwm4OAADFHnMzcPvjzCKKhZiYGNWvX5/JCACA2wRzM3D7Iyyi0AQEBGjJkiUKDAxUy5YtNX78eCUnJ0uSVq9erQceeEB+fn566qmndP78+RuWd+DAAfXt21ctW7ZU3759deDAAUnSlClT9NVXX2nJkiXy9fXVnj17si0jPT1dH330kbp166Y2bdro2WefVVxcnCTpzJkz8vHxUWhoqDp37qzWrVtr1apV+vnnnxUYGKhWrVpp+vTp1rLWrVungQMHavr06WrZsqV69uypvXv3ZlvvwoUL5e/vr/vvv1+TJk3SlStXJElPPvmkPvvsM5vtAwMDtWXLFklSZGSkHn/8cfn5+alHjx7atGmTdbuUlBTNmjVLXbp0Ubt27TRt2jQlJSVJkmJjYzVq1Ci1atVKfn5+GjRokNLT0284zgCAoou52bZe5mYUewZQSPz9/Y2+ffsaf/75p3H58mWjZ8+exsqVK409e/YYfn5+xpEjR4zk5GRj+vTpxqBBg3Is6/Lly0arVq2MsLAw4/r168aGDRuMVq1aGbGxsYZhGMbk/9/O3YY0vcVxAP/eNTVzhQ/VbCukXhRlCaaJhqaVEMqwBzMRLMMeVkwJpboWDIJo7IVoSYVvwupFD1pi2awgUPBVVBRCCZWwZc62ckql5rb83Rf38r+3O+tm3Itd/X5e7Zz/+Z//ORvsyzk77Ndfpaqq6h/HdP78ecnLy5Pe3l4ZGRkRs9ksZWVlIiLS3d0tixcvFrPZLJ8+fZL29nZZvny57N+/X969eydv3ryR5ORkuX//voiIXL9+XZYuXSp1dXXi9XrFZrPJypUrpb+/X0RECgsLpb6+XkREGhoaJDMzU169eiUfP34Uk8kkBw8eFBERm80mW7duVcbY2dkpSUlJMjIyIoODg7JmzRq5du2a+Hw+efr0qSQlJcmLFy9EROTEiRNiNBqlv79fPnz4IEajUSor4oVHywAABSFJREFUK0VEpLKyUsxms3i9XvF6vfLgwQMZHR397s+PiIgmH2Yzs5nor/jLIk2o7du3Q6vVIjw8HGvXrkVnZyeam5uRm5uL2NhYBAcHo7y8HE+ePMHr16+/2k9bWxtiYmKwadMmqNVqGAwGLFq0CK2treMaz5UrV1BWVobo6GgEBwejpKQEd+/ehd/vV9qYTCaEhIQgNTUVM2bMgMFgQFRUFLRaLRITE/Hs2TOlbWRkJIqKihAUFITs7GwsXLgQbW1tAc9tbm7Gzp07sWDBAoSFhaG8vBwtLS3w+/1Yv3497HY77HY7AODGjRvIyspCcHAw2traoNfrkZubC7VajWXLlmHDhg24c+cORAT19fU4evQowsPDodFoYDQaYbPZAABqtRpv376F0+lEUFAQEhMTeRSIiIiYzX9gNhPxD25ogs2ZM0d5HRoaCrfbjYGBAcTGxir1YWFhCA8Ph8vlwvz588fsx+12Q6fTfVGn0+m+64jMXzmdTphMJqhUf+6jqFQq9PX1KeWoqCjldUhISEB5aGhIKWu12i++5HU6Hdxu95jj1+v1Slmv18Pv96Ovrw9arRZZWVm4efMmSkpKcOvWLdTU1AAAenp60NHRgcTEROXez58/IycnBx6PB8PDw9iyZYtyTUSU4yy7du3C6dOnUVxcDADIz8/H3r17x/FuERHRZMRs/nP8zGaa6rhYpJ/O3Llz0dPTo5SHhoYwMDAArVb7zXucTucXdb29vUhLSxvXs6Ojo2GxWJCQkBBw7Vu7p1/jcrkgIkoo9fb2Yt26dQHt/j5np9MJtVqthN3mzZtx+PBhJCQkIDQ0FPHx8QCAefPmYdWqVairqwvoc3R0FNOnT4fNZhvzvdNoNKioqEBFRQWeP3+OoqIirFixAikpKeOeJxERTW7MZmYzTU08hko/HYPBgMbGRnR2dsLr9aKqqgpxcXFf3bkEgPT0dNjtdjQ3N8Pv96OlpQUvX75ERkbGuJ5dUFCAkydPKuHg8Xhw7969H56Lx+PBxYsX4fP5cPv2bXR1dSE9PT2gncFgwIULF9Dd3Y3BwUFUV1cjKysLavXv+znx8fFQqVSwWq3IyclR7svIyIDdbkdTUxN8Ph98Ph86OjrQ1dUFlUqFvLw8WCwWZffV5XKhvb0dANDa2gqHwwERwcyZMzFt2jQedSEiojExm5nNNDXxl0X66axevRoHDhxAaWkp3r9/j/j4eFRXV3/znoiICNTW1sJiseDYsWOIiYlBbW0tIiMjx/XsHTt2QERQXFwMt9uNqKgoZGdnIzMz84fmEhcXB4fDgeTkZMyePRs1NTWIiIgIaJebmwuXy4XCwkKMjIwgNTUVZrP5izYbN27EqVOncPbsWaVOo9Hg3LlzsFqtsFqtEBEsWbIER44cAQAcOnQIZ86cwbZt29Df3w+tVouCggKkpaXB4XDg+PHj8Hg8mDVrFgoKCpCcnPxD8yQiosmN2cxspqnpFxGRiR4E0WTU2NiIhoYGXL58+V/pr6mpCVevXv3X+iMiIppqmM1E48NjqET/A8PDw7h06RLy8/MneihEREQEZjNNDTyGSv8bDx8+xJ49e8a89vjx4+/uZ/fu3Xj06FFAvdFoxL59+354fP+V9vZ2lJaWIiUlBQaDYaKHQ0REpGA2M5tpcuMxVCIiIiIiIgrAY6hEREREREQUgItFIiIiIiIiCsDFIhEREREREQXgYpGIiIiIiIgCcLFIREREREREAbhYJCIiIiIiogC/AQe/x3tfRO5uAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"With such skewed data, the histogram lends little insight. Boxplots give a better idea of data concentration and distribution. Most of our records are concentrated below around 7000, but there are numerous extreme values on the high end.\n",
"\n",
"We will not treat these extreme values though. It is entirely reasonable that many records reflect applicants to large companies."
],
"metadata": {
"id": "u28-xVje_08o"
},
"id": "u28-xVje_08o"
},
{
"cell_type": "code",
"source": [
"plott('yr_of_estab')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "oBesojUXraRQ",
"outputId": "f5667e22-af0a-4255-d2a0-0687624f4585"
},
"id": "oBesojUXraRQ",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFTCAYAAACkvQ89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1hUdeI/8PdcGESRcBBtQJP0G4iSikxamrqiBm1ecsuVNe2bPrZlpXbR1RKlUDOUVdM0L2vu035J13IT8AZt3kvNy2LeK1FEIblqXJRhZj6/P/gxO8NlGHBucN6v5+F5mPM5l8/5MA/nfT6fc5EJIQSIiIhIsuSurgARERG5FsMAERGRxDEMEBERSRzDABERkcQxDBAREUkcwwAREZHEMQwQ3YcbN24gJCQEZ8+edXVVmoX8/HxMmTIFffr0QUhIiKurY8Gd62YuMjISmzZtcnU1qIVhGCCqw9y5c/HKK6/Umn727FmEhITgxo0bAACNRoMjR44gNDTUpvVK/R/5Z599hry8POzYsQNHjhxxdXUsOLtuISEh2Lt3r8O3Q2QLpasrQNScKRQK+Pv7u7oaddLpdFCpVK6uhoWsrCz07NkTQUFBdl1vZWUlPDw87msdjqobUXPAngGi+1BzmKCyshKLFi3Ck08+ibCwMAwZMgSJiYkAgEmTJuHmzZtYunQpQkJCLLqi09PTMWrUKNMyn376KcwfDlpQUIBXX30VvXr1wtChQ7F9+3aMHDkSq1evNs0TEhKCpKQkvPHGG+jTpw9WrFgBg8GA9957D5GRkejVqxeeeuopbNy4EUaj0bRcdS/Ihg0bMHDgQERERCAxMRFGoxGrV6/GE088gYEDB2LDhg0NtsfWrVsxYsQIhIWFYcSIEdi2bZupLDIyEt9++y127NiBkJAQzJ07t8727N69e61hl23btqF///7Q6XQ4fvw4QkJCcPDgQTz//PMICwuz6Uz+futWU0lJCebPn48nnngC4eHhmDhxokW9S0pKMHv2bDzxxBN49NFHMWzYMPz97383bQ8AZs6ciZCQENPn69evY9q0aRg4cCD69OmDsWPHYv/+/bW2XV5ejlmzZiE8PBwDBw6UdG8T2YkgolrmzJkj/vznP9ea/uOPP4rg4GCRnZ0thBAiOztbBAcHix9//FEIIcSmTZvE4MGDxQ8//CBu3rwpTp06Jb766ishhBDFxcVi8ODB4uOPPxZ5eXkiLy9PCCHE2bNnRffu3cXHH38sMjMzRXJysujTp4/4/PPPTdudMmWKGDVqlDh9+rS4cOGCePHFF0WfPn3EqlWrTPMEBweLxx9/XGzbtk1cv35dXL9+Xeh0OrFy5Upx5swZkZ2dLXbt2iUiIiLEtm3bLPY1PDxczJ8/X/zyyy8iNTVVhISEiClTpojExESRmZkpvvjiCxEcHCzOnj1bb5ulp6eLHj16iH/84x8iMzNTfP7556JHjx7i22+/FUIIUVhYKF566SUxc+ZMkZeXJ3777bc61zNlyhQRFxdnMe2Pf/yjWLx4sRBCiGPHjong4GAxcuRIcfjwYXH9+nVRWFhYb73sWbdqRqNRxMTEiJdfflmcOXNGXLt2TaxYsUKEh4eLW7duCSGEiI+PF6NHjxZnzpwRN27cEMeOHRO7d+82bS84OFhs27ZN5OXlmep/8eJF8cUXX4hLly6Ja9euibVr14qePXuKX375xbTtoUOHivDwcLF27VqRmZkptmzZInr27CnS0tKs1pnIGg4TENXj8OHDCA8Pt5hmfkZdl5ycHAQFBUGr1UImkyEgIAB9+/YFAPj6+kKhUKBNmzYWQwubN2/GY489hhkzZgAAHn74YWRlZWHjxo2YNGkSMjMzceTIEfzzn/9Enz59AAAfffSR6WzS3O9//3uMGzfOYtrMmTNNv3fq1AkXLlzArl27LOZr27Yt4uLioFAo0K1bN3z22WfIz8/HO++8Y6rTxo0bcfz4cYSFhdW575s2bcLo0aMxceJE0zLnz5/Hxo0bERkZCbVaDZVKhVatWlkdWhk3bhzmz5+Pd999F56enrhy5QoyMjKwcOFCi/neeOMNPPnkk/WuxxF1q3bs2DFcunQJR48eRatWrQAAb775Jvbv34/k5GS8/PLLuHnzJnr06IFevXoBAAIDA03Lq9VqAFXtbr697t27o3v37qbP06ZNw/79+5GWlobXXnvNNL13796YNm2aaV/Onj2LzZs346mnnrKpPYhqYhggqodWq611APr555/x+uuv17vM2LFjMWXKFERFRWHgwIEYMmQIBg8eDLm8/hG5zMxMDBkyxGJaREQEPvnkE5SWliIzMxNyudziIKzRaNChQ4da66rrQL1lyxZ8+eWXyMnJQUVFBSorKy0OTADwP//zP1AoFKbP7du3R9u2bS3m8fPzQ2FhodX9eO6552rtx759++pdpi7Dhg1DfHy8aejkq6++Qq9evRAcHGwxX32hxJF1q3b+/HncvXsXTzzxhMX0iooKZGdnAwD+9Kc/YebMmTh//jwGDhyIoUOHol+/flbXW15ejk8++QQHDhxAfn4+9Ho9Kioqat3dUB0KzT9/8803TdoXIoBhgKheXl5e6NKli8W03377zeoyPXv2xLfffosjR47g6NGjmDNnDrp3747NmzdbDQT24uXlZfF59+7d+PDDDzFnzhyEh4fD29sbSUlJ+Pe//20xn1Jp+a9AJpPVuiBPJpNZXMdgK5lM1qj5PTw8MGbMGGzfvh1PP/00UlJSTL0m5mrua1M0tm7VjEYj2rdvj6SkpFpl3t7eAIAhQ4Zg3759OHToEI4dO4ZXXnkF0dHRWLJkSb3rTUhIwOHDhzFnzhx06dIFXl5emDNnDiorK5tUTyJb8QJCIjvz9vZGdHQ0PvjgA2zYsAHHjh1DVlYWgKoDncFgsJi/a9euOH36tMW0U6dO4cEHH4S3tze6du0Ko9GI8+fPm8p//fVX5OXlNViXU6dOoXfv3pg4cSJ69uyJLl264Pr163bYy9rq249u3bo1el3jxo3D8ePH8cUXX6CsrAzPPPOM29QNqAp9BQUFkMvl6NKli8WPn5+faT61Wo1nn30WH330ERYvXoyvv/4aOp0OQNV3oeaw0+nTp/Hss88iKioK3bt3x4MPPljn3+vMmTO1Pnft2rVJ+0IEMAwQ2dXmzZuxc+dOXLlyBVlZWUhNTYW3tzcefPBBAFXjxqdOncKtW7dQVFQEAJgyZQpOnDiB1atX4+rVq0hJScFnn32GqVOnAqg6kD355JOIi4tDRkYGLl68iHfffRetWrVq8Mw2KCgI58+fx8GDB3Ht2jWsWbMGJ06ccMi+T506FSkpKUhKSsK1a9fwj3/8A6mpqab9aIyuXbsiIiICS5cuRVRUlOls2x3qBgADBgxA37598dprr+HgwYPIzs7Gf/7zH6xatQonT54EAHz88cf497//jWvXruHKlStIT09H586dTbd7BgYG4ujRo8jPz8edO3cAVP29vvnmG5w/fx6XL1/G7NmzUVFRUWv7GRkZWL9+Pa5du4Zt27Zhx44deOmll5rWOETgMAGRXbVp0wabNm3CtWvXIJPJ0KNHD2zcuNHUpT1jxgwsWLAAw4cPh06nw+XLl9GzZ098/PHHWL16NdavXw8/Pz/8+c9/Nl3sBlRdMDh//nxMmjQJfn5+mDFjBrKzsxt8jsD48eNx8eJFzJo1C0IIPPXUU5g8eTL+9a9/2X3fhw8fjtjYWHz22Wf48MMPERAQgLi4uDovdLTF888/jxMnTuD55593u7rJZDJs2LABK1euxPz581FUVAQ/Pz/07dsXzz77LABApVJhxYoVuHHjBjw9PdG7d2+sW7fOtI45c+bgo48+wu9+9zt07NgR+/btw9y5czFv3jy88MIL8PHxwf/+7//WGQYmT56My5cvY926dfDy8sKMGTMQHR3dtMYhAiATTRkEJCKXKioqwuDBg/HXv/4VUVFRrq6OQ2zYsAHbt29HWlqaq6tC1OKxZ4CoGTh69CjKysoQEhKCwsJCrFixAr6+vhg0aJCrq2Z3ZWVlyMnJweeff266fY6IHIthgKgZ0Ov1+Pjjj5GdnY1WrVqhT58+SEpKQuvWrV1dNbtbuHAhdu7cicjISIwfP96mZZ555hnk5OTUWfbBBx9g9OjRjapDSkoK4uLi6iwLCAjArl27GrU+InfHYQIiavZu3rwJvV5fZ5mfn1+jL0AsLS2t95kKSqWy1nMaiJo7hgEiIiKJ462FREREEscwQEREJHGSvoCwuLgMRqN9Rkn8/LxRWFhql3WR7djursF2dw22u2u0hHaXy2Vo165NveWSDgNGo7BbGKheHzkf29012O6uwXZ3jZbe7hwmICIikjiGASIiIoljGCAiIpI4hgEiIiKJYxggIiKSOIYBIiIiiWMYICIikjiGASIiIomT9EOHiIiIAEChsDw3NhiMTVq2Mcu5E4YBIiKSNIVCjl3HspBfXA4A8G/XGs883sWmA7v5so1Zzt0wDBARkeTlF5cjt6DM6cu6C14zQEREJHEMA0RERBLHMEBERCRxDANEREQSxzBAREQkcQwDREREEscwQEREJHEMA0RERBLHMEBERCRxDANEREQSxzBAREQkcQwDREREEscwQEREJHEMA0RERBLHMEBERCRxSmdtKCEhAWlpabh58yZSU1MRHByMGzdu4PXXXzfNU1JSgtLSUvzwww8AgMjISKhUKnh6egIAZs2ahUGDBgEAMjIysGDBAlRUVCAwMBDLli2Dn5+fs3aHiIioxXBaGBg2bBhefPFFvPDCC6ZpnTp1QnJysunz4sWLYTAYLJZbtWoVgoODLaYZjUbMnj0bS5YsgVarxdq1a5GYmIglS5Y4dieIiIhaIKcNE2i1Wmg0mnrLdTodUlNT8dxzzzW4rnPnzsHT0xNarRYAEBMTg71799qtrkRERFLitJ6Bhuzbtw8dO3ZEz549LabPmjULQghERETg7bffho+PD3JzcxEQEGCaR61Ww2g04vbt2/D19bV5m35+3narPwD4+7e16/rINmx312C7uwbb3TGUSgU8PJSm39XqNhbl1tq9etm6lmsu3CYMbN++vVavQFJSEjQaDXQ6HRYvXoz4+HgkJibabZuFhaUwGoVd1uXv3xb5+SV2WRfZju3uGmx312C7O4ZCIYdeb0BlpR4AoNcbUFRUBoPBCMB6u5svW3M5dyKXy6yeALvF3QS3bt3CiRMnMGrUKIvp1cMKKpUKEyZMwOnTp03Tc3JyTPMVFRVBLpc3qleAiIiIqrhFGPj6668xZMgQtGvXzjStvLwcJSVVSUwIgd27dyM0NBQAEBYWhnv37uHkyZMAgK1btyI6Otr5FSciImoBnDZMsGjRIqSnp6OgoACTJ0+Gr68vdu3aBaAqDMybN89i/sLCQkyfPh0GgwFGoxHdunVDXFwcAEAul2Pp0qWIi4uzuLWQiIiIGs9pYSA2NhaxsbF1lqWlpdWa1rlzZ+zYsaPe9fXt2xepqal2qx8REZFUucUwAREREbkOwwAREZHEMQwQERFJnNs8Z4CIiMgdyGUyKBTSOldmGCAiIjKjfqAVUr6/ivyicvi3a41Jv+9h03J1hQh3fABRXRgGiIiIasgvvovcgrJGLWMeIgDAv11rPPN4l2YRCBgGiIiI7KQpIcIdSGtQhIiIiGphGCAiIpI4hgEiIiKJYxggIiKSOIYBIiIiiWMYICIikjiGASIiIoljGCAiIpI4hgEiIiKJYxggIiKSOIYBIiIiiWMYICIikjiGASIiIoljGCAiIpI4hgEiIiKJYxggIiKSOIYBIiIiiWMYICIikjinhYGEhARERkYiJCQEP/30k2l6ZGQkoqOjMWbMGIwZMwaHDx82lWVkZGD06NGIiorClClTUFhYaFMZERER2c5pYWDYsGFISkpCYGBgrbJVq1YhOTkZycnJGDRoEADAaDRi9uzZWLBgAdLS0qDVapGYmNhgGRERETWO08KAVquFRqOxef5z587B09MTWq0WABATE4O9e/c2WEZERESNo3R1BQBg1qxZEEIgIiICb7/9Nnx8fJCbm4uAgADTPGq1GkajEbdv37Za5uvra/N2/fy87bof/v5t7bo+sg3b3TXY7q7BdncMpVIBDw+l6XelQg4PDyWUSgUA6+1evaz5ctXT1eo2jq+8Hbg8DCQlJUGj0UCn02Hx4sWIj493Wpd/YWEpjEZhl3X5+7dFfn6JXdZFtmO7uwbb3TXY7o6hUMih1xtQWakHAOj1BugNRlRW6qHXGwCg3nY3X9Z8uer1FBWVwWAwOmdHrJDLZVZPgF1+N0H10IFKpcKECRNw+vRp0/ScnBzTfEVFRZDL5fD19bVaRkRERI3j0jBQXl6OkpKqtCWEwO7duxEaGgoACAsLw71793Dy5EkAwNatWxEdHd1gGRERETWO04YJFi1ahPT0dBQUFGDy5Mnw9fXFunXrMH36dBgMBhiNRnTr1g1xcXEAALlcjqVLlyIuLg4VFRUIDAzEsmXLGiwjIiKixnFaGIiNjUVsbGyt6Tt27Kh3mb59+yI1NbXRZURERI6iUMjr/L05c/kFhERERO5KLpMB+O9BX6GQI+W7q8gvLgcABD/UDvj/8zRnDANERET1UD/QClvSLiG3oBRA1cE///Zd5BaUAQDa+3q5snp2wzBARERkRUs8+NfUMgY7iIiIqMkYBoiIiCSOYYCIiEjiGAaIiIgkjmGAiIhI4hgGiIiIJI63FhIRETmAXCar9YRCd3iDYV0YBoiIiBxA/UArpHx/FflFVU8r9G/XGs883sUtAwHDABERkYPkF//3gUXujNcMEBERSRzDABERkcQxDBAREUkcwwAREZHEMQwQERFJHMMAERGRxDEMEBERSRzDABERkcQxDBAREUkcwwAREZHEMQwQERFJHMMAERGRxDEMEBERSZzT3lqYkJCAtLQ03Lx5E6mpqQgODkZxcTH+8pe/4Pr161CpVOjSpQvi4+OhVqsBACEhIQgODoZcXpVZli5dipCQEADAvn37sHTpUhgMBvTs2RNLliyBl5eXs3aHiIioxXBaz8CwYcOQlJSEwMBA0zSZTIapU6ciLS0Nqamp6Ny5MxITEy2W27p1K5KTk5GcnGwKAmVlZZg/fz7WrVuHb775Bm3atMGmTZuctStEREQtitPCgFarhUajsZjm6+uL/v37mz736dMHOTk5Da7r0KFDCAsLQ1BQEAAgJiYGe/bssWt9iYiIpMJpwwQNMRqN2LJlCyIjIy2mT5o0CQaDAYMHD8b06dOhUqmQm5uLgIAA0zwBAQHIzc11dpWJiIhaBLcJAwsXLkTr1q0xceJE07QDBw5Ao9GgtLQUs2fPxpo1a/DWW2/ZbZt+ft52WxcA+Pu3tev6yDZsd9dgu7sG290xlEoFPDyUpt+VCjk8PJRQKhUAUGdZXfPWV1b9Wa1u4+xds4lbhIGEhARkZWVh3bp1posFAZiGFby9vTFu3Dhs3rzZNP348eOm+XJycmoNQdiisLAURqO4z9pX8fdvi/z8Erusi2zHdncNtrtrsN0dQ6GQQ683oLJSDwDQ6w3QG4yorNRDrzcAQJ1ldc1bX1n156KiMhgMRmfvIuRymdUTYJffWrh8+XKcO3cOa9asgUqlMk2/c+cO7t27BwDQ6/VIS0tDaGgoAGDQoEE4e/Ysrl27BqDqIsOnn37a6XUnIiJqCZzWM7Bo0SKkp6ejoKAAkydPhq+vL1auXIn169cjKCgIMTExAIBOnTphzZo1yMzMxIIFCyCTyaDX6xEeHo6ZM2cCqOopiI+PxyuvvAKj0YjQ0FDMmzfPWbtCRETUojgtDMTGxiI2NrbW9MuXL9c5f3h4OFJTU+td3/DhwzF8+HC71Y+IiEiqXD5MQERERK7FMEBERCRxDANEREQSxzBAREQkcQwDREREEscwQEREJHEMA0RERBLHMEBERCRxDANEREQSxzBAREQkcQwDREREEscwQEREJHEMA0RERBLHMEBERCRxNoeBPXv21Dl97969dqsMEREROZ/NYWDevHl1Tl+wYIHdKkNERETOp2xohuzsbACAEML0u3mZSqVyTM2IiIjIKRoMAyNGjIBMJoMQAiNGjLAoa9++PaZPn+6wyhEREZHjNRgGLl26BACYOHEi/u///s/hFSIiIiLnsvmaAQYBIiKilqnBnoFq2dnZWLlyJS5evIjy8nKLsgMHDti7XkREROQkNoeBWbNmoXPnzpgzZw68vLwcWSciIiJyIpvDwM8//4wtW7ZALudzioiIiFoSm4/sjz32GC5cuODIuhAREZEL2NwzEBgYiKlTp2LEiBFo3769RdnMmTPtXjEiIiJyDpt7Bu7evYuhQ4dCr9fj119/tfhpSEJCAiIjIxESEoKffvrJNP3q1asYP348oqKiMH78eFy7du2+y4iIiKhxbO4ZWLJkSZM3MmzYMLz44ot44YUXLKbHxcVhwoQJGDNmDJKTk7FgwQJ8/vnn91VGRETkjuQyGRSK/56DGwxGF9bGks09A9nZ2fX+NESr1UKj0VhMKywsxIULFzBy5EgAwMiRI3HhwgUUFRU1uYyIiMhdqR9ohZTvr+Lvey5i17Esi2Dgajb3DJg/lriaTCYDAFy8eLHRG87NzUXHjh2hUCgAAAqFAh06dEBubi6EEE0qU6vVja4HERGRs+QX30VuQZmrq1GLzWGg+rHE1fLz8/HJJ59Aq9XavVLO4ufnbdf1+fu3tev6yDZsd9dgu7sG290xlEoFPDyUpt+VCjk8PJRQKqtOPOsqq2ve+srqmletbuPs3ayXzWGgJn9/f8ybNw9RUVEYNWpUo5fXaDS4desWDAYDFAoFDAYD8vLyoNFoIIRoUlljFRaWwmgUDc9oA3//tsjPL7HLush2bHfXYLu7BtvdMRQKOfR6Ayor9QAAvd4AvcGIyko99HoDANRZVte89ZXVNW9RUZnTrhuQy2VWT4Dva8AiMzMTd+/ebdKyfn5+CA0Nxc6dOwEAO3fuRGhoKNRqdZPLiIiIqPFs7hmYMGGC6RoBoOpWw19++QWvv/56g8suWrQI6enpKCgowOTJk+Hr64tdu3bh/fffx9y5c7F27Vr4+PggISHBtExTy4iIiKhxbA4D48aNs/js5eWF7t27IygoqMFlY2NjERsbW2t6t27d8OWXX9a5TFPLiIiIqHFsDgNjx451ZD2IiIjIRWy+ZqCyshKrVq3CsGHD8Oijj2LYsGFYtWoVdDqdI+tHREREDmZzz8CyZcvw448/4oMPPkBAQABycnKwdu1alJaW4r333nNkHYmIiO6buz79zx3YHAb27t2L5ORktGvXDgDQtWtX9OjRA2PGjGEYICIit6ZQyLHrWBbyi8vh3641nnm8CwOBGZvDgPmTB22ZTkRE5E7yi8vd8ul/7sDmawaio6Mxbdo0HD58GFeuXMGhQ4fw+uuvIzo62pH1IyIiIgezuWdg9uzZ+PTTTxEfH4+8vDx07NgRzzzzDKZNm+bI+hEREZGDNdgzcOrUKSxbtgwqlQozZ87EN998gzNnziA9PR06nQ4XLlxwRj2JiIjIQRoMA+vXr8djjz1WZ1n//v2xbt06u1eKiIiInKfBMHDx4kUMGjSozrIBAwbg3Llzdq8UEREROU+DYaC0tBSVlZV1lun1epSV8cpMIiKi5qzBMNC1a1ccOXKkzrIjR46ga9eudq8UEREROU+DYeCll15CXFwc0tPTYTRWPaDBaDQiPT0d77//PiZPnuzwShIREZHjNHhr4ahRo1BQUIA5c+agsrISvr6+uH37Njw8PDBjxgyMHDnSGfUkIiKyC7lMZvFoYvPfpcqm5wxMnjwZ48aNw3/+8x/cvn0bvr6+CA8Ph7e3t6PrR0REZFfqB1oh5furyC8qBwAEP9QOkMlcXCvXsvmhQ97e3vXeVUBERNSc5BffNT2auL2vl4tr43rsGyEiIpI4hgEiIiKJYxggIiKSOIYBIiIiiWMYICIikjiGASIiIoljGCAiIpI4hgEiIiKJYxggIiKSOIYBIiIiibP5ccSOcuPGDbz++uumzyUlJSgtLcUPP/yAyMhIqFQqeHp6AgBmzZpleiRyRkYGFixYgIqKCgQGBmLZsmXw8/NzyT4QERE1Zy4PA506dUJycrLp8+LFi2EwGEyfV61aheDgYItljEYjZs+ejSVLlkCr1WLt2rVITEzEkiVLnFZvIiKilsKthgl0Oh1SU1Px3HPPWZ3v3Llz8PT0hFarBQDExMRg7969zqgiERFRi+PyngFz+/btQ8eOHdGzZ0/TtFmzZkEIgYiICLz99tvw8fFBbm4uAgICTPOo1WoYjUbT65Vt5edn31cw+/u3tev6yDZsd9dgu7sG273plEoFPDyUUCoVUCrk8PBQmqbX91mpVACAzfM2Zr1qdRun7r81bhUGtm/fbtErkJSUBI1GA51Oh8WLFyM+Ph6JiYl2215hYSmMRmGXdfn7t0V+fold1kW2Y7u7BtvdNdjuTadQyKHXG1BZqYdeb4DeYERlpR4ArH7W66uGrW2dtzHrLSoqg8FgdMr+y+UyqyfAbjNMcOvWLZw4cQKjRo0yTdNoNAAAlUqFCRMm4PTp06bpOTk5pvmKioogl8sb1StAREREVdwmDHz99dcYMmQI2rVrBwAoLy9HSUlVAhZCYPfu3QgNDQUAhIWF4d69ezh58iQAYOvWrYiOjnZNxYmIiJo5txkm+PrrrzFv3jzT58LCQkyfPh0GgwFGoxHdunVDXFwcAEAul2Pp0qWIi4uzuLWQiIiIGs9twkBaWprF586dO2PHjh31zt+3b1+kpqY6ulpERER2J5fJoFBYds476/qBurhNGCAiIpIK9QOtkPL9VeQXlQMA/Nu1xjOPd3FZIGAYICIicoH84rvILShzdTUAuNEFhEREROQaDANEREQSxzBAREQkcQwDREREEscwQEREJHEMA0RERBLHMEBERCRxDANEREQSxzBAREQkcXwCIRERNRvmz/N35bP8WxqGASIiahYUCjl2HctCfnG5y5/l39IwDBARUbORX1zuNs/zb0l4zQAREZHEMQwQERFJHMMAERGRxDEMEIdq2OYAABaPSURBVBERSRwvICQiohbB/LZDgLceNgbDABERNXvmtx0C4K2HjcQwQERELQJvO2w6XjNAREQkcQwDREREEsdhAiIianbkMpnFBYM1Lx6kxmEYICKiZkf9QCukfH8V+UVVFwwGP9QOkMlcXKvmyy3CQGRkJFQqFTw9PQEAs2bNwqBBg5CRkYEFCxagoqICgYGBWLZsGfz8/ADAahkREbV8+cV3TRcMtvf1cnFtmje36VdZtWoVkpOTkZycjEGDBsFoNGL27NlYsGAB0tLSoNVqkZiYCABWy4iIiKhx3CYM1HTu3Dl4enpCq9UCAGJiYrB3794Gy4iIyL0pFHKLH0eovqbA0dtpKdximACoGhoQQiAiIgJvv/02cnNzERAQYCpXq9UwGo24ffu21TJfX1+bt+nn523XffD3b2vX9ZFt2O6uwXZ3jZbQ7lvSLiH/9l0AgL+vF/4U1d3mZZVKBTw8lFAqFVAq5PDwUJqmm3/u4NcGu49lmbbzSGdfm5c1/6xUKgDA5nkbs96aZWp1mya26P1zizCQlJQEjUYDnU6HxYsXIz4+HiNGjHD4dgsLS2E0Crusy9+/LfLzS+yyLrId29012O6u0RLaXaGQI7eg1DTWr9cbUFRUVu+TAmveMaDXG1BZqYdeb4DeYERlpd60npqfC+7cQ25+KQDA11tlKrdlWfN5Adg8b2PWW7PMWjvcL7lcZvUE2C3CgEajAQCoVCpMmDAB06ZNw4svvoicnBzTPEVFRZDL5fD19YVGo6m3jIiIWoaajxjmHQOO4/JBlPLycpSUVCVdIQR2796N0NBQhIWF4d69ezh58iQAYOvWrYiOjgYAq2VERNRyVD9iOLegDEW/3XN1dVosl/cMFBYWYvr06TAYDDAajejWrRvi4uIgl8uxdOlSxMXFWdw+CMBqGRERETWOy8NA586dsWPHjjrL+vbti9TU1EaXERERke1cPkxARERErsUwQEREJHEMA0RERBLHMEBERCRxDANEREQSxzBAREQkcQwDREREEscwQEREJHEuf+gQERFRtZovJiLnYBggIiKXkctkpoO+QiFHyndX+WIiF2AYICIil1E/0Aop319FflE5gh9qh/zbd02vN27v6+Xi2kkH+2CIiMil8ovv8q2ELsYwQEREJHEMA0RERBLHawaIiMgm5lf3GwxGF9aE7I1hgIiIGqRQyLHrWBbyi8vh3641nnm8CwNBC8IwQERENskvLjdd6U8tC68ZICIikjiGASIiIoljGCAiIpI4hgEiIiKJ4wWERETkUHz5kPtjGCAiIocxvyUR4MuH3BXDABEROZT5LYl8+ZB7Yn8NERGRxLm8Z6C4uBh/+ctfcP36dahUKnTp0gXx8fFQq9UICQlBcHAw5PKqzLJ06VKEhIQAAPbt24elS5fCYDCgZ8+eWLJkCby8mDiJiBxNLpPVGvvn0wibN5eHAZlMhqlTp6J///4AgISEBCQmJuLDDz8EAGzduhVt2rSxWKasrAzz589HUlISgoKCMG/ePGzatAlvvPGG0+tPRGQPzengqn6gFVK+v4r8oqrrAPh44ubP5cMEvr6+piAAAH369EFOTo7VZQ4dOoSwsDAEBQUBAGJiYrBnzx5HVpOIyGGqL7L7+56L+Puei9h1LMvtr7rPL76L3IIy5BaUmS4OpObL5T0D5oxGI7Zs2YLIyEjTtEmTJsFgMGDw4MGYPn06VCoVcnNzERAQYJonICAAubm5jd6en5+3Xepdzd+/rV3XR7Zhu7sG292+iksqUHCnAgCgVCqgVrepcz5XtrtSqYCHhxJKpQJKhRweHlWHEJVH/fU1X676d/NlzT9bK7ufee93OwCcUn9rbehobhUGFi5ciNatW2PixIkAgAMHDkCj0aC0tBSzZ8/GmjVr8NZbb9lte4WFpTAahV3W5e/fFvn5JXZZF9mO7e4abHf7Uijk0OsNqKzUAwD0egOKispqdbu7st3N66jXG6A3GE319Wmjwj/2XKhz2KCufTNf1vyztbL7mfd+twPAKfWv629uL3K5zOoJsNv0QyUkJCArKwsrV640XTCo0WgAAN7e3hg3bhxOnz5tmm4+lJCTk2Oal4iInI/DBs2bW4SB5cuX49y5c1izZg1UKhUA4M6dO7h37x4AQK/XIy0tDaGhoQCAQYMG4ezZs7h27RqAqosMn376aZfUnYiIqLlz+TDBzz//jPXr1yMoKAgxMTEAgE6dOmHq1KlYsGABZDIZ9Ho9wsPDMXPmTABVPQXx8fF45ZVXYDQaERoainnz5rlyN4iI6P8zv/XQ3S+EpCouDwOPPPIILl++XGdZampqvcsNHz4cw4cPd1S1iIioicxvPeTjh5sHRjYiIrK76msIin675+qqkA1c3jNALVtzepAKEZFUMQyQw9R8WxmfUkZE5J4YBsihzN9WRkRE7olhgIhIQqwN3XFYT7oYBoiIJMLa0B2H9aSNYYCISEKsDd2Zl9V8TTGfF9CyMQwQEVEtNV9TzOcFtGwMA9TicRyUmpuaZ+Wu+s5WPysAANr7ermkDuQcDAPUonEclJoj87NyfmfJGRgGqMXj7Y3uzR3OgN2R+Vk5kaMxDBA1c835YGrec8MzYCLXYRggasZawsGUPTeuw7cLUjWGAaJmjgdTaiq+XZCqMQwQkeTZa6jFEXeu1HW/vz17f6qvTeDdAtLGMEBETuVuD7Kx11CLo+5cMT97VyoVUPt4YtSAh+tdb83p7tbeVLeaoQ9w7jVADANETcTnFzRezQOmPbum7+eZ+/YaanHUkE312buHhxK+3qpaDwMqLq1AflE5OqhbWwQFhUKOlO+uOqS9yb5qPuTJ2dcAMQwQNUHNg1rNf8KAe4QDdwws5gdM867p+zkzktoz92s+DKjgzj1TV3/NoJB/mw8Oai5ceTspwwBRE9U8qJn/E64rHJhzxIGorrFl87PCxh4EG+pStvctjY09M6q5r7Y+c99dOKr7nk8NpKZgGCC3ZWu3r70vqGqqmv+Eza/Sru7GBe6/F6G+g0hdz5I3PytsDPOz6Zr1D36oHUrKK5FbUArAvmfatp4ZNTTc0NRb5urqnWhIffttrafDkcMlRE3BMEBuydZu3/ouqHKncGDejQvU7kVozMG0oYOItbPChp53X9+Zdl31v12qc/iZdkPDBvUNNwDWb5mz9ja+ugJVzSBk/tna366hng5r9SdyNoaBZq45P32uIbZ0+9Z1QZU9z1QdNebemLFBa93hjTmIWHve/f2cqTrqKuiaB1PzHhVbzt7ru2Wuobfx1TceX9fnhnog+Ehhai4YBpox83/g7noBm73Y659uYw5c1i4StOcYr7WuaXtfDW6tnewRMoDawyD38z20NvRir3a4n7NyPrSHWgqGATtyxVm6eVeuu58d389rWe31T7exF6nVd5GgPf/xW+uabi5Xg9d30K7rVjd7bMed2sHWOvHRv+TOGAbsQKGQY0vaJYdcUNUYjuiSbOxtWdaukDY/6DWlJ8Ne/3TN26mhs/Km1qGxrN0q5gjWxs3twbydrHXJSwl7EcidNeswcPXqVcydOxe3b9+Gr68vEhISEBQU5JK6WLtq2xX3ettzHNf87Ph+r5Cu7yBhzwDVmH+6NeetebFYS/2H3dC4uT3xVrf/cseeDSKgmYeBuLg4TJgwAWPGjEFycjIWLFiAzz//3NXVsmDLw2nM2SsoOGoct6GLuhoz7mztDN2Z3cnWrvpvyXiQJqJqzTYMFBYW4sKFC9i8eTMAYOTIkVi4cCGKioqgVqttWodcbp8zIblchqAHfdDaUwEAUD/gBaVSAblcBrlcjjZeHqjQqQAAGr82yLhSiN9KKqo++7dB2T09fiupgI+3CuGP+MNotO1ALZfLERTwAHzaqBDo7w3vNir4tPYAAAT6e+NOuQ4VbWpvtzHbMd9GQ+vV+LdBUKDlvDXrVP25ZtnDAQ/Uapf61mX+u0KhaNR23H1ed6xTXWW+3nrT991d6iSFv5U9v+/u2Kbu+rdyxfdd/YAX5HIZhLDfccqaZhsGcnNz0bFjRygUVX8ghUKBDh06IDc31+Yw0K5dG7vVZ/SQbvWW/WHoI3bbjjPX3ZRtaHs8aLft2nNdRERUP17SSkREJHHNNgxoNBrcunULBoMBAGAwGJCXlweNRuPimhERETUvzTYM+Pn5ITQ0FDt37gQA7Ny5E6GhoTYPERAREVEVmRBCuLoSTXXlyhXMnTsXv/32G3x8fJCQkICuXbu6ulpERETNSrMOA0RERHT/mu0wAREREdkHwwAREZHEMQwQERFJHMMAERGRxDEM1CEhIQGRkZEICQnBTz/9ZJq+f/9+PPvssxgzZgxGjx6N9PR0U9nVq1cxfvx4REVFYfz48bh27ZpNZfRfTWn3yMhIREdHY8yYMRgzZgwOHz5sKsvIyMDo0aMRFRWFKVOmoLCw0Kn701zU1+4HDhzA2LFjMWrUKEycOBHZ2dmmMn7f719T2p3f9/tXXFyMl19+GVFRURg1ahTeeOMNFBUVAbDehk0tazYE1XLixAmRk5Mjhg4dKi5fviyEEMJoNAqtVmv6fPHiRdGnTx9hMBiEEEJMmjRJ7NixQwghxI4dO8SkSZNM67NWRv/VlHY3n9ecwWAQw4cPFydOnBBCCLFmzRoxd+5cJ+1J81JXu9++fVv069dPZGZmCiGqvrdTpkwxLcPv+/1rSrvz+37/iouLxbFjx0yfP/roI/Huu+9abcOmljUn7Bmog1arrfNJhnK5HCUlJQCAkpISdOjQAXK53PTSpJEjRwKoemnShQsXUFRUZLWMLDW23a05d+4cPD09odVqAQAxMTHYu3ev/SvdAtTV7llZWWjfvj0efvhhAMCQIUNw5MiRBr/T/L7brrHtbg2/77bz9fVF//79TZ/79OmDnJwcq23Y1LLmpNm+qMjZZDIZVq5ciddeew2tW7dGWVkZNmzYAMD6S5OEEPf9QiUps9bu1WbNmgUhBCIiIvD222/Dx8cHubm5CAgIMM2jVqthNBpx+/Zt+Pr6Ons3mp2HH34YBQUF+PHHH9GrVy+kpqYCQIPfaX7f74+1dq9uP37f7cdoNGLLli2IjIy02oZNLWtObc+eARvp9XqsX78ea9euxf79+/Hpp5/izTffRFlZmaur1qI11O5JSUlISUnB9u3bIYRAfHy8i2vcMrRt2xYrVqzAkiVL8Ic//AGFhYXw8fExHeTJMRpqd37f7WvhwoVo3bo1Jk6c6OqquBx7Bmx08eJF5OXlISIiAgAQEREBLy8vXLlyBYGBgaaXJikUCouXJgkh6i2jhllr9169epnaUaVSYcKECZg2bRqAqhdZ5eTkmNZTVFQEuVzerJK6qw0YMAADBgwAABQUFGDTpk146KGHcPfuXX7fHai+dgfA77sdJSQkICsrC+vWrYNcLrfahk0ta07YM2CjBx98EL/++isyMzMBVL0XobCwEA899JDVlybxhUr3x1q7l5eXm64lEEJg9+7dCA0NBQCEhYXh3r17OHnyJABg69atiI6Ods1ONFP5+fkAqrpSly9fjpiYGLRu3Zrfdwerr935fbef5cuX49y5c1izZg1UKhUA623Y1LLmhO8mqMOiRYuQnp6OgoICtGvXDr6+vti1axdSUlKwceNGyGQyAMCMGTMwfPhwANZfmsQXKtmmse2enZ2N6dOnw2AwwGg0olu3boiNjUWHDh0AAKdPn0ZcXBwqKioQGBiIZcuWoX379q7cRbdUX7vPmzcPp0+fRmVlJQYOHIj33nsPnp6eAPh9t4fGtju/7/bx888/Y+TIkQgKCkKrVq0AAJ06dcKaNWustmFTy5oLhgEiIiKJ4zABERGRxDEMEBERSRzDABERkcQxDBAREUkcwwAREZHEMQwQkd0IIfDuu+/isccew/PPP+/q6uD48eMYPHiwq6tB5Pb4BEIisptTp07hu+++w8GDB9G6dWu7r3/16tXIyspCYmKi3ddNJGXsGSAiC0IIGI3GJi178+ZNBAYGOiQIEJHjMAwQScTf/vY3TJ8+3WLaokWLsGjRIkyaNAkrVqxATEwMevfujezs7HrXc+vWLbz66qvo168fRowYgW3btgEAvvzyS8TGxiIjIwPh4eFYtWqV1frs378fY8aMgVarRUxMDC5dumQq27BhAwYNGoTw8HBERUXh6NGjOHToENavX489e/YgPDwco0ePBgBs374dTz/9NMLDwzFs2DBs3bq11rbWrVuH/v37IzIyEikpKTa3GZFkCCKShFu3bonevXuLO3fuCCGEqKysFI8//rg4e/asmDhxohgyZIj46aefRGVlpdDpdPWuZ8KECSIuLk7cu3dPXLhwQfTv3198//33Qgghtm/fLmJiYhqsy/nz58Xjjz8uMjIyhF6vF//617/E0KFDRUVFhbhy5YoYPHiw+PXXX4UQQmRnZ4usrCwhhBCrVq0S77zzjsW69u/fL7KysoTRaBTHjx8XvXr1EufOnRNCCHHs2DERGhoqPvzwQ1FRUSGOHz8uevfuLa5cudL4BiRqwdgzQCQRHTp0gFarxd69ewEAhw8fRrt27RAWFgYAGDt2LB555BEolUp4eHjUuY7c3FycPn0as2bNgqenJ0JDQzFu3DgkJyc3qi7//Oc/MX78ePTu3RsKhQJjx46Fh4cHMjIyoFAooNPpcOXKFVRWVqJTp06mt/bV5Xe/+x0eeughyGQy9OvXDwMHDjS9NKbazJkzoVKp0K9fPwwZMgR79uxpVH2JWjqGASIJGTt2rKmbPCUlBWPGjDGV2fKa4by8PDzwwAPw9vY2TQsICMCtW7caVY+cnBxs3rwZWq3W9PPrr78iLy8PXbp0wXvvvYfVq1djwIABeOutt6yu/+DBg/jjH/+Ifv36QavV4tChQyguLjaV+/j4WFzDEBAQgLy8vEbVl6ilYxggkpDhw4fj8uXL+Omnn3DgwAGMGjXKVFb9VkhrOnTogDt37qC0tNQ0LTc3Fx07dmxUPTQaDV599VWcPHnS9HPmzBmMHDkSADBq1Chs2bIF+/fvh0wmM909ULOOOp0OM2bMwJQpU/Ddd9/h5MmTGDx4MITZ+9d+++03lJeXW9S3+k1/RFSFYYBIQjw9PREVFYV33nkHjz76KAICAhq1vEajQXh4OJYvX46KigpcunQJX331leliPluNGzcOW7duxZkzZyCEQHl5OQ4cOIDS0lJkZmbi6NGj0Ol0UKlU8PT0hFxe9a/Kz88PN2/eNN3toNPpoNPpoFaroVQqcfDgQXz33Xe1trd69WrodDqcPHkSBw4caJbvmydyJD5ngEhinn32WXz55Zf48MMPm7T88uXLERcXh0GDBsHHxwfTp0/HgAEDGrWORx99FAsXLkR8fDyysrLQqlUr9O3bF1qtFjqdDn/9619x5coVeHh4IDw8HPHx8QCA6OhopKSkoH///ujUqRO+/vprxMbG4s0334ROp8PQoUMRGRlpsa327dvDx8cHgwYNgpeXF95//31069atSftO1FLJhHl/GhG1eDk5OXj66afx3XffWYz9E5F0cZiASEKMRiM2b96M3//+9wwCRGTCYQIiiSgvL8fAgQMREBCAv/3tb1bnDQ8Pr3P6xo0bodVqbdreunXrsH79+lrTIyIiGtw+ETkXhwmIiIgkjsMEREREEscwQEREJHEMA0RERBLHMEBERCRxDANEREQSxzBAREQkcf8Pzpk7HadKA3gAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"visa['yr_of_estab'].describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "sOiEzS5uFAn1",
"outputId": "dbdab4c0-23f6-49a3-ebd7-a79b06bb6515"
},
"id": "sOiEzS5uFAn1",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"count 25480.000000\n",
"mean 1979.409929\n",
"std 42.366929\n",
"min 1800.000000\n",
"25% 1976.000000\n",
"50% 1997.000000\n",
"75% 2005.000000\n",
"max 2016.000000\n",
"Name: yr_of_estab, dtype: float64"
]
},
"metadata": {},
"execution_count": 20
}
]
},
{
"cell_type": "markdown",
"source": [
"We find that 75% of companies in our records were founded in 1976 or later. Like the previous feature, we have many extreme values, this time on the lower end. As before, all these values are entirely sensible, so we will not alter them.\n",
"\n",
"However, we will convert this feature to 'years since founded', which will flip the distribution from left-skewed to right-skewed but otherwise leave the data unchanged."
],
"metadata": {
"id": "Lb65bfu8A2nt"
},
"id": "Lb65bfu8A2nt"
},
{
"cell_type": "code",
"source": [
"plott('region_of_employment')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "8ji8Ea-IGFLJ",
"outputId": "7f657e9e-67e1-416b-fa69-0c4ea4c07960"
},
"id": "8ji8Ea-IGFLJ",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFTCAYAAACkvQ89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVxU1f8/8NcMCpiICIoOalkYiysIgru5oKQsKq4IZmpFllmmiZiA5hJopuKeml9L8+eu4EKLmZGJWy6ImqGpCLKKgggIc35/8PB+nFAcBhjA+3o+Hj1y7rn33Pc9M8y85t479yqEEAJEREQkW8qqLoCIiIiqFsMAERGRzDEMEBERyRzDABERkcwxDBAREckcwwAREZHMMQwQVYDExETY2triwoULVbL+06dPw9PTE23atIG/v7/e1x8YGIj33ntP7+stzcOHD/HRRx/ByckJtra2SExMrOqSnqk6jh/JS62qLoAoPT0dq1evxpEjR3Dnzh00aNAAtra28Pf3R8+ePfVaS2BgIO7evYs1a9ZU+rr8/f3x+uuvIzg4uNx9zZs3D3Z2dli7di3q1KlTAdWVzcyZM1HdLlmyc+dOnDx5Elu2bIG5uTnMzc2ruiTZ6N27N0aPHo3x48dXdSmkJYYBqlKJiYkYNWoU6tatiylTpsDOzg5CCPz5558ICQnBkSNHqrrEGuHmzZsYPXo0VCqV1ssUFBTA0NCwQtZfr169CumnIt24cQPW1tawtbWt6lKIqj0eJqAqNXv2bADF3+IGDBiA1157DdbW1vDz88O+ffuk+ZKSkvDBBx/A0dERjo6O+PDDD3Hnzh2pPSIiAh4eHhp979q1C46OjiXm2b9/P/r27QtHR0dMnDgRmZmZUvvu3btx5MgR2NrawtbWFrGxsdIhgMjISIwaNQpt27aFu7s7YmJiSt22kydPYtiwYWjbti26dOmC+fPno6CgAEDxHogTJ05g8+bN0rqetRu7oKAA8+bNQ5cuXdC2bVsMHz4cp06dAvC/wxPZ2dkICgqCra0tdu3a9dR+/P39ERISgrCwMHTq1AmjRo0CAPzzzz9499134ejoiM6dO2PKlClIS0uTlissLMT8+fPRsWNHdOzYEfPnz0dISIjG4Yj/7uYurWYAiI2Nha2tLf78808MGzYM7du3x5AhQ3Dx4sVSx/RJP/74o3RopGfPnli1apW0d8Lf3x+bNm3CyZMnpb1Mz1NQUICFCxeiR48eaN++PXx8fPD777+XqPm3337DkCFD0K5dO/j6+uLOnTs4ceIEvLy84OjoiPfeew93794tMTYrV65Ely5d4OjoiBkzZiAvL6/UWp41fkIIuLm5Yf369RrL/Pvvv7C1tZXG0NbWFlu2bMH777+P9u3bo3///jh+/Dju3LmD8ePHw8HBAd7e3iXG/MyZM/Dz80P79u3RvXt3hISEICcnR2r39/dHaGgoFi9eDFdXV3Tu3BlhYWFQq9VS++3btxEeHi69tqn6YxigKpOVlYXff/8do0ePRt26dUu0m5qaAgDUajUmTpyIjIwMbNq0CZs2bUJqaiomTpxY5l3Tt2/fxoEDB7B8+XJs2LABly5dwpIlSwAA48aNw5tvvokuXbogJiYGMTExGmFi4cKF8Pf3x549e9C1a1dMnDgRKSkpT11PSkoK3nnnHdjb22PPnj2YN28e9u/fj8WLFwMo3q3u6OiIIUOGSOt61rf68PBwHDx4EPPnz8eePXtgY2ODd955B6mpqVCpVIiJiUGdOnUQFBSEmJgYDBgw4Jnbv2/fPgghsHnzZoSHhyM1NRWjR4/G66+/jh07duDbb79Fbm4uJk6cKL25b9iwAbt378bcuXPx//7f/4NarUZUVFSp41xazU/66quv8Omnn2LXrl1o0KABpk6dqtVzGhcXh8mTJ8PNzQ2RkZH49NNPsXbtWnz//fcAioPdkCFD4OjoiJiYGERERDy3zxkzZuDkyZP46quvEBUVhcGDB+P999/H5cuXNeaLiIhAUFAQtm3bhvv37+Pjjz/GihUr8MUXX2DTpk24evUqli9frrHMiRMncPnyZWzcuBHLli1DTEwMFi1apNP4KRQKDB06tETo27lzJ+zt7dG6dWtp2qpVqzBw4EDs3bsXbdq0wZQpUzBz5kyMGjUKu3fvhqWlJQIDA6X5r1y5gvHjx6N3797Yu3cvli9fjsuXLyMoKEhjXZGRkTAwMMDWrVsxa9Ys/N///R8OHDggjU+TJk3wwQcfSK9tqgEEURU5d+6csLGxET/++GOp88XExAg7Oztx69YtadrNmzeFra2t+OOPP4QQQixbtkwMHDhQY7mdO3cKBwcH6fGyZctEmzZtxP3796VpK1euFH379pUeT58+Xbz77rsa/dy6dUvY2NiIlStXStOKiopEv379xOLFizXmOX/+vBBCiMWLFws3NzdRVFSkUU/r1q1Fbm6uEEIIPz8/MXv27FK3/cGDB6J169Zi9+7d0rTCwkLRp08fad1CCOHg4CB27txZal9+fn7Cw8NDY9qSJUvEmDFjNKZlZWUJGxsbce7cOSGEEF27dhVr1qyR2tVqtejXr5/w8/OTpj05btrUfPz4cWFjYyOOHj0qzXPq1ClhY2MjkpOTS90OIYSYMmWK8Pf315i2bNky0b17d+nx7NmzNWoszY0bN4Stra24ffu2xvT3339fhISEPLPm7777TtjY2Ii4uDiNOp58LU6fPl04OTmJnJwcadqePXtE69atxYMHD6R5yjJ+qampolWrVuKvv/6S2rt16ya+++47aRkbGxuxaNEi6fGVK1eEjY2N2LBhgzTt8TZlZGQIIYSYNm2amDFjhsYYxMfHCxsbG5Geni6EKH4dDR8+XGOesWPHiqCgIOlxr169xLp16wTVHDxngKqM0PJbfUJCAiwtLdGsWTNpWvPmzWFpaYl//vkHXbp00XqdVlZWGse3LS0tkZGRodWyDg4O0r+VSiXatWuHhISEZ9bcvn17KJX/2/nm5OSER48e4caNG7Czs9NqnTdv3sSjR4/QoUMHaZqBgQEcHByeue7StGnTRuPxxYsXcerUKY09IE+u+9VXX0VaWhratm0rTVcoFGjXrp3GYRpda35yF7KlpSUAICMjA02aNCl1O65du1bi5FInJycsX74cOTk5MDExKXX5/7p48SKEEBg4cKDG9IKCAnTq1OmZNVtYWAAAbGxsNKb99zVla2ursffL0dERjx49ws2bN0u8FrQZv0aNGuGNN97Azp074eDggN9//x337t2Dp6fnM2tt2LBhiVofT8vMzIS5uTkuXryIGzdu4ODBg9I8j/9Ob968KW3vf3f9l+XviKonhgGqMq+88goUCgUSEhLg5uamUx8KhUL6/3/DRWFhYYn5a9euXWJ5bUNJRXlcc1X0899fGqjVavTs2RPTp08vMa+FhUWFj81/a65Vq1aJtseHJ/RJCAGFQoEdO3Zo1AQAxsbGGo+fVvOTryuFQlFp2/Dk+A0bNgyffvopgoKCsHPnTri5uaF+/frPrLW0aY/rVavVGDZsGMaOHVtinsaNGz+zj6r4O6KKxXMGqMqYmZmhW7du+P777/HgwYMS7ffv3wcAWFtbIzU1VeMEu1u3biE1NRUtW7YEAJibmyM9PV3jDenSpUtlrql27dooKip6atu5c+ekfwshcP78eVhbWz91Xmtra5w7d07jQ+H06dOoXbs2Xn755eeu67GXX34ZtWvXxpkzZ6RpRUVFOHv27DPXXRatW7fGP//8AysrK7zyyisa/5mYmKBevXpo1KiRxvUThBClXk+hsmsGgNdee02jf6B4fJs0aVLmvQIAYG9vDyEE0tLSSozDkx+Cuvr777+Rm5srPT579qzGa+FJ2o5f9+7dYWJigq1bt+LXX3+Fj49Puets1aoV/vnnnxJj8Morr5QIRaXR5rVN1QvDAFWpkJAQAICPjw8OHjyIa9euISEhAVu2bIGXlxcAoEuXLrC1tcXUqVNx4cIFXLhwAVOnTkWrVq2kXbiurq64d+8eVq9ejZs3b2L79u2Ijo4ucz1NmzbF1atXce3aNWRmZuLRo0dS2w8//IBDhw7h2rVrmDdvHpKSkqQz8v/L19cXqampCA0NRUJCAo4cOYKvvvoKfn5+0rfzpk2b4sKFC0hMTERmZuZTv02+9NJLGDVqFBYtWoTffvsNCQkJCA0NRUZGBnx9fcu8fU+rMzs7G5988gnOnTuHW7du4dixY5g1a5Z0BvmYMWOwfv16/PTTT7h27Rq+/PJLjV8b6LtmoPhkz5MnTyIiIgLXr1/Hvn37sGHDBkyYMEGn/l599VV4enpixowZOHToEG7duoULFy5g/fr1+PHHH8tdb2FhIYKCgnD16lX88ccf+OqrrzB8+HC89NJLJebVdvwMDAzg4+ODr776CpaWlujcuXO563znnXdw/vx5BAcHIz4+Hjdu3MCvv/5a5mthNG3aFKdPn0ZKSor0ax2q3niYgKpU8+bNsWvXLqxZswaLFi1CSkoKzMzMYGdnhzlz5gAo3gW5cuVKzJ07F2PGjAFQHBBmzZol7Ta1trZGaGgo1qxZgzVr1qBXr1547733pF8KaGv48OE4ceIEfHx8kJubi02bNqFp06YAgE8//RQbN27ExYsXYWVlheXLlz/z2Hbjxo3xzTffIDw8HN7e3jA1NYWHhwemTJkizTNu3DgEBgZi4MCByMvLwy+//KJxXsRj06ZNA1B8tvv9+/fRqlUrfPPNN9Ix9vJo3LgxfvjhByxevBgTJkxAfn4+VCoVunXrJl2DYNy4cUhLS8OMGTOgUCgwZMgQuLm5IT09/Zn9VmbNQPEejaVLlyIiIgJr1qyBhYUF3n33Xfj5+enc54IFC7B69WosXLgQKSkpqF+/Ptq2bQtXV9dy1+vi4oKWLVtizJgxyMvLQ79+/aQxehptx8/HxwcrVqzAkCFDKuTwk52dHb7//nssWbIEfn5+UKvVaN68Ofr27Vumfj766CMEBwejb9++KCgowJUrV8pdG1UuheCBHqJSJSYmok+fPtixY4fGiXRyNmjQIDg5OWHWrFlVXUq1V5lXtTx37hxGjRqFn3/+GVZWVhXeP8kH9wwQUalu376NmJgYdOzYEYWFhdi2bRuuXLmCL774oqpLk62CggJkZmZi6dKl6Nu3L4MAlRvDABGVSqlUYs+ePQgPD4darUbLli3xzTffVOpekgkTJuD06dNPbXvvvfcQEBBQpv5OnTqFd95555ntf/31V5n6q2pRUVGYOXMm7OzsMG/evKouh14APExARNVOSkrKMy/XW79+fZiZmZWpv7y8vGdeLRIo/pkrkZwxDBAREckcf1pIREQkcwwDREREMifrEwjv3n0AtZpHSYiI6MWmVCrQoEHJu8M+JuswoFYLhgEiIpI9HiYgIiKSOYYBIiIimWMYICIikjmGASIiIpljGCAiIpI5hgEiIiKZYxggIiKSOYYBIiIimWMYICIikjlZX4HweeqZGsPYqHZVl1Et5eU/Qvb9p99iloiIahaGgVIYG9WG72ebq7qMamlL+Ghkg2GAiOhFwMMEREREMscwQEREJHN6OUyQmJiIDz74QHqcnZ2NnJwcnDhxAtevX0dgYCCysrJgZmaGsLAwtGjRAgB0biMiIiLt6WXPQLNmzbB3717pvz59+sDDwwMAEBISAl9fX0RHR8PX1xfBwcHScrq2ERERkfb0fpigoKAAkZGR8PHxQUZGBuLj46Vg4OHhgfj4eGRmZurcRkRERGWj918THD58GI0bN0br1q0RFxeHxo0bw8DAAABgYGAAS0tLJCcnQwihU5u5ubnWtVhYmFT8BspIo0b1yt2HuvARlLX4882n4dgQkb7oPQzs3LkTPj4++l7tU2Vk5ECtFs9sr4gPuxdZWlp2ufto1KgeTodPqIBqXjxOn62rkDEmIlIqFaV+AdbrYYKUlBScPHkSnp6eAACVSoWUlBQUFRUBAIqKipCamgqVSqVzGxEREZWNXsPA7t270bNnTzRo0AAAYGFhAXt7e0RFRQEAoqKiYG9vD3Nzc53biIiIqGz0ephg9+7dmDlzpsa00NBQBAYGYuXKlTA1NUVYWFi524iIiEh7eg0D0dHRJaZZW1tj+/btT51f1zYiIiLSHq9ASEREJHMMA0RERDLHMEBERCRzDANEREQyxzBAREQkcwwDREREMscwQEREJHMMA0RERDLHMEBERCRzer9rIRHpl2l9IxgZGlZ1GdVWfkEB7t/Lr+oyiKoUwwDRC87I0BBjv51c1WVUWxvfXgqAYYDkjYcJiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjm9BYG8vPzERISgn79+sHT0xOzZs0CAFy/fh0jRoxA//79MWLECPz777/SMrq2ERERkfb0FgYWLlwIIyMjREdHIzIyEpMnTwYAhISEwNfXF9HR0fD19UVwcLC0jK5tREREpD29hIEHDx5gz549mDx5MhQKBQCgYcOGyMjIQHx8PDw8PAAAHh4eiI+PR2Zmps5tREREVDa19LGSW7duwczMDMuXL0dsbCzq1q2LyZMnw9jYGI0bN4aBgQEAwMDAAJaWlkhOToYQQqc2c3NzreuysDCp+I2VkUaN6lV1CS88jrF+cJxJ7vQSBoqKinDr1i20atUK06dPx7lz5xAQEIClS5fqY/XPlJGRA7VaPLOdbxClS0vLLncfHOPScYz1oyLGmag6UyoVpX4B1ksYUKlUqFWrlrRbv3379mjQoAGMjY2RkpKCoqIiGBgYoKioCKmpqVCpVBBC6NRGREREZaOXcwbMzc3h6uqKP/74A0DxLwEyMjLQokUL2NvbIyoqCgAQFRUFe3t7mJubw8LCQqc2IiIiKhu97BkAgNmzZyMoKAhhYWGoVasWwsPDYWpqitDQUAQGBmLlypUwNTVFWFiYtIyubURERKQ9vYWB5s2b47vvvisx3draGtu3b3/qMrq2ERERkfZ4BUIiIiKZYxggIiKSOYYBIiIimWMYICIikjmGASIiIpljGCAiIpI5hgEiIiKZYxggIiKSOYYBIiIimWMYICIikjmGASIiIpljGCAiIpI5hgEiIiKZYxggIiKSOYYBIiIimWMYICIikjmGASIiIpljGCAiIpI5hgEiIiKZYxggIiKSOYYBIiIimWMYICIikjmGASIiIpljGCAiIpI5hgEiIiKZYxggIiKSOYYBIiIimaulrxX17t0bhoaGMDIyAgBMnToV3bt3x9mzZxEcHIz8/Hw0bdoUCxcuhIWFBQDo3EZERETa0+uegWXLlmHv3r3Yu3cvunfvDrVajWnTpiE4OBjR0dFwdnbGokWLAEDnNiIiIiqbKj1MEBcXByMjIzg7OwMARo4ciUOHDpWrjYiIiMpGb4cJgOJDA0IIODk5YcqUKUhOToaVlZXUbm5uDrVajaysLJ3bzMzMtK7HwsKkYjZMpho1qlfVJbzwOMb6wXEmudNbGNi8eTNUKhUKCgowb948zJkzB25ubvpa/VNlZORArRbPbOcbROnS0rLL3QfHuHQcY/2oiHEmqs6USkWpX4D1dphApVIBAAwNDeHr64szZ85ApVIhKSlJmiczMxNKpRJmZmY6txEREVHZ6CUM5ObmIju7OHkLIXDgwAHY29ujTZs2yMvLw6lTpwAAW7duhbu7OwDo3EZERERlo5fDBBkZGZg0aRKKioqgVqthbW2NkJAQKJVKhIeHIyQkROMnggB0biMiIqKy0UsYaN68Ofbs2fPUtg4dOiAyMrJC24iIiEh7vAIhERGRzDEMEBERyRzDABERkcwxDBAREckcwwAREZHMMQwQERHJHMMAERGRzDEMEBERyRzDABERkcwxDBAREckcwwAREZHMMQwQERHJHMMAERGRzDEMEBERyRzDABERkcwxDBAREckcwwAREZHMMQwQERHJHMMAERGRzNWq6gKIiGo6s3qGqG1sVNVlVFuP8vKRlV1Q1WVQKRgGiIjKqbaxEQ6Mebuqy6i2Bmz6FmAYqNZ4mICIiEjmGAaIiIhkjmGAiIhI5rQOA+vXr3/q9G+//bbCiiEiIiL90zoMrFix4qnTV61aVWHFEBERkf4999cEf/75JwBArVbj+PHjEEJIbYmJiahbt27lVUdERESV7rlhYObMmQCA/Px8BAUFSdMVCgUaNWqEzz//vEwrXL58OSIiIhAZGQkbGxucPXsWwcHByM/PR9OmTbFw4UJYWFgAgM5tREREpL3nHiY4fPgwDh8+DE9PT+nfhw8fxi+//IKtW7eiT58+Wq/s4sWLOHv2LJo2bQqgeG/DtGnTEBwcjOjoaDg7O2PRokXlaiMiIqKy0fqcgfDwcOnfarVa4z9tFBQUYM6cOQgNDZWmxcXFwcjICM7OzgCAkSNH4tChQ+VqIyIiorLR+gqEFy9exJw5c3DlyhXk5+cDAIQQUCgUuHTp0nOXX7p0Kby8vNCsWTNpWnJyMqysrKTH5ubmUKvVyMrK0rnNzMxM202ChYWJ1vNSSY0a1avqEl54HGP94DhXPo5x9aZ1GAgMDESvXr0wf/58GBsbl2klf/31F+Li4jB16tQyF1iZMjJyoFaLZ7bzxVu6tLTscvfBMS4dx1g/yjvOHOPnq4jXMulOqVSU+gVY6zBw+/ZtfPLJJ1AoFGUu4uTJk0hISJDOL7hz5w7Gjx8Pf39/JCUlSfNlZmZCqVTCzMwMKpVKpzYiIiIqG63PGXBzc0NMTIxOK3n33XcRExMjnXzYpEkTrF+/HhMmTEBeXh5OnToFANi6dSvc3d0BAG3atNGpjYiIiMpG6z0D+fn5+PDDD+Hk5ISGDRtqtD15cmFZKJVKhIeHIyQkROMnguVpIyIiorLROgy0bNkSLVu2rJCVHj58WPp3hw4dEBkZ+dT5dG0jIiIi7WkdBj788MPKrIOIiIiqiNZh4PFliZ+mc+fOFVIMERER6Z/WYeDxZYkfu3v3Lh49eoTGjRvjl19+qfDCiIiISD+0DgNPHucHgKKiIqxatYo3KiIiIqrhtP5p4X8ZGBggICAA69atq8h6iIiISM90DgMA8Mcff+h0ESIiIiKqPrQ+TNCzZ0+ND/6HDx+ioKAAISEhlVIYERER6YfWYeC/F/WpU6cOXn31VZiY8GY/RERENZnWYcDFxQVA8e2L09PT0bBhQyiV5TrKQERERNWA1p/mOTk5+Oyzz9CuXTv06NED7dq1w/Tp05GdzTtRERER1WRah4G5c+fi4cOHiIyMxPnz5xEZGYmHDx9i7ty5lVkfERERVTKtDxP8/vvv+Pnnn1GnTh0AwKuvvooFCxbAzc2t0oojIiKiyqf1ngEjIyNkZmZqTLt79y4MDQ0rvCgiIiLSH633DAwdOhTjxo3D2LFjYWVlhaSkJGzcuBHDhg2rzPqIiIiokmkdBt5//300btwYkZGRSE1NhaWlJSZMmMAwQEREVMNpfZhg3rx5ePXVV7Fx40YcOHAAGzduhLW1NebNm1eZ9REREVEl0zoMREVFoU2bNhrT2rRpg6ioqAovioiIiPRH6zCgUCigVqs1phUVFZWYRkRERDWL1mHA2dkZS5culT781Wo1IiIi4OzsXGnFERERUeXT+gTCmTNn4r333kO3bt1gZWWF5ORkNGrUCKtXr67M+oiIiKiSaR0GmjRpgt27d+P8+fNITk6GSqVCu3bteH8CIiKiGk7rMAAASqUSDg4OcHBwqKx6iIiISM/4tZ6IiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISObK9GuC8pg4cSISExOhVCrx0ksvYdasWbC3t8f169cRGBiIrKwsmJmZISwsDC1atAAAnduIiIhIe3rbMxAWFoZ9+/Zhz549GDduHIKCggAAISEh8PX1RXR0NHx9fREcHCwto2sbERERaU9vYaBevXrSv3NycqBQKJCRkYH4+Hh4eHgAADw8PBAfH4/MzEyd24iIiKhs9HaYACi+pPEff/wBIQTWrVuH5ORkNG7cGAYGBgAAAwMDWFpaIjk5GUIIndrMzc21rsfCwqTiN1JGGjWq9/yZqFw4xvrBca58HOPqTa9hYN68eQCAPXv2IDw8HJMnT9bn6kvIyMiBWi2e2c4Xb+nS0rLL3QfHuHQcY/0o7zhzjJ+vIl7LpDulUlHqF+Aq+TXBoEGDEBsbiyZNmiAlJQVFRUUAim+JnJqaCpVKBZVKpVMbERERlY1ewsCDBw+QnJwsPT58+DDq168PCwsL2NvbIyoqCgAQFRUFe3t7mJub69xGREREZaOXwwQPHz7E5MmT8fDhQyiVStSvXx+rV6+GQqFAaGgoAgMDsXLlSpiamiIsLExaTtc2IiIi0p5ewkDDhg2xbdu2p7ZZW1tj+/btFdpGRERE2uMVCImIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkTi9h4O7du3jnnXfQv39/eHp64sMPP0RmZiYA4OzZs/Dy8kL//v0xbtw4ZGRkSMvp2kZERETa00sYUCgUmDBhAqKjoxEZGYnmzZtj0aJFUKvVmDZtGoKDgxEdHQ1nZ2csWrQIAHRuIyIiorLRSxgwMzODq6ur9NjBwQFJSUmIi4uDkZERnJ2dAQAjR47EoUOHAEDnNiIiIiqbWvpeoVqtxg8//IDevXsjOTkZVlZWUpu5uTnUajWysrJ0bjMzM9O6FgsLk4rZKJlq1KheVZfwwuMY6wfHufJxjKs3vYeBL774Ai+99BL8/Pzw008/6Xv1GjIycqBWi2e288VburS07HL3wTEuHcdYP8o7zhzj56uI1zLpTqlUlPoFWK9hICwsDK85RCkAABkmSURBVDdu3MDq1auhVCqhUqmQlJQktWdmZkKpVMLMzEznNiIiIiobvf20cPHixYiLi8OKFStgaGgIAGjTpg3y8vJw6tQpAMDWrVvh7u5erjYiIiIqG73sGbh69SrWrFmDFi1aYOTIkQCAZs2aYcWKFQgPD0dISAjy8/PRtGlTLFy4EACgVCp1aiMiIqKy0UsYeP3113HlypWntnXo0AGRkZEV2kZERETa4xUIiYiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGSOYYCIiEjmGAaIiIhkjmGAiIhI5hgGiIiIZI5hgIiISOYYBoiIiGROL2EgLCwMvXv3hq2tLf7++29p+vXr1zFixAj0798fI0aMwL///lvuNiIiIiobvYSBPn36YPPmzWjatKnG9JCQEPj6+iI6Ohq+vr4IDg4udxsRERGVjV7CgLOzM1Qqlca0jIwMxMfHw8PDAwDg4eGB+Ph4ZGZm6txGREREZVerqlacnJyMxo0bw8DAAABgYGAAS0tLJCcnQwihU5u5uXmZarCwMKnYjZKZRo3qVXUJLzyOsX5wnCsfx7h6q7IwUB1kZORArRbPbOeLt3Rpadnl7oNjXDqOsX6Ud5w5xs9XEa9l0p1SqSj1C3CVhQGVSoWUlBQUFRXBwMAARUVFSE1NhUqlghBCpzYiIiIquyr7aaGFhQXs7e0RFRUFAIiKioK9vT3Mzc11biMiIqKy08uegblz5+LHH39Eeno63n77bZiZmWH//v0IDQ1FYGAgVq5cCVNTU4SFhUnL6NpGREREZaOXMPD555/j888/LzHd2toa27dvf+oyurYRERFR2fAKhERERDLHMEBERCRzDANEREQyxzBAREQkcwwDREREMscwQEREJHMMA0RERDLHMEBERCRzDANEREQyxzBAREQkcwwDREREMscwQEREJHMMA0RERDLHMEBERCRzDANEREQyxzBAREQkcwwDREREMlerqgsgIiLSRn3TOjA04sfW0xTkF+Le/Yc6L89RJSKiGsHQqBbmz9xR1WVUS0HzhpZreR4mICIikjmGASIiIpljGCAiIpI5hgEiIiKZYxggIiKSOYYBIiIimWMYICIikjmGASIiIpmr0WHg+vXrGDFiBPr3748RI0bg33//reqSiIiIapwaHQZCQkLg6+uL6Oho+Pr6Ijg4uKpLIiIiqnFq7OWIMzIyEB8fj2+//RYA4OHhgS+++AKZmZkwNzfXqg+lUvHceRo2qFuuOl9k2oyfNgxNLSqknxdRRY1xQxPt/ibkqiLGuU5Dvo5LU1Gv5fpmL1VIPy+i0sb4eeOvEEKIii5IH+Li4jB9+nTs379fmjZgwAAsXLgQrVu3rsLKiIiIapYafZiAiIiIyq/GhgGVSoWUlBQUFRUBAIqKipCamgqVSlXFlREREdUsNTYMWFhYwN7eHlFRUQCAqKgo2Nvba32+ABERERWrsecMAEBCQgICAwNx//59mJqaIiwsDK+99lpVl0VERFSj1OgwQEREROVXYw8TEBERUcVgGCAiIpI5hgEiIiKZYxggIiKSOYaBcurduzc8PDygVqs1pv39999l6ufSpUs4cOCAxjRbW1s8ePCgQuoszc8//4zz589X+nr05eDBgxg0aBC8vb3h7u6OTz/9VOe+qvJ5qQm+/vprhISESI9//fVX2Nra4urVq9K09957D9u3by9Tv/fv38c333xTYXVWV71790a3bt2k66UAwK5du2Bra4vvv/8eP/zwAzZu3PjUZXft2oWPPvqoUuvbtWsXrl+/XqnrqErPe6+u6L/1xMREuLq6Vlh/FYlhoALk5uZi7969Oi9fWFiIS5cu4dChQxVYlfZepDCQmpqK2bNnY9WqVdi7dy8OHjyI8ePH69xfVT4vNUGnTp1w4sQJ6fGJEyfQvn17aVpRURFOnz5d5jfA+/fvY926dRVaa3VlaWmJmJgY6fHu3bulS6qPGjUKY8eOraLKimvh3WDlgWGgAnz44YdYvnw5CgoKNKbfuHEDb731Fjw9PTF48GAcPXpUarO1tUVERAR8fHywYMECLFu2DMeOHYO3tzfmzp0rzffdd9/Bx8cHffr0QXR0tDT93Llz8Pf3x5AhQzBkyBAcOXIEQHGwGD9+PIYMGYKBAwdixowZUl1nzpzB4MGD4e3tjYEDByIqKgq///47Dh8+jLVr18Lb2xt79uypxJGqfOnp6ahVqxbMzMwAAAqFAq1atQIAHD16FIMGDYKnpyfeeust3LhxA0DJb1iPH9+9e7fMz4vcODo6IjExEenp6QCAkydPYuLEiYiNjQUAxMfHw8TEBMbGxvjoo48wdOhQeHp6YvXq1QAAtVqN0NBQuLu7w8vLCyNHjgQAzJkzB9nZ2fD29pamvagGDx6MXbt2AQBu3bqF3Nxc2NjYAAAiIiIQFhYGACgoKEBwcDD69euHESNGaAT4Jx+HhoZi4MCBAIrfD1xdXZGbmwsAWLt2LYYOHYrBgwcjICAAaWlpAIq/EHh6esLb2xseHh6IjY3Fzp07ERcXh7lz58Lb2xvHjh3Tz4BUgeXLl8Pd3R3e3t4YNGgQ7t+/X2KesLAw+Pj4wMvLC2+99RZu374N4H/f9r/++msMGjQI/fv3x6lTp6TlNm/eDDc3NwwePBg7duzQ2zaVmaBy6dWrl7hy5YqYNGmS2Lhxo8a0oUOHim3btgkhhLh69apwcXERGRkZQgghbGxsxJo1a6R+du7cKSZNmqTRt42Njfjuu++EEEKcOnVKdOvWTQghxL1794S3t7dISUkRQgiRkpIiunfvLu7duyfUarXIzMwUQgihVqvFtGnTxJYtW4QQQgQEBIjIyEip7d69e0IIIaZPny6tp6YrKioS77//vnBxcRGTJk0S3377rcjMzBTp6enC1dVVXL16VQghxLZt28TQoUOFECXH/snHZXle5MrX11fs379fZGdniwEDBojCwkLh5uYmhBBi3bp1Ytq0aWLs2LHixIkTQggh8vPzxahRo0RMTIy4ePGicHd3F0VFRUIIIbKysoQQQty6dUu4uLhUzQbpUa9evcTly5eFu7u7yMrKEkuXLhWbNm2S/iaXLVsmvvzySyGEEJs2bRJvv/22KCgoELm5uWLw4MHSa3Px4sXS+4mHh4cYPHiwSElJEWfOnBGjRo0SQgixZ88e8fnnn0tjvXnzZjFlyhQhhBCenp7izJkzQgghCgsLRXZ2thBCCD8/P3H48GH9DYie9erVS5w4cUI4OTmJhw8fCiGEyM7OFo8ePRJCFP+t5+TkCCGE9N4tRPH7x8cffyyEKH6t2tjYSOO0d+9eMWLECCGEEJcuXRJdu3YVaWlpQgghQkJCqu3rusbewri6+fjjjzFmzBgMHToUACCEwKVLl+Dj4wMAaNmyJezt7XH27Fn07t0bQPE3gucZMGAAAMDBwQGpqanIz8/HX3/9hcTERLzzzjvSfAqFAjdu3ECrVq2wYcMGHD16FGq1Gvfu3YOxsTEAwNXVFatWrcLNmzfRtWtXtG/fvkLHoDpQKpVYuXIl/v77b5w8eRI///wz1q9fjylTpsDOzg4tW7YEAPj4+GD27NnIycnRaT1Pe16MjIwqbDtqEhcXF8TGxqJu3bpwcnKCgYEBXnnlFVy9ehUnTpxAjx49MH/+fGRmZkrLPHjwAAkJCRg8eDAKCwsxc+ZMuLq6olevXlW4JVVDoVDgzTffxP79+7F//35s3boVFy9eLDFfbGwsBg0ahNq1a6N27drw8vLCmTNnAACdO3fG6tWr4enpCTMzM7i4uODPP/9EYmIiOnXqBAA4fPgw4uLipPedoqIimJiYACg+3LNgwQL069cPPXr0kPZMyEG9evXw8ssv47PPPkO3bt3wxhtvSOPypKNHj2LLli3Izc1FYWGhRttLL70kvXYdHBykvTknTpzAG2+8gYYNGwIo3oNz8ODBSt4i3TAMVJDXXnsNPXv2xLfffqv1Mi+99Pz7cj/+gDEwMABQvNtPCAFbW1ts3ry5xPx79uzB6dOnsXnzZpiYmGD16tXSMb+xY8eid+/eOHbsGL744gt07doVn3zyidb11iQ2NjawsbHB6NGjpQ/uZzEwMNA4ATQ/P/+5/T/teZFrGHB1dcXs2bNRr149dOzYEQDQsWNH/Pnnnzh9+jSmTJkChUKBHTt2oHbt2iWW379/P2JjY3Hs2DEsWrQIu3fv1vcmVLnBgwdj2LBh6NixIxo0aFDm5Tt06ID4+HgcOXIEnTt3houLC3bu3InExETpEJgQAu+//770heVJQUFBuHLlCo4fP47Jkyfj7bffxvDhw8u9XTWBUqnEtm3bcObMGRw/fhxDhgzBunXrYGdnJ81z+/ZtLFiwADt27EDz5s1x5swZTJ06VWo3NDTU6O+/YaEm4DkDFWjSpEnYsmULHjx4AIVCAXt7e+mNLSEhAZcvX4aDg8NTlzUxMUF2drZW63F0dMSNGzdw/Phxadr58+chhEB2djYaNGgg9ff4Rk4AcP36dbz88ssYOXIkxowZgwsXLpR53dVdSkoK/vrrL+nxnTt3kJmZCWtra1y+fBkJCQkAik+MatWqFUxMTPDKK6/gypUrKCgoQEFBgcY5AC/S2FQWR0dH3L59Gz/++CNcXFwAAM7Ozti8eTNMTU1ha2sLJycnrF27VlomOTkZaWlpyMzMxMOHD9G9e3dMnToV9erVw61bt2BiYoK8vLwa+aaqi+bNm+OTTz7BxIkTnzlPp06dsHfvXhQWFiIvL0/jb9vQ0BCtWrXCN998gy5duqB9+/Y4c+YMrly5Iu0B7N27N7Zs2YJ79+4BKD4H4fLlywCAa9euwdbWFm+99Ra8vLyk94a6deu+8K9/IQQyMzPh4uKCjz76CDY2Nhq/hgGAnJwc1K5dG40aNYJarcbWrVu16tvFxQW//fYbMjIyAKBanzPAPQMVqEmTJvD29saGDRsAAIsWLUJwcDA2btyIWrVqITw8/Jl3VezcuTM2bNgALy8vuLi44PPPP3/meurXr4+VK1di4cKFmD9/Ph49eoTmzZtj9erVGDRoEH755Re4u7vDwsICTk5O0jfd7777DrGxsahduzYMDQ2ldXh5eWHGjBk4dOgQ3n77bQwaNKiCR0Z/CgsLERERgdu3b8PY2BhqtRoff/wx2rVrh/DwcEydOhWFhYUwNzfHwoULARTv1uvcuTMGDhwIS0tL2NnZSSdWleV5kSsjIyO0b98eKSkpaNy4MQCgbdu2SElJgbu7O4Div4UFCxbA09MTQPGHzLx585CXl4dZs2ahsLAQRUVF6NGjBxwcHKBUKuHp6QlPT0/Ur19f6zffmmzEiBGltg8fPhxXrlzBgAED0KBBA7Rt21b6kAGKX6sXLlxA27ZtYWBggJdffhnNmjWTvrUOGjQIWVlZ8PPzA1D8IThq1CjY2dnhq6++wo0bN2BgYABTU1PMmzdPqunLL7/E+vXrMX36dHTp0qWStr7qZGdn4/PPP0deXh6EEGjVqhX69eunMY+trS3c3d2lse/Zs6fGSYLPYmdnh4CAAIwaNQomJibo0aNHZW1GufFGRURERDLHwwREREQyxzBAREQkcwwDREREMscwQEREJHMMA0RERDLHMEBUQyQlJcHR0VHjDnf6lJeXh4CAADg5OVX63fK0FRgYiK+//rqqyyCq8XidAaIawsrKSuOCSvp26NAhpKenIzY2FrVq8a1DF4mJiejTpw8uXrzIMaRqhXsGiPSoJl9RLykpCS1atOCHGNELiGGAqJL17t0ba9euhaenJxwcHHDq1CmMHDkSzs7O8PLykm73CxTfwnb06NFwdHTE2LFjMXv2bOka6ImJibC1tZUCRUpKCgICAuDi4gI3Nzds27ZN6iciIgKTJ0/GZ599BkdHRwwcOFC6xGxpEhIS4O/vD2dnZwwcOBC//PILAGDZsmVYuXIlDh48CEdHR2zfvr3Ufnbs2IE333wTHTt2xPjx46XbvQKQ7qvRr18/ODo6YsmSJbh58yZGjhyJDh06YPLkydJtt2NjY9GjRw+sXr0arq6u6N27N/bt2/fM9W7btg1ubm5wcXFBQEAAUlJSAACzZ8/Gl19+qTFvQEAANm7cCKD4OVq3bp30HAUFBSE9PR0TJkyQnovHl/EFgLNnzz7zOfT398eSJUswcuRIODo6Yty4cdJNmh5f/a9jx45wdHSs0j09RBqq7H6JRDLRq1cv4eXlJZKSksSdO3eEi4uLOHLkiCgqKhIxMTEat7YePny4+PLLL0V+fr44efKkcHR0FJ9++qkQ4n+3Sn18e1VfX18REhIi8vLyRHx8vHB1dRXHjh0TQgixbNky0aZNG3HkyBFRWFgoFi1aJIYNG1ZqnQUFBaJv375i1apVIj8/Xxw7dkw4ODiIhIQEqc/HtZTmp59+En379hX//POPePTokVixYoV0S1chim8LGxAQILKzs8Xff/8tWrduLcaMGSNu3rwp7t+/L958802xa9cuIYQQx48fF/b29mL+/PkiPz9fxMbGivbt20s1TZ8+XSxevFgIIcSxY8eEi4uLiIuLE/n5+WLOnDnC19dXCCHEuXPnRNeuXaXb92ZkZIh27dpJt5bt1auXGDZsmEhLSxN37twRnTp1EoMGDRIXL14UeXl5wt/fX0RERAghxHOfQz8/P9GnTx9x7do18fDhQ+Hn5ycWLlz41OeQqLrgngEiPfD394dKpcLevXvRo0cP9OzZE0qlEl27dkWbNm3w22+/ISkpCRcuXMBHH30EQ0NDODs7S7e7/q/k5GTpzmlGRkawt7fHsGHDsHfvXmkeJycn9OzZEwYGBvD29pZuSvMs586dQ25uLt59910YGhqic+fO6NWrF/bv31+mbd26dSveffddWFtbo1atWggICMClS5c09g5MmDABJiYmeP3112FjY4OuXbuiefPmqFevHnr06IH4+HiNPidPngxDQ0O4uLigZ8+eT70NbGRkJHx8fNC6dWsYGhpiypQpOHv2LBITE9GuXTvUq1cPf/75JwDgwIEDcHFxkW4tCxR/a2/YsCEaN24MZ2dntGvXDq1atYKRkRHc3Nykmkp7Dh8bMmQIXn31VRgbG8Pd3R2XLl0q0xgS6RsP/hHpgUqlAlB83P3QoUP49ddfpbbCwkK4uroiNTUV9evXR506dTSWS05OLtHf43mfvO+6lZUV4uLipMdPftAZGxsjPz8fhYWFzzzmn5qaiiZNmkCp/N93BCsrK2lXu7aSkpIwf/586Z7uQPFNcVJSUtC0adMStRkZGZV4nJ6eLj02NTXVuN23lZUVUlNTn1p/69atpcd169aFmZkZUlJS0KxZMwwePBj79u1D165dsW/fPowZM0Zj+dJqMjY2Rm5urrR9z3oOH2vUqJH07zp16kjLElVXDANEeqBQKAAUf7h7e3tj7ty5Jea5ffs27t27h4cPH0qB4GlBAAAsLS1x79495OTkSIEgOTlZumugLiwtLXHnzh2o1WopECQnJ6NFixZl6kelUiEgIABeXl461/Kk+/fvIzc3VwoEycnJeP3110vMZ2lpqbH3ITc3F1lZWdKYeHl5wcPDQ7qVdd++fXWqp7Tn8Hkevw6IqhseJiDSIy8vL/z666/4/fffUVRUhPz8fMTGxuLOnTto2rQp2rRpg4iICBQUFOCvv/7S+Pb5JJVKBUdHRyxevBj5+fm4fPkyduzYUa4P4Hbt2sHY2Bjr1q3Do0ePEBsbi8OHD2PAgAFl6mfkyJFYu3atdE/47Ozsp+7WL4vHY3Lq1CkcOXJEujXykzw8PLBr1y5cunQJBQUFWLx4Mdq1a4dmzZoBKL7FeNu2bTFt2jT069cPxsbGOtVS2nP4PObm5lAqlbh165ZO6yaqLAwDRHqkUqmwcuVKrFmzBp07d0bPnj2xfv16qNVqAMCiRYtw9uxZuLq6YsmSJRgwYIB0P/r/Wrx4MW7fvo3u3bvjww8/xKRJk8p1v3lDQ0OsXr0aR48eRadOnTB79myEh4fD2tq6TP24ublhwoQJmDJlCjp06AAPDw8cPXpU57oaNmwIU1NTdO/eHVOnTkVoaOhTa+rSpQsmT56MSZMmoVu3brh161aJCxINGjQIf//9N7y9vXWu53nPYWnq1Kkj3d/e2dkZZ8+e1bkOooqkEEKIqi6CiJ7u448/xmuvvVZtrvinb7GxsZg2bVq5wsSTTp48iWnTpuHXX3/lLnuiJ3DPAFE1cv78edy8eRNqtRpHjx7FL7/8ovOxbdL06NEjbNq0CUOHDmUQIPoPnkBIVI2kp6dj0qRJyMrKQpMmTRAaGopWrVpVWP9JSUkYOHDgU9v2798PKysrrfoJDg5GZGRkiemenp6YM2dOuWqsDAkJCfDx8YGdnR0WLFhQ1eUQVTs8TEBERCRzPExAREQkcwwDREREMscwQEREJHMMA0RERDLHMEBERCRzDANEREQy9/8BHdN/kFCsj04AAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Northeast, South, and West are all common regions. Island is decidedly uncommon, with fewer than 500 records."
],
"metadata": {
"id": "01h5otEPH_nT"
},
"id": "01h5otEPH_nT"
},
{
"cell_type": "code",
"source": [
"plott('prevailing_wage')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "4ayouQkMpW7B",
"outputId": "32cf16b3-91ea-4f4b-e79d-c54de42f776c"
},
"id": "4ayouQkMpW7B",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFTCAYAAACkvQ89AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3iMd/7/8ddMJE4pIYJEtarfipQqTUJL0YYsJaHaS6nSg6+yqaL11Y3DbtKidaxawaKl7VaWb0+LoELPfNsSSlG2RUNDUiQRbdLIae7fH9b8ZHNmMpPJ/Xxcl+sy9+c+fN73TK55zec+WQzDMAQAAEzL6uoOAAAA1yIMAABgcoQBAABMjjAAAIDJEQYAADA5wgAAACZHGIBpnT59WoGBgTp06JCru+IWzp8/r9GjR6tz584KDAx0dXeuSVxcnCIiIir9GjALwgBqnalTp2rcuHElph86dEiBgYE6ffq0JMnf31+7du1SUFBQpdYbFham1atXO7Sv7mTNmjU6d+6cNmzYoF27drm6O9dk9OjReuedd665Hait6ri6A4CreHh4yM/Pz9XdKFV+fr68vLxc3Y1iTp06pQ4dOqhNmzYOXa8za23YsKEaNmx4ze1AbcXIAEzrPw8TFBQUaPbs2br33nvVsWNH9e7dWwsXLpQkjRo1SmfOnNH8+fMVGBhYbJh8+/btioyMtC/zt7/9TVff2DM9PV1//OMf1alTJ91///364IMPFBERobi4OPs8gYGBio+P17PPPqvOnTvrtddeU1FRkaZPn66wsDB16tRJf/jDH/T666/LZrPZl7syCrJq1Sr16NFDwcHBWrhwoWw2m+Li4nTPPfeoR48eWrVqVYX7Y/369QoPD1fHjh0VHh6ud999194WFhamTz75RBs2bFBgYKCmTp1a6jquDLO/9957uu+++9SpUyc988wzyszMLLXPvXr1Uu/evSVJZ8+e1fPPP6/Q0FCFhoZq7NixOnnypCQpOTlZgYGB+uGHH4pt73//93/VrVs3FRQUVGp/VXQY4D/br/T17bffVs+ePRUaGqpp06YpNzfXPs/vv/+uP/3pT+rSpYu6d++ulStXaty4cWXuo6utW7dO/fv3t7/+6quvFBgYWOz9mjJlimbMmCFJunDhgiZPnqxevXqpU6dOGjhwoD744INi66xMf/Lz87VgwQL16tVLd955px5++GHt3Lmzwv6i9mJkAPi3d955Rzt27NBrr72mVq1a6ZdfflFycrKky18SgwcP1sMPP6xHH33Uvszhw4c1adIkRUVFKTIyUocOHVJsbKy8vb01atQoSVJ0dLTOnz+vt99+W/Xq1dPcuXN15syZEttfunSpJk+erOjoaEmSzWZTixYttHjxYjVt2lQHDx5UTEyMfHx8NHToUPtySUlJatGihf7+97/r6NGjmjJlio4eParbb79d//jHP/TNN9/oxRdfVPfu3dWxY8dSa9+xY4dmzZqladOmqUePHtq1a5deeuklNWvWTGFhYXr//ff1P//zP2rcuLFmzJihevXqlbkfz5w5o02bNmn58uXKzc1VTEyMpk+frhUrVtjn2bNnj7y9vfXGG2/IMAzl5ubq8ccfV5cuXfTOO+/I09NTa9as0VNPPaWtW7fqlltu0R133KGEhIRiQSwhIUEPPPCAPD09VVBQUKn9VVV79+6Vn5+f3nrrLaWlpem5555TmzZt7Iei5s6dq6SkJC1dulTNmzfX8uXLtXfvXoWHh1e47q5du+rFF1/U+fPn5efnp927d6tJkybavXu3xo4dK+ny+zt58mRJl7/Eb7/9dj399NPy9vbWV199pdjYWAUEBOiee+6pdH+mTZumlJQUvfrqq2rZsqW++OILRUVF6f3331f79u2veV/BjRlALRMdHW0EBQUZnTt3LvavU6dORrt27YyUlBTDMAwjJSXFaNeunXHw4EHDMAxj1qxZxuOPP27YbLZS13v//fcbb7zxRrFpkydPNkaNGlVs2pIlS4yePXsahmEYJ06cMNq1a2fs37/f3p6ammq0b9/eWLJkiX1au3btjJkzZ1ZY24IFC4wnnniiWK29evUyCgsL7dOGDBliREZGVtj3qw0bNsyYOnVqsWnR0dHG8OHD7a/Hjh1rREdHl9u/JUuWGO3btzfOnDljn5aUlGS0a9fOSE5Otq+3W7duRl5enn2e9957zwgPDy+27wsLC42uXbsaW7ZsMQzDMN5++23jvvvus89z5swZIzAw0Ni3b1+Z/fnP/bVkyRJj4MCBlX5d2v6dMWOGfZ3Z2dlGhw4djM2bN9vbc3JyjJCQkAr31RU9evQwEhISDMMwjOHDhxsrV640OnfubBQUFBgnT5402rVrZ6SlpZW5/HPPPWdMnz690v05deqUERgYWOw9MgzDiIqKMmJjYyvVZ9Q+jAygVgoJCdGsWbOKTTt27JjGjx9f5jJDhgzR6NGj1a9fP/Xo0UO9e/dWr169ZLWWfTTtp59+sg9zXxEcHKylS5cqOztbP/30k6xWa7Ff5P7+/mrevHmJdZX2q33dunV67733lJqaqry8PBUUFKhVq1bF5vmv//oveXh42F83a9ZMN9xwQ7F5fH19lZGRUW4dDz/8cIk6Pv300zKXKUuLFi0UEBBgf33nnXfKarXqxIkT9vMNbrvttmLnCXz//fc6ffq07rrrrmLrys3NVUpKiiRp4MCBmjdvnvbu3avQ0FBt3rxZN954Y7FlKrO/quo/92/z5s313XffSZJSUlJUUFCgTp062dsbNGig2267rdLrDw0N1Z49e9SnTx8dOnRIcXFxWr9+vQ4dOqTjx4/rpptuUsuWLSVJRUVFWrVqlbZu3apz584pPz9fBQUF6tq1a6X78/3338swDA0cOLBYP/Lz83X33XdXYc+gNiEMoFaqX7++br755mLTfv3113KX6dChgz755BPt2rVLX3/9taKjo9W+fXu9+eab5QYCR6lfv36x11u3btUrr7yi6OhodenSRd7e3oqPj9fHH39cbL46dYr/GVssFnl6epaYZlzDA0otFkuVl6mMBg0aFHtts9nUvn17vfbaayXmbdy4saTLgaZ79+5KSEhQaGioEhISFBkZaZ+vsvurqkrbv9eyL8vStWtXvfXWW9q/f79uvvlmNWvWTF27dtXu3bt1/Phx+xe9JK1evVpvvvmmpk+frsDAQDVo0ECLFi0qdk5GRQzDkMVi0fvvv1+itvIO/6B24wRC4Cre3t7q37+/XnrpJa1atUrffPONTp06JUny9PRUUVFRsfnbtm2rb7/9tti0ffv2qWXLlvL29lbbtm1ls9n0/fff29t/+eUXnTt3rsK+7Nu3T3feeadGjhypDh066Oabb9bPP//sgCpLKquOW2+9tcrrOnv2rNLS0uyvDx48KJvNVu66OnTooJ9//llNmjTRzTffXOyfj4+Pfb5BgwZp27ZtOnz4sH788UcNGjSoWH+dtb+uaN26tTw9PYvdqyI3N1fHjh2r9Dq6du2qkydPKiEhwf7FfyUMJCUlFQsD3377re6//349+OCDCgoK0k033WQ/ybKy/QkKCpJhGDp//nyJfd2iRYtr2Q2oBQgDwL+9+eab2rx5s06cOKFTp04pISFB3t7e9iHaVq1aad++fTp79qz9l9jo0aOVlJSkuLg4JScna9OmTVqzZo3GjBkj6fKX7L333qvY2FgdOHBAR48e1bRp01SvXr0Kf3W3adNG33//vb744gudPHlSy5YtU1JSUrXUPmbMGG3atEnx8fE6efKk3nnnHSUkJNjrqIp69eopOjpaR48e1f79+/Xiiy/qvvvuK/eSxMjISPn6+uqZZ57Rnj17lJKSoqSkJM2dO7fYl13fvn1VUFCgGTNm6I477tAtt9xib3Pm/rqiYcOGeuihh7Rw4UJ9/fXXOn78uP785z/LZrNVelTl1ltvlZ+fnzZt2qRu3bpJuhwG9uzZo19++cU+Tbpc49dff629e/fqxIkTmjlzpv2+GZXtzy233KLIyEhNmzZN27ZtU0pKig4dOqTVq1dr+/btDtw7cCccJgD+rWHDhlq9erVOnjwpi8Wi22+/Xa+//rp9+H7ixImKiYlR3759lZ+frx9++EEdOnTQX//6V8XFxWnlypXy9fXV2LFjNXLkSPt6586dq7/85S8aNWqUfH19NXHiRKWkpFR4bf2wYcPsVwcYhqE//OEPeuqpp/Thhx86vPa+ffvqz3/+s9asWaNXXnlFAQEBio2NVVhYWJXX1apVKw0cOFB//OMfdeHCBfXo0UMvv/xyucvUr19f8fHxevXVVzVp0iT99ttvat68ubp166ZGjRoVmy88PFwbN260X253hTP319Wio6OVm5urqKgoNWjQQE8++aTS09OrdO+E0NBQffTRR/ZRgBtvvFEtWrSQh4eHPYxKUlRUlE6fPq2nn35a9erV05AhQxQZGakTJ05UqT9z5szRihUrtGDBAp09e1aNGzfWHXfcUSx4wFwshiMPfgGoUGZmpnr16qVXX31V/fr1c3V3HCouLk6JiYnavHmzq7viMvn5+br//vv13//93xo9erSru1Pj+oOaiZEBoJp9/fXXysnJUWBgoDIyMvTaa6/Jx8dHPXv2dHXX4ABHjhzRiRMn1KlTJ+Xk5Oj1119XTk6OBgwYQH/gNggDQDUrLCzUX//6V6WkpKhevXrq3Lmz4uPjS5xRD/f15ptvKjk5WXXq1FH79u21du1atWzZUnv37tXTTz9d5nL79+93an+AsnCYAACqyaVLl3T27Nky2//z8lfAVQgDAACYHJcWAgBgcoQBAABMztQnEF64kCObzTFHSXx9vZWRke2QdbkjM9dv5tolc9dv5tolc9fvbrVbrRY1adKwzHZThwGbzXBYGLiyPjMzc/1mrl0yd/1mrl0yd/21qXYOEwAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKmvgOhI13MzlNuYcm7UdXz8pDFZnNBjwAAqBzCgIP8fqlQce/uLzF9wiNdVL+OxQU9AgCgcjhMAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJicU55aeOHCBf3pT3/Szz//LC8vL918882aOXOmmjZtqsDAQLVr105W6+VcMn/+fAUGBkqSPv30U82fP19FRUXq0KGD5syZo/r161fYBgAAKs8pIwMWi0VjxoxRYmKiEhIS1Lp1ay1cuNDevn79em3cuFEbN260B4GcnBz95S9/0YoVK7Rjxw41bNhQq1evrrANAABUjVPCgI+Pj7p162Z/3blzZ6Wmppa7zJdffqmOHTuqTZs2kqThw4fro48+qrANAABUjVMOE1zNZrNp3bp1CgsLs08bNWqUioqK1KtXL02YMEFeXl5KS0tTQECAfZ6AgAClpaVJUrltVeHr630dlRSXlp4jT8+Su9PT00N+zRo6bDs1mZ/fDa7ugsuYuXbJ3PWbuXbJ3PXXptqdHgZmzZqlBg0aaOTIkZKkzz//XP7+/srOztYLL7ygZcuW6fnnn3dKXzIysmWzGY5ZmcWqgoLCEpMLCop0/vxvjtlGDebnd4Mp6iyNmWuXzF2/mWuXzF2/u9VutVrK/QHs1KsJ5s2bp1OnTmnx4sX2Ewb9/f0lSd7e3ho6dKi+/fZb+/SrDyWkpqba5y2vDQAAVI3TwsCiRYt0+PBhLVu2TF5eXpKkixcv6tKlS5KkwsJCJSYmKigoSJLUs2dPHTp0SCdPnpR0+STDBx54oMI2AABQNU45THDs2DGtXLlSbdq00fDhwyVJN954o8aMGaOYmBhZLBYVFhaqS5cumjRpkqTLIwUzZ87UuHHjZLPZFBQUpBkzZlTYBgAAqsYpYeC2227TDz/8UGpbQkJCmcv17dtXffv2rXIbAACoPO5ACACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHJOCQMXLlzQ008/rX79+ikyMlLPPvusMjMzJUkHDhzQoEGD1K9fP40ePVoZGRn25a61DQAAVJ5TwoDFYtGYMWOUmJiohIQEtW7dWgsXLpTNZtMLL7ygmJgYJSYmKiQkRAsXLpSka24DAABV45Qw4OPjo27dutlfd+7cWampqTp8+LDq1q2rkJAQSdLw4cO1bds2SbrmNgAAUDV1nL1Bm82mdevWKSwsTGlpaQoICLC3NW3aVDabTVlZWdfc5uPjU+m++Pp6O6YoSWnpOfL0LLk7PT095NesocO2U5P5+d3g6i64jJlrl8xdv5lrl8xdf22q3elhYNasWWrQoIFGjhypHTt2OHvzxWRkZMtmMxyzMotVBQWFJSYXFBTp/PnfHLONGszP7wZT1FkaM9cumbt+M9cumbt+d6vdarWU+wPYqWFg3rx5OnXqlFasWCGr1Sp/f3+lpqba2zMzM2W1WuXj43PNbQAAoGqcdmnhokWLdPjwYS1btkxeXl6SpI4dO+rSpUvau3evJGn9+vXq37//dbUBAICqccrIwLFjx7Ry5Uq1adNGw4cPlyTdeOONWrZsmebPn6/Y2Fjl5eWpVatWWrBggSTJarVeUxsAAKgai2EYDjpo7n4cec5AocWqRfF7S0yf8EgX1a9jccg2ajJ3O37mSGauXTJ3/WauXTJ3/e5We0XnDHAHQgAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmRxgAAMDkCAMAAJgcYQAAAJMjDAAAYHKEAQAATI4wAACAyREGAAAwOcIAAAAmV+kw8NFHH5U6fdu2bQ7rDAAAcL5Kh4EZM2aUOj0mJsZhnQEAAM5Xp6IZUlJSJEmGYdj/f3Wbl5dX9fQMAAA4RYVhIDw8XBaLRYZhKDw8vFhbs2bNNGHChEptaN68eUpMTNSZM2eUkJCgdu3aSZLCwsLk5eWlunXrSpKmTJminj17SpIOHDigmJgY5eXlqVWrVlqwYIF8fX0rbAMAAJVXYRj417/+JUkaOXKk1q5de80b6tOnjx5//HE99thjJdqWLFliDwdX2Gw2vfDCC5ozZ45CQkK0fPlyLVy4UHPmzCm3DQAAVE2lzxm4niAgSSEhIfL396/0/IcPH1bdunUVEhIiSRo+fLj9ZMXy2gAAQNVUODJwRUpKihYvXqyjR4/q999/L9b2+eefX1cnpkyZIsMwFBwcrMmTJ6tRo0ZKS0tTQECAfZ6mTZvKZrMpKyur3DYfH5/r6gsAAGZT6TAwZcoUtW7dWtHR0apfv77DOhAfHy9/f3/l5+fr5Zdf1syZM7Vw4UKHrb88vr7eDltXWnqOPD1L7k5PTw/5NWvosO3UZH5+N7i6Cy5j5tolc9dv5tolc9dfm2qvdBg4duyY1q1bJ6vVsfcpunLowMvLSyNGjFBUVJR9empqqn2+zMxMWa1W+fj4lNtWFRkZ2bLZDAdUIcliVUFBYYnJBQVFOn/+N8dsowbz87vBFHWWxsy1S+au38y1S+au391qt1ot5f4ArvQ3e2hoqI4cOeKQTl3x+++/67ffLu9MwzC0detWBQUFSZI6duyoS5cuae/evZKk9evXq3///hW2AQCAqqn0yECrVq00ZswYhYeHq1mzZsXaJk2aVOHys2fP1vbt25Wenq6nnnpKPj4+WrFihSZMmKCioiLZbDbdeuutio2NlSRZrVbNnz9fsbGxxS4frKgNAABUjcUwjEqNk0+bNq3MNne9pM+RhwkKLVYtit9bYvqER7qofh2LQ7ZRk7nbkJkjmbl2ydz1m7l2ydz1u1vtFR0mqPTIgLt+4QMAgPJV6dLCsrRu3dohnQEAAM5X6TBw9W2Jr7BYLg9/Hz161PE9AwAATlHpMHDltsRXnD9/XkuXLrXfBRAAALina75pgJ+fn2bMmKFFixY5sj8AAMDJrusOQj/99JNyc3Md1RcAAOAClT5MMGLECPs5ApKUm5ur48ePa/z48dXSMQAA4ByVDgNDhw4t9rp+/fpq37692rRp4+g+AQAAJ6p0GBgyZEh19gMAALhIpc8ZKCgo0JIlS9SnTx/dcccd6tOnj5YsWaL8/Pzq7B8AAKhmlR4ZWLBggQ4ePKiXXnpJAQEBSk1N1fLly5Wdna3p06dXZx8BAEA1qnQY2LZtmzZu3KgmTZpIktq2bavbb79dgwcPJgwAAODGKn2YoKznGVXyOUcAAKCGqnQY6N+/v6KiorRz506dOHFCX375pcaPH6/+/ftXZ/8AAEA1q/RhghdeeEF/+9vfNHPmTJ07d04tWrTQwIEDFRUVVZ39AwAA1azCkYF9+/ZpwYIF8vLy0qRJk7Rjxw5999132r59u/Lz83XkyBFn9BMAAFSTCsPAypUrFRoaWmpbt27dtGLFCod3CgAAOE+FYeDo0aPq2bNnqW3du3fX4cOHHd4pAADgPBWGgezsbBUUFJTaVlhYqJycHId3CgAAOE+FYaBt27batWtXqW27du1S27ZtHd4pAADgPBWGgSeffFKxsbHavn27bDabJMlms2n79u168cUX9dRTT1V7JwEAQPWp8NLCyMhIpaenKzo6WgUFBfLx8VFWVpY8PT01ceJERUREOKOfAACgmlTqPgNPPfWUhg4dqv379ysrK0s+Pj7q0qWLvL29q7t/AACgmlX6pkPe3t5lXlUAAADcV6VvRwwAAGonwgAAACZHGAAAwOQIAwAAmBxhAAAAkyMMAABgcoQBAABMjjAAAIDJEQYAADA5wgAAACZHGAAAwOQIAwAAmBxhAAAAkyMMAABgcoQBAABMzilhYN68eQoLC1NgYKB+/PFH+/Tk5GQNGzZM/fr107Bhw3Ty5MnrbgMAAFXjlDDQp08fxcfHq1WrVsWmx8bGasSIEUpMTNSIESMUExNz3W0AAKBqnBIGQkJC5O/vX2xaRkaGjhw5ooiICElSRESEjhw5oszMzGtuAwAAVVfHVRtOS0tTixYt5OHhIUny8PBQ8+bNlZaWJsMwrqmtadOmrioHAAC35bIwUBP4+no7bF1p6Tny9Cy5Oz09PeTXrKHDtlOT+fnd4OouuIyZa5fMXb+Za5fMXX9tqt1lYcDf319nz55VUVGRPDw8VFRUpHPnzsnf31+GYVxTW1VlZGTLZjMcU5DFqoKCwhKTCwqKdP78b47ZRg3m53eDKeosjZlrl8xdv5lrl8xdv7vVbrVayv0B7LJLC319fRUUFKTNmzdLkjZv3qygoCA1bdr0mtsAAEDVWQzDcNBP47LNnj1b27dvV3p6upo0aSIfHx9t2bJFJ06c0NSpU/Xrr7+qUaNGmjdvntq2bStJ19xWFY4cGSi0WLUofm+J6RMe6aL6dSwO2UZN5m4p2ZHMXLtk7vrNXLtk7vrdrfaKRgacEgZqKsKA47jbH4Yjmbl2ydz1m7l2ydz1u1vtNfYwAQAAqBkIAwAAmJypLy2E6xhWqy7lF5WYXq9uHV3KK3lVhiTV8/KQxWar7q4BgOkQBuASl/KLFPfu/hLTxw/trGXvHSh1GbOcfwEAzkYYgNvw9LQqt6DkyEBZIwZljT6UtwwAmBFhACVUdQi/npeHM7qlvPyiUkcNyhoxKGv0QZImPxasgsKSV5IQEgCYEWEAJVR1CH/CI13KXFdZwcJw8Wh/VYMFANRmhAFUq/KChaOUdfjA1YEDANwFYQBur6xf+Y4MHABQmxEGcN08Pa1KS88p9Rg8v84BoOYjDOC65eUXadWGw6U+tZFf5wBQ8xEGgKtU9fJFAKgNCAPAVco6/6CsSxEl6WJ2XnV3CwCqFWEAqISyQoIkTX4shD8kAG6NBxUBAGByhAEAAEyO0c1arsxbC3NCnMNYrRbl5nFrYwDuizBQy5V1B8DyTojj3gBVcymvUEtL2cfc2hiAuyAMmFR5J8RxbwAAMBfCAOBkPFoZQE1DGACqSdkPUCoq9bCCxKEFAK5BGKglauqjgs2MBygBcBeEgVrCGY8KBgDUTtxnAAAAkyMMAABgcoQBAABMjjAAAIDJEQYAADA5riYAapCy7k3AzYgAVCfCgBsp78513E+gdijr3gTcjAhAdSIMuJGy7iUgcT+B2q6sEQOJUQMA148wALiB8h4sxagBgOvFCYQAAJgcIwM1EM8ZAAA4E2GgBuI5AwAAZ+IwAQAAJsfIAODmuDcBgOtFGADcHPcmAHC9OEwAAIDJMTLgQlw1AACoCWpEGAgLC5OXl5fq1q0rSZoyZYp69uypAwcOKCYmRnl5eWrVqpUWLFggX19fSSq3zV1w1QAAoCaoMYcJlixZoo0bN2rjxo3q2bOnbDabXnjhBcXExCgxMVEhISFauHChJJXbVtN4elqVW2iU+o8RAABATVAjRgZKc/jwYdWtW1chISGSpOHDh6tPnz6aM2dOuW01TXm3kWUEAABQE9SYMDBlyhQZhqHg4GBNnjxZaWlpCggIsLc3bdpUNptNWVlZ5bb5+PhUepu+vt4O639aeo48PUvuTovFUur08tqqOr0mrEuSQ7Zfk2ssa12SY2p39DKenh7ya9awzD47kp/fDU7ZTk1k5tolc9dfm2qvEWEgPj5e/v7+ys/P18svv6yZM2cqPDy82rebkZEtm81wzMosVhUUFJaYbBhGqdPLa6vq9JqwLkkO2X5NrrGsdUmOqd3Ry0iGfk77tcRURyrg1pgAAA+/SURBVN9/wM/vBp0//5vD1udOzFy7ZO763a12q9VS7g/gGhEG/P39JUleXl4aMWKEoqKi9Pjjjys1NdU+T2ZmpqxWq3x8fOTv719mG4DLuP8AgMpy+QmEv//+u3777XK6MgxDW7duVVBQkDp27KhLly5p7969kqT169erf//+klRuGwAAqBqXjwxkZGRowoQJKioqks1m06233qrY2FhZrVbNnz9fsbGxxS4flFRuGwAAqBqXh4HWrVtrw4YNpbbdddddSkhIqHIbAACoPJeHAQDOVdaDjSQebgSYFWEAMJny7n3ByYWAObn8BEIAAOBahAEAAEyOMAAAgMlxzgAAu7JOLuTEQqB2IwwAsOOuhYA5cZgAAACTIwwAAGByhAEAAEyOMAAAgMkRBgAAMDmuJgBQofIuOQTg/ggDACpU3iWHANwfhwkAADA5wgAAACbHYQIA18zT06q09BwVFBol2riFMeA+CAMArllefpFWbTisgoLCEm3cwhhwHxwmAADA5AgDAACYHGEAAACTIwwAAGBynEAIoFqUd9dCrjIAahbCAIBqUd5dC7nKAKhZOEwAAIDJEQYAADA5wgAAACbHOQMAnIoTC4GahzAAwKk4sRCoeQgDAGqEskYMJEYNgOpGGABQI5Q1YiAxagBUN04gBADA5AgDAACYHIcJANR4XIEAVC/CAIAajysQgOpFGADgtq5lxMCwWnUpv6hKywC1HWEAgNsqa8Rg8mPBKig0Sl3GsBRp6bv7S0wva5ShrPAgSelZucotZTsEC7gbwgCAWqe8yxTHD+1c6vSyRhnKCg+S9OwjXUptKyuM1KtbR5fyCktdlyMDBKMfqCrCAACo7ABRVni41nWVFVKqGiDK+2K/lF+kuCqMfpSnvGCB2sOtw0BycrKmTp2qrKws+fj4aN68eWrTpo2ruwUAVVbVAFH+oZDSt1HmORbljFiUNTIy+bFgpaXnlOgDow/uya3DQGxsrEaMGKHBgwdr48aNiomJ0d///ndXdwsAqt21HAq5lhGL8ta1asNhFRQUDxHlhZQyRzmqOF0idDia24aBjIwMHTlyRG+++aYkKSIiQrNmzVJmZqaaNm1aqXVYrY67JMnDYlGTG+qWmF7Ho/Tp5bVVdXpNWJfPDXVVWFBy2NDV/XLGujxc2K9rWYb3vna89zVhXaW990VFNq396Eip63p84O2ltlV1uiSNefAO5ZeSOep61VFefskAUdfT8eHBkd8h1a2ivloMwyg9wtVwhw8fVnR0tLZs2WKfNmDAAC1YsEAdOnRwYc8AAHAv3I4YAACTc9sw4O/vr7Nnz6qo6PJZrkVFRTp37pz8/f1d3DMAANyL24YBX19fBQUFafPmzZKkzZs3KygoqNLnCwAAgMvc9pwBSTpx4oSmTp2qX3/9VY0aNdK8efPUtm1bV3cLAAC34tZhAAAAXD+3PUwAAAAcgzAAAIDJEQYAADA5wgAAACZHGLhOycnJGjZsmPr166dhw4bp5MmTru7SNQkLC1P//v01ePBgDR48WDt37pQkHThwQIMGDVK/fv00evRoZWRk2JepjjZnmDdvnsLCwhQYGKgff/zRPr2899LZbdWprPrL+gxItedzcOHCBT399NPq16+fIiMj9eyzzyozM9MlNda0+gMDAxUZGWl//3/44Qf7cp9++qn69++v8PBwPffcc8rNza3WturyzDPPaNCgQXrwwQc1YsQIHT16VJJ5/vbLZeC6jBo1ytiwYYNhGIaxYcMGY9SoUS7u0bW5//77jR9++KHYtKKiIqNv375GUlKSYRiGsWzZMmPq1KnV1uYsSUlJRmpqaomay3svnd1Wncqqv7TPgGHUrs/BhQsXjG+++cb+eu7cuca0adOcXmNNq98wDKNdu3ZGdnZ2iWWys7ON7t27G8nJyYZhGMb06dONuLi4amurTr/++qv9/zt27DAefPBBwzDM87dfHsLAdUhPTzeCg4ONwsJCwzAMo7Cw0AgODjYyMjJc3LOqK+2L4LvvvjMGDhxof52RkWF07ty52tqc7eqay3svnd3mivpLe31Fbf4cbNu2zXjiiSecXmNNq98wyg4DW7duNcaOHWt/ffDgQWPAgAHV1uYs//znP40hQ4aY8m+/NG771MKaIC0tTS1atJCHx+Wndnl4eKh58+ZKS0tzyzshTpkyRYZhKDg4WJMnT1ZaWpoCAgLs7U2bNpXNZlNWVla1tPn4+Din0FKU914ahuHUNld+dv7zM9CoUaNa+zmw2Wxat26dwsLCnF5jTav/ilGjRqmoqEi9evXShAkT5OXlVaKvAQEBSktLk6RqaatuM2bM0P/93//JMAy98cYb/O3/G+cMQJIUHx+vTZs26YMPPpBhGJo5c6aruwQnM9tnYNasWWrQoIFGjhzp6q64xH/W//nnn+vDDz9UfHy8jh8/rmXLlrm4h9Xj5Zdf1ueff67nn39e8+fPd3V3agzCwHWoTQ9LutJnLy8vjRgxQt9++638/f2VmppqnyczM1NWq1U+Pj7V0uZK5b2Xzm5zldI+A1em17bPwbx583Tq1CktXrxYVqvV6TXWtPql///+e3t7a+jQoWW+/6mpqfZ5q6PNWR588EHt3r1bLVu2NP3fvkQYuC615WFJv//+u3777TdJkmEY2rp1q4KCgtSxY0ddunRJe/fulSStX79e/fv3l6RqaXOl8t5LZ7e5QlmfAal63mtXfg4WLVqkw4cPa9myZfLy8nJJjTWt/osXL+rSpUuSpMLCQiUmJtrf/549e+rQoUP2M97Xr1+vBx54oNraqktOTk6xQxGffvqpGjdubPq//St4NsF1qg0PS0pJSdGECRNUVFQkm82mW2+9VX/+85/VvHlzffvtt4qNjVVeXp5atWqlBQsWqFmzZpJULW3OMHv2bG3fvl3p6elq0qSJfHx8tGXLlnLfS2e3Obv+FStWlPkZkKrnvXbF5+DYsWOKiIhQmzZtVK9ePUnSjTfeqGXLljm9xppU/5gxYxQTEyOLxaLCwkJ16dJF06dPV8OGDSVJH3/8sRYsWCCbzaagoCDNnTtXDRo0qLa26pCenq5nnnlGubm5slqtaty4saKjo9WhQwfT/O2XhzAAAIDJcZgAAACTIwwAAGByhAEAAEyOMAAAgMkRBgAAMDnCAIAqW7FihWbMmCFJOn36tAIDA1VYWChJGjNmjP75z3+6snsAqohLCwFcl9OnT6tPnz76/vvvVacOjzsB3BEjA0AtdeWXOgBUhDAAuJmwsDCtXLlSAwYMUGhoqKZNm6a8vDzt3r1bvXr10qpVq9SjRw9NmzZNNptNq1atUt++fdWtWzdNmjRJWVlZki4P569du7bYugcNGqTt27dLunynwt69e+uuu+7SQw89ZL91riTFxcVpypQppfZv1KhReu+99yRJH374oR599FHNmzdPoaGhCgsL0xdffGGfNyUlRY899pi6dOmiJ598Ui+99FKZ670iOjpaa9askSSdPXtWgYGBio+PlyT9/PPP6tq1q2w2my5evKhx48bp7rvvVmhoqMaNG6dffvml0ts+cOCAhg8frpCQEA0aNEi7d+8u/40B3BhhAHBDCQkJWr16tXbs2KHk5GQtX75c0uVbrl68eFGfffaZZs2apXfeeUcff/yx1q5dq507d6px48b2pxFGRETY748uScePH1dqaqruu+8+SdIdd9yhDRs2aM+ePYqIiNCkSZOUl5dX5b4ePHhQt9xyi7755huNGTNGM2bM0JWjk1OmTFGnTp20e/duPfvss9q4cWOF6wsNDdWePXskSXv27FHr1q2VlJRkfx0cHCyr1SqbzaaHHnpIn332mT777DPVrVu32JMYy9v22bNnNW7cOEVFRWnPnj2Kjo7WxIkTlZmZWeX6AXdAGADc0GOPPSZ/f3/5+PgoKipKW7ZskSRZrVZNnDhRXl5eqlevntavX6/nn39eLVu2lJeXl5599lklJiaqsLBQffv21b/+9S+dOXNG0uWAER4ebn94zeDBg9WkSRPVqVNHo0ePVn5+vpKTk6vc14CAAD3yyCPy8PDQkCFDdP78eaWnpys1NVWHDh2y9zckJERhYWEVrq9r167at2+fbDabkpKSNGbMGPsT9pKSktS1a1dJUpMmTdSvXz/Vr19f3t7eioqKsoeGira9ceNG9erVS71795bValWPHj3UsWPHYqMaQG3C2T6AG7r6cacBAQE6d+6cpMtfgHXr1rW3paamavz48fbH1EqXA0NGRoZatGih3r17a8uWLRo7dqw2b96s2bNn2+dbvXq13n//fZ07d04Wi0XZ2dm6cOFClft69cN36tevL+nyUxIvXLigxo0b26ddqevqJ8uV5qabblL9+vV19OhR7du3T+PHj9f777+vn376SUlJSRo1apQkKTc3V3PmzNHOnTt18eJFSZefXHflkbHlbTs1NVXbtm3TZ599Zm8vLCxUt27dqlw/4A4IA4AbuvoLMzU11f50QYvFUmy+li1b6pVXXlFwcHCp64mIiNDSpUsVGhqqvLw8+5fd3r179cYbb+itt97SbbfdJqvVqtDQUDny4iM/Pz9dvHhRubm59i/lioLAFaGhoUpMTFRBQYFatGih0NBQbdiwQRcvXrQ/enfNmjVKTk7Wu+++Kz8/Px09elQPPvigDMOocNv+/v4aPHhwsXAE1GYcJgDc0D/+8Q/98ssvysrK0ooVKzRgwIBS53v00Ue1ePFi+6GAzMxMffzxx/b23r17KzU1VUuWLNGAAQPsIwg5OTny8PBQ06ZNVVhYqKVLlyo7O9uhNbRq1UodO3ZUXFyc8vPztX///mK/xMvTtWtXrV27ViEhIZKkbt26ae3atQoODpaHh4e9hrp166pRo0bKysrS0qVLK73tQYMG6bPPPtPOnTtVVFRkP0Hz6hMQgdqEMAC4oYiICI0ePVp9+/bVTTfdpKioqFLne/zxxxUWFqbRo0erS5cueuSRR3Tw4EF7u5eXl8LDw/XVV18pIiLCPv3ee+9Vz5491a9fP4WFhalu3brFDk04ysKFC3XgwAF169ZNixcv1oABA+znLJQnNDRUOTk5Cg0NlSQFBwfr0qVL9nAgSU888YTy8vJ09913a9iwYerZs2elt+3v76/ly5dr5cqVuueee9S7d2+tXr1aNpvNgdUDNQc3HQLcTFhYmGbPnq3u3bu7uisO99xzz6lt27aaOHGiqbYNuBojAwBc5uDBg/r5559ls9n05Zdf6pNPPlHfvn1r/baBmoYTCAG4THp6uiZMmKCsrCy1bNlSL774om6//XZt2rRJsbGxJeYPCAiwX0ZZXdsGzIjDBAAAmByHCQAAMDnCAAAAJkcYAADA5AgDAACYHGEAAACTIwwAAGBy/w9RhIyER8iUWAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Aside from the spike around \\$0, prevailing wage follows a right-skewed normal distribution. It may well be that the spike is due to other wage units, such as hourly."
],
"metadata": {
"id": "E9uKFaQSIJKB"
},
"id": "E9uKFaQSIJKB"
},
{
"cell_type": "code",
"source": [
"plott()\n",
"plt.title('Prevailing Yearly Wage',fontsize=14)\n",
"sns.histplot(data=visa.loc[visa['unit_of_wage']=='Year'],\n",
" x='prevailing_wage');"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "MIe8av9nR-S3",
"outputId": "77d7f8d4-295c-46e8-ad0b-ec057d800437"
},
"id": "MIe8av9nR-S3",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
\n",
" "
]
},
"metadata": {},
"execution_count": 28
}
]
},
{
"cell_type": "markdown",
"source": [
"I am skeptical about the records tagged with 'Week' for ```unit_of_wage```. According to our records, 75% of jobs with a weekly wage pay at least \\$51,000 per WEEK! As we have limited visibility into the source of these data, we will preserve these records, but ideally I would like to do further research to justify these entries."
],
"metadata": {
"id": "4L2xsRJsX6hf"
},
"id": "4L2xsRJsX6hf"
},
{
"cell_type": "code",
"source": [
"plott()\n",
"plt.title('Prevailing Wage by Unit',fontsize=14)\n",
"sns.boxplot(data=visa,\n",
" x='prevailing_wage',\n",
" y='unit_of_wage');"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "9NV89sp8S46m",
"outputId": "a08cb3fc-1045-41a2-9605-fb56cf871bf6"
},
"id": "9NV89sp8S46m",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFTCAYAAACzn5/0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVhU9f4H8PfMsCqriohmmqa4YggDIghGmiuLdtMyNTOXXFLzcn+ILZYL7jdzL9O6pWapiAtmZZoIKWBqervumai4gMgIgsDMnN8fXs519AADzMxheb+ex+fxfL9n+XyZA/Oec86coxAEQQARERHRY5RyF0BERETVE0MCERERSWJIICIiIkkMCURERCSJIYGIiIgkMSQQERGRJIYEolosLi4O3t7eRk/TQzNmzMD48ePlLqNMoaGhWL9+vdxlUC3HkEBURTNmzICnpyc8PT3RsWNHvPDCC1i4cCHy8/PlLg39+/fH/v37K91vKkFBQVi9erVB2+rVq+Hp6Yl9+/YZtEdFRWHYsGFmr0kOUuMFKhdKtm3bZvBzKm3dRFXBkEBkAt27d0dSUhL279+PadOmYfPmzVi4cKHkvFqtFpa6h5mdnR0aNmxY6X5T8ff3R2pqqkFbSkoKPDw8JNu7detm9ppqugYNGsDe3l7uMqiWY0ggMgEbGxu4ubnBw8MDYWFhCAsLw88//wwAWLFiBQYOHIi4uDj06tULnTt3Rn5+PnJzc/H+++8jICAA3t7eGD58OE6fPg0AyMvLg5eXFw4cOGCwnaSkJHTs2BF37twBACxZsgR9+vSBl5cXQkNDsWjRIhQWForzl3c64fH+kloTEhLQq1cveHt7Y+LEicjOzhbn0Wq1iI2NhVqthlqtRmxsLGbNmoURI0aUuh1/f3+cOHECRUVFAICioiKcOHEC48aNQ0pKijjf5cuXcfv2bXTr1g06nQ4zZ85EaGgovLy88OKLL2LdunXQ6/UVqkUQBKxbtw69evWCl5cXwsLCsHPnzlJrfdTq1avRvXt3eHt7IyYmBg8ePAAAxMfHw9/fXxxPib///e946623jFp3WUJDQ7F69Wp88MEH6Nq1K4KDg/H5558/MU/J6YbQ0FAAwNSpU+Hp6SlOE1UVQwKRGdjZ2aG4uFicvnbtGvbs2YNPPvkEO3fuhI2NDcaNG4dbt27h008/RXx8PHx9ffH666/j9u3bcHBwwPPPP4/du3cbrHf37t3o3r27+Onf3t4esbGx2Lt3L2bNmoW9e/dizZo1Var9+vXr2Lt3L1auXIkNGzbgzJkzWLZsmdi/YcMG7NixA3PnzsW3334LvV6PPXv2lLlOf39/PHjwAL///jsA4OTJk3B1dUVkZCSuXLmCrKwsAA+PItjZ2eG5556DXq+Hu7s7li1bhr1792LatGn49NNPsX379grVsmzZMmzbtg0ffPABEhISMG7cOMyaNQu//PJLmTWnpqbi7Nmz+PLLL7F8+XIkJSVhyZIlAIC+fftCr9cbnKrJzc3F/v378be//a38H7IR/vWvf6Ft27bYsWMHxo4di8WLF+PEiROS827btg0AMHfuXCQlJYnTRFXFkEBkYqdOncLu3bsREBAgthUXF2PRokXo2LEj2rZti2PHjuHs2bNYvnw5vLy80KJFC0ybNg3NmzcXP+WGh4fjwIEDyMvLAwA8ePAAP/30E8LDw8X1Tpo0CT4+PnjqqacQEhKC8ePHIyEhoUr1a7VaLFiwAO3atYO3tzeGDBmCI0eOiP1fffUVxo4diz59+qBVq1Z499130ahRozLX2aJFC3h4eIhHDVJSUqBWq1GvXj106tRJPOWQkpICb29v2NjYwNraGlOnToWXlxeeeuop9O/fH6+88orB+MqrJT8/H1988QXmzZuH4OBgNG/eHGFhYXj55ZexadOmMmtWqVSYP38+2rZtix49eiAqKgpbtmxBfn4+7OzsEBYWZhBYdu/eDQcHB/Ts2dPon3VZAgMDMXz4cLRo0QIjRoxAixYtDF6HRzVo0AAA4OjoCDc3N3GaqKqs5C6AqDY4fPgwvL29odVqodVq8cILL+D9998X+93d3Q3evP744w8UFBQYBAkAKCwsxNWrVwEAwcHBsLOzw/79+xEZGYkDBw5AEAT06tVLnH/fvn3417/+hfT0dOTn50On0xkcjq+Mpk2bwtHRUZxu3LixeHojNzcXmZmZ6Ny5s9ivUCjg5eWFmzdvlrlef39/pKSkYPLkyUhJSUFERAQAwM/PD0ePHkX//v2RmpqK4cOHi8t888032Lp1KzIyMlBYWIji4mI0a9bM6FouXryIwsJCjBkzBgqFQpzv0fWUxtPTE/Xr1xenvb29UVxcjPT0dLRr1w5DhgzBoEGDcPPmTTRp0gTbt29HZGQkrKxM82fV09PTYLpx48YGp32ILIEhgcgEfH19MWfOHFhZWaFx48awtrY26K9Xr57BtF6vR6NGjSQ/zTo4OAAArK2t0a9fP+zevRuRkZHYtWsXevfuLV6sdvLkSUyfPh2TJk1Cjx494OTkhAMHDpR6waSxHq9doVCY5EJLf39/zJo1CxqNBr///jvmzZsHAFCr1Zg3bx4uXbqErKws8aLFvXv3IjY2FtHR0fD29oaDgwM2bdpUoW9jlNS9Zs0aNG3a1KCvqm/m7dq1Q4cOHcRrTf79739j8eLFZS5Tv3595ObmPtF+79498XUvrT6FQlHlAEhUUQwJRCZgb2+PFi1aGD1/x44dkZWVBaVSiebNm5c6X3h4OIYPH46LFy8iKSkJa9euFfuOHz8Od3d3TJo0SWzLyMio3ACMVHI4+/Tp0+JREEEQcPr0abi5uZW5bMmFfhs2bECDBg3En1fXrl1x9epV7Nq1C/Xq1ROPDPz222/o0qWLwZGF9PT0CtXSunVr2NjYICMj44mjNuU5f/488vPzxYB38uRJWFtb4+mnnxbnGTJkCD7//HPcvXsXXbt2RatWrcpc5zPPPIM//vgDL7/8stim0+lw9uxZDB48uEL1Pc7a2pohgkyOIYFIBt27d0fXrl0xceJEREVFoVWrVsjKysLhw4fRvXt3+Pr6Anj4Btq0aVP8/e9/h4uLi8EbXcuWLXHr1i3s2rUL3t7eOHz4cLkXEJrCyJEjsX79ejzzzDNo3bo1vv32W2RmZpYbEpo1a4annnoKX3/9tcHV9/Xr10fHjh3x9ddfw9fXV/wE3bJlS8TFxeHQoUNo0aIFEhISkJaWBmdnZ6NrcXBwwOjRo7Fo0SIIggC1Wo38/HycPHkSSqUSQ4cOLbVerVaLmTNnYtKkSbh9+zaWLl2KIUOGGBwVGjBgABYsWIBvvvkGH330Ubk/uzfeeAMxMTFo06YNunfvjgcPHuDrr7+GRqMpsxZjNGvWDEeOHIFarYaNjY3Bz4moshgSiGSgUCjw2WefYdmyZXj//feRnZ2Nhg0bomvXroiMjDSYNywsDKtXr8aoUaOgUqnE9tDQULz55puIjY1FYWEhAgMDMWXKFKPerKpi9OjRyMzMRExMDBQKBQYPHozevXuL31Aoi7+/P7Zv3w5/f3+Ddj8/P/z+++8G90cYOnQozpw5g6ioKAiCgBdffBFvvPEG4uLiKlTLtGnT0KhRI2zYsAEffvghHBwc0L59e4wZM6bMWv38/PDss89i5MiRePDgAV588UX84x//MJjHwcEBffv2xQ8//IB+/fqVO/6BAwcCePitjKVLl8Le3h4dO3bEpk2byg1Z5YmOjsaCBQvQs2dPuLu7P/H1WaLKUAiWuqsLEdVakZGR8PHxMbhYs67UMmbMGDRp0gRz5861yPaILIlHEoioQq5fv46kpCSo1WpotVp89913OHfuHObMmVOnatFoNDh27BiSk5ONvjkTUU3DkEBEFaJUKhEfH49FixZBr9fj2Wefxbp16wy+ilgXahk0aBBycnLwzjvvoG3btmbfHpEceLqBiIiIJPGOi0RERCSJIYGIiIgkMSQQERGRJF64KOHu3fvQ6013qUbDhg64cyfPZOurSery2IG6Pf66PHagbo+/Lo8dqHnjVyoVcHWtL9nHkCBBrxdMGhJK1llX1eWxA3V7/HV57EDdHn9dHjtQe8bP0w1EREQkiSGBiIiIJPF0g5klJyfCyckenTur5S6FiIioQhgSzGzz5q+gUAArVzIkEBFRzcLTDURERCSJIYGIiIgkMSQQERGRJIYEIiIiksSQQERERJIYEoiIiEgSQwIRERFJYkggIiIiSQwJREREJIkhgYiIiCQxJBAREZEkhgQiIiKSxJBgZlqtFkVFRUhOTpS7FCIiogphSDAznU4LrVaLpKRDcpdCRERUIQwJREREJIkhgYiIiCQxJBAREZEkhgQiIiKSxJBAREREkhgSiIiISBJDAhEREUliSCAiIiJJDAlEREQkqVqEhNDQUJw/f96gbfDgwUhJSZGpIiIiIqoWIcHctFqt3CUQERHVONU+JGRlZWHSpEkICwtDWFgY4uPjxT5PT0/cv39fctrT0xMrVqzASy+9hJUrV1q87hKCIAAANJoc2WogIiKqDCu5CygxZcoU2NraitN//fUXAGDu3Llo06YNVq1ahdu3b2Pw4MHo0KED2rZtW+46bW1tsX37dnOVTEREVKtVm5CwfPlygzf+wYMHAwCOHDmCGTNmAAAaN26MkJAQpKSkGBUSBg0aZJ5iK0ChUEAQBDg7u8hdChERUYVU+9MNZVGpVOLh/MLCwif669WrZ+mSiIiIao1qHxICAgLw3XffAQAyMzNx6NAhdOvWDQDw9NNP4/Tp0wCA3bt3y1YjERFRbVRtTjeU5r333sMHH3yAsLAwAEBUVBTatGkDAIiJicEHH3wAR0dH9O3bV84yiYiIah2FUHK8nkR37uRBrzfNj2XMmOHQ6/Xw9GyP6Oj3TbLOmsTNzRGZmblylyGbujz+ujx2oG6Pvy6PHah541cqFWjY0EG6z8K1EBERUQ3BkEBERESSGBKIiIhIEkMCERERSWJIICIiIkkMCURERCSJIYGIiIgkMSQQERGRpGp/x8WaTqWyglKpR1BQiNylEBERVQhDgplZWVlBoQACA4PlLoWIiKhCeLqBiIiIJDEkEBERkSSGBCIiIpLEkEBERESSGBKIiIhIEkMCERERSWJIICIiIkkMCURERCSJIYGIiIgkMSQQERGRJIYEIiIiksSQQERERJL4gCczGzZsJJyc7OUug4iIqMIYEswsMDAYbm6OyMzMlbsUIiKiCuHpBiIiIpLEkEBERESSGBKIiIhIEkMCERERSWJIICIiIkkMCURERCSJIYGIiIgkMSQQERGRJIYEIiIiksSQQERERJJ4W2aqtM2bv8LVq1fKnMfaWoXiYp2FKnqSRpMDAHB2dpFl+5Udf/PmLTBs2EgzVEREZDyGBKq0q1ev4K+LZ9HEofTd6IEF65FyN08LALAtyJJl+5UZ/83/1kxEJDeGBKqSJg5WeMOrgdxllOqLU9kAUK1rfFxJzUREcuM1CURERCSJIYGIiIgkMSQQERGRJIYEIiIiksSQQERERJIYEoiIiEgSQwIRERFJYkggIiIiSQwJREREJIkhgYiIiCQxJBAREZEkPrvBzJKTE+HkZI/OndVyl0JENURyciIAIDAwWOZKqK5jSDCzpKRDsLZWMSQQkdGSkg4BYEgg+fF0AxEREUliSCAiIiJJDAlEREQkiSGBiIiIJDEkEBERkSSGBCIiIpLEkEBERESSGBKIiIhIEm+mRERUzWRn30Fm5m2MHj1M7lLMSqlUQq/XAwAUCgWcnV2Rk5P9xHyOjk7Izb33xLIqlRUAAcXFxQZ9VlZWUKlUGDgwEtu3fwuVSgWdTgcnJ2fcu6eBUqmCXq9DVNRM5Obew6efroS1tQ2mTPk7tm79Brdu3YC7uwdGjx6PzZv/hQkTpkAQBKxduwITJkyBRpODBQtmw93dA9Om/QOCIGDlyo8BAG+/PR1ubo4AgJycu+IyJcuHhUVi5cqPIQgCPDyaYtq0/4Ozs0up8w8bNhKbN38ltq1c+TEUCmDy5Onicuak+vDDDz80+1aMFBMTgxMnTiAwMFBsGzVqFPLz89G5c2eL1VFQUARBMM26kpMToVIpERDQwzQrrEaSkxOhzcuGt7u93KWU6uStAgCo1jU+7uStAlg5NEBQUIjcpVRJ/fq2yM8vkrsM2VRl/N9885WJq6mehMf+0D54UCA5X1FRoeSyer1ODBmP0uv10Ol0OHPmD4PtFBYWGkyfPHkcaWkpEAQ99Hodfv/9BLKyMqHT6aDR5OD8+bO4cuUvFBYW4vz5szh+PA2FhYX48ce9uHv3LjSaHBQVPew7ceIY7t7NRlFRIQICuiE/vwhbt34jLlOy/MmTJ/DgQYG4jaKiQnTp4g0AkvM/XsOj2ylZrqoUCgXq1bOR7KvQkYRLly5h3759yMrKwqxZs3Dp0iUUFxejXbt2Jil05syZiIiIwIsvvoguXbpgy5YtUCgUePXVV6u0Xq1WCysrHjQhourvwIGf5C6hzsjPv1/mdEbGdQAPb5MtCAIEQUBi4i/Q6bTiPImJB6FQKMTpw4cP4Y03RiInJ1dc7tHlH9/G4cO/IDx8sMF8j85fUsPhw4cMQlVS0iGEhw82+9EEo985v//+e8yePRu9e/fGnj17MGvWLOTn52Pp0qX48ssvTVKMo6Mj5syZg5iYGKxatQpr1qzB5s2bMXXqVGRkZKCwsBADBgzAW2+9BQBYuHAhUlNTUVxcDFdXV8TGxqJZs2a4du0aXnrpJQwePBhHjx7FkCFDqhw0KkujycG9exosXDhHlu2bU3r6FdTDkymeqiavSI/b6Vdq/D5jba1CcbFO7jJkU9nxnzt3xgzVUFVotVrx6PKjAeHhtO6Jebds2YKCgiLo9cITy0ute9euOAAoc36tVgtAeGK5ESNGV3JUxjE6JCxfvhxffPEF2rVrh++//x4A0K5dO5w9e9akBQUGBkKtVuNvf/sbYmJi8N5772HixIlQq9UoKirCqFGj0LlzZwQGBmLs2LGIjo4GAGzduhVLlizBxx8/PC+Uk5ODzp07i/1ERESV8fhpkXLmxsGDByEI/wsU5S1/5EgygPLmN2wTBAFHjiRXn5CQnZ0NT09PABAPrSgUCoPDLKby5ptv4vvvv0f//v0xa9YsZGf/70KW+/fv49KlSwgMDERiYiI2b96M/Pz8/6as/7G1tUW/fv1MXltFOTu7oFGjhpg+fabcpZjcwoVz8ODmRbnLqHUcbJRo1KQFoqPfl7uUKnFzc0RmZq7cZcimsuMfPfo1PP6GQPJSKBT//WRvzOuiwPPPP4+CgiLx1ER5ywcEPLwOr+z5FQbTCoVCXM6cjA4JHTt2xM6dOxEZGSm2JSQkwMvLy+RFKZVKKBQK6PV6KBQKbNu2DdbW1gbzXL9+HfPnz8e2bdvQvHlzHD9+HFFRUWK/vb29WQIMEZE5DR8+Chs3fiF3GfQIKysrCIIArVYLlcrK4JSDSqWCQqEQP6haWVnhlVdeQVbWw2sSdDrD5aXW/eg1CaXNX9JWsu2S5czN6PskvPvuu1i2bBmGDx+O/Px8vPnmm/jkk08QExNjtuIcHBzg4+ODzz77TGy7ceMGMjMzkZeXB2tra7i5uUGv12PLli1mq4OIyFJCQ3vLXUKdUa9e/f9+jfJ/049q2rQZFAoFgoJC0KNHTygUCgQH90TTps3EeYKDn0ePHj3F6R49QuDq6goXF1cEBYU8sfzj2+jRoyecnV1Knb+khh49QhAc/L/tBAWFWOQrkEYfSWjdujW+//57HDx4ED179oSHhwd69uyJ+vXrl79wFSxZsgTz589HWFgYAKB+/fqYN28ePD090bdvX/Tv3x+urq4ICQnBsWPHzFoLEZEluLk1RmbmbbnLMDu575MwceJUg/skTJgwRfI+CSWf9K9fv4bw8MEG90ko6bty5S8AMPh0HxY2SFymZPnH75NQ3vwl90l4dDsKBSxyFAEAFELFrsioE+7cyROvMq2qhQvnwNpaVauvSXjDq4HcpZTqi1MP/+BU5xof98WpbNg1eZbXJNRwVRl/yTdbauo+wNe+Zo1fqVSgYUMHyT6jjyQMGzZM8hy/jY0NmjRpgt69eyM0NLTyVRIREVG1YvQ1CX5+frh+/TrUajXCw8OhVquRkZGBTp06oWHDhpg5cybWrVtnzlqJiIjIgow+kpCcnIz169ejdevWYltYWBhmzJiBrVu34sUXX8T06dMxduxYsxRKRERElmX0kYQ///wTzZs3N2hr1qwZLl++DADw8vLCnTt3TFsdERERycbokKBWqxETE4MrV66gsLAQV65cwXvvvQcfHx8AwLlz5+Dm5ma2QomIiMiyjA4JCxYsgF6vx4ABA/Dcc89hwIAB0Ov1mD9/PgDA2toaS5cuNVuhREREZFlGX5Pg4uKCjz/+GHq9HtnZ2WjQoAGUyv9ljFatWpmlQCIiIpJHhZ+fnJ+fj4KCAly/fl1se/xaBSIiIqr5jA4JFy9eRFRUFM6ePfvfh08I4n0Tzpzho01LExQUAicne7nLIKIaJCgoRO4SiABUICR89NFH8Pf3x1dffYUXXngBBw4cwNKlS+Ht7W3O+mq8wMDgGnf3LSKSV2BgsNwlEAGowIWLZ8+eRVRUFJycnCAIAhwdHfF///d/+OSTT8xZHxEREcnE6JBga2srPrbS1dUVGRkZ0Ov1yMnJMVtxREREJB+jTzf4+Pjg+++/x+DBg9GnTx+MHTsWNjY26NatmznrIyIiIpkYHRIePa0wffp0tGnTBvfv30dkZKRZCiMiIiJ5GR0S7t27BycnJwAPn+MdERFhtqKIiIhIfkaHhKCgILRq1QpqtRp+fn7w9fWFq6urOWsjIiIiGRl94WJaWhqio6Ph5OSEr776CqGhoQgLC8Ps2bPNWR8RERHJpELfbggICMCYMWMwfvx4DB06FBkZGfjhhx/MWR8RERHJxOjTDYsXL8axY8dw69YteHt7w9fXF99++y2effZZc9ZHREREMjE6JGzevBmNGjXCq6++Cj8/P3Tu3BlWVhV+9AMRERHVEEa/y6elpeH06dNIS0vDmjVrcObMGTz77LNQq9WYOHGiOWskIiIiGRgdEqysrODt7Y1WrVrhmWeewdGjRxEfH4+0tDSGhDrsZp4WX5zKlruMUt3Me3iX0Opc4+Nu5mnRUu4iiIhQgZAwd+5cpKam4sqVK+jUqRN8fX2xfPlyPuCpDmvevEW581hbq1BcrLNANdJcNQ9vG27n7CLL9isz/pYw7mdLRGRuRocEZ2dnzJw5E97e3rC1tTVnTVRDDBs2stx56voTMOv6+ImoZjM6JLz99tvlztO1a1ccP368SgURERFR9WD0fRKMIQiCKVdHREREMjJpSFAoFKZcHREREcnIpCGBiIiIag+GBCIiIpJUZkjQaDQVWhmvSSAiIqo9ygwJzz//vPj/UaNGlbuydevWVbkgIiIiqh7KDAn29vY4f/48dDodTp06BUEQoNfrn/hXwtfX1+wFExERkWWUeZ+ESZMm4eWXX0ZRUREAoEOHDgb9giBAoVDgzJkz5quQiIiIZFFmSBg2bBiGDBmCrKws9OvXD3v27BGDAREREdVu5d5x0crKCk2aNMGOHTvQrFkzS9REtczmzV/h6tUrcpdhFM1/n/XgbKJnPVT22RXNm7cw6rbXRETmZPRtmZs1a4bly5cjPj4emZmZaNy4MSIiIvDWW2/BxsbGnDVSDXf16hWc//McVM7Vfz/R5hQCALK0d2WrQacpkm3bRESPMjokLF68GKdOncLs2bPRtGlTZGRkYPXq1cjLy8PMmTPNWSPVAipnGzgHN5W7jHJpEjMAQNZaS2ogIpKb0SFh37592LlzJ1xdXQEArVq1QocOHRAREcGQQEREVAsZfcfF0m6UxBsoERER1U5Gh4S+fftiwoQJOHz4MC5duoTExERMmjQJ/fr1M2d9REREJBOjTzf84x//wJo1azB79mzcvn0b7u7u6N+/PyZOnGjO+oiIiEgmRocEGxsbTJ06FVOnTi11ns8++wzjxo0zSWFEREQkL5M+BXLt2rWmXB0RERHJyKQhgRcxEhER1R4mDQm8XTMREVHtYdKQQERERLUHTzcQERGRJKNDQmZmZrntvr6+Va+IiIiIqgWjQ0KfPn0k2wcMGCD+f926dVWvqJZKTk5EcnKi3GUQkQnw95nqCqPvkyB1KiEvL48XKxopKekQACAwMFjmSoioqvj7THVFuSEhJCQECoUChYWF6Nmzp0FfTk6OwZEEIiIiqj3KDQmLFy+GIAgYN24cFi1aJLYrFAo0bNgQrVq1MmuBREREJI9yQ4Kfnx8A4OjRo7C3tzd7QURERFQ9lBkS1qxZgwkTJgB4+FyG0pT1PAciIiKqmcoMCTdv3pT8PxEREdV+ZYaEjz76SPz//PnzzV4MERERVR9GfwUSAHJzc3H58mXcv3/foD0gIMCkRREREZH8jA4JcXFxmD17NurVqwc7OzuxXaFQ4OeffzZLcURERCQfo++4+PHHH+OTTz7Br7/+igMHDoj/GBCIiGqGnJy7WLBgNjSaHKPaa5u6Mk5TMjok6HQ6BAUFmWSjH3/8MWbNmiVOHzx4EJ6enrhw4YLYNn78eGzdurVS6/f09HzilAgRUV23e/cOXLhwDrt2xRnVXtvUlXGaktEhYezYsVizZg30en2VN9qtWzekpqaK06mpqejSpYvYptPp8Ntvv8Hf37/K2yIiooefopOSDkEQBCQlJYqfpktrr23qyjhNzehrEr788ktkZWXh888/h4uLi0HfL7/8UqGNent749q1a8jKykKjRo2QlpaGyZMnIy4uDq+99hr+85//wMHBAXZ2dpgyZQoyMjJQWFiIAQMG4K233gIA/Pnnn4iNjcXdu3dRXFyM119/HS+99JLBdvR6PRYsWICsrCwsWLAANjY2FarTlDSaHGg0GixcOEe2GuRgba1CevoV6FU6uUupMfQPdEhPv1Lj9xVraxWKi2vn656efgXOzs5yl1Ehu3fvgF7/8Bk8er0eu3bFYcSI0aW21zZ1ZZymZnRIWLx4sck2amdnBy8vL6SmpiI4OE8OP10AABY7SURBVBgFBQXo0aMHYmNjATw8suDn54fo6GhMnDgRarUaRUVFGDVqFDp37gx/f39ERUVh8eLFaN26NfLy8vDSSy/hueeeQ+vWrQEAhYWFiImJQbNmzbB06VI+iIqI6rQjR5Kh02kBADqdFkeOJGPEiNGlttc2dWWcpmZ0SCi5PbOp+Pn5ISUlBfXr14ePjw9UKhVatGiBCxcuiOEhNjYW2dnZ4jL379/HpUuX4O7ujkuXLmH69OliX3FxMf78808xJIwZMwYDBgzAm2++adK6K8vZ2QXOzi6Ijn5f7lIsys3NEVFR/4dLdy7LXUqNobRT4emGLWr8vuLm5ojMzFy5yzCLmniUJyAgEImJv0Cn00KlskJAQGCZ7bVNXRmnqRkdEj755JNS+ypzW2Z/f3989NFHcHR0hFqtBgCo1WocOXIEv/32G6ZPnw6FQoFt27bB2traYNkLFy7A1dUVO3fuLHP9hw8fxrBhw/jMCSKq88LCBiEp6RB0OkCpVCI8fHCZ7bVNXRmnqRl94eLNmzcN/p0+fRobNmxAenp6pTbs7e2N69ev48cffxSPUvj6+mLTpk1wcnKCp6cnfHx8DJ4ZcePGDWRmZuKZZ56BnZ0d4uPjxb5Lly4hLy9PnJ48eTK6d++ON99806CdiKgucnFxRVBQCBQKBYKCguHs7FJme21TV8ZpakYfSZC6LXNiYiISEhIqtWFbW1t06dIFt27dgru7OwCgc+fOuHXrFvr27QsAWLJkCebPn4+wsDAAQP369TFv3jy4ublh7dq1iI2Nxfr166HX69GwYUMsW7bMYBvjxo2DnZ0dRo0aJXnBJRFRXRIWNgjXr1974lN0ae21TV0ZpylV6LbMjwsKCsI777xT6eW//vprg2lra2ucPHlSnHZzc8M///lPyWVbtmxZ6pMpz507J/5/5MiRGDlyZKVrJCKqLVxcXDFjxgdGt9c2dWWcpmR0SLh69arBdEFBAfbs2QMPDw+TF0VERETyMzok9O7dGwqFAoLw8Hum9vb2aN++PRYsWGC24oiIiEg+RoeEs2fPmrMOIiIiqmaM/nYDERER1S0MCURERCSJIYGIiIgkMSQQERGRJIYEIiIiklSlmymR8YKCQuQugYhMhL/PVFcwJFhIYGCw3CUQkYnw95nqCp5uICIiIkkMCURERCSJIYGIiIgkMSQQERGRJIYEIiIiksSQQERERJIYEoiIiEgSQwIRERFJYkggIiIiSQwJREREJIkhgYiIiCTx2Q1kETpNETSJGXKXUS5tTiEAyFqrTlMENJRt80REIoYEMrvmzVvIXYLRNFY5AABnZxeTrM/aWoXiYl3FFmpYs35mRFR7MSSQ2Q0bNlLuEmTj5uaIzMxcucsgIqoUXpNAREREkhgSiIiISBJDAhEREUliSCAiIiJJDAlEREQkiSGBiIiIJDEkEBERkSSGBCIiIpLEkEBERESSGBKIiIhIEm/LTFW2efNXuHr1imRfpZ5dYEEajWmf1fA4S46/efMWdfoW2ERkegwJVGVXr17B5fNn0UilkruUCsvWagEAyqxMmSupmixd9Q1iRFRzMSSQSTRSqRDhaJ5P4+a0M/fhkYSaWPujSsZBRGRKvCaBiIiIJDEkEBERkSSGBCIiIpLEkEBERESSGBKIiIhIEkMCERERSWJIICIiIkkMCURERCSJIYGIiIgkMSQQERGRJIYEIiIiksSQYCHJyYlITk6Uuwwioifw7xOVhg94spCkpEMAgMDAYJkrISIyxL9PVBoeSSAiIiJJDAlEREQkiSGBiIiIJDEkEBERkSSGBCIiIpLEkEBERESSGBKIiIhIEkMCERERSWJIICKiSsnJuYsFC2ZDo8kxaJsxY4ZBmynXT5ZlkZAQGhqKoKAg6HQ6sS0uLg6enp7YuHFjpdcbFxeHy5cvG0xPmTKlSrUSEZFxdu/egQsXzmHXrjiDtv/85z8GbaZcP1mWxY4kNG7cGElJSeL0jh070LFjxyqtc8eOHfjrr7+qWBkREVVUTs5dJCUdgiAISEpKhEaTI9lmyvWT5Vns2Q2DBg1CXFwcQkJCcPXqVeTn56Nt27YAgPv372Pu3Lk4ffo0ACAiIgJjx44FAIwYMQKdOnXCyZMncfv2bfTr1w9RUVHYvn07/v3vf2Pu3LlYtmwZoqOjAQB5eXmYNm0aLly4AEdHR6xYsQJubm6WGmapNJocaDQaLFw4R+5STC49/Qps9Xq5y6jT8vV63E2/Uq32L2trFYqLdeXPWEvVpPGnp1+Bs7NzhZbZvXsH9HoBAKDX68VP+4+3jRgxulI1Sa2/suuiyrPYkQQ/Pz+cP38eGo0GO3bsQGRkpNi3evVq6PV67N69G1u2bEF8fDwOHTok9t+4cQObNm1CfHw8tm7dir/++gsvvfQSOnXqhPfeew87d+5E9+7dAQCnT59GdHQ0EhIS8Oyzz1bpdAYREUk7ciQZOp0WAKDTaXHkSLJkmynXT5ZnsSMJCoUC/fr1Q0JCAhISErBlyxb88ccfAIAjR45g5syZUCgUcHBwwIABA3DkyBGEhIQAAPr27QulUglHR0e0bt0a6enpaNmypeR2unbtCg8PDwBAly5d8Ouvv1pkfOVxdnaBs7MLoqPfl7sUk1u4cA5yL12Qu4w6rZ5SCfenW1Sr/cvNzRGZmblylyGbmjT+yhyBCggIRGLiL9DptFCprBAQEAgAkm2VUdr6ybIs+u2GQYMGYfny5Wjbti1cXV2NXs7W1lb8v0qlMrgAsirzEhFR5YSFDYJSqQAAKJVKhIcPlmwz5frJ8iwaEpo3b4533nkHEydONGgPCAjA9u3bIQgC8vLysHfvXvH0QVnq16+P3NyakdSJiGoTFxdXBAWFQKFQICgoGM7OLpJtplw/WZ7F75MwdOhQtG/f3qBt4sSJEAQBYWFheOWVVxAeHo7g4GCj1rVq1SpERERUm9MKRER1RVjYILRp42nwKT8sbBA6dOhgkk/+Uusny1IIgiDIXUR1c+dOnnhVrSm4uTkiKur/AKBanTM2lZJrEiIca17S35n78GtVNbH2R+3MzYFj6zbVav+qSefkzaEmjb/kmgRT7T81aezmUNPGr1Qq0LChg3SfhWshIiKiGoIhgYiIiCQxJBAREZEkhgQiIiKSxJBAREREkhgSiIiISBJDAhEREUliSCAiIiJJFnvAU10XFBQidwlERJL494lKw5BgIYGB5d9mmohIDvz7RKXh6QYiIiKSxJBAREREkhgSiIiISBJDAhEREUliSCAiIiJJDAlEREQkiSGBiIiIJDEkEBERkSSGBCIiIpLEkEBERESSGBKIiIhIEp/dQCaRpdNhZ26O3GVUWJZWCwA1svZHZel0cJS7CCKqdRgSqMqaN29Rap+1tQrFxToLVlMxes3DcODo7GKW9Vtq/I4o+3UgIqoMhgSqsmHDRpba5+bmiMzMXAtWU73U9fETUc3GaxKIiIhIEkMCERERSWJIICIiIkm8JkGCUqmoEeusKery2IG6Pf66PHagbo+/Lo8dqFnjL6tWhSAIggVrISIiohqCpxuIiIhIEkMCERERSWJIICIiIkkMCURERCSJIYGIiIgkMSQQERGRJIYEIiIiksSQQERERJIYEoiIiEgSQ4IZXb58GUOHDkWfPn0wdOhQ/PXXX3KXVCmhoaHo27cvIiIiEBERgcOHDwMATp48ifDwcPTp0wejR4/GnTt3xGXM0WcJCxcuRGhoKDw9PXH+/HmxvazX0tJ95lTa+EvbB4Dasx/cvXsXY8eORZ8+fRAWFobJkycjOztbljFaevxljd3T0xNhYWHia3/u3DlxuQMHDqBv377o3bs3pk2bhoKCArP2mdPEiRMRHh6OyMhIDBs2DGfOnAFQd373SyWQ2YwYMUKIj48XBEEQ4uPjhREjRshcUeU8//zzwrlz5wzadDqd0KtXLyEtLU0QBEFYtWqVMGPGDLP1WUpaWpqQkZHxxJjLei0t3WdOpY1fah8QhNq1H9y9e1c4evSoOL1gwQIhJibG4mOUY/yljV0QBKFt27ZCXl7eE8vk5eUJ3bt3Fy5fviwIgiDMnDlTWLFihdn6zO3evXvi/3/66SchMjJSEIS687tfGoYEM8nKyhJ8fHwErVYrCIIgaLVawcfHR7hz547MlVWc1BvE77//LgwYMECcvnPnjvDcc8+Zrc/SHh1zWa+lpfvkGL/UdInavB/s27dPeP311y0+xuow/pKxC0LpIWHv3r3CuHHjxOlTp04J/fv3N1ufJe3YsUMYNGhQnfzdfxyfAmkmN27cgLu7O1QqFQBApVKhcePGuHHjBho0aCBzdRUXFRUFQRDg4+OD6dOn48aNG2jatKnY36BBA+j1euTk5Jilz8XFxTIDlVDWaykIgkX75Nx3Ht8HnJycau1+oNfr8c033yA0NNTiY5R7/I+OvcSIESOg0+kQHByMt99+GzY2Nk/U2bRpU9y4cQMAzNJnCe+++y6Sk5MhCAI+//xz/u6D1ySQETZt2oRdu3Zh+/btEAQBs2fPlrsksrC6tg/MmTMH9erVw/Dhw+UuxeIeH/svv/yCuLg4bNq0CRcvXsSqVatkrtB85s2bh19++QXvvPMOFi1aJHc51QJDgpl4eHjg1q1b0Ol0AACdTofbt2/Dw8ND5soqrqRmGxsbDBs2DMePH4eHhwcyMjLEebKzs6FUKuHi4mKWPjmV9Vpauk8uUvtASXtt2w8WLlyIK1euYNmyZVAqlRYfo5zjf3zswP9eewcHB7z88sulvvYZGRnivObos6TIyEikpKSgSZMmdf53nyHBTBo2bIj27dtjz549AIA9e/agffv2Ne5UQ35+PnJzcwEAgiBg7969aN++PTp16oQHDx7g2LFjAIAtW7agb9++AGCWPjmV9Vpauk8Ope0DgHleazn3g3/+85/497//jVWrVsHGxkaWMco1fqmxazQaPHjwAACg1Wrxww8/iK99jx49cPr0afHq+y1btqBfv35m6zOn+/fvG5zWOHDgAJydnev87z4AKARBEGTbei136dIlzJgxA/fu3YOTkxMWLlyIVq1ayV1WhVy9ehVvv/02dDod9Ho9Wrdujffeew+NGzfG8ePHMWvWLBQWFqJZs2ZYvHgxGjVqBABm6bOEuXPn4scff0RWVhZcXV3h4uKChISEMl9LS/dZevxr164tdR8AzPNay7EfXLhwAQMHDkTLli1hZ2cHAHjqqaewatUqi4/R0uMvbexjxozBBx98AIVCAa1WC29vb8ycORP169cHAOzfvx+LFy+GXq9H+/btsWDBAtSrV89sfeaSlZWFiRMnoqCgAEqlEs7OzoiOjkbHjh3rzO9+aRgSiIiISBJPNxAREZEkhgQiIiKSxJBAREREkhgSiIiISBJDAhEREUliSCAik1q7di3effddAMC1a9fg6ekJrVYLABgzZgx27NghZ3lEVAH8CiQRmc21a9fwwgsv4I8//oCVFR8VQ1TT8EgCUR1U8smeiKgsDAlEtUhoaCg+/fRT9O/fH2q1GjExMSgsLERKSgqCg4Px2WefITAwEDExMdDr9fjss8/Qq1cv+Pv7Y+rUqcjJyQHw8LTAxo0bDdYdHh6OH3/8EcDDOzOGhISga9euGDx4sHgLYQBYsWIFoqKiJOsbMWIEtm7dCgCIi4vDq6++ioULF0KtViM0NBSHDh0S57169Spee+01eHt7Y9SoUfjoo49KXW+J6OhobNiwAQBw69YteHp6YtOmTQCA9PR0+Pn5Qa/XQ6PRYPz48ejWrRvUajXGjx+PmzdvGr3tkydP4pVXXoGvry/Cw8ORkpJS9gtDVEMxJBDVMrt378b69evx008/4fLly1i9ejWAh7ee1Wg0OHjwIObMmYOvv/4a+/fvx8aNG3H48GE4OzuLT3ccOHCgeP94ALh48SIyMjLQs2dPAEDnzp0RHx+P1NRUDBw4EFOnTkVhYWGFaz116hSeeeYZHD16FGPGjMG7776LkjOgUVFR8PLyQkpKCiZPnoydO3eWuz61Wo3U1FQAQGpqKpo3b460tDRx2sfHB0qlEnq9HoMHD8bBgwdx8OBB2NraGjzZsqxt37p1C+PHj8eECROQmpqK6OhoTJkyBdnZ2RUeP1F1x5BAVMu89tpr8PDwgIuLCyZMmICEhAQAgFKpxJQpU2BjYwM7Ozts2bIF77zzDpo0aQIbGxtMnjwZP/zwA7RaLXr16oWzZ8/i+vXrAB4Gj969e4sP/omIiICrqyusrKwwevRoFBUV4fLlyxWutWnTphgyZAhUKhUGDRqEzMxMZGVlISMjA6dPnxbr9fX1RWhoaLnr8/Pzw2+//Qa9Xo+0tDSMGTNGfGphWloa/Pz8AACurq7o06cP7O3t4eDggAkTJohhorxt79y5E8HBwQgJCYFSqURgYCA6depkcBSEqLbglUREtcyjj5Vt2rQpbt++DeDhG6Otra3Yl5GRgUmTJomPBAYeBok7d+7A3d0dISEhSEhIwLhx47Bnzx7MnTtXnG/9+vXYtm0bbt++DYVCgby8PNy9e7fCtT760CJ7e3sAD586effuXTg7O4ttJeN69El9Up5++mnY29vjzJkz+O233zBp0iRs27YNf/75J9LS0jBixAgAQEFBAebPn4/Dhw9Do9EAePgkwJJH85a17YyMDOzbtw8HDx4U+7VaLfz9/Ss8fqLqjiGBqJZ59I00IyNDfFqjQqEwmK9JkyaIjY2Fj4+P5HoGDhyIlStXQq1Wo7CwUHwTPHbsGD7//HN8+eWXaNOmDZRKJdRqNUz5RSk3NzdoNBoUFBSIb9blBYQSarUaP/zwA4qLi+Hu7g61Wo34+HhoNBrxMccbNmzA5cuX8d1338HNzQ1nzpxBZGQkBEEod9seHh6IiIgwCE1EtRVPNxDVMps3b8bNmzeRk5ODtWvXon///pLzvfrqq1i2bJl4SiE7Oxv79+8X+0NCQpCRkYHly5ejf//+4hGH+/fvQ6VSoUGDBtBqtVi5ciXy8vJMOoZmzZqhU6dOWLFiBYqKinDixAmDT+5l8fPzw8aNG+Hr6wsA8Pf3x8aNG+Hj4wOVSiWOwdbWFk5OTsjJycHKlSuN3nZ4eDgOHjyIw4cPQ6fTiReGPnrhI1FtwZBAVMsMHDgQo0ePRq9evfD0009jwoQJkvONHDkSoaGhGD16NLy9vTFkyBCcOnVK7LexsUHv3r3x66+/YuDAgWJ7UFAQevTogT59+iA0NBS2trYGpzhMZcmSJTh58iT8/f2xbNky9O/fX7wmoixqtRr379+HWq0GAPj4+ODBgwdiaACA119/HYWFhejWrRuGDh2KHj16GL1tDw8PrF69Gp9++ikCAgIQEhKC9evXQ6/Xm3D0RNUDb6ZEVIuEhoZi7ty56N69u9ylmNy0adPQqlUrTJkypU5tm0hOPJJARNXSqVOnkJ6eDr1ej8TERPz888/o1atXrd82UXXCCxeJqFrKysrC22+/jZycHDRp0gQffvghOnTogF27dmHWrFlPzN+0aVPx657m2jZRXcPTDURERCSJpxuIiIhIEkMCERERSWJIICIiIkkMCURERCSJIYGIiIgkMSQQERGRpP8HMaFaGQuJZY8AAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"The boxplot above is further evidence that weekly—and even monthly—data looks erroneous. Many of the weekly wages would result in a yearly earning well over a million USD! Perhaps this is personal bias, but it seems far fetched to have this many exceptionally high-paying jobs in this data set.\n",
"\n",
"Without any evidence to the contrary, however, we will leave these records intact."
],
"metadata": {
"id": "qzBqzFuYb08e"
},
"id": "qzBqzFuYb08e"
},
{
"cell_type": "code",
"source": [
"plott()\n",
"plt.title('Prevailing Hourly Wage',fontsize=14)\n",
"sns.boxplot(data=visa.loc[visa['unit_of_wage']=='Hour'],\n",
" x='prevailing_wage');"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "HA_jRjSyTXN3",
"outputId": "f27bc85c-6482-454f-ccf6-f3523a9d9507"
},
"id": "HA_jRjSyTXN3",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAFTCAYAAAC06zwQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeZElEQVR4nO3de3RNZ8LH8V9OLhLjEpeIuJQyRItUxElc2qaNaAYR2tUy1apZqNSlqNGF6WtpUW2M6Whpiw4z01E1Leraq7JURiWUUF1q6lKJBrmQlITIydnvH5YzTkvyRG4S389a/sjeJ/t5zhPH195nJ/GwLMsSAAAolq2qJwAAQHVAMAEAMEAwAQAwQDABADBAMAEAMEAwAQAwQDBx21m7dq1CQ0ONP67pbrfnC9wsgokKMW3aNAUHBys4OFgdO3ZU7969lZCQoPz8/Kqemvr166ctW7bc9P7ycvLkSQUHB+vbb7/91b74+HhNmzatwudQHlatWqUuXbro8uXLrm2XL1/WPffco9jYWLfHnjhxQsHBwfr6668re5pAmRFMVJiePXsqMTFRW7Zs0aRJk7Ry5UolJCRc97EOh0OV9TM0fH191ahRo5veX5MUFhaW+RgRERG6ePGiDhw44Np24MAB1a1bVz/++KPOnj3r2p6UlCQfHx917dq1zOMClY1gosL4+PgoICBAQUFBGjBggAYMGKAvv/xSkrRw4ULFxsZq7dq1io6OVufOnZWfn6/z589rxowZ6tGjh0JDQ/Xkk0+6zsAuXLigkJAQbd261W2cxMREdezYUdnZ2ZKk+fPnKyYmRiEhIYqKitK8efNUUFDgenxJlyB/uf/qXDdv3qzo6GiFhoZq7NixbiFwOByaO3eu7Ha77Ha75s6dq5kzZ2rYsGFlX0hdOWN7+eWX1bNnT3Xu3FmDBw/Wnj17XPuTkpIUHBzsNqdfnsFefcz27dv16KOPqlOnTkpMTHQb5+TJk+rQocOvzno/+OADRUREuJ1FXnXnnXeqSZMmSkpKcm3btWuXunfvrk6dOrltT0pKUpcuXVSrVi199dVXGjp0qOx2u8LDwzVy5EgdPXrU7dj79+/Xww8/rM6dO2vQoEHavn27goOD3Y555MgRjR49WqGhoerRo4cmT56szMzM0iwvYIRgotL4+vq6ndGcPHlSmzZt0uuvv67169fLx8dHo0eP1pkzZ7RkyRKtW7dO3bp10/Dhw5WRkaE6derowQcf1MaNG92Ou3HjRvXs2dN1Vujn56e5c+fq448/1syZM/Xxxx/r7bffLtPcf/rpJ3388cdatGiRli9frkOHDmnBggWu/cuXL9dHH32kOXPm6N///recTqc2bdpUpjGvNW/ePH3yySeaO3eu1q1bp/bt2+vpp59WRkZGqY81f/58TZo0SZ988onuuecet30tWrRQr169tGbNGrfta9as0cCBA+Xj43PdY0ZERPwqjBERETfcLkkXL17U8OHD9eGHH+rdd99VnTp19Mwzz7iinJeXp/j4eLVp00Zr167V888/r3nz5rmNm5GRoSeeeELt2rXT6tWr9fe//135+fkaO3asnE5nqdcGKA7BRKU4cOCANm7cqB49eri2FRYWat68eerYsaPat2+vPXv26Pvvv9cbb7yhkJAQtWrVSpMmTVLLli21fv16SVJcXJy2bt2qCxcuSJIuXbqkL774QnFxca7jjhs3TmFhYWrRooUiIyMVHx+vzZs3l2n+DodDr776qjp06KDQ0FANHjzY7X24d999V08//bRiYmLUpk0bvfDCC2rcuLHRsZ988kmFhoa6/dmxY4drf35+vlatWqUpU6bogQceUNu2bfXSSy+pUaNGeu+990r9XMaPH697771XLVu2VMOGDX+1/7HHHtPmzZtdZ+VHjx5VSkqKHn300RseMyIiQikpKbp8+bIKCgqUkpKi8PBw2e12VzCPHj2qzMxMde/eXZIUExOjmJgYtW7dWh06dNArr7yikydPui7tbty4UU6nUy+//LLatWunXr166ZlnnnEb9/3331eHDh30/PPPq23bturQoYMSEhJ04MABHTx4sNRrAxTHq6ongJprx44dCg0NlcPhkMPhUO/evTVjxgzX/sDAQLeofPfdd7p48aJbVCWpoKBAaWlpkqT7779fvr6+2rJliwYNGqStW7fKsixFR0e7Hv/pp5/qn//8p1JTU5Wfn6+ioqIyn200a9ZMdevWdX3cpEkT1yXg8+fPKzMzU507d3bt9/DwUEhIiE6fPl3isf/yl7+oXbt2btuuXafU1FQVFha6ve/n6empLl26/OoSpolOnToVu793796aNWuWPv/8cw0YMECrV69WSEiI2rdvf8PP6d69uwoKCrRv3z5ZlqWGDRuqVatWCggIUFpamjIzM5WUlCQ/Pz/XWW1qaqpef/117d+/X2fPnpVlWXI6nTp16pQk6dixY2rXrp18fX1d4/zyjPi7777Tnj17rnuJPTU1VSEhIcbrApSEYKLCdOvWTbNnz5aXl5eaNGkib29vt/21a9d2+9jpdKpx48bXPWuqU6eOJMnb21t9+/bVxo0bNWjQIG3YsEF9+vSRn5+fJCklJUWTJ0/WuHHjdN9996levXraunXrDW82MvXLuXt4eJTbTUqBgYFq1aqV27arz6ckHh4ekiSb7dcXixwOx3U/p6Rje3t7a+DAgVqzZo369u2rDRs2aMKECcV+TsuWLdW8eXMlJyfLsizZ7XZJV77GHTt2VHJyspKTkxUWFuZay/j4eDVt2lSzZs1SYGCgPD091b9//1LdiOR0OhUZGampU6f+at/tcuMWKg+XZFFh/Pz81KpVKzVv3vxXwbmejh07KisrSzabTa1atXL7c+0/fnFxcfr666915MgRJSYmul2O3bt3rwIDAzVu3DiFhISodevWSk9Pr5Dnd1XdunUVEBDgdqOMZVnX/XaRm3HHHXfI29tbe/fudW0rKipSSkqK2rZtK0muS6vXvqd56NChmx7zscceU1JSklauXKm8vDz179+/xM+5+n7lte9TSlJ4eLh27dql5ORk1/Zz587p2LFjio+PV8+ePdW2bVvl5eW5Rb5Nmzb64YcfdOnSJde2a+/Ela78nTly5IiaNWv2q78zV/+TBZQXgolbRs+ePdW1a1eNHTtW27dvV1pamvbt26c33njD7Y7Qrl27qlmzZvrjH/8of39/t0u4rVu31pkzZ7RhwwalpaVp5cqV5XrzzY089dRTWrZsmb744gsdO3ZMr776arndqVm7dm09/vjjmj9/vrZv366jR4/qxRdfVHZ2toYOHSrpSlSDgoK0aNEiHT9+XImJiWW60alNmzYKCwvTvHnzFBMTYxSfq+9j7t+/X+Hh4a7tdrtdmzdvVnZ2tuv9y/r166tBgwb68MMPdeLECSUnJ2vmzJny8vrfRa/Y2FjZbDb93//9n44cOaKdO3dqyZIlkv53Zj106FCdP39ezz33nPbv36+0tDTt3LlTM2bMcL3PDZQXgolbhoeHh5YuXaqIiAjNmDFDffv21aRJk3T8+HE1adLE7bEDBgzQ999/r/79+8vT09O1PSoqSiNHjtTcuXMVFxennTt3lng5sTyMGDFCcXFxmj59uoYMGSJJ6tOnj2rVqlUux3/++efVt29fTZ8+XQMHDtThw4f1zjvvuNbF29tbr732mtLS0jRw4EAtXLhQkydPLtOYjz76qAoLC4u92edaERERKiwsVKNGjdwuMYeFhamgoEB16tRRx44dJV25hPzXv/5Vhw8fVmxsrGbNmqWJEye63YVbp04dLV68WEeOHNGgQYM0b948jR8/XpJc6xoYGKj3339fNptNo0aNUv/+/fXSSy/Jx8fnhnf0AjfLw6qs7xYHbjODBg1SWFiY2w081cnSpUu1Zs0affbZZ1U9FZctW7Zo/Pjx2rlz53Xv8AUqEjf9AOXgp59+UmJioux2uxwOhz744AMdPnxYs2fPruqplVpeXp7S09P17rvvasyYMVU6l48++kgtW7ZU06ZN9cMPP2ju3Ll68MEHiSWqBMEEyoHNZtO6des0b948OZ1O/fa3v9U777zj9q0m1cXs2bO1adMmRUVFuS4vV5WsrCwtXLhQGRkZCggIUGRkpKZMmVKlc8Lti0uyAAAY4KYfAAAMEEwAAAwQTAAADJR408+5c3lyOsvnbc5GjeooO5tvJi4L1rDsWMPywTqWHWtYduW9hjabhxo0+M1195UYTKfTKrdgXj0eyoY1LDvWsHywjmXHGpZdZa0hl2QBADBAMAEAMEAwAQAwQDABADBAMAEAMEAwAQAwQDABADBAMAEAMEAwAQAwQDABADBAMAEAMEAwAQAwQDABADBAMAEAMEAwAQAwQDABADBAMAEAMEAwAQAwQDABADBAMAEAMEAwAQAwQDABADBAMAEAMOBV1ROo6VaufFdpaSfK7Xje3p4qLCwqt+PVBLm5OZKk+vX9jR7PGpaPsqxjy5atNHToU+U8I6BiEcwKlpZ2Qod/OCJPX7N/zFF6RZeuBDPzZ0cVzwQmrn69gOqGYFYCT19/1W7Vu6qnUWPln/hSkljjauLq1wuobngPEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAANelTXQf/7zlerV81PnzvbKGhIAUINVdlcqLZiJidvl7e1JMAEA5aKyu8IlWQAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADHhV1kC5uTn6+edcJSTMrqwhbwmpqSfkLPKs6mkAtwyn45JSU0/cdv8WXI+3t6cKC4uqehrVVmrqCTVq1LDSxuMMEwAAA5V2hlm/vr8aN26kyZP/VFlD3hISEmbrSFpWVU8DuGXYvHx1R8vGmjp1RlVPpcoFBNRVZub5qp5GtZWQMFve3pV3BY8zTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMeFXWQPfeG6l69fwqazgAQA1X2V2ptGD26nW/AgLqKjPzfGUNCQCowSq7K1ySBQDAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwADBBADAAMEEAMAAwQQAwIBXVU/gdlB0KUf5J76s6mnUWEWXciSJNa4mrny9Glf1NIBSI5gVrGXLVuV6PG9vTxUWFpXrMau73Nwrf43r1/c3ejxrWD5ufh0bl/vrAqgMBLOCDR36VLkeLyCgrjIzz5frMW83rGH5YB1xu+E9TAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAwQTAAADBBMAAAMEEwAAAx4lfQAm82jXAcs7+PdjljDsmMNywfrWHasYdmV5xoWdywPy7KschsJAIAaikuyAAAYIJgAABggmAAAGCCYAAAYIJgAABggmAAAGCCYAAAYIJgAABggmAAAGKiUYB4/flxDhgxRTEyMhgwZoh9//LEyhq1Wzp07p6effloxMTEaMGCAxo8fr7Nnz0qSUlJSFBcXp5iYGI0YMULZ2dmuzytu3+1s0aJFCg4O1n//+19JrGFpFRQUaObMmXrooYc0YMAAzZgxQ1Lxr2Ve5+62bdumQYMGaeDAgYqLi9Pnn38uiTUsSUJCgqKiotxev9LNr1u5rqlVCYYNG2atW7fOsizLWrdunTVs2LDKGLZaOXfunLVr1y7Xx6+++qo1ffp0q6ioyIqOjrZ2795tWZZlvfnmm9a0adMsy7KK3Xc7O3jwoDVy5EjrwQcftA4fPswa3oTZs2dbL7/8suV0Oi3LsqzMzEzLsop/LfM6/x+n02l169bNOnz4sGVZlnXo0CGrS5cuVlFREWtYgt27d1vp6emu1+9VN7tu5bmmFR7MrKwsKywszHI4HJZlWZbD4bDCwsKs7Ozsih66Wvv000+t4cOHW/v377f69+/v2p6dnW116dLFsiyr2H23q4KCAmvw4MFWWlqa6wXHGpbOhQsXrLCwMOvChQtu24t7LfM6d+d0Oq3w8HBrz549lmVZVnJysvXQQw+xhqVwbTBvdt3Ke01L/G0lZXXq1CkFBgbK09NTkuTp6akmTZro1KlTatiwYUUPXy05nU69//77ioqK0qlTp9SsWTPXvoYNG8rpdConJ6fYff7+/lUx9Sr3+uuvKy4uTi1atHBtYw1LJy0tTf7+/lq0aJGSkpL0m9/8RhMnTpSvr+8NX8uWZfE6v4aHh4cWLFigsWPHqnbt2srLy9PSpUuL/feQNbyxm1238l5Tbvq5Bc2ePVu1a9fWk08+WdVTqVb27dungwcPaujQoVU9lWqtqKhIaWlpuvvuu7V27VpNmTJFzz77rPLz86t6atWGw+HQkiVL9NZbb2nbtm16++23NWnSJNawmqvwM8ygoCCdOXNGRUVF8vT0VFFRkTIyMhQUFFTRQ1dLCQkJOnHihBYvXiybzaagoCClp6e79p89e1Y2m03+/v7F7rsd7d69W0ePHlXv3r0lSadPn9bIkSM1bNgw1rAUgoKC5OXlpdjYWEnSPffcowYNGsjX1/eGr2XLsnidX+PQoUPKyMhQWFiYJCksLEx+fn6qVasWa3gTiutIcetW3mta4WeYjRo10l133aVNmzZJkjZt2qS77rrrtr/EcD2vvfaaDh48qDfffFM+Pj6SpE6dOunSpUvas2ePJGnVqlX63e9+V+K+29Ho0aOVmJiorVu3auvWrWratKmWLVumUaNGsYal0LBhQ0VEROg///mPpCt3GWZnZ6t169Y3fC3zOnfXtGlTnT59WseOHZMkHT16VNnZ2WrVqhVreBOKW5ub3XczKuUXSB89elTTpk3Tzz//rHr16ikhIUFt2rSp6GGrlR9++EGxsbFq3bq1fH19JUktWrTQm2++qb1792rmzJkqKChQ8+bN9ec//1mNGzeWpGL33e6ioqK0ePFitW/fnjUspbS0NP3pT39STk6OvLy8NGnSJEVGRhb7WuZ17m7Dhg1655135OHhIUmaMGGCoqOjWcMSzJkzR59//rmysrLUoEED+fv7a/PmzTe9buW5ppUSTAAAqjtu+gEAwADBBADAAMEEAMAAwQQAwADBBADAAMEEKsjixYv1wgsvSJJOnjyp4OBgORwOSdKoUaP00UcfVeX0AJQS31YCVIKTJ0+qd+/e+u677+TlVeE/YAtABeAME7e1q2d8AFASgokaKSoqSkuWLFG/fv1kt9s1ffp0FRQUKCkpSffff7+WLl2qXr16afr06XI6nVq6dKmio6MVERGhiRMnKicnR9KVS6crVqxwO/a1vwx4zpw5ioyMVNeuXfXII4+4fsSeJC1cuFBTpky57vyGDRumDz/8UJK0du1aPf7440pISJDdbldUVJS2b9/uemxaWpqeeOIJhYaG6g9/+INeeumlGx73qqlTp2r58uWSpDNnzig4OFjvvfeeJCk1NVXh4eFyOp3Kzc1VfHy8unfvLrvdrvj4eJ0+fdp47JSUFP3+979Xt27dFBcXp6SkpOK/MEA1RjBRY23cuFHLli3TF198oePHj+utt96SJGVlZSk3N1fbtm3T7Nmz9a9//UtbtmzRihUrtGPHDtWvX1+zZs2SJMXGxrp+DqUkHTlyROnp6XrggQckSZ07d9a6deuUnJys2NhYTZw4UQUFBaWe64EDB3TnnXdq165dGjVqlF544QVdfbdkypQpCgkJUVJSksaPH6/169eXeDy73a7k5GRJUnJyslq2bKndu3e7Pg4LC5PNZpPT6dQjjzyibdu2adu2bapVq5bruZc09pkzZxQfH68xY8YoOTlZU6dO1YQJE3T27NlSP3+gOiCYqLGeeOIJBQUFyd/fX2PGjNHmzZslSTabTRMmTJCPj498fX21atUqPffcc2ratKl8fHw0fvx4ffbZZ3I4HIqOjtb333+vn376SdKVCPfp08f1w/EHDhyoBg0ayMvLSyNGjNDly5d1/PjxUs+1WbNmGjx4sDw9PfXwww8rMzNTWVlZSk9P17fffuuab7du3RQVFVXi8cLDw/XNN9/I6XRq9+7dGjVqlPbu3Svpym91CQ8PlyQ1aNBAMTEx8vPzU506dTRmzBhXWEsae/369br//vsVGRkpm82mXr16qVOnTm5nx0BNwt0HqLGu/RU+zZo1U0ZGhqQrkahVq5ZrX3p6usaNGyeb7X//f7TZbMrOzlZgYKAiIyO1efNmjR49Wps2bdKcOXNcj1u2bJlWr16tjIwMeXh46MKFCzp37lyp53rtD3v38/OTJOXn5+vcuXOqX7++a9vV53Xq1Klij3fHHXfIz89Phw4d0jfffKNx48Zp9erVOnbsmHbv3q1hw4ZJki5evKhXXnlFO3bsUG5uriQpLy/P9WuQihs7PT1dn376qbZt2+ba73A4FBERUernD1QHBBM11rVRSU9PV5MmTSTJ9dsjrmratKnmzp3r+t2FvxQbG6tFixbJbreroKDAFYQ9e/bob3/7m/7xj3+oXbt2stlsstvtKs8bzwMCApSbm6uLFy+6wlVSLK+y2+367LPPVFhYqMDAQNntdq1bt065ubm66667JEnLly/X8ePH9cEHHyggIECHDh3SoEGDZFlWiWMHBQVp4MCBbv+BAGoyLsmixlq5cqVOnz6tnJwcLV68WP369bvu4x5//HEtWLDAddn17Nmz2rJli2t/ZGSk0tPT9cYbb6hfv36uM9G8vDx5enqqYcOGcjgcWrRokS5cuFCuz6F58+bq1KmTFi5cqMuXL2vfvn1uZ3TFCQ8P14oVK9StWzdJUkREhFasWKGwsDB5enq6nkOtWrVUr1495eTkaNGiRcZjx8XFadu2bdqxY4eKiopcN1Vde9MQUJMQTNRYsbGxGjFihKKjo3XHHXdozJgx133cU089paioKI0YMUKhoaEaPHiwDhw44Nrv4+OjPn36aOfOnYqNjXVtv/fee3XfffcpJiZGUVFRqlWr1k3/JvfizJ8/XykpKYqIiNCCBQvUr18/13uoxbHb7crLy5PdbpckhYWF6dKlS66AStLw4cNVUFCg7t27a8iQIbrvvvuMxw4KCtJbb72lJUuWqEePHoqMjNSyZcvkdDrL8dkDtw5+cAFqpKioKM2ZM0c9e/as6qmUu0mTJqlNmzaaMGHCbTU2UNU4wwRucQcOHFBqaqqcTqe++uorffnll4qOjq7xYwO3Gm76AW5xWVlZevbZZ5WTk6OmTZvqxRdf1N13360NGzZo5syZv3p8s2bNXN9CU1FjA7cjLskCAGCAS7IAABggmAAAGCCYAAAYIJgAABggmAAAGCCYAAAY+H+IgP2Bec9v9QAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"b=visa.loc[visa['unit_of_wage']=='Hour']['prevailing_wage'].argmax()\n",
"visa.iloc[b]['full_time_position']"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"id": "-SCMc2pco29j",
"outputId": "91af4e73-1761-45d4-9921-b69e022087b9"
},
"id": "-SCMc2pco29j",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'Y'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 31
}
]
},
{
"cell_type": "code",
"source": [
"a=visa.loc[visa['unit_of_wage']=='Hour']['prevailing_wage'].max()\n",
"print('The maximum hourly wage is ${} for a full time position, equivalently ${} per year!'.format(a,2080*a))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "MIlbtpGhoGHa",
"outputId": "701a1f3c-dfc3-4730-faef-47f4d03236ad"
},
"id": "MIlbtpGhoGHa",
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"The maximum hourly wage is $999.9195 for a full time position, equivalently $2079832.56 per year!\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"For the record, some hourly data points seem unreasonable too: The maximum wage is about \\$1000 per hour, or around \\$2 million per year. Again, there is no evidence that this data is necessarily erroneous; it simply stands out."
],
"metadata": {
"id": "QxwGcOX1n4Xu"
},
"id": "QxwGcOX1n4Xu"
},
{
"cell_type": "code",
"source": [
"plott()\n",
"plt.title('Prevailing Wage by Region',fontsize=14)\n",
"sns.boxplot(data=visa,\n",
" x='prevailing_wage',\n",
" y='region_of_employment');"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "DSlArTDVEgBb",
"outputId": "b3a7779d-9b17-41d4-bd3e-cbd075e57939"
},
"id": "DSlArTDVEgBb",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAFTCAYAAAB27QVlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxU9f4/8NdsgAoCIgi4XjVxA0QDJQSVtDQDJM265pLmHrmX1e/mkmbhkrmblt008VumKKh1ywURNDRFs3IpF0BQFoERBMGZOb8/aI4M67DMDMvr+Xj4uMw5n/P5vD4DN96c5TMSQRAEEBERERmB1NQBiIiIqPFg4UFERERGw8KDiIiIjIaFBxERERkNCw8iIiIyGhYeREREZDQsPIgI+/fvh4eHh96vqci7776LadOmmTpGtcXFxcHFxQWZmZmmjkKNCAsPIiN599134eLiAhcXF/To0QPPPvssQkNDkZeXZ+poeOGFF3D06NFq768t/fv3x+bNm3W2bd68GS4uLvjxxx91ti9YsABjxowxeCZT8Pf3F39W3NzcMHToUHzxxReo7WWXPDw8EBMTA1tb21rtl6giLDyIjOiZZ55BTEwMjh49ijlz5iAsLAyhoaFltlWpVLX+i6Y8FhYWsLOzq/b+2tK3b1+cPXtWZ1tcXBycnJzK3N6vXz+DZzKVN998EzExMThy5AjeeOMNrF27Ft9++22tjmFmZgZ7e3tIJJJa7ZeoIiw8iIxI+x96JycnBAQEICAgAMeOHQMAbNiwAS+++CL279+PwYMHw9XVFXl5ecjJycEHH3wAb29veHh4YOzYsbh8+TIAIDc3F25ubjh+/LjOODExMejRowfu378PAFi9ejWef/55uLm5wd/fHytXrkRBQYHYvrJLKSX3a7MePnwYgwcPhoeHB2bOnKlzyl6lUmHFihXw9PSEp6cnVqxYgcWLF2PcuHHljtO3b1/Ex8ejsLAQAFBYWIj4+HhMnToVcXFxYrtbt24hLS0N/fr1g1qtxvvvvw9/f3+4ubnhueeew/bt26HRaKqURRAEbN++HYMHD4abmxsCAgJw8ODBcrMWt3nzZjzzzDPw8PDAe++9h0ePHgEADhw4gL59+4rz0Zo/fz6mT59eYZ/NmjWDvb092rRpg5dffhkuLi6IjY0V9xcWFmLVqlXw8/ODu7s7Ro4ciVOnTun0ERUVheeffx6urq547bXXcPjwYbi4uODOnTsAyr7U8tNPPyEgIAA9e/bEgAEDsGXLFp0C2N/fH5s3b8aiRYvQu3dv+Pn54YsvvtDrfSICWHgQmZSFhQUeP34svr5z5w4OHTqEdevW4eDBgzAzM8PUqVORmpqKzz//HAcOHMDTTz+NCRMmIC0tDZaWlhg0aBAiIyN1+o2MjMQzzzwjnqVo0qQJVqxYgSNHjmDx4sU4cuQItmzZUqPsycnJOHLkCDZu3IgdO3bgypUr+Oyzz8T9O3bsQHh4OJYvX45vv/0WGo0Ghw4dqrDPvn374tGjR7h06RIA4OLFi7C1tcWIESOQkJCAjIwMAEW/MC0sLNCrVy9oNBq0atUKn332GY4cOYI5c+bg888/x759+6qU5bPPPsP333+PRYsW4fDhw5g6dSoWL16MqKioCjOfPXsWV69exX//+1+sX78eMTExWL16NQBg6NCh0Gg0OpepcnJycPToUYwaNaryNxlFBVFcXBxu3LgBuVwubn/vvfdw7tw5rFmzBocOHUJwcDBmzJiBq1evAgBSUlIQEhKCgQMH4uDBgxg3bhxWrVpV4Vi///47Zs+ejSFDhiAyMhLz58/Htm3b8M033+i0+/rrr9GlSxeEh4djypQpWLVqFeLj4/WaDxEEIjKKhQsXClOnThVfX7p0SfDy8hJmz54tCIIgrF+/XujevbuQnp4utjl9+rTQq1cvIT8/X6evwMBAYdu2bYIgCMLRo0cFNzc3IScnRxAEQcjPzxc8PDyEiIiIcrOEhYUJgwcPFl/v27dP6NWrl96v169fL/Ts2VN48OCBuG3z5s06ffr4+Aiff/65+Fqj0QjPPfecMHbs2HJzCYIgDBgwQNiwYYM4zvz58wVBEIRXXnlFOHz4sCAIgjBnzhxhwoQJ5faxatUqnf2VZXn48KHg6uoqnDt3Tqef5cuXC5MnTy53nIULFwp9+vQRcnNzxW0HDhwQevToITx8+FAQBEFYunSpMGnSJHH/7t27hWeeeUZ4/Phxuf0OGjRI6NGjh9CrVy+hR48eQpcuXQRXV1fh/PnzgiAIQkJCguDi4iIkJyfrHDdjxgxh8eLFgiAIwurVq4WhQ4fq7N+yZYvQpUsXISkpSRAEQfjll1+ELl26CPfv3xcEQRDmzZsnjBs3TueY9evXC76+vjrZ5s6dq9NmyJAhwqZNm8qdD1Fx8spLEyKqLadOnYKHhwdUKhVUKhWeffZZfPDBB+L+Vq1aoWXLluLrP/74A/n5+fD29tbpp6CgAElJSQAAPz8/WFhY4OjRoxgxYgSOHz8OQRAwePBgsf2PP/6Ir7/+GomJicjLy4Narda5FFEdzs7OsLKyEl87ODiIl3ZycnKQnp4OV1dXcb9EIoGbmxvu3btXYb99+/ZFXFwcQkJCEBcXh6CgIACAl5cXfvnlF7zwwgs4e/Ysxo4dKx6zZ88e7N27FykpKSgoKMDjx4/RunVrvbP8/fffKCgowOTJk3XudyjeT3lcXFzQrFkz8bWHhwceP36MxMREdO3aFaNHj0ZwcDDu3bsHR0dH7Nu3DyNGjNA5e1GWiRMnYtSoUcjMzMTatWvRv39/9O7dG0DRz4UgCBg+fLjOMYWFheJ9Lzdv3tSZMwC4u7tXOObNmzcxYMAAnW19+vTBxo0bkZubC0tLS3HOxTk4OPDJGNIbCw8iI3r66aexbNkyyOVyODg4QKFQ6Oxv2rSpzmuNRoOWLVti9+7dpfrS/hJQKBQYNmwYIiMjMWLECERERGDIkCFo0qQJgKLLFfPmzcObb74JX19fNG/eHMePHy/3plZ9lcwukUhq5WbYvn37YvHixVAqlbh06RI++ugjAICnpyc++ugj3LhxAxkZGeIv2CNHjmDFihVYuHAhPDw8YGlpid27d1fpKRxt7i1btsDZ2VlnX2UFQmW6du2K7t27i/fu/P7775Ve8gAAGxsbtG/fHu3bt8eGDRvw3HPPwc3NDf369YMgCJBIJPj+++9L5bOwsKhRXn2UHFMikdS4kKXGg4UHkRE1adIE7du317t9jx49kJGRAalUirZt25bbLjAwEGPHjsXff/+NmJgYbN26Vdx34cIFtGrVCm+++aa4LSUlpXoT0JOVlRXs7e1x+fJl8WyNIAi4fPky7O3tKzxWezPmjh070KJFC/H96t27N5KSkhAREYGmTZuKf82fP38e7u7uOmdAEhMTq5SlU6dOMDMzQ0pKSqmzS5W5fv068vLyxKLx4sWLUCgUaNeundhm9OjR+OKLL5CVlYXevXujY8eOVRrD2toaY8eOxccff4wDBw6gW7duEAQB6enp5T7Z07FjR/HGZa3ffvutwnE6duyICxcu6Gw7f/48HB0dxUKXqKZ4cylRHfbMM8+gd+/emDlzJk6ePImkpCTEx8dj/fr1+PXXX8V2vXv3hrOzM+bPnw8bGxudX54dOnRAamoqIiIikJSUhLCwsEpv8qwN48ePx5dffomff/4ZN2/exCeffIL09PRKj2vdujXatGmDXbt2wdPTU9zerFkz9OjRA7t27cLTTz8t/tXdoUMH/PHHHzh58iRu376NTZs24dy5c1XKYmlpiUmTJmHlypX4/vvvkZCQgCtXrmDPnj2VPsKqUqnw/vvv46+//kJsbCzWrFmD0aNH65y9Gj58ODIyMrBnzx69byotacyYMbh16xZ++OEH/Otf/0JAQADee+89/Pjjj0hKSsLly5fx5Zdf4qeffgIAvPrqq0hMTERoaChu3ryJn376SZxLeY/PTpo0CefOncOGDRtw69YtREREYMeOHZg8eXK1MhOVhYUHUR0mkUiwbds29O3bFx988AGGDRuGOXPm4NatW3BwcNBpGxAQgKtXr2L48OGQyWTidn9/f7zxxhtYsWIFAgMDcfr0acyaNcvg2SdNmoTAwEC89957eOWVVwAAQ4YMgbm5eaXH9u3bFw8fPkTfvn11tnt5eeHhw4c6f+W/8sorGDZsGBYsWIBRo0YhOTkZEydOrHKWOXPmICQkBDt27MDw4cMxceJE/PTTT2jTpk2FWb28vNC5c2eMHz8eISEh6NevH95++22dNpaWlhg6dCjMzMwwbNiwSudfFjs7OwQFBWHjxo3QaDT4+OOP8dJLL2HVqlUYNmwYpk+fjnPnzomXilq3bo0NGzbg+PHjCAoKwn//+1/xrFd534MePXpg3bp14iO1a9aswdSpU3XOJhHVlESojYuyRER6GDFiBPr06aNzQ21jyTJ58mQ4Ojpi+fLlRhmvLF9//bV4toyLhpGp8B4PIjKI5ORkxMTEwNPTEyqVCt999x2uXbuGZcuWNaosSqUSv/76K2JjY/VekKy27N69G66urrC1tcWlS5ewefNmBAcHs+ggk2LhQUQGIZVKceDAAaxcuRIajQadO3fG9u3bSz3i2dCzBAcHIzs7G3PnzkWXLl0MPl5xCQkJ2Lp1K7Kzs+Ho6IhXX31V5yZjIlPgpRYiIiIyGt5cSkREREbDwoOIiIiMhoUHERERGQ1vLjWCrKyH0Ghq71YaOztL3L+fW2v91SeNee5A455/Y547wPk35vnXt7lLpRLY2jYrdz8LDyPQaIRaLTy0fTZWjXnuQOOef2OeO8D5N+b5N6S581ILERERGQ3PeFCtCQvbiaSkBIOOoVDI8Pixusb9KJXZAABra5sa92VMCoUMjo5tMGbMeFNHISKqFhYeVGuSkhJw7a+/IbOo+7/M1Y+KCo/0ByoTJ6ka9aPsWim8iIhMhYUH1SqZhQ2atn/W1DEqlZdQ9HHh9SFrcdrcRET1Fe/xICIiIqNh4UFERERGw8KDiIiIjIaFBxERERkNCw8iIiIyGhYeREREZDQsPIiIiMhoWHgQERGR0XABsXomNjYazZs3gaurp6mjEFEdERsbDQDw8fEzcRKiyrHwqGdiYk5CoZCx8CAiUUzMSQAsPKh+4KUWIiIiMhoWHkRERGQ0LDyIiIjIaFh4EBERkdGw8CAiIiKjYeFBRERERtPgHqddu3YtsrOzsXTpUgDAiRMnMH36dBw6dAhPPfUUAGDatGkYPHgwXn75Zb37ffDgAb799ltMmTLFILmJiGoiNzcHb7zxGqRSKdRqNSwtLZGbmwtraxvk5DyARqOBnV1LvP76ZGzcuBZqtRoqlQoSiQT+/kNw7NhPkEqlkMsVsLe3R2FhIdLT0+Dk5Ix33vkPBEHAxo1roVKpoFDIMWTIUGzduhF2di2RmXkfLVrYITPzPhwdHSGVypCRkQ57ewdIpTIUFhYgNfUeWrVyhFqtQXp6KkaN+jciI/dDEAQ4OTlj4sRp2LHjc6Sl3cObb85DePh3yMt7iNTUe3B0dEKTJhYoKCjE/fsZeO+9xbCyao6NG9dCIgFCQuaJ+QDgrbfmwdraBtnZWdi6dQNmzJgFa2sbnfdLuy8gIBibN3+Gd99dhLZt24v7SvYFAImJtxEaukxs+8cfv+HTT0MxcuQr2LfvW8yf/x66d++pM0bxjMUzVJSt5H57e6tyv+/admPGTEBY2Nd69VfWfmOSLVmyZIlJExhAWFgYxo4dCwD47rvvoNFoYGVlBTc3N6jVanz44YeYP38+rK2t9e4zPT0d7777brUKj/z8QghClQ8rU2xsNGQyKby9fWunw1oUGxuNzAd5UNh0NHWUSj1W3gKAepG1uMfKW2hh3RT9+w8wdRSja9bMHHl5haaOYTIVzT82NhoJCbchCAKEf/5jU1hY1Lag4JG4LT8/D5cuxePRo3xoNBrx+Fu3bgAABEGAWq1GTs4D5OU9BFBU0BQWFuD69auIj/8VSmU2srIyER9/AYKgQX5+nth3Uftc5OQ8gFqtxoMHD6BUZiM3N1fcp+33zz9/h1qthlqthlKZjevXr+LOnSSoVCpcunQBaWmpxY7LQVZWFnJyHkClUuH69au4fz8D8fG/IisrUyef9rW7uwf27t2DCxfOoaCg6HVx2n0XL15Afn4erl+/Cn//58R9JfsCgFWrPkJWVqbY9sMP/4PHjwvx55+/AwAuXryAF14I1BmjrH6Kj19WtpL7vb37lfu917a7fv0KEhJu69VfWftrk0QiQdOmZuXub3CXWjw8PHDnzh1kZGQAAM6dO4eZM2ciLi4OAPDnn3/C0tISFhYWmDVrFkaNGoWAgABs3boVAKDRaLBkyRIMHToUgYGBePXVVwEAH374IXJychAUFCRuIyKqC3Jzc3QKiYpof/FXRXT0CURHR+lsU6tVVe6nIikpyeLXlWVMSUnGyZPHxdenTkXh1KmoYq9PIjHxNmJiTkIQBMTEREOpzBb3Z2dnifu0Y6WkJCMpKQHZ2Vk4deqkTl9KZTYSE2+LGVNSknHixNFSOfPyHopFSFE/TzLFxJwUMxQfv2S2svZnZWWV+T4Ub5eSkqx3fyX3G1uDu9RiYWEBNzc3nD17Fn5+fsjPz4evry9WrFgBADh79iy8vLywcOFCzJw5E56enigsLMTrr78OV1dX2NraIi4uDkeOHIFUKoVSqQQALFq0CCNHjsTBgwdNOT0oldl48ECJ0NBlJs1RlsTEBGjUMlPHaNA0qkdITEyok99/Q1MoZHj8WG3qGCZT0fyTk+8YdGy1uu6978ULLZVKtwhSqVTYtm0TNBpBbBsRsR/jxk0CAERGhov7ivv8841wcemmU1SpVCpEROzHtWtXdNru2vVVmbk2b16HjRu3IzIyHCrVk/dN28+4cZN0xi+ZrWQ+jUaD//u//8OoUWNLjVXWPPTpr+R+Y2twZzwAwMvLC3FxcTh//jz69OkDmUyG9u3b46+//sLZs2fh7u6Os2fPYvny5QgKCsLLL7+MtLQ03LhxA23btoVKpcL/+3//DwcOHDD1VIiIqMqKzgBoCwi1WoUzZ2LFvWfOxJZ5xiYlJRlnzsSKl6a0fZ05E6tzRka7vSzasyBF4z1pIwiCmKH4+CWzlbX/xIkTZY5V1jz06a/kfmNrcGc8AKBv375YunQprKys4OlZ9Jkmnp6eOHPmDM6fP4958+ZBIpHg+++/h0KhKHX84cOHERcXh9OnT2P16tUIDw839hTKZW1tg5Yt7TBv3vumjlJKaOgy/J2UYeoYDZpUboF2bVti4cIPTB3F6OztrZCenmPqGCZT0fwnTx6r96WWxkECZ2dnpKamQq1WQSaTw9vbR9zr7e2D6OioUr+0nZ1bw8WlG6KijhUrPiTw9vbBtWtXShQfEpRVfDRt2kwc48SJY2IbiUQiZig+fslsZe0fNGhQmbMsax769Fdyv7E1yDMeHh4eSE5Oxk8//QQvLy8AwNNPP43du3ejefPmcHFxQZ8+fbBt2zbxmLt37yI9PR2ZmZni5ZkFCxbAysoKSUlJsLS0xKNHj0qd0iMiMjUnJ2eD9i+TySCT1a2/U6XSJ7++5HI55HK5zuupU9+EVCoR2wYGviTuDwgIFvcVN21aCAICgnXmKpfLERj4EqZOfVOn7bhxE8vMNXPmbHEMufzJpWdtPyXHL5mtrP3l3VdY1jz06a/kfmNrkIWHubk53N3dAQCtWrUCALi6uiI1NVUsRFavXo0bN24gICAAAQEBmDt3Lh48eIC7d+9i4sSJCAwMRGBgIPz8/NCrVy/Y2NiIbXlzKRHVJZaWVjq/iCui/Yu8Kvz8BsHPb6DOttouRJydW4tfV5bR2bk1BgzwF1/7+g6Er+/AYq8HoF27DujffwAkEgn69/fTeYTUxsZW3Kcdy9m5Ndq2bQ8bG1v4+g7Q6cva2gbt2nUQMzo7t8agQYNL5WzatJn4OG1RP08y9e8/QMxQfPyS2crab2trW+b7ULyds3Nrvfsz9eO0dauErUW7du3Sea1QKHDx4kXxtb29PT799NMyj92/f3+Z25cvX157AYmIapGTkzNSUpINso5HYOBLEAQBCQm3jbKOx4wZsytcx2PatBBYWTVHQsJtSCTQyQdA58xCcvKdMv/C1+7TruMxbVqIzr6SfQHA1KlvIjR0mdh2xoy3dNbx0J7tKNmPNmNZ45d39qGy/SXbadfxqGl/xiARhNpaYYLKc/9+bpl3UFdHaOgyKBSyOn2PR9P2z5o6SqXyEo4BQL3IWlxewjF05j0ejVJF89c+5dSQfy4a8/e/vs1dKpXAzs6y/P1GzEJERESNHAsPIiIiMhoWHkRERGQ0LDyIiIjIaFh4EBERkdE02MdpG6r+/QegefMmpo5BRHVIY/y0Yqq/WHjUMz4+fvXu0SoiMiwfHz9TRyDSGy+1EBERkdGw8CAiIiKjYeFBRERERsPCg4iIiIyGhQcREREZDQsPIiIiMhoWHkRERGQ0XMeDapX6Ubb4kfN1mfpRNgDUi6zFFeVuaeoYRETVxsKDak3btu0NPoZCIcPjx+oa96NUFv3oW1vb1LgvY1IoWsHRsY2pYxARVRsLD6o1Y8aMN/gYjX3V1sY+fyKq/3iPBxERERkNCw8iIiIyGhYeREREZDQsPIiIiMhoWHgQERGR0bDwICIiIqNh4UFERERGw8KDiIiIjIYLiFG1hIXtRFJSgtHHrenKpUpl0VLp9W3FUi2FQgZHxzZGWayNiMgQWHhQtSQlJeD231fhaGncH6FHNTw+K1cFADDPz6h5GBO4nauqlSXjiYhMhYUHVZujpRwT3VqYOkaVfPVbJgDUu9xa2vxERPUV7/EgIiIio2HhQUREREbDwoOIiIiMhoUHERERGQ0LDyIiIjIaFh5ERERkNCw8iIiIyGhYeBAREZHRcAGxeiY2NhrNmzeBq6unqaMQUT0RGxsNAPDx8TNxEqIqnPG4dOlSmdt/++23WgtDlYuJOYmff/7Z1DGIqB6JiTmJmJiTpo5BBKAKhcfEiRPL3D558uRaC0NEREQNW6WXWjQaDQRB0PmnlZiYCJlMZtCARERE1HBUWnh0794dEolE/Lo4qVSK6dOnGyYZERERNTiVFh7Hjh2DIAgYN24cvvnmG3G7RCJBixYtYGFhYdCARERE1HBUWni0bt0aAHDixAmDhyEiIqKGTe/HabOzs7Fjxw5cuXIFeXl5Ovt2795d68GIiIio4dG78Jg/fz4KCwsxbNgwNGnSxJCZiIiolj16lI8ZMyZCo9FAIpHC3t4e5uYWeOutebC2tkF2dhbWrVuFlJRkPH78GBKJBPPnvwdn59b45JMPkZaWCltbW+Tl5cHR0RnDhg3H559vgiAIsLOzw/379wEU3fsnl8vh4OAAc3MLjBv3Br74YjPu3EmCQqFAq1aOMDMzx/jxb2DTprVIT0/DhAlv4F//6oSPP14KABg9+jV8881XEAQBCxa8j+7deyIzMxPLly9DQcEjZGSko3lza2RkpIsZt27dgBkzZsHa2gaJibcRGroMM2fOQXj4XhQUPEJ6eho0Gg3UajVkMjlkMilCQuYhPHwvJBIgJKTofdDKzs7CmjUfIyUlGfPnv4fu3Xvq7Nu4ce0/fcnE97AmsrOzdOZgLKYYV7ZkyZIl+jRcunQpIiMj0atXL3Tr1k3nX2X8/f2xd+9evPrqq+KNqv7+/vD29oadnZ3eYa9cuYJz587hqaeeEre5uLhg0qRJMDMz07uf6jh69Chyc3PRqlWrKh+bn1+IYg8D1UhsbDRkMim8vX1rp8Ma5FDlZsKjVf0qQi+m5gNAvcutdTE1H3LLFujff4Cpoxhds2bmyMsrNHUMk6nJ/GNjo5GUlIjCwkLxl29OzgNkZWWisLAA7u4e2Lt3Dy5evACNRiMed/HiBTx8mIs//rgMAHj06BHUajWUymzExz9pm5+fLx4jCALUajUePCjq//r1q0hOvgOg6CnJ4ttTU+8BAC5duojr168iOzsLarUav/12EYAgZnjhhUB8910Yzp07i5ycB1Cr1cjLe6iT8cKFcygoKJrLqlUfISsrE5cuxSMtLVU8RptX+x5o9xd/H7T27t3zT44nGYrvi4//FUpldpnHVsfevXt05lCcIX/2Kxq3uiQSCZo2Lf93st7reLi4uODevXvVDpKXl4eDBw9W+3iVSoUrV67gxx9/rHYfNXH06FEulkZE9dKjR/koLCz7F9epUyeRmJiAU6eiSu3Ly3uIEyeOlnmcWq3Sa+yUlGQ9tgulXhfPcPbsGRw9WnaOvLyHiI4+AUEQEBMTjT/+uCz2pS1OylN8f0zMSSiV2QCKzgJER5/Qaffnn7+L+0q+V6dOPTm2OrKzsxATc1KcQ036qg/j6n2ppV+/fpg8eTJeeukltGzZUmffqFGjKj0+JCQEGzduxPDhw3XOTiQkJGDRokXIzMyEXC7H3Llz4edXtKyvi4sLQkJCEBUVhV69euHYsWPIzc1FUFAQPD098Z///AcAsGvXLvz888/Izs7GO++8g+effx5A0Wqrq1evxsOHRT9cs2bNwsCBA6FSqTBt2jRkZWWhoKAAbm5uWLp0KczMzHDhwgUsW7YMGo0GKpUKM2bMgLW1NY4fP47Tp09j7969mDhxIkaMGKHvW1erlMpsPHigRGjoMpOMr5WYmICm0FTekGpVbqEGaYkJJv/+m4JCIcPjx2pTxzCZmsw/IeF2uftUKhW2bdsIlUq/QsIUtm/fAo2m/Lmr1UX7NBoNtmxZX60xVCoVIiL2Y9y4SYiMDBf71Nq8eR02btyOyMhwqFTqco+tjsjIcGg0gjiHmvRVH8bVu/D49ddf0apVK8TGxupsl0gkehUePXv2RI8ePbBnzx5MmDBB3L5gwQKMHj0aL7/8Mv7++2+89tpr+OGHH9CiRQsAgLm5Ofbt2wcA6NGjB6KiorB+ve4PlqWlJfbt24fz589jzpw5eP755/HgwQMsXrwY27Ztg4ODA9LS0jBq1CgcOnQIVlZWWL16NWxtbSEIAhYuXIh9+/bh3//+N7Zv34433ngDL774IgRBQE5ODpo3bw5/f3/07OIxlB4AACAASURBVNkTY8eO1fctIyKqB0qebah79D27olarkJdXvQJKEAScOROLceMm4cyZ2FL7tWdHivaVvHb+5NjqOHMmVpyjWq2qUV/1YVy9C49du3bVeLA5c+Zg/PjxYqEiCAKuXLmCkSNHAgA6d+6Mbt264eLFi/D39wcABAcHV9rvCy+8AADo1asX0tLSUFBQgPj4eNy5cwdTpkwR20kkEiQkJKB79+7YsWMHoqOjodFooFQqxfVI+vbtiy1btiAxMRE+Pj5wd3ev8bxrk7W1DVq2tMO8ee+bNEdo6DI8uve3STM0RpZmUrR0bI+FCz8wdRSjs7e3Qnp6jqljmExN5j99+uvlXmoBJHB2dq7TxYdMJodGo9ZZObu8dubm5pVeYimLRCKBt7cPAMDb26fUJaamTZsV23cMusXHk2Orw9vbB9HRUVCrVZDJ5DXqqz6Mq/c9HgCQlZWFAwcO4IsvvgAApKamVum+j44dO2LAgAH46quv9D6madOmlbYxNzcHAHH5dpVKBUEQ4OLigoMHD4r/Tp48CVdXV0RGRuL8+fPYvXs3IiMjMWbMGPH/lK+//jq2bNmCFi1aYNmyZVi7dq3eWYmI6iInJ+dy98nlckydGgK5vO5+WPmUKTMqzKf9b79UKsWMGbOqNYZcLkdg4EsAgICA4FIfBzJz5mxxn1wuK/fY6ggICIZUWvTghVQqrVFf9WFcvQuPs2fPYujQoYiMjMSmTZsAFN2foedDMaK33noLYWFhePjwISQSCbp164bw8HAAwI0bN3D16lX06tWrzGMtLS2Rk6Nfxe/h4YGEhAT88ssv4rbffvtNvHxia2sr9nfo0CGxza1bt9CuXTu8+uqrGD9+PC5fvlzlsYmI6hILiyblPvnn6zsA7dq1h6/vwFL7mjZthkGDBpd5nEymX6Hi7Nxaj+2SUq+LZ/Dy8sbgwWXnaNq0Gfz8BkEikaB/fz/06OEq9qU9S1Ge4vv79x8gPk5qY2MLP79BOu20j9Pa2NiWeq98fQfU6FFUGxtb9O8/QJyDsR5rNdW4ehceK1aswGeffYYvv/xSrDzd3d2r/KSHo6MjgoKCkJ1ddPfs6tWrERERgYCAACxYsAArV64U7+8oydvbG/n5+QgMDMTy5csrHMfa2hqbN2/Gpk2bEBgYiGHDhmHjxo0QBAEjRozAw4cPMXToUEyfPh19+vQRj9u1axeGDx+OESNG4JtvvsGcOXMAAIGBgTh06BCCgoJw4MCBKs2ZiMjUnJycYW5uDoVCATMzc7Ru3QYdO3bW+Su/ffsOUCgUAIouPcycORsBAcFwcChaRsDW1hbm5uZo3/5fmDJlurg8QvFlEaRSKczMzNCmTRt06tQZU6eGoE2btgAAhUKBNm3aomPHou329g4AgAkTJmHq1Ddhbm4Oc3NzjBs3Uexbe6bh1VdfRceOndG6dRuYm5vD3t5BJ+NTT7mIc5k69U00adIEM2bMEo8xMzODXC6HRCKBXK6Aubm5uL9Tp86l/toPCAhG69ZtxDFK7uvYsTPat/+XzntYEyXnYCymGFciVHbR7B+enp44d+4cAMDLywtnz56FRqOBt7c34uLiDBqyvrt/P1e8c7imQkOXQaGQ1Zl7PCa6lV0k1lVf/ZYJAPUut9ZXv2XCwrEz7/FohGoyf+1TUPX556Yxf//r29ylUgns7CzL369vR506dcKpU6d0tp0+fRpdunSpfjoiIiJqVPS+m+jdd9/FtGnTMHDgQDx69AiLFi3C8ePHsXnzZkPmIyIiogZE7zMevXr1QkREBDp37oyRI0eiTZs2+P777+Hm5mbIfERERNSAVOn5qVatWumsi0FERERUFXoXHjk5Odi5cyeuXLmCvLw8nX07duyo9WBERETU8OhdeMyePRtqtRpDhgwRF+wi4+vffwCaN6+fn6xKRKbRGD/NmOouvQuPixcv4pdffjH4x89TxXx8/Ordo1VEZFo+Pn6mjkAk0vvm0j59+uDmzZuGzEJEREQNnN5nPD755BNMmTIF7u7uOqvUAUUfeU9ERERUGb0Lj7Vr1+LevXto06YNcnNzxe3aZW2JiIiIKqN34XH48GH873//g4ODgyHzEBERUQOm9z0ebdu2rdMfm0xERER1n96VRFBQEGbOnImxY8eWusfD29u71oMRERFRw6N34bF7924AwKeffqqzXSKR4NixY7WbioiIiBokvQuP48ePGzIHERERNQJ6Fx5ff/01AgIC0KJFC0PmoXrkXq4KX/2WaeoYVXIvVwUA9S631r1cFTqYOgQRUQ3oXXj88ssv+Oyzz+Dl5YWgoCAMHjyYq5g2Ym3btjfJuAqFDI8fq6t9vK0yGwBgYW1TW5GM6imFDI6ObUwdg4io2iSCIAj6Ns7KysKRI0cQERGBmzdv4rnnnsOIESPg6elpyIz13v37udBo9H6bK9WYl0xvzHMHGvf8G/PcAc6/Mc+/vs1dKpXAzs6y/P1V6czW1havvfYavv32W+zatQuXL1/G+PHj4e/vjy1btuDhw4c1DkxEREQNV5UX5jhz5gwiIiJw7Ngx9OzZE5MnT4azszN27tyJKVOmICwszBA5iYiIqAHQu/AIDQ3F4cOHYWVlhaCgIERGRqJVq1bifnd3d3h5eRkkJBERETUMehceBQUF2LhxI9zc3Mrcr1Ao8P3339daMCIiImp49C48Fi1aBABISUlBamoqWrVqBWdnZ502nTp1qt10RERE1KDoXXikp6dj7ty5uHjxImxsbJCdnQ13d3d8+umnOpdciIiIiMqj91MtixcvRteuXXH27FnExMTg7Nmz6NatGxYvXmzIfERERNSA6H3G4/z581i3bh0UCgUAoGnTpnjnnXfg6+trsHBERETUsOhdeFhbW+PGjRvo2rWruO3mzZto3ry5QYJR/RcWthNJSQm12mdNVy7Vh/Kf1U2t6+DqpvrOv23b9hgzZrwREhERVY3ehcfkyZPx+uuvY9SoUXB2dkZKSgr279+P2bNnGzIf1WNJSQm4fvMaZNb1a2l9VXYBACBDlWXiJNWjVhaaOgIRUbn0LjxGjx6Ntm3b4tChQ7h27RocHBywZs0aeHt7GzIf1XMyazNY+zlX3rAOUUanAEC9y62lzU9EVBdVaeVSb29vFhpERERUbRUWHuvWrdOrE15uISIiIn1UWHjcu3fPWDmIiIioEaiw8Pj444+NlYOIiIgagSrd43H79m388MMPSEtLg4ODA4YNG4YOHToYKBoRERE1NHqvXBoZGYng4GBcu3YNTZo0wfXr1xEcHIzIyEhD5iMiIqIGRO8zHp999hm2bdsGT09Pcduvv/6Kd955BwEBAQYJR0RERA2L3mc8Hj58iF69eulsc3d3R15eXq2HIiIiooZJ78Jj4sSJ+PTTT1FQULSq46NHj7B27VpMnDjRYOGotNjYaBw/ftzUMYiogYiNjUZsbLSpY1AjovellrCwMGRkZGDXrl1o3rw5Hjx4AEEQYG9vjz179ojtoqKiDJGT/hETcxIKhQyurp6VNyYiqkRMzEkAgI+Pn4mTUGOhd+GxatUqQ+YgIiKiRkDvwsPLy8uQOYiIiKgR0LvwUKlUOHToEK5cuVLqhtJly5bVejAiIiJqePQuPN5++21cv34dfn5+sLOzM2QmIiIiaqD0LjxOnTqFqKgoWFpaGjIPERERNWB6Fx6dO3eGUqlk4UFE1AD98cdv+PTTUAiCAIVCAQCQSqUICZmP8PDvoFaroFKpkJ6eDkHQQCKRwM6uJTIz76NlS3vI5XIUFhbi7t0UyOVySCRSSKUSvPXWPEREhMPLyxvffPMVbG1tkZWVBYlEgunTQ/C///0AABg/fhJ27twBiQQYN+4N7Nz5JQDAxaUHfvjhIORyOT74YBmsrJpj69YNGDRoCD7/fIOYVZvn/v0MAICjozNefvnf2LRpLezsWkIul0MulyMkZB4EQcC6datw795dtGxpDwsLC3H71q0bMGPGLJ2vra1tAADZ2VnYuHEtJBIgJGQerK1tSm1TKrPx8cdLAQDvv78Ebdu2r/L3Ijs7q9TY5bUZM2YCwsK+rrBtXSNbsmTJEn0a9u3bFx988AEyMjKQmJiIq1eviv+6du1q4JgV++GHH/D2229jz549+PrrrxEfH4/nn3++Wn1duXIF586dw1NPPSVuc3FxwaRJk2BmZlatPvPzCyEI1Tq0lNjYaMhkUnh7+9ZOhwYUGxuNrPxsWLS3MnWUKilIyAGAepdbqyAhBy2a2qJ//wGmjlKrmjUzR15eoaljmIyh5q9dw+PYsZ/x+HFR/xqNBhqNBmq1GpcuXUBaWiqUymzk5DyAWq0W9+Xm5kCtViMn5wGUymzk5uYUO14NtVqNixfjkZp6D7/9dhFA0RpQWvHxF5CZmYGsrExcv34ViYkJpb7+++9rYp/Xr1/F/fsZuHDhHOLjz0MQNDpZtXnUajWUymxcuhSP/Px8MV9WViYKCwtw/fpVXLx4QcxefPuFC+dQUKD7tbu7BwBg7949iI//VWzv7u5RattPPx1BdnYW1Go1rl+/Cn//56r8Pdm7d4/O2GV977Vtrl+/goSE2zo5TU0ikaBp0/J/X+p9xmP//v349ddfoVQqYWFhoTPAiBEjapayBtLS0rB06VKEh4fDyckJgiDgypUr1e7vypUriIqKwgsvvFCLKYmI6q7c3Bzk5T0sc1952/VV0fFqtUr8OiUlucyvi0tJSUZqaioEQdA5tipjnzoVVeYfgqdORQGQQBAExMSchCAI/3wdjcDAlyAIwj9tisTEnMSAAf4626KjT0CtVuvkTUpKqNJZj+zsLHF87dj29lblttG+V9q29eGsh96Fx86dO3HgwAF06tTJkHmqLCMjA3K5HDY2RW+2RCJB9+7dAQDR0dH49NNPoVar0aJFC3z44Ydo37499u/fj6ioKKxfvx4AxNdLly7F+vXrkZubi6CgIHh6euI///kPAGDXrl34+eefkZ2djXfeeafaZ1RqSqnMxoMHSoSG1v0niRITE6CRqStvSLVK80iNxMSEevEzUhUKhQyPHzfenydDzT8xMQH5+fXnoy/0KTgqolKVfbxKpYJEIhG/1hYnGo0GERH7/9mu1mm/bdsmnW3Fiw6tzz/fiOXL9V8HKzIyHBqNoDP2vHmzy22jpW07btwkvccyFb0Lj5YtW8LJycmQWaqla9eucHNzw8CBA9G3b1/07t0bQUFB0Gg0eOedd/DNN9+gc+fO2Lt3LxYsWIC9e/eW25etrS1mzZqlU5RoWVpaYt++fTh//jzmzJljssKDiIgMQ/in2hCKnRJRq1U4cyZW20KnbXlnZorTp01xZ87EisXVk7Fnl9umZM4GVXhMmDABb7/9NqZMmVLqcdq2bdvWejB9SaVSbN68GdevX8e5c+dw9OhRfPnll5g3bx66du2Kzp07AwBGjhyJpUuXIjc3t1rjaC+99OrVC2lpaSgoKIC5uXmtzUNf1tY2aNnSDvPmvW/0sasqNHQZbty/ZeoYjY7UQoZ2du2xcOEHpo5Sq+ztrZCenmPqGCZjqPmHhi7DX39dg0ajqfW+6xuJpOhSS9H/AoAAmUwOb28fAMCJE8egLT4kEgmcnJyRkpKC4gVJSc7OrauUwdvbB9HRUVCrVTpjl9dGq7y2dZHehceHH34IADh27JjOdolEUqN7KmpLly5d0KVLF7z22muV3p8hk8l0/k+m/eC7imiLDJlMBqDoNJspCg8iotrm5OSM5OQ7po6hF5lMXqPLLXK5HIJQ+pKNXC4HIIFK9fifNgJUKhWkUqnOPR7aSzVyuRxTp76J5csXidtkMlmpyy3TpoVUKV9AQDBiYk5CrYY4dkVttMprWxfp/em0xZ9iKf7P1EVHamoq4uPjxdf37t1DZmYmOnXqhKtXr+LGjRsAgPDwcHTv3h2WlpZo3749rl27hsLCQhQWFuJ///ufeLylpSVychrvX1VE1PhYWlqhadNmZe4rb7u+mjZt9s+9E5JS+2SyJ3/7Fj8zUN5ZAmfn1vDzGwiJRKJzbEVjl+TrOxB+fgPL3O7rOwASiQT9+w+Ar+/Af772g7W1DWxsbOHr++S4/v0HoF27Djrb/PwGlZpHVR+ntbEpeiKt+NgVtXF2bl1h27pI7zMeWnfv3kVqaip69epliDxVplKpsGHDBiQnJ8PCwgIajQZz5syBm5sbVq5ciQULFkClUqFFixbiB9316tUL3t7eGD58OBwcHNC1a1ekp6cDALy9vbFjxw4EBgbCy8tLvLmUiKghmzHjrTLX8ZgxY3aN1vGYOXNWuet4TJ06o0rreEybFgIrq+ZITr5T7XU8tGcvbt78W2cdD+325OQ7pb7WCggIRkLCbUgkELeX3FZ8HY+qnu0oPk7Jsctro13Ho76c7QAAiSDot8JESkoK5s2bh6tXr0IikSA+Ph4//vgjTp06hY8++sjQOeu1+/dzS92BXF2hocugUMjq1T0e1n7Opo5SJcroFACod7m1lNEp6GT3L97j0cAY8h4PAHX+56Uxf//r29ylUgns7MpfbFTvSy2LFi3CwIEDceHChX+uhQE+Pj44ffp0zVMSERFRo6B34XH58mVMnToVUqlUfNbZysqK90MQERGR3vQuPOzs7JCQkKCz7e+//66Ta3sQERFR3aR34TFp0iRMnz4d+/btg0qlwqFDhzB37lxMmTLFkPmIiIioAdH7qZZRo0bBxsYG3377LZycnHDgwAHMnj0bgwcPNmQ+IiIiakCq9Djt4MGDKyw0lixZAj0/7JaqqX//AWjevImpYxBRA9HQPsWY6j69L7XoIyIioja7ozL4+PjB39/f1DGIqIHw8fGDj4+fqWNQI1KrhYeeS4IQERFRI1WrhYf2MVsiIiKistRq4UFERERUEV5qISIiIqOpsPCYM2eO+PW+ffsq7SwwMLDmiYiIiKjBqrDwiImJEc9i6PNBcEuXLq2dVERERNQgVbiOx9NPP41XXnkFHTp0QGFhId55550y261cudIg4YiIiKhhqbDwWLduHX788UekpBR9THi7du2MEoqIiIgapgoLD3NzcwQFBQEAVCoVQkJCjBKKGg61shDK6BRTx6gSVXYBANS73FpqZSFgZ+oURERl03vJ9Lfeegu3b9/GoUOHkJaWBgcHB7z44ovo0KGDAeNRfda2bfta71OhkOHxY3Wt91ucUp4NALC2tjHoONWh1/ztDPPeExHVBr0Lj+PHj2PBggUYNGgQnJ2dcevWLYwcORIrV67Es88+a8iMVE+NGTO+1vu0t7dCenpOrfdbXzT2+RNR/ad34bF27Vps3rwZ/fr1E7fFxcVh2bJlLDyIiIhIL3ovIHbv3j08/fTTOtv69OmDe/fu1XooIiIiapj0Ljy6du2KHTt26Gz76quv0K1bt1oPRURERA2T3pdalixZghkzZmDnzp1wcnLC3bt30aRJE2zdutWQ+YiIiKgB0bvw6NSpE44cOYKLFy+KT7W4u7tDoVCIbe7duwdHR0eDBCUiIqL6T+/CAwDkcnmp+zyKe+GFF3DhwoUahyIiIqKGiZ9OS0REREZTq4WHRCKpze6IiIioganSpRaiuiQsbCeSkhJMHaPKlMrqr4xqjJVby9K2bXuDLAhHRI0PCw+qt5KSEnDr+lW0lMlMHaVKMlUqAIA0I93ESfSToTZ+oUNEDVetFh68x4OMraVMhiCruveZKhU5mFN0xqO+5NbmJSKqDdUqPDQajc5rqbToVpEjR47UPBERERE1WHoXHn/88Qc+/PBDXLt2DQUFRR8bLggCJBIJrly5AgBwcnIyTEoiIiJqEPQuPN59910MGjQIK1asgIWFhSEzERERUQOld+GRnJyMuXPn8pFZIiIiqja91/EYMmQIYmJiDJmFiIiIGji9z3gUFBQgJCQEffr0QcuWLXX2rVy5staDERERUcOjd+HRuXNndO7c2ZBZiIiIqIHTu/AICQkxZA4iIiJqBKq0jkdcXBwOHDiAtLQ0ODg4ICgoCP369TNUNipDbGw0mjdvAldXT1NHIaJGLjY2GgDg4+Nn4iRUn+h9c+nevXsxZ84c2NvbY8iQIXBwcMD8+fPx3XffGTIflRATcxI///yzqWMQESEm5iRiYk6aOgbVM3qf8fjiiy/w1VdfoWvXruK2YcOGYdasWRg9erRBwhEREVHDovcZj+zsbHTq1ElnW8eOHaFUKms9FBERETVMehcevXv3xieffIL8/HwAQF5eHlauXAkPDw+DhSMiIqKGRe9LLUuXLsXcuXPx9NNPw9raGkqlEh4eHlizZo0h8xEREVEDonfh4eDggN27d+Pu3btIT0+Hg4MDHB0dDZmNiIiIGpgKCw/tp88CgEajAQC0atUKrVq10tkmlep9xYaIiIgasQoLjz59+uDChQsAgO7du5f6gDhtYXLlypUaB/H390dhYSFOnjwJmUwGANi/fz/ee+89fPDBB5DJZCgoKMDrr79e6tj9+/cjKioK69evr3GO8uzfvx8eHh7417/+ZbAxiIjqm8zM+5g0aQxefDEIR4/+D82bWyMtLRVOTk4QBAlSU+9i2rQQ/PTTD8jJeYD09DTI5XI4OjpBKi36b71EIoFa/Rjp6emwtrZBWloqAEAmk8PJyRGABBkZ6WjVygkTJ07FV199jnv37sLR0QkTJ07Dzp1fQiIBhgwZis8/3wRHR0c0bdoMISHzYG1tAwDIzs7Cxo1rAQDjx09CWNhOjBkzATt2fI7U1Lto3twaGRnpaNGiBe7fvw+FwgytWjlAKpVDIgEEoSinIAgoLCxAauo9TJv2Fn766QgA4K23isbSjiORACEh8yAIArZu3YAZM2aJWUoqeUxF7crqq/jctDnKa6/vNkOqsPA4fPiw+PWxY8cMHsbBwQExMTEYMGAAACA8PBw9evQAAPz73/82+PgVCQ8Ph62tLQsPIqJi0tPTAACHDh0EADx69AgAcPfuXbHN9u1boFarxNcqlQp37iSV2Z+26AAAtVqFO3fuiK8TEm5h27aNSElJ/uf1bZ3Xt29vhSAI4tgREfsxbtwkAEBkZDhu3vwbALBt2ybcvZuic6x2Hvfv3wcAPH5cqDN2WbZv3yzOSztW8XEiIvYDAP7665pOlpJKHlNRu7L6Ku/4strru82QKrxG4uTkJH7dunXrcv/VluDgYOzfX/SNSkpKQl5eHrp06QIA2LBhA0JDQwEAhYWFWLRoEZ577jm88sor+O2338Q+ir9esmQJhg8fDqDoB71v377Iy8sDAGzbtg2jRo1CcHAwpk+fjvT0dADA0aNHERAQgKCgILz44ouIi4vDvn378Pvvv2P58uUICgrC6dOna23ORET1VWbmfb3aFS86akpbKJT1uuQ4MTEnoVRmIzs7C6dOndQ5RhCEUn1VVfHxTp06icTE2zh1KqrYtiicOhUFQRAQExMNpTK7VB9F2Z4co81cVruYmJOl+io5t1Onnsy5ZHt9txma3jeXvv3226UutQCAmZkZHB0dMXjwYJ3FxarDy8sLYWFhUCqVCA8Px4gRI/DHH3+Uavftt9/izp07OHz4MFQqFV577TW0adMGANCvXz/88ssvcHNzw/nz52Fubo60tDQkJyejU6dOaNq0KQ4ePIikpCR89913kEqlCAsLwyeffII1a9Zg/fr1+PDDD+Hh4QG1Wo38/Hz07dsXBw4cwKRJkzBo0KAazbGmlMpsPHigRGjoMpPmMBWFQobHj9UAgMTEBJj/c58RGU6eRoOsxAST/8wV/943RnVx/tqzBHWVSqUSzzrUZvFT3ljbtm2CSqXW2QY8uU+yrDMKkZHhpY4pr51GI5TqKzIyvNTZJO2cS7bXd5uhz3rofVeolZUVjh07BkEQ4OjoCEEQcPz4cUilUty4cQOvvPIKDhw4UKMwEokEw4YNw+HDh3H48GG8+OKLZbaLi4vDiBEjoFAo0KRJEwQGBor7vL29cfr0ady9exc2NjYYNGgQzpw5g9OnT4ufK3P8+HGcPn0awcHBCAoKQlhYGJKTiyrffv364eOPP8YXX3yBGzduwNLSskZzIiIi0xAEAWfOxOLMmVgIgmDo0f45g1JynKLXarUKZ87EljqqaNuTY7SZy2qnLTCK91V6bk/mXLK9vtsMTe8zHrdv38a2bdvQp08fcVt8fDzWr1+Pr776CtHR0VixYgVGjBhRo0DBwcF4+eWX4enpCVtb2yof37t3b/z555+IioqCt7c3vLy8sG/fPty5cwezZs0CUPSNnTFjBkaNGlXq+Pfffx/Xrl3DL7/8gtmzZ2PixIl1akl4a2sbtGxph3nz3jd1FJOwt7dCenoOACA0dBlybvxl4kQNX1OpFK3atcfChR+YNEfx731jVBfnP2nSGFNHqJBEIoG3tw8AICrqmIGLDwmcnZ2RkpIC3eJDAkCATCYXsxTn7e2DEyeOiccUz1yyXXR0FNRqlU5f3t4+Jeb25Piy2uu7zZD0PuNx6dIluLu762zr2bOneD+Fr68vUlNTyzq0Stq2bYu5c+di5syZ5bbp168fDh48CJVKhUePHuHQoUPiPjMzM3Tv3h3bt2/HM888A3d3d1y4cAHXrl0T8/v7+4uXdICie0auXr0KALh58yZcXFwwYcIEBAYG4vLlywCAZs2aISenbv2fnojIlOztHUwdoUJyuRyBgS8hICAYMlmVPoy9WmNNnfom5HKZzjbta6lUisDAl0odFxAQXOqY8tpJpZJSfZWcW/E5l2yv7zZD07vw6NatG9auXYuCggIAQEFBAdatWyfe13Hnzh1YW1vXSqhXXnkF3bp1K3f/6NGj4ezsjBdeeAETJkyAq6urzn5vb28olUq4urpCoVCgXbt2cHV1hZmZGQBgxIgRCAwMxNixYxEQEICXXnoJ58+fBwCsWbMGL774ongT6ZQpU8RMmzZt4s2lRET/aNHCTq92tflL39m5dbmvAHWmqAAAFbVJREFUS47Tv/8AWFvbwMbGFr6+A3SOkUgkpfqqquLj+foOQLt2HeDrO7DYtoHw9R0IiUSC/v39ynxUtSjbk2O0mctq17//gFJ9lZybr++TOZdsr+82Q9P7p+GTTz7BggUL0KdPH3HJ9J49e2LVqlUAij5EbvHixdUOcvz48XLHLcnMzAzLlpV/o9u0adMwbdo08fX27dtLtXn99dfLXBNk06ZNZfY5aNAgk99YSkRU19jbOyA9Pa3CdTymTJlhknU8iv/1HhAQjISE2wBqbx2PKVNmiut4FD8DkZBwGxJJ0TZBEJCcfKfCMwklj6moXVl9FZ9byTmXbK/vNkOSCFW86HX37l2kpaXB3t4ezs7OhsrVoNy/nyveNVxToaHLoFDIeI8HntzjEWRl+Aq9Nh3MKXpcrb7kPpiTDatOT/EeDxOri/PXPulkjJ+Nujh/Y6lvc5dKJbCzK//BjCqtdZ6VlYW4uDicPXsWzs7OSE1Nxb1792ockoiIiBoHvQuPs2fPYujQoYiMjMTmzZsBAAkJCViyZImhshEREVEDo3fhsWLFCnz22Wf48ssvIZcX3Rri7u6us2ooERERUUX0LjySk5Ph7e0NAOIKpgqFAmp13VpJj4iIiOouvQuPTp064dSpUzrbTp8+LX6WChEREVFlqvRZLTNnzsTAgQPx6NEjLFq0CMePHxfv9yDj6N9/AJo3b2LqGERE6N9/QOWNiErQq/BQq9WYOHEifv75Z0RERGDkyJFwcnLC999/D0dHR0NnpGJ8fPzq3aNVRNQw+fj4mToC1UN6FR4ymQwdOnQAAHElTyIiIqKq0vtSS0BAAKZPn47x48eXOsuhvemUiIiIqCJ6Fx579uwBAGzYsEFnu0QiwbFjx2o3FRERETVIehce5X2WChEREZG+qrRkOhEREVFNsPAgIiIio2HhQUREREbDwoOIiIiMRu+bS4nqogy1Ggdzsk0do0oyVCoAqDe5M9RqWJk6BBE1GCw8qN5q27a9qSNUi0ZZVHBYWdtU+ViFQobHj437wYxWqL/vNRHVPSw8qN4aM2a8qSMYHZfLJ6L6jvd4EBERkdGw8CAiIiKjYeFBRERERsPCg4iIiIyGhQcREREZDQsPIiIiMhoWHkRERGQ0XMeDGpSwsJ1ISkowdQy9KP9ZSMy6CguJmWIBsbZt2zfKNVOIyDBYeFCDkpSUgL//+hvNmrQwdZRKPczPBADk5WhMnKR82oxERLWFhQc1OM2atECPTkNNHaNSf9z4EQDqdFZtRiKi2sJ7PIiIiMhoWHgQERGR0bDwICIiIqNh4UFERERGw8KDiIiIjIaFBxERERkNCw8iIiIyGhYeREREZDRcQKyeiY2NRvPmTeDq6mnqKERUx8TGRgMAfHz8TJyEqHwsPP5/e/caFVXZ9gH8zyCgRJw8AZZP2UrCrKXBgAqCThhECGhP4olssVDDA2rLlce3evJIWsuVYOpSl2+BsswDIpqnRERTQM0wl+dIxEGNw4yCgM7M/X7gZR5RzjB7GPj/Pjn73vfe17Xve5yLvffMNjEnT6bDwsKchQcRPefkyXQALDyobeOlFiIiIpIMCw8iIiKSDAsPIiIikgwLDyIiIpIMCw8iIiKSDAsPIiIikgwLDyIiajKVqgQrV34NtVplsG01Zh9N6dvcmFuaa3X/vLxbrXbMTJlJFx4KhQLXrl2rs93V1RVlZWWttr/8/Hx4eXm12vaIiEzVvn17cP36VaSk7DbYthqzj6b0bW7MLc21uv/GjXGtdsxMmUkXHkREJD2VqgQnT6ZDCIGTJ0+06C/4urb17PKSkpJm91WrVc2OuaW5Pt1fqbzTKsfM1LWLXy6Ni4tDamoqrKysYGZmhh9//BG2trY11omNjUVWVhaePHkCBwcHLF++HL169UJ+fj4+/PBDjB07Funp6SgvL8eyZcvg4eEBAEhMTMTWrVthY2MDPz8/Y6RXg1qtwoMHasTGLjF2KEZhYWGOJ0+0dbbn5d2C0LaLad0mPH5Sjry8W21ivjU09u1dY/LPy7sFOzs7g8eyb98e6HQCAKDT6ZCSshsREZGtuq1nlyclJeHf/57YrL7VZxiaE3NLc326f7WWHjNTZ/JnPNRqNbZu3Yrk5GTs3bsXCQkJsLa2fm69yZMnY9euXUhJSUFwcDBWr16tb1OpVBgwYACSk5Mxffp0fduVK1fwww8/YPv27dizZw9Uqo5boRIRVTt9+hS0Wg0AQKvV4PTpU62+rWeXp6WlNbvv6dOnmh1zS3N9un+1lh4zU2fyfxq++OKL6N27Nz7//HP4+Phg2LBhsLGxeW69EydOYNu2bXj06BE0mpqTwNraGsOHDwcADBgwALGxsQCArKwsDBs2DN26dQMAhIeH45dffjFwRvWzs7NHt25d8dlnC40ah7F07/4i/vnnYZ3tsbFLUJBfLGFE7ZulRRc4v+SIefP+x9ihNDj27V1j8pfqzNTgwd44ceI4tFoNzM07YfBg71bf1rPLq/+Pbk7f6uXNibmluT7dv1pLj5mpM/kzHjKZDDt27MDEiRNx9+5djB49GleuXKmxzp07d7BixQp8++23SE1NxfLly/H48WN9u6WlZY3tPVuYEBHRf40cOQoymRmAqv8zQ0JGt/q2nl0+duzYZvcNCRnd7JhbmuvT/au19JiZOpMvPIQQKC4uhqenJ2JiYtC3b19cv369xjqlpaWwsLBA9+7d9dcKG8PT0xPp6ekoKioCAOzcubPV4yciMjX29g7w8fGDmZkZfHx8YWdn3+rbena5g4NDs/va2dk3O+aW5vp0fxeXXq1yzEydyV9qefjwIRYvXoyKigoIIdCvXz+89957NdZxdXVFYGAggoKC4ODgAD8/P5w9e7bBbb/xxhv49NNPMW7cONjY2MDXl4+aJiICqv6Sv3Mnv1X+cq9rW43ZR1P6NjfmluZa3X/8+EnYtu1/O/TZDgAwE0KIhlejligqKn3urubmio1dAgsLc97jUYfqezzefC1Qwqia59LNgwDQpmO9dPMg7/FoI5pyj0dbGK/W1pHH39Ryl8nM0LXr8/da6tsljIWIiIg6OBYeREREJBkWHkRERCQZFh5EREQkGRYeREREJBmT/zptR+Pj4wdb2y7GDoOI2iAfH+M/T4qoISw8TIy3t6/JfbWKiKTh7c3fGqK2j5daiIiISDIsPIiIiEgyLDyIiIhIMiw8iIiISDIsPIiIiEgyLDyIiIhIMiw8iIiISDIsPIiIiEgy/AExanfKyotx6eZBY4fRoLLyYgBo07FWxeho7DCIqB1h4UHtyssv/8vYITSaWl11wtHOzr7RfSwszPHkidZQIdXC0aSOKRG1fSw8qF0ZP/5jY4dgUPy5fCIydbzHg4iIiCTDwoOIiIgkw0stEpDJzExim6aiI+cOdOz8O3LuAPPvyPmbUu4NxWomhBASxUJEREQdHC+1EBERkWRYeBAREZFkWHgQERGRZFh4EBERkWRYeBAREZFkWHgQERGRZFh4EBERkWRYeBAREZFkWHgQERGRZFh4mJDc3FyEh4cjICAA4eHh+Pvvv40dUrMoFAoEBgYiNDQUoaGhyMjIAABcuHABISEhCAgIQGRkJIqKivR9DNEmhdjYWCgUCri6uuLatWv65fWNpdRthlRX/nXNAaD9zIOSkhJMnjwZAQEBGDlyJGbMmIHi4mKj5NjW8nd1dcXIkSP143/16lV9v2PHjiEwMBAjRozA7NmzUV5ebtA2Q5k2bRpCQkIQFhaG8ePH4/LlywA6znu/XoJMRkREhEhOThZCCJGcnCwiIiKMHFHzDB8+XFy9erXGMq1WK/z9/UV2drYQQoj4+Hgxf/58g7VJJTs7WyiVyudyrm8spW4zpLryr20OCNG+5kFJSYk4c+aM/vXKlSvFggULJM+xreUvhBB9+/YVpaWlz/UpLS0VQ4YMEbm5uUIIIRYuXCjWrl1rsDZDevDggf7fR44cEWFhYUKIjvPerw8LDxNRWFgo3N3dhUajEUIIodFohLu7uygqKjJyZE1X24fOH3/8IT744AP966KiIjFgwACDtUnt6ZzrG0up24yRf22vq7XneXDw4EExadIkyXNsa/kLUXfhceDAATFlyhT965ycHBEUFGSwNqns2bNHjBo1qkO+92vDp9OaiIKCAvTs2RPm5uYAAHNzc/To0QMFBQVwdHQ0cnRNN3fuXAgh4O7ujs8++wwFBQVwcXHRtzs6OkKn00GlUhmkzd7eXppEa1HfWAohJG0z5tx5dg7Y2tq223mg0+mwfft2KBQKyXNsa/lXi4iIgFarha+vL2bOnAlLS8vnYnVxcUFBQQEAGKTN0BYtWoRTp05BCIFNmzbxvf//eI8HSS4xMREpKSnYtWsXhBD4+uuvjR0SSayjzYElS5bA2toaEydONHYoRvFs/sePH8fu3buRmJiIGzduID4+3sgRGsayZctw/PhxzJkzB998842xw2kzWHiYCGdnZ9y7dw9arRYAoNVqcf/+fTg7Oxs5sqarjtnS0hLjx4/H+fPn4ezsDKVSqV+nuLgYMpkM9vb2BmkzpvrGUuo2Y6ltDlQvb2/zIDY2Frdu3cKaNWsgk8kkz7Gt5Q/8d/xtbGzw0Ucf1Tn+SqVSv64h2qQSFhaGzMxMODk5dfj3PsDCw2R07doVbm5uSE1NBQCkpqbCzc3N5C6zPHr0CA8fPgQACCFw4MABuLm5oX///qioqMDZs2cBAElJSQgMDAQAg7QZU31jKXWbMdQ1BwDDjLUx58F3332HP//8E/Hx8bC0tDRKjm0tf7VajYqKCgCARqPBoUOH9OM/dOhQXLx4Uf/Ni6SkJLz//vsGazOUsrKyGpdzjh07Bjs7uw7/3q9mJoQQRo2AGu3mzZuYP38+Hjx4AFtbW8TGxqJPnz7GDqtJbt++jZkzZ0Kr1UKn0+G1117D4sWL0aNHD5w/fx5ffvklKisr0atXL6xatQrdunUDAIO0SWHp0qU4fPgwCgsL4eDgAHt7e+zfv7/esZS6Ter8169fX+ccAAwz1saYB9evX0dwcDBeeeUVdO7cGQDw0ksvIT4+XvIc21L+UVFR+OKLL2BmZgaNRoOBAwdi4cKFeOGFFwAAR48exapVq6DT6eDm5oaVK1fC2traYG2GUFhYiGnTpqG8vBwymQx2dnaYN28e3nzzzQ7z3q8PCw8iIiKSDC+1EBERkWRYeBAREZFkWHgQERGRZFh4EBERkWRYeBAREZFkWHgQUZu2fv16LFq0CACQn58PV1dXaDQaAEBUVBT27NljzPCIqIn4dVoiMhn5+fl49913cenSJXTqxEdNEZkinvEgoharPgNBRNQQFh5EVCeFQoENGzYgKCgIcrkcCxYsQGVlJTIzM+Hr64uNGzfC29sbCxYsgE6nw8aNG+Hv7w8vLy/MmjULKpUKQNUlkYSEhBrbDgkJweHDhwFU/cKpn58f3nnnHYwePVr/894AsHbtWsydO7fW+CIiIvDzzz8DAHbv3o1x48YhNjYWcrkcCoUC6enp+nVv376NCRMmYODAgfjkk0/wn//8p87tVps3bx62bNkCALh37x5cXV2RmJgIAMjLy4Onpyd0Oh3UajWmTp2KQYMGQS6XY+rUqbh7926j933hwgWMHTsWHh4eCAkJQWZmZv0DQ2TCWHgQUb327duHzZs348iRI8jNzcW6desAVP0stFqtRlpaGpYsWYKffvoJR48eRUJCAjIyMmBnZ6d/6mxwcLD+eREAcOPGDSiVSgwbNgwA8NZbbyE5ORlZWVkIDg7GrFmzUFlZ2eRYc3Jy8Oqrr+LMmTOIiorCokWLUH01ee7cuXj77beRmZmJGTNmYO/evQ1uTy6XIysrCwCQlZWFl19+GdnZ2frX7u7ukMlk0Ol0GD16NNLS0pCWlgYrK6saT9ytb9/37t3D1KlTER0djaysLMybNw8xMTEoLi5ucv5EpoCFBxHVa8KECXB2doa9vT2io6Oxf/9+AIBMJkNMTAwsLS3RuXNnJCUlYc6cOXBycoKlpSVmzJiBQ4cOQaPRwN/fH1euXMGdO3cAVBUzI0aM0D84LDQ0FA4ODujUqRMiIyPx+PFj5ObmNjlWFxcXjBkzBubm5hg1ahT++ecfFBYWQqlU4uLFi/p4PTw8oFAoGtyep6cnzp07B51Oh+zsbERFRemfpJqdnQ1PT08AgIODAwICAtClSxfY2NggOjpaX6A0tO+9e/fC19cXfn5+kMlk8Pb2Rv/+/WucrSFqT3h3FhHV6+lHaLu4uOD+/fsAqj5srays9G1KpRLTp0/XP/ocqCpOioqK0LNnT/j5+WH//v2YMmUKUlNTsXTpUv16mzdvxs6dO3H//n2YmZmhtLQUJSUlTY716QefdenSBUDV03BLSkpgZ2enX1ad19NPEK1N79690aVLF1y+fBnnzp3D9OnTsXPnTvz111/Izs5GREQEAKC8vBwrVqxARkYG1Go1gKonlFY/hry+fSuVShw8eBBpaWn6do1GAy8vrybnT2QKWHgQUb2e/nBWKpX6p8iamZnVWM/JyQnLly+Hu7t7rdsJDg5GXFwc5HI5Kisr9R+sZ8+exaZNm7B161a8/vrrkMlkkMvlaM0v3HXv3h1qtRrl5eX6AqChoqOaXC7HoUOH8OTJE/Ts2RNyuRzJyclQq9X6x7lv2bIFubm52LFjB7p3747Lly8jLCwMQogG9+3s7IzQ0NAahRhRe8ZLLURUr23btuHu3btQqVRYv349goKCal1v3LhxWLNmjf5ySnFxMY4ePapv9/Pzg1KpxPfff4+goCD9mZGysjKYm5vD0dERGo0GcXFxKC0tbdUcevXqhf79+2Pt2rV4/Pgxfv/99xpnGOrj6emJhIQEeHh4AAC8vLyQkJAAd3d3mJub63OwsrKCra0tVCoV4uLiGr3vkJAQpKWlISMjA1qtVn/z7tM3pxK1Jyw8iKhewcHBiIyMhL+/P3r37o3o6Oha1/v444+hUCgQGRmJgQMHYsyYMcjJydG3W1paYsSIEfjtt98QHBysX+7j44OhQ4ciICAACoUCVlZWNS7vtJbVq1fjwoUL8PLywpo1axAUFKS/x6Q+crkcZWVlkMvlAAB3d3dUVFToCxEAmDRpEiorKzFo0CCEh4dj6NChjd63s7Mz1q1bhw0bNmDw4MHw8/PD5s2bodPpWjF7oraDPyBGRHVSKBRYunQphgwZYuxQWt3s2bPRp08fxMTEdKh9Exkbz3gQUYeQk5ODvLw86HQ6nDhxAr/++iv8/f3b/b6J2hreXEpEHUJhYSFmzpwJlUoFJycnfPXVV+jXrx9SUlLw5ZdfPre+i4uL/qvDhto3UUfESy1EREQkGV5qISIiIsmw8CAiIiLJsPAgIiIiybDwICIiIsmw8CAiIiLJsPAgIiIiyfwfBJmCHHlMaysAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"The middle 50% of the data for prevailing wage is higher in the midwest and island regions. The northeast has the lowest first quartile. Every region has many extreme values on the high end."
],
"metadata": {
"id": "2T1jV3NL7oxk"
},
"id": "2T1jV3NL7oxk"
},
{
"cell_type": "code",
"source": [
"sns.catplot(data=visa,\n",
" x='case_status',\n",
" col='education_of_employee',\n",
" kind='count',\n",
" col_wrap=2);"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 725
},
"id": "stcW_7X1FIig",
"outputId": "fa9c9c00-f108-424a-8fb5-9eadff2aad51"
},
"id": "stcW_7X1FIig",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAALECAYAAAAPVSaDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde1yUZf7/8TdHNU0JAsSsb+l2IE1FxlOiJJBH1FwyjLQtO5FaagdlU7HVrNTS0iwzKzvs5laaCro/NjcPq1uapZlZuZkmCoKCGHhgcOb6/eHDWfEIo8wI9+v5ePB4OPd1Hz73PZcX77nnmsHHGGMEAAAAWJSvtwsAAAAAvIlADAAAAEsjEAMAAMDSCMQAAACwNAIxAAAALI1ADAAAAEsjENcg69atU+fOnT1+3NmzZ2vMmDEeP+4J33zzjbp27aqoqCgtX77ca3Wc7MYbb9Rvv/3m7TI84sEHH9Rnn31WoXUHDRqkTz75pErrqar/B7t379aNN96oY8eOXfR9w/sYPxk/YW0EYlTKmX5ppKamatKkSV6qSJoxY4buuecebdy4UQkJCV6royY6U4A9tQ/MnTtX/fr1q5Ljz549W3FxcYqKilLnzp01YsSIKjkO4AmMn9YyaNAg3Xjjjfrpp5/KLR86dKhuvPFGrVu37oL2n5aWpunTp1/QPmbOnKmZM2de0D5qCgIxqr2cnBxdf/313i4DF9lnn32mxYsXa968edq4caMWLFigDh06eLssoEZh/Kxa1157rRYtWuR6fODAAW3atEnBwcFerOo43u0qj0B8icvLy9Njjz2m9u3bKy4uTu+//76r7ejRo0pLS1ObNm3Us2dPff/99+W2PfVtp1NfTS5fvlx9+/ZV69atlZCQoNWrV0uSFixYoB49eigqKkrx8fGaP3++JOnw4cN66KGHlJ+fr6ioKEVFRSkvL08zZ87UU0895drvv/71L/Xq1Us2m02DBg3S9u3bXW1xcXF6++231bt3b0VHR2vEiBEqLS0973X4+OOPdfvtt6tt27ZKTU1VXl6eJCkhIUHZ2dlKTU1VVFSU7Hb7WfdRXFysZ555RjExMerUqZOmT58uh8MhSVq4cKEGDBig559/XjabTfHx8fr222+1cOFCxcbGqkOHDuWmBaSlpSk9PV3333+/oqKiNHDgQO3Zs+esxx01apTat2+vLl266PXXX5fT6ZTdblfbtm31888/u9YtKChQy5YtVVhYKElasWKF+vbtK5vNpgEDBpS703CuvuFJJ99FdjgcevHFF9WuXTvFxcXpww8/PG2awZ49ezRgwABFRUVp8ODBrnM91ffff6+YmBhdc801kqTQ0FAlJye72ouKivTnP/9ZMTExatOmjYYMGVJu+3feeUcdOnRQTEyMFixY4Fp+tudDkpxOp15//XV16dJFHTp00KhRo1RcXHxxLhQ8jvHzOMZP742fvXv31rJly1zXaunSpUpISFBAQIBrnc2bNys5OVk2m00xMTGaMGGC67kwxuj5559Xhw4d1Lp1a/Xu3Vvbtm3T3//+d2VkZOjtt99WVFSUUlNTz3teM2fO1OOPP66nnnpKrVu3Pm2qW2FhoR555BHZbDa1bdtWKSkprrHREgwuWQ6Hw/Tr18/MnDnTlJaWml27dpm4uDizevVqY4wxU6dONXfffbc5cOCAycnJMb169TKdOnVybX/DDTeYnTt3uh6PHj3aTJs2zRhjzHfffWdat25t1qxZYxwOh9m7d6/55ZdfjDHGrFixwvz222/G6XSadevWmRYtWpgtW7YYY4z56quvyh3DGGNmzJhhnnzySWOMMb/++qtp2bKlWbNmjbHb7WbOnDkmISHBlJaWGmOM6dKli0lKSjJ79+41Bw4cMN27dzd/+9vfznkd/vOf/5i2bduaLVu2mNLSUjNhwgSTkpLiau/SpYtZu3btea/nkCFDzLhx48yhQ4fM/v37TVJSkvnoo4+MMcYsWLDAREZGmk8//dQcO3bMTJs2zcTGxppnn33WlJaWmn//+9+mVatWpqSkxHUtW7VqZdavX29KS0vNxIkTzYABA8547Z9++mmTmppqiouLTXZ2tunatav5+OOPjTHGjB8/3kyZMsW13bx588wjjzxijDHmhx9+MO3btzebNm0yx44dMwsXLjRdunQxpaWl5+0bp3rzzTdNdHT0WX/OZuDAga5aTzi1D5y8zt/+9jfTo0cPk5uba4qKisyf/vQnc8MNN5iysjLXuvHx8ebXX381R44cMQMHDjRTp04947EXLVpk2rRpY9566y2zefNmc+zYsXLtDz30kBk+fLgpKioydrvdrFu3zlVfZGSkeeWVV4zdbjcrV640LVq0MEVFRed9Pj755BOTkJBgdu3aZUpKSszQoUPNU089ZYwxJjs7u9y54NLG+Hkc46f3x8/777/frFy50hhjTFJSkvn2229Np06dzFdffWWMMeb77783GzduNGVlZSY7O9t0797dvPvuu8YYY1avXm369etnDh48aJxOp/nll19MXl6e6zqe6JPGnL/Pz5gxw9x8883m888/Nw6Hwxw5cqRcvS+99JIZN26csdvtxm63m6+//to4nc6znl9Nwx3iS9j333+vwsJCDRs2TIGBgbr66qt11113admyZZKkf/zjH0pNTVVQUJAiIiI0aNCgCu/7008/VVJSkjp27ChfX1+Fh4eradOmkqTbbrtN11xzjXx8fNS2bVt17NhRGzZsqNB+ly1bptjYWHXs2FEBAQF64IEHdPToUW3cuNG1zqBBgxQeHq6goCB16dJFP/744zn3mZGRoaSkJDVr1kyBgYF64okntGnTJu3evbvC57t//36tWrVKzzzzjC677DKFhITovvvu09KlS13rNG7cWElJSfLz81PPnj2Vm5uroUOHKjAwUDExMQoMDNSuXbtc6992221q06aNAgMDNXLkSG3atEm5ubnljutwOLRs2TI9+eSTqlevnho3bqz7779fS5YskST169dPS5culTFGkrR48WL16dNHkvT3v/9dycnJatmypfz8/NSvXz8FBARo06ZN5+0bp3r44Ye1YcOGs/6cy3PPPSebzeb6OXEn4kz+8Y9/6N5771XDhg3VoEEDPfzww6et88c//lHXXXedateure7du5/1+e/bt6/Gjh2rNWvWaNCgQbr11ls1Z84cSVJ+fr5Wr16tv/zlL2rQoIECAgLUtm1b17b+/v4aOnSoAgICFBsbq8suu0w7duw47/ORkZGh++67T1dffbXq1q2rJ554QsuWLeOtxWqI8fM4xk/vjp/S8bFs8eLF2r59u4qLixUVFVWuvXnz5mrVqpX8/f3VuHFjJScn6+uvv5Z0fCw7dOiQfv31Vxlj1LRpU4WFhZ3xOBU5r1atWikhIUG+vr6qXbt2ue39/f21b98+5eTkKCAgQDabTT4+Puc9v5rC39sF4Oz27Nmj/Px82Ww21zKHw+F6nJ+fr4iICFdbo0aNKrzv3NxcxcbGnrFt1apVmjVrlnbu3Cmn06mjR4/qhhtuqNB+8/Pzy9Xh6+uriIgI11t00vG3vk+oU6eO8vPzz7vPZs2auR7XrVtXQUFBysvLU+PGjStUV05Ojo4dO6aYmBjXMqfTWe76hYSEuP59YqC48sorXctq1aqlQ4cOuR43bNiwXE0NGjQ47Tk5cOCAysrKyl2TRo0aua5Hy5YtVbt2ba1bt06hoaHatWuX4uPjXTUvWrRIH374oWvbsrIy5efny9fX95x942IaO3as+vfv73q8bt06Pf3002dc99TzP/kanXDq83/48OGzHrtPnz7q06ePysrKtHz5cj399NOKjIxUgwYNXD9nEhQUJH///w1vJ45zvucjPz9fV111lavtqquu0rFjx1RQUHDWGnFpYvz83z4ZP4/zxvgpSV27dtXkyZMVFBTkCuwn27Fjh1588UVt2bJFR44ckcPhcD1nHTp00D333KMJEyZoz5496tq1q0aPHq169eqdtp/z9XnpzGPyCQ888IBee+01DR48WJKUnJx8xpsaNRWB+BIWERGhxo0b65///OcZ20NDQ5Wbm+v6QMSpr67r1KmjI0eOuB7v27dP4eHhrn2f/Gr9BLvdrscff1yTJ09WfHy8AgICNGTIENcr8PO9WgwLC9O2bdtcj40xys3NdR3XHWFhYeXmlx0+fFhFRUWV2mfDhg0VGBior776qlxQuhB79+51/fvQoUM6ePDgaa/cr7jiCgUEBCgnJ0d/+MMfJOm069GvXz8tWbJEoaGh6tatm2rVqiXp+HOUmpqqRx999LRjb9y48Zx941SzZ8/Wm2++edb2k+9AXYjQ0NBy1+Xkf1+IgIAA9ejRQ2+99Zb++9//KjExUQcPHtTvv/+u+vXrV3g/53s+Tu1rOTk58vf3V0hIyEU7F3gG4+f/9sn4WZ6nx886deqoc+fO+uijj/T555+f1v7ss8/q5ptv1ssvv6x69epp3rx5ysrKcrXfe++9uvfee1VQUKARI0Zo7ty5GjFixGn96Xx9Xjp3H6xXr57S0tKUlpambdu26U9/+pNuueUWy3yYmSkTl7AWLVqobt26mjNnjo4ePSqHw6Ft27Zp8+bNkqQePXpozpw5OnjwoPbu3asPPvig3PY33XSTMjMz5XA4tHr1atdbMJJ05513auHChfryyy/ldDqVl5en7du3y263y263Kzg4WP7+/lq1apXWrl3r2i4kJERFRUVn/aBRjx49tGrVKn355ZcqKyvTO++8o8DAwNPeIqqMxMRELVy4UD/++KPsdrumTZumFi1aVPjuhnT8l0LHjh314osvqqSkRE6nU7t27dL69evdrmvVqlXasGGD7Ha7Xn31VbVs2bLc3Q1J8vPzU/fu3TV9+nSVlJRoz549evfdd8vdJejTp4+WL1+uJUuW6I477nAt79+/v+bPn6/vvvtOxhgdPnxYK1euVElJyXn7xqlSU1O1cePGs/5cLD169ND777+vvLw8/f7773rrrbfc3tfChQtd5+t0OrVq1Sr98ssvatGihcLCwtS5c2f95S9/0cGDB1VWVlauf5/N+Z6PxMREvffee8rOztahQ4c0ffp09ejR46KFAHgO4+dxjJ+Xxvg5cuRIffDBB2e87ocOHVLdunVVt25dbd++XR999JGrbfPmzfruu+9UVlamOnXqKDAwUL6+x6NbSEhIuakvlT2vU61YsUK//fabjDG6/PLL5efnZ6kpEwTiS5ifn59mz56tn376SfHx8Wrfvr3Gjh2rkpISSdKwYcPUqFEjxcfHa/Dgwerbt2+57ceMGaMVK1bIZrMpIyOj3HdMtmjRQi+88IKef/55RUdHa+DAgcrJyVG9evU0duxYjRgxQm3atFFmZqbi4uJc2zVt2lS9evVSQkKCbDZbubfyJKlJkyaaOnWqJk6cqPbt22vFihWaPXu2AgMD3b4Ot956q4YPH67HHntMMTExys7Oduu7F6dMmaKysjL17NlTbdq00eOPP659+/a5XVdiYqJmzZqldu3a6YcfftDUqVPPuN64ceNUp04dJSQkKCUlRYmJiUpKSnK1R0RE6Oabb5aPj0+5t7ZuueUWTZw4URMmTFCbNm3UtWtXLVy4UNL5+4a33HXXXerYsaP69OmjO+64Q7GxsfL395efn1+l91WvXj3Nnj1bXbp0kc1m00svvaRnn33WdY2mTJkif39/9ejRQ7feeqvee++9Cu33XM9HUlKS+vTpo4EDByo+Pl6BgYEaN25cpWuH9zF+Hsf4eWmMn+Hh4WedkjF69GhlZmaqdevWGjdunHr27OlqO3TokMaOHau2bduqS5cuCgoK0gMPPCDp+AuzX375RTabTUOGDLng8/rtt99c3/yRnJysu+++W+3bt7/wk68mfMyJ93IAVFhaWprCw8M1cuTIi7K/P//5zwoLC7to+7tUrFq1Ss8++6xWrFjh7VIAXCIYP3Ep4g4x4GW7d+/W559/rjvvvNPbpVywo0ePatWqVTp27Jjy8vI0a9Ys/voVgCpTk8ZPeBcT43BJONuHFqKjozV37twK7+dsc+3eeuutKvsE8YV45ZVX9N577+nhhx/W1Vdf7e1yLpgxRjNmzNCIESNUu3Zt3XbbbRo+fLi3ywJqNMbPmjF+wruYMgEAAABLY8oEAAAALI1ADAAAAEuz9BzigoISOZ3MGAFQ84SGXu7WdoyLAGqqc42L3CEGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApfl7uwAAAIDKuqJBoPwDa3m7DHjYMXupDhy0X/T9EogBAEC14x9YS99MedDbZcDDokfNlXTxAzFTJgAAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBp/p44yO7duzV06FDX4+LiYpWUlGj9+vXasWOH0tLSVFRUpKCgIE2ePFnXXnutJLndBgAAAFSUR+4QN27cWIsXL3b9xMfHKzExUZI0fvx4paSkKCsrSykpKUpPT3dt524bAAAAUFEenzJht9uVkZGhpKQkFRQUaOvWra5wnJiYqK1bt6qwsNDtNgAAAKAyPDJl4mRffPGFwsPD1axZM23ZskXh4eHy8/OTJPn5+SksLEy5ubkyxrjVFhwcXOFaQkLqXfwTBIBqjHERwKUuNPTyi75PjwfiBQsWKCkpydOHPaOCghI5ncbbZQDARefuLwzGRVQXVRGKUD3s21fs1nbn6jMenTKRl5enr7/+Wr1795YkRUREKC8vTw6HQ5LkcDiUn5+viIgIt9sAAACAyvBoIP7ss88UGxurK664QpIUEhKiyMhIZWZmSpIyMzMVGRmp4OBgt9sAAACAyvAxxnjsvbFu3bppzJgx6ty5s2vZ9u3blZaWpt9//13169fX5MmT1aRJkwtqqyjeGgRQUzFlAjVdaOjl+mbKg94uAx4WPWpulUyZ8GggvtQw8AOoqQjEqOkIxNZUVYGYv1QHAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAAS/NYIC4tLdX48ePVtWtX9e7dW+PGjZMk7dixQ8nJyerWrZuSk5O1c+dO1zbutgEAAAAV5bFAPHXqVNWqVUtZWVnKyMjQ8OHDJUnjx49XSkqKsrKylJKSovT0dNc27rYBAAAAFeWRQHzo0CEtWrRIw4cPl4+PjyTpyiuvVEFBgbZu3arExERJUmJiorZu3arCwkK32wAAAIDK8PfEQbKzsxUUFKTXXntN69atU926dTV8+HDVrl1b4eHh8vPzkyT5+fkpLCxMubm5Msa41RYcHFzhukJC6l38kwWAaoxxEcClLjT08ou+T48EYofDoezsbN18880aPXq0vvvuO6WmpurVV1/1xOHPqqCgRE6n8WoNAFAV3P2FwbiI6qIqQhGqh337it3a7lx9xiOBOCIiQv7+/q4pDi1bttQVV1yh2rVrKy8vTw6HQ35+fnI4HMrPz1dERISMMW61AQAAAJXhkTnEwcHBateundauXSvp+DdEFBQU6Nprr1VkZKQyMzMlSZmZmYqMjFRwcLBCQkLcagMAAAAqw8cY45H3xrKzs/XMM8+oqKhI/v7+GjFihGJjY7V9+3alpaXp999/V/369TV58mQ1adJEktxuqyjeGgRQUzFlAjVdaOjl+mbKg94uAx4WPWpulUyZ8FggvhQx8AOoqQjEqOkIxNZUVYGYv1QHAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAASyMQAwAAwNIIxAAAALA0AjEAAAAsjUAMAAAAS/P31IHi4uIUGBioWrVqSZKeeuopderUSZs2bVJ6erpKS0t11VVXaerUqQoJCZEkt9sAAACAivLoHeIZM2Zo8eLFWrx4sTp16iSn06mnn35a6enpysrKks1m00svvSRJbrcBAAAAleHVKRNbtmxRrVq1ZLPZJEkDBgzQ//t//++C2gAAAIDK8NiUCen4NAljjKKjo/XEE08oNzdXjRo1crUHBwfL6XSqqKjI7bagoKAK1xMSUu/inBgA1BCMiwAudaGhl1/0fXosEP/1r39VRESE7Ha7Jk2apAkTJuj222/31OHPqKCgRE6n8WoNAFAV3P2FwbiI6qIqQhGqh337it3a7lx9xmNTJiIiIiRJgYGBSklJ0bfffquIiAjl5OS41iksLJSvr6+CgoLcbgMAAAAqwyOB+PDhwyouPp7mjTFatmyZIiMj1bx5cx09elQbNmyQJM2fP1/du3eXJLfbAAAAgMrwyJSJgoICPfbYY3I4HHI6nWratKnGjx8vX19fTZkyRePHjy/39WmS3G4DAAAAKsPHGGPZyWLMlQNQUzGHGDVdaOjl+mbKg94uAx4WPWpu9Z5DDAAAAFyKCMQAAACwNAIxAAAALI1ADAAAAEsjEAMAAMDSCMQAAACwNAIxAAAALI1ADAAAAEsjEAMAAMDSCMQAAACwNAIxAAAALI1ADAAAAEsjEAMAAMDSCMQAAACwNAIxAAAALI1ADAAAAEsjEAMAAMDSCMQAAACwNAIxAAAALK3Cgfjtt98+4/J33333ohUDAAAAeFqFA/GsWbPOuPyNN964aMUAAAAAnuZ/vhW+/PJLSZLT6dRXX30lY4yrbffu3apbt27VVQcAAABUsfMG4jFjxkiSSktL9cwzz7iW+/j4KDQ0VGPHjq266gAAAIAqdt5A/MUXX0iSRo0apSlTplR5QQAAAIAnnTcQn3ByGHY6neXafH35sgoAAABUTxUOxD/88IMmTJign3/+WaWlpZIkY4x8fHz0448/VlmBAAAAQFWqcCBOS0tTly5d9Pzzz6t27dpVWRMAAADgMRUOxHv27NHIkSPl4+NTlfUAAAAAHlXhyb+333671qxZU5W1AAAAAB5X4TvEpaWlGjZsmKKjo3XllVeWa6vMt0+89tprmjlzpjIyMnTDDTdo06ZNSk9PV2lpqa666ipNnTpVISEhkuR2GwAAAFBRFb5D/Ic//EEPPfSQWrdurWuuuabcT0X98MMP2rRpk6666ipJx7+t4umnn1Z6erqysrJks9n00ksvXVAbAAAAUBkVvkM8bNiwCzqQ3W7XhAkT9PLLL+vee++VJG3ZskW1atWSzWaTJA0YMEDx8fF64YUX3G4DAAAAKqPCgfjEn3A+kw4dOpx3+1dffVV9+vRR48aNXctyc3PVqFEj1+Pg4GA5nU4VFRW53RYUFFTRU1JISL0KrwsAVsC4COBSFxp6+UXfZ4UD8Yk/4XzCgQMHVFZWpvDwcP3rX/8657YbN27Uli1b9NRTT7lXZRUpKCiR02m8XQYAXHTu/sJgXER1URWhCNXDvn3Fbm13rj5T4UB84k84n+BwOPTGG2+obt26593266+/1vbt2xUfHy9J2rt3rx544AENGjRIOTk5rvUKCwvl6+uroKAgRUREuNUGAAAAVIbbf3PZz89Pqampmjt37nnXffjhh7VmzRp98cUX+uKLL9SwYUO9/fbbevDBB3X06FFt2LBBkjR//nx1795dktS8eXO32gAAAIDKqPAd4jNZu3btBf2hDl9fX02ZMkXjx48v9/VpF9IGAAAAVIaPMaZCk8ViY2PLhd8jR47Ibrdr/PjxuuOOO6qswKrEXDkANRVziFHThYZerm+mPOjtMuBh0aPmencO8al3YOvUqaPrrrtO9erxiWQAAABUXxUOxG3btpV0/I9i7N+/X1deeaV8fd2eggwAAABcEiqcaEtKSjRq1Ci1aNFCnTt3VosWLTR69GgVF7t32xoAAAC4FFQ4ED/33HM6cuSIMjIytHnzZmVkZOjIkSN67rnnqrI+AAAAoEpVeMrEv//9by1fvlx16tSRJF133XV64YUXdPvtt1dZcQAAAEBVq/Ad4lq1aqmwsLDcsgMHDigwMPCiFwUAAAB4SoXvEN95550aPHiw7rvvPjVq1Eg5OTmaN2+e+vfvX5X1AQAAAFWqwoH40UcfVXh4uDIyMpSfn6+wsDA9+OCDBGIAAABUaxWeMjFp0iRdd911mjdvnpYtW6Z58+apadOmmjRpUlXWBwAAAFSpCgfizMxMNW/evNyy5s2bKzMz86IXBQAAAHhKhQOxj4+PnE5nuWUOh+O0ZQAAAEB1UuFAbLPZ9Oqrr7oCsNPp1MyZM2Wz2aqsOAAAAKCqVfhDdWPGjNEjjzyimJgYNWrUSLm5uQoNDdXs2bOrsj4AAACgSlU4EDds2FCfffaZNm/erNzcXEVERKhFixby9a3wTWYAAADgklPhQCxJvr6+atWqlVq1alVV9QAAAAAexe1dAAAAWBqBGAAAAJZGIAYAAIClEYgBAABgaQRiAAAAWBqBGAAAAJZGIAYAAIClEYgBAABgaQRiAAAAWBqBGAAAAJZGIAYAAIClEYgBAABgaQRiAAAAWBqBGAAAAJbm76kDDRkyRLt375avr68uu+wyjRs3TpGRkdqxY4fS0tJUVFSkoKAgTZ48Wddee60kud0GAAAAVJTH7hBPnjxZS5Ys0aJFizR48GA988wzkqTx48crJSVFWVlZSklJUXp6umsbd9IdyRQAACAASURBVNsAAACAivJYIL788std/y4pKZGPj48KCgq0detWJSYmSpISExO1detWFRYWut0GAAAAVIbHpkxI0pgxY7R27VoZYzR37lzl5uYqPDxcfn5+kiQ/Pz+FhYUpNzdXxhi32oKDgz15SgAAAKjmPBqIJ02aJElatGiRpkyZouHDh3vy8KcJCann1eMDwKWGcRHApS409PLzr1RJHg3EJ9xxxx1KT09Xw4YNlZeXJ4fDIT8/PzkcDuXn5ysiIkLGGLfaKqOgoEROp6miswQA73H3FwbjIqqLqghFqB727St2a7tz9RmPzCE+dOiQcnNzXY+/+OILNWjQQCEhIYqMjFRmZqYkKTMzU5GRkQoODna7DQAAAKgMH2NMld8K2L9/v4YMGaIjR47I19dXDRo00OjRo9WsWTNt375daWlp+v3331W/fn1NnjxZTZo0kSS32yqKOyEAairuEKOmCw29XN9MedDbZcDDokfNrZI7xB4JxJcqBn4ANRWBGDUdgdiaqioQ85fqAAAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACW5u/tAqqjy+vXVu1aAd4uAx52tLRMxb8f9XYZAADgIiMQu6F2rQCljPqrt8uAh/1tyj0qFoEYAICahikTAAAAsDQCMQAAACyNQAwAAABLIxADAADA0jwSiA8cOKCHHnpI3bp1U+/evTVs2DAVFhZKkjZt2qQ+ffqoW7duGjx4sAoKClzbudsGAAAAVJRHArGPj48efPBBZWVlKSMjQ1dffbVeeuklOZ1OPf3000pPT1dWVpZsNpteeuklSXK7DQAAAKgMj3ztWlBQkNq1a+d63KpVK3300UfasmWLatWqJZvNJkkaMGCA4uPj9cILL7jdBgDwDr6j3Xr4fnbUFB7/HmKn06mPPvpIcXFxys3NVaNGjVxtwcHBcjqdKioqcrstKCjIo+cDADiO72i3Hr6fHTWFxwPxxIkTddlll2ngwIH6/PPPPX34ckJC6nn1+Kh+QkMv93YJQJViXERlMS7C06qiz3k0EE+ePFm//fabZs+eLV9fX0VERCgnJ8fVXlhYKF9fXwUFBbndVhkFBSVyOk2lz4P//Na1b1+xt0sAKsTdccrdcfFCjonqzVvjIv3Nutztc+fqMx772rVp06Zpy5YtmjVrlgIDAyVJzZs319GjR7VhwwZJ0vz589W9e/cLagMAAAAqwyN3iP/73//qzTff1LXXXqsBAwZIkho3bqxZs2ZpypQpGj9+vEpLS3XVVVdp6tSpkiRfX1+32gAAAIDK8Eggvv766/Xzzz+fsa1169bKyMi4qG0AAABARfGX6gAAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlubv7QIAnN8VDQLlH1jL22XAg47ZS3XgoN3bZQCAJRCIgWrAP7CWvpnyoLfLgAdFj5oriUAMAJ7gkSkTkydPVlxcnG688UZt27bNtXzHjh1KTk5Wt27dlJycrJ07d15wGwAAAFAZHgnE8fHx+utf/6qrrrqq3PLx48crJSVFWVlZSklJUXp6+gW3AQAAAJXhkUBss9kUERFRbllBQYG2bt2qxMRESVJiYqK2bt2qwsJCt9sAAACAyvLaHOLc3FyFh4fLz89PkuTn56ewsDDl5ubKGONWW3BwsLdOBwAAANWUpT9UFxJSz9sloJoJDb3c2yXAQrzR3xgXUVmMi/C0quhzXgvEERERysvLk8PhkJ+fnxwOh/Lz8xURESFjjFttlVVQUCKn01R6O/7zW9e+fcVeOS59zpoupL+522fcHRcv5Jio3hgX4Wnu9rlz9Rmv/WGOkJAQRUZGKjMzU5KUmZmpyMhIBQcHu90GAAAAVJZH7hA/99xz+uc//6n9+/fr/vvvV1BQkJYuXapnn31WaWlpev3111W/fn1NnjzZtY27bQAAAEBleCQQjx07VmPHjj1tedOmTfXJJ5+ccRt32wAAAIDK8NqUCQAAAOBSQCAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApVXrQLxjxw4lJyerW7duSk5O1s6dO71dEgAAAKqZah2Ix48fr5SUFGVlZSklJUXp6eneLgkAAADVjL+3C3BXQUGBtm7dqnfffVeSlJiYqIkTJ6qwsFDBwcEV2oevr4/bx7/yirpub4vq60L6zIUKrB/itWPDO7zR3y70mIyN1sO4CE+rij7nY4wxF32vHrBlyxaNHj1aS5cudS3r2bOnpk6dqmbNmnmxMgAAAFQn1XrKBAAAAHChqm0gjoiIUF5enhwOhyTJ4XAoPz9fERERXq4MAAAA1Um1DcQhISGKjIxUZmamJCkzM1ORkZEVnj8MAAAASNV4DrEkbd++XWlpafr9999Vv359TZ48WU2aNPF2WQAAAKhGqnUgBgAAAC5UtZ0yAQAAAFwMBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBOIabN26dercubPHjzt79myNGTPG48c94ZtvvlHXrl0VFRWl5cuXe62Ok91444367bffvF3GJWvmzJl66qmnPL4trIvxkfEROBmBGBfkTL9UUlNTNWnSJC9VJM2YMUP33HOPNm7cqISEBK/VURMNGjRIt9xyi6KiohQdHa177rlHP//8s7fLuiBxcXHavXu3t8tADcT4aC0nj4+tW7fWH//4R82ZM0d2u/2i7PuTTz65CFWembdeIF5KCMSocXJycnT99dd7u4waKz09XRs3btT69evVtm1bjRo1ytslueXYsWPeLgHwOMbHqnVifFyzZo1Gjx6tpUuX6qGHHpIxxms1GWPkdDq9dvzqgkBczeTl5emxxx5T+/btFRcXp/fff9/VdvToUaWlpalNmzbq2bOnvv/++3Lbnvq2VFpamqZPn+56vHz5cvXt21etW7dWQkKCVq9eLUlasGCBevTooaioKMXHx2v+/PmSpMOHD+uhhx5Sfn6+oqKiFBUVpby8vNPewv7Xv/6lXr16yWazadCgQdq+fburLS4uTm+//bZ69+6t6OhojRgxQqWlpee9Dh9//LFuv/12tW3bVqmpqcrLy5MkJSQkKDs7W6mpqYqKijrnK/Pi4mI988wziomJUadOnTR9+nQ5HA5J0sKFCzVgwAA9//zzstlsio+P17fffquFCxcqNjZWHTp00GeffVbuWqanp+v+++9XVFSUBg4cqD179pz1uKNGjVL79u3VpUsXvf7663I6nbLb7Wrbtm25O64FBQVq2bKlCgsLJUkrVqxQ3759ZbPZNGDAAP3000+udc/VN6qCn5+fevXqVe753Lx5s5KTk2Wz2RQTE6MJEyaUew7++9//6v7771fbtm116623avbs2a62srIyjRo1SlFRUerVq1e5/luZcztff5szZ4569+6tVq1anRaKV61apZ49eyoqKkqdOnXS22+/fUHXCJ7F+Hgc46P3x8fLLrtM7dq10xtvvKFNmzZp5cqVkiS73a5JkyYpJiZGMTExmjRpUrnn4Uz9bPr06dqwYYMmTJigqKgoTZgwQZL07bffKikpSdHR0UpKStK3337r2s+gQYM0ffp0DRgwQC1btlR2dnal+6rT6dScOXOUkJCgdu3aafjw4SoqKqrS6+ZVBtWGw+Ew/fr1MzNnzjSlpaVm165dJi4uzqxevdoYY8zUqVPN3XffbQ4cOGBycnJMr169TKdOnVzb33DDDWbnzp2ux6NHjzbTpk0zxhjz3XffmdatW5s1a9YYh8Nh9u7da3755RdjjDErVqwwv/32m3E6nWbdunWmRYsWZsuWLcYYY7766qtyxzDGmBkzZpgnn3zSGGPMr7/+alq2bGnWrFlj7Ha7mTNnjklISDClpaXGGGO6dOlikpKSzN69e82BAwdM9+7dzd/+9rdzXof//Oc/pm3btmbLli2mtLTUTJgwwaSkpLjau3TpYtauXXve6zlkyBAzbtw4c+jQIbN//36TlJRkPvroI2OMMQsWLDCRkZHm008/NceOHTPTpk0zsbGx5tlnnzWlpaXm3//+t2nVqpUpKSlxXctWrVqZ9evXm9LSUjNx4kQzYMCAM177p59+2qSmppri4mKTnZ1tunbtaj7++GNjjDHjx483U6ZMcW03b94888gjjxhjjPnhhx9M+/btzaZNm8yxY8fMwoULTZcuXUxpael5+8ap3nzzTRMdHX3Wn7MZOHCgq9bS0lIzbdq0ctf++++/Nxs3bjRlZWUmOzvbdO/e3bz77rvGGGOKi4tNx44dzdtvv22OHj1qiouLzaZNm4wxx/tM8+bNzcqVK82xY8fMSy+9ZPr372+MOX+/r2x/69Onj8nJyTFHjhw57fw6duxovv76a2OMMUVFRa5+jksf4+NxjI+Xxvh4spSUFFfdr7zyiunfv7/Zv3+/KSgoMMnJyWb69OnGmHP3s1P3feDAAWOz2cxnn31mysrKTEZGhrHZbKawsNC1fmxsrNm2bZspKyszdru90n113rx5pn///iY3N9eUlpaacePGmZEjR571/Ks77hBXI99//70KCws1bNgwBQYG6uqrr9Zdd92lZcuWSZL+8Y9/KDU1VUFBQYqIiNCgQYMqvO9PP/1USUlJ6tixo3x9fRUeHq6mTZtKkm677TZdc8018vHxUdu2bdWxY0dt2LChQvtdtmyZYmNj1bFjRwUEBOiBBx7Q0aNHtXHjRtc6gwYNUnh4uIKCgtSlSxf9+OOP59xnRkaGkpKS1KxZMwUGBuqJJ57Qpk2bKjUPdP/+/Vq1apWeeeYZXXbZZQoJCdF9992npUuXutZp3LixkpKS5Ofnp549eyo3N1dDhw5VYGCgYmJiFBgYqF27drnWv+2229SmTRsFBgZq5MiR2rRpk3Jzc8sd1+FwaNmyZXryySdVr149NW7cWPfff7+WLFkiSerXr5+WLl3qentt8eLF6tOnjyTp73//u5KTk9WyZUv5+fmpX79+CggI0KZNm87bN0718MMPa8OGDWf9OZfnnntONptNrVu31ocffqhhw4a52po3b65WrVrJ399fjRs3VnJysr7++mtJ0sqVK3XllVdq8ODBqlWrlurVq6eWLVu6to2OjlZsbKz8/PzUt29f192dypxbRftbRESEateufdr2/v7++uWXX1RSUqIGDRqoWbNm57wWuHQwPh7H+Ojd8fFMwsLCdPDgQUnHn5+hQ4cqJCREwcHBGjp0qOv8ztXPTrVy5Ur93//9n+644w75+/srMTFRTZo00YoVK1zr9OvXT9dff738/f0VEBBQ6b46f/58jRw5Ug0bNlRgYKCGDRumrKysGjvdzN/bBaDi9uzZo/z8fNlsNtcyh8Phepyfn6+IiAhXW6NGjSq879zcXMXGxp6xbdWqVZo1a5Z27twpp9Opo0eP6oYbbqjQfvPz88vV4evrq4iICNdbeJIUGhrq+nedOnWUn59/3n2eHFTq1q2roKAg5eXlqXHjxhWqKycnR8eOHVNMTIxrmdPpLHf9QkJCXP8+EZ6uvPJK17JatWrp0KFDrscNGzYsV1ODBg1Oe04OHDigsrKyctekUaNGruvRsmVL1a5dW+vWrVNoaKh27dql+Ph4V82LFi3Shx9+6Nq2rKxM+fn58vX1PWffuJjGjh2r/v37y+l06ttvv9Wjjz6qDz74QDfddJN27NihF198UVu2bNGRI0fkcDhcz1Vubq6uueaas+735Gtbu3ZtlZaW6tixY+ft9yerSH87+fk41YwZM/TGG2/o5Zdf1o033qgnn3xSUVFRFbsw8CrGx//tk/HxOG+Mj2eSl5fnGkdOfc4bNWrkek7P1c9Odep+TuzrXGNdZftqTk6Ohg4dKl/f/9079fX1VUFBgcLDwytUZ3VCIK5GIiIi1LhxY/3zn/88Y3toaKhyc3NdH5g49dV3nTp1dOTIEdfjffv2uTp1REREuVfzJ9jtdj3++OOaPHmy4uPjFRAQoCFDhrheofv4+Jyz5rCwMG3bts312Bij3NzcC/rPFBYWVm7+2eHDh1VUVFSpfZ54xfvVV1/J3//i/DfYu3ev69+HDh3SwYMHFRYWVm6dK664QgEBAcrJydEf/vAHSTrtevTr109LlixRaGiounXrplq1akk6/hylpqbq0UcfPe3YGzduPGffONXs2bP15ptvnrX95DtUZ+Pr6yubzaZrrrlGa9eu1U033aRnn31WN998s15++WXVq1dP8+bNU1ZWlqv+s92ROZfz9fuTVaS/navPtmjRQm+88YbKysr017/+VSNGjNCqVasqXTM8j/Hxf/tkfCzPG+PjCbm5ufrhhx/00EMPSTr+/Jz8wcbc3FzXdThbPzuTE/s59VidOnVyPT65/7nTVxs2bKjnn39e0dHRFT7f6owpE9VIixYtVLduXc2ZM0dHjx6Vw+HQtm3btHnzZklSjx49NGfOHB08eFB79+7VBx98UG77m266SZmZmXI4HFq9erXrrWxJuvPOO7Vw4UJ9+eWXcjqdysvL0/bt22W322W32xUcHCx/f3+tWrVKa9eudW0XEhKioqIiFRcXn7HmHj16aNWqVfryyy9VVlamd955R4GBgRd01y0xMVELFy7Ujz/+KLvdrmnTpqlFixYVvvshHR9MOnbsqBdffFElJSVyOp3atWuX1q9f73Zdq1at0oYNG2S32/Xqq6+qZcuWp71C9/PzU/fu3TV9+nSVlJRoz549evfdd11v+0lSnz59tHz5ci1ZskR33HGHa3n//v01f/58fffddzLG6PDhw1q5cqVKSkrO2zdOlZqaqo0bN571p6I2btyo7du3u355HTp0SHXr1lXdunW1fft2ffTRR651b7vtNu3bt0/z5s2T3W5XSUmJvvvuu/MeozLndiH9zW63a8mSJSouLlZAQIDq1q1b7s4ILm2Mj8cxPl4a4+ORI0e0fv16DRkyRC1atHDd+e3Vq5feeOMNFRYWqrCwULNmzVLv3r0lnb2fScfvvmdnZ7v2Hxsbq507dyojI0PHjh3TsmXL9Msvv+i22247Yz3u9NW7775br7zyiusFVmFh4SXz3dVVgdG+GvHz89Ps2bP1008/KT4+Xu3bt9fYsWNVUlIiSRo2bJgaNWqk+Ph4DR48WH379i23/ZgxY7RixQrZbDZlZGSU+w7KFi1a6IUXXnC9Ghw4cKBycnJUr149jR07ViNGjFCbNm2UmZmpuLg413ZNmzZVr169lJCQIJvNVu7tGklq0qSJpk6dqokTJ6p9+/ZasWKFZs+ercDAQLevw6233qrhw4frscceU0xMjLKzs8t9GryipkyZorKyMvXs2VNt2rTR448/rn379rldV2JiombNmqV27drphx9+0NSpU8+43rhx41SnTh0lJCQoJSVFiYmJSkpKcrVHRETo5ptvlo+PT7m39G655RZNnDhREyZMUJs2bdS1a1ctXLhQ0vn7xsV04pPOUVFRGjVqlEaMGOEa7EePHq3MzEy1bt1a48aNU8+ePV3b1atXT++8845WrFihjh07qlu3blq3bt15j1eZc7vQ/rZ48WLFxcWpdevWmj9//lmfQ1x6GB+PY3y8NMbHW2+9Vc8//7y6du2quXPnul5cDxkyRM2bN1efPn3Up08fNWvWTEOGDJF09n4mSffee6+ysrLUpk0bPffcc7riiis0e/Zsvfvuu2rXrp3mzp2r2bNnKzg4+Ix1udNX7733XsXFxWnw4MGKiorSXXfdddYXETWBjzFe/HI8oIZIS0tTeHi4Ro4ceVH29+c//1lhYWEXbX8A4C2Mj6gOmEMMXGJ2796tzz//vNz3eAIAGB9RdQjEuCSd7UMN0dHRmjt3boX3c7a5eG+99ZbHPmFcGa+88oree+89Pfzww7r66qu9XQ6ASxDjI+MjLj6mTAAAAMDS+FAdAAAALI1ADAAAAEuz9BzigoISOZ3MGAFQ84SGXu7WdoyLAGqqc42L3CEGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACWRiAGAACApRGIAQAAYGkEYgAAAFgagRgAAACW5u+Jg+zevVtDhw51PS4uLlZJSYnWr1+vHTt2KC0tTUVFRQoKCtLkyZN17bXXSpLbbQAAAEBF+RhjjKcPOmnSJDkcDqWnp+vee+9VUlKS+vbtq8WLF2vBggV6//33JcnttooqKCiR0+nx0weAKhcaerlb2zEuAqipzjUuenzKhN1uV0ZGhpKSklRQUKCtW7cqMTFRkpSYmKitW7eqsLDQ7TYAAACgMjwyZeJkX3zxhcLDw9WsWTNt2bJF4eHh8vPzkyT5+fkpLCxMubm5Msa41RYcHFzhWkJC6l38EwSAaoxxEYAVeTwQL1iwQElJSZ4+7Bnx1iCAmoopEwBQ3iUzZSIvL09ff/21evfuLUmKiIhQXl6eHA6HJMnhcCg/P18RERFutwEAAACV4dFA/Nlnnyk2NlZXXHGFJCkkJESRkZHKzMyUJGVmZioyMlLBwcFutwEAAACV4dFvmejWrZvGjBmjzp07u5Zt375daWlp+v3331W/fn1NnjxZTZo0uaC2iuKtQQA1FVMmAKC8c42LXvnatUsFAz+AmopADADlXTJziAEAAIBLDYEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlubv7QIAnN8VDQLlH1jL22XAg47ZS3XgoN3bZQCAJRCIgWrAP7CWvpnyoLfLgAdFj5oriUAMAJ7AlAkAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYGoEYAAAAlkYgBgAAgKURiAEAAGBpBGIAAABYmscCcWlpqcaPH6+uXbuqd+/eGjdunCRpx44dSk5OVrdu3ZScnKydO3e6tnG3DQAAAKgojwXiqVOnqlatWsrKylJGRoaGDx8uSRo/frxSUlKUlZWllJQUpaenu7Zxtw0AAACoKI8E4kOHDmnRokUaPny4fHx8JElXXnmlCgoKtHXrViUmJkqSEhMTtXXrVhUWFrrdBgAAAFSGvycOkp2draCgIL322v9v796Do6rvPo5/djc3IYlhQwgLqCiihkauwWDlMgYVhuEi9QLmUUYRQWoUQYQINGFiqCaACvGCCCNji1BRMSaAsTS1rYqWaGmIUaoICCYQSIgQzAV29/mDYZ/ycHGzSXYJv/drhhlyfuec3/cwh+98+O1hz4v6/PPP1bZtW02bNk1hYWGKjY2VzWaTJNlsNnXo0EHl5eVyu90+jdntdq/rio4Ob/6LBYBmEhMT4fc56YsATOSXQOx0OrV371716NFDs2fP1r///W89/PDDWrJkiT+mP6fKyhq5XO6A1gB4IxDBCIF38OBRn4/19Z6hLwK4WJ2vL/olEDscDgUFBXkecejVq5fatWunsLAwHThwQE6nUzabTU6nUxUVFXI4HHK73T6NAQAAAI3hl2eI7Xa7EhMT9cknn0g6+Q0RlZWV6tq1q+Li4pSfny9Jys/PV1xcnOx2u6Kjo30aAwAAABrD4na7/fLZ2N69ezVnzhxVV1crKChIjz/+uIYMGaKdO3cqNTVVR44cUWRkpLKysnTVVVdJks9j3uKjQbQWMTER+iJ7UqDLgB/1m7WCRyYAoBmdry/6LRBfiGj8aC0IxOYhEANA8zpfX+RNdQAAADAagRgAAABGIxADAADAaARiAAAAGI1ADAAAAKMRiAEAAGA0AjEAAACMRiAGAACA0QjEAAAAMBqBGAAAAEYjEAMAAMBoBGIAAAAYjUAMAAAAoxGIAQAAYDQCMQAAAIxGIAYAAIDRCMQAAAAwGoEYAAAARiMQAwAAwGgEYgAAABiNQAwAAACjEYgBAABgNAIxAAAAjEYgBgAAgNEIxAAAADAagRgAAABGIxADAADAaARiAAAAGI1ADAAAAKMF+WuipKQkhYSEKDQ0VJI0c+ZMDRo0SNu2bVNaWprq6+vVuXNnLVy4UNHR0ZLk8xgAAADgLb+uEC9dulS5ubnKzc3VoEGD5HK59OST1eIeDwAAG0hJREFUTyotLU0FBQVKSEjQokWLJMnnMQAAAKAxAvrIRElJiUJDQ5WQkCBJGj9+vD744IMmjQEAAACN4bdHJqSTj0m43W7169dPM2bMUHl5uTp16uQZt9vtcrlcqq6u9nksKirKn5cEAACAVs5vgXj16tVyOBxqaGjQggULlJGRoVtvvdVf059VdHR4QOcHgPOJiYnw+5z0RQAm8lsgdjgckqSQkBAlJydr6tSpmjBhgsrKyjz7VFVVyWq1KioqSg6Hw6exxqisrJHL5W7ilQEtLxDBCIF38OBRn4/19Z6hLwK4WJ2vL/rlGeKff/5ZR4+ebOxut1sbN25UXFyc4uPjVVdXp6KiIknS2rVrNXz4cEnyeQwAAABoDL+sEFdWVurRRx+V0+mUy+VSt27dlJ6eLqvVquzsbKWnp5/29WmSfB4DAAAAGsPidruN/WyMjwbRWsTEROiL7EmBLgN+1G/WCh6ZAIBmFPBHJgAAAIALFYEYAAAARiMQAwAAwGgEYgAAABiNQAwAAACjEYgBAABgNAIxAAAAjEYgBgAAgNEIxAAAADAagRgAAABGIxADAADAaARiAAAAGI1ADAAAAKMRiAEAAGA0AjEAAACMRiAGAACA0QjEAAAAMBqBGAAAAEYjEAMAAMBoXgfilStXnnX766+/3mzFAAAAAP7mdSB+6aWXzrr9lVdeabZiAAAAAH8L+qUdtmzZIklyuVz67LPP5Ha7PWP79u1T27ZtW646AAAAoIX9YiCeO3euJKm+vl5z5szxbLdYLIqJidG8efNarjoAAACghf1iIC4sLJQkzZo1S9nZ2S1eEAAAAOBPvxiIT/nvMOxyuU4bs1r5sgoAAAC0Tl4H4q+++koZGRnasWOH6uvrJUlut1sWi0Vff/11ixUIAAAAtCSvA3Fqaqpuvvlm/f73v1dYWFhL1gQAAAD4jdeB+Mcff9T06dNlsVhash4AAADAr7x++PfWW2/Vxx9/3JK1AAAAAH7n9QpxfX29UlJS1K9fP7Vv3/60scZ8+8SLL76onJwc5eXl6ZprrtG2bduUlpam+vp6de7cWQsXLlR0dLQk+TwGAAAAeMvrFeKrr75aDz30kPr27avLL7/8tF/e+uqrr7Rt2zZ17txZ0slvq3jyySeVlpamgoICJSQkaNGiRU0aAwAAABrD6xXilJSUJk3U0NCgjIwMLV68WBMmTJAklZSUKDQ0VAkJCZKk8ePHa+jQoXrmmWd8HgMAAAAaw+tAfOoVzmdz4403/uLxS5Ys0ejRo9WlSxfPtvLycnXq1Mnzs91ul8vlUnV1tc9jUVFR3l4SAAAA4H0gPvUK51MOHz6s48ePKzY2Vn/5y1/Oe+y//vUvlZSUaObMmb5V2UKio8MDXQIAnFNMTITf56QvAjCR14H41CucT3E6nXrllVfUtm3bXzx269at2rlzp4YOHSpJ2r9/vx588EHdd999Kisr8+xXVVUlq9WqqKgoORwOn8Yao7KyRi6Xu1HHAIEQiGCEwDt48KjPx/p6z9AXAVysztcXfX7nss1m08MPP6wVK1b84r6TJ0/Wxx9/rMLCQhUWFqpjx45auXKlJk2apLq6OhUVFUmS1q5dq+HDh0uS4uPjfRoDAAAAGsPrFeKz+eSTT5r0og6r1ars7Gylp6ef9vVpTRkDAAAAGsPidru9+mxsyJAhp4Xf2tpaNTQ0KD09XbfffnuLFdiS+GgQrUVMTIS+yJ4U6DLgR/1mreCRCQBoRufri16vEP//FdhLLrlEV155pcLDzfsPGBGRYQoLDQ50GfCzuvrjOnqkLtBlAACAZuZ1IL7hhhsknXwpxqFDh9S+fXtZrT4/gtyqhYUGK3nW6kCXAT97M/t/dFQEYgAALjZeJ9qamhrNmjVLPXv21ODBg9WzZ0/Nnj1bR4/6/pEeAAAAEGheB+LMzEzV1tYqLy9PxcXFysvLU21trTIzM1uyPgAAAKBFef3IxD/+8Q9t3rxZl1xyiSTpyiuv1DPPPKNbb721xYoDAAAAWprXK8ShoaGqqqo6bdvhw4cVEhLS7EUBAAAA/uL1CvGdd96piRMn6v7771enTp1UVlamVatW6a677mrJ+gAAAIAW5XUgnjp1qmJjY5WXl6eKigp16NBBkyZNIhADAACgVfP6kYkFCxboyiuv1KpVq7Rx40atWrVK3bp104IFC1qyPgAAAKBFeR2I8/PzFR8ff9q2+Ph45efnN3tRAAAAgL94HYgtFotcLtdp25xO5xnbAAAAgNbE60CckJCgJUuWeAKwy+VSTk6OEhISWqw4AAAAoKV5/Z/q5s6dqylTpmjgwIHq1KmTysvLFRMTo2XLlrVkfQAAAECL8joQd+zYUevXr1dxcbHKy8vlcDjUs2dPWa1eLzIDAAAAFxyvA7EkWa1W9e7dW717926pegAAAAC/YnkXAAAARiMQAwAAwGgEYgAAABiNQAwAAACjEYgBAABgNAIxAAAAjEYgBgAAgNEIxAAAADAagRgAAABGIxADAADAaARiAAAAGI1ADAAAAKMRiAEAAGA0AjEAAACMFuSviX77299q3759slqtatOmjX73u98pLi5Ou3btUmpqqqqrqxUVFaWsrCx17dpVknweAwAAALzltxXirKwsvf/++3rvvfc0ceJEzZkzR5KUnp6u5ORkFRQUKDk5WWlpaZ5jfB0DAAAAvOW3QBwREeH5fU1NjSwWiyorK1VaWqqRI0dKkkaOHKnS0lJVVVX5PAYAAAA0ht8emZCkuXPn6pNPPpHb7daKFStUXl6u2NhY2Ww2SZLNZlOHDh1UXl4ut9vt05jdbvfnJQEAAKCV82sgXrBggSTpvffeU3Z2tqZNm+bP6c8QHR0e0PnR+sTERPzyTkAzCcT9Rl8EYCK/BuJTbr/9dqWlpaljx446cOCAnE6nbDabnE6nKioq5HA45Ha7fRprjMrKGrlc7kbXTygy18GDRwMyL/ecmZpyv/l6z/jaFwHgQne+vuiXZ4iPHTum8vJyz8+FhYW69NJLFR0drbi4OOXn50uS8vPzFRcXJ7vd7vMYAAAA0Bh+WSGura3VtGnTVFtbK6vVqksvvVTLli2TxWLR/PnzlZqaqpdfflmRkZHKysryHOfrGAAAAOAtvwTi9u3b66233jrrWLdu3bRu3bpmHQMAAAC8xZvqAAAAYDQCMQAAAIxGIAYAAIDRCMQAAAAwGoEYAAAARiMQAwAAwGgEYgAAABiNQAwAAACjEYgBAABgNAIxAAAAjEYgBgAAgNEIxAAAADAagRgAAABGIxADAADAaARiAAAAGI1ADAAAAKMRiAEAAGA0AjEAAACMRiAGAACA0QjEAAAAMBqBGAAAAEYjEAMAAMBoBGIAAAAYjUAMAAAAoxGIAQAAYDQCMQAAAIxGIAYAAIDRCMQAAAAwGoEYAAAARiMQAwAAwGh+CcSHDx/WQw89pGHDhmnUqFFKSUlRVVWVJGnbtm0aPXq0hg0bpokTJ6qystJznK9jAAAAgLf8EogtFosmTZqkgoIC5eXl6bLLLtOiRYvkcrn05JNPKi0tTQUFBUpISNCiRYskyecxAAAAoDH8EoijoqKUmJjo+bl3794qKytTSUmJQkNDlZCQIEkaP368PvjgA0nyeQwAAABojCB/T+hyubRmzRolJSWpvLxcnTp18ozZ7Xa5XC5VV1f7PBYVFeV1LdHR4c1zUTBGTExEoEuAQQJxv9EXAZjI74H46aefVps2bXTvvffqz3/+s7+nP01lZY1cLnejjyMUmevgwaMBmZd7zkxNud98vWd87YsAcKE7X1/0ayDOysrSnj17tGzZMlmtVjkcDpWVlXnGq6qqZLVaFRUV5fMYAAAA0Bh+C8TPPfecSkpKtHz5coWEhEiS4uPjVVdXp6KiIiUkJGjt2rUaPnx4k8YAAMDFr92lIQoKCQ10GfCzEw31OvxTQ7Of1y+B+Ntvv9Wrr76qrl27avz48ZKkLl266KWXXlJ2drbS09NVX1+vzp07a+HChZIkq9Xq0xgAALj4BYWE6ovsSYEuA37Wb9YKSa00EHfv3l07duw461jfvn2Vl5fXrGMAAACAt3hTHQAAAIxGIAYAAIDRCMQAAAAwGoEYAAAARiMQAwAAwGgEYgAAABiNQAwAAACjEYgBAABgNAIxAAAAjEYgBgAAgNEIxAAAADAagRgAAABGIxADAADAaARiAAAAGI1ADAAAAKMRiAEAAGA0AjEAAACMRiAGAACA0QjEAAAAMBqBGAAAAEYjEAMAAMBoBGIAAAAYjUAMAAAAoxGIAQAAYDQCMQAAAIxGIAYAAIDRCMQAAAAwGoEYAAAARiMQAwAAwGh+CcRZWVlKSkrStddeq//85z+e7bt27dK4ceM0bNgwjRs3Trt3727yGAAAANAYfgnEQ4cO1erVq9W5c+fTtqenpys5OVkFBQVKTk5WWlpak8cAAACAxvBLIE5ISJDD4ThtW2VlpUpLSzVy5EhJ0siRI1VaWqqqqiqfxwAAAIDGCgrUxOXl5YqNjZXNZpMk2Ww2dejQQeXl5XK73T6N2e32RtUQHR3evBeFi15MTESgS4BBAnG/0RcBXOhaojcGLBBfCCora+RyuRt9HKHIXAcPHg3IvNxzZmrK/ebrPeNrXwT8jb5oLl974/numYAFYofDoQMHDsjpdMpms8npdKqiokIOh0Nut9unMQAAAKCxAva1a9HR0YqLi1N+fr4kKT8/X3FxcbLb7T6PAQAAAI3llxXizMxMffjhhzp06JAeeOABRUVFacOGDZo/f75SU1P18ssvKzIyUllZWZ5jfB0DAAAAGsMvgXjevHmaN2/eGdu7deumdevWnfUYX8cAAACAxuBNdQAAADAagRgAAABGIxADAADAaARiAAAAGI1ADAAAAKMRiAEAAGA0AjEAAACMRiAGAACA0QjEAAAAMBqBGAAAAEYjEAMAAMBoBGIAAAAYjUAMAAAAoxGIAQAAYDQCMQAAAIxGIAYAAIDRCMQAAAAwGoEYAAAARiMQAwAAwGgEYgAAABiNQAwAAACjEYgBAABgtKBAFwAAuDhERIYpLDQ40GXAj+rqj+vokbpAlwE0GYEYANAswkKDlTxrdaDLgB+9mf0/OioCMVo/HpkAAACA0QjEAAAAMBqBGAAAAEYjEAMAAMBoBGIAAAAYrVUH4l27dmncuHEaNmyYxo0bp927dwe6JAAAALQyrToQp6enKzk5WQUFBUpOTlZaWlqgSwIAAEAr02q/h7iyslKlpaV6/fXXJUkjR47U008/raqqKtntdq/OYbVafJ6/fbu2Ph+L1qsp90xThURGB2xuBEYg7remzklvNA99Ef7WEvecxe12u5v9rH5QUlKi2bNna8OGDZ5tI0aM0MKFC/WrX/0qgJUBAACgNWnVj0wAAAAATdVqA7HD4dCBAwfkdDolSU6nUxUVFXI4HAGuDAAAAK1Jqw3E0dHRiouLU35+viQpPz9fcXFxXj8/DAAAAEit+BliSdq5c6dSU1N15MgRRUZGKisrS1dddVWgywIAAEAr0qoDMQAAANBUrfaRCQAAAKA5EIgBAABgNAIxAAAAjEYgBgAAgNFa7aub4b2kpCSFhIQoJCREtbW1uvrqq/XQQw+pb9++Pp9zyZIl6t69u0aMGNGo41JTUxUfH697773X57lx4Tl+/Lhefvllbdy4USEhIbLZbBowYICeeOIJBQcHe32eVatWadSoUYqOPvk61jVr1qi+vl7333+/JOmpp55ScXGxunfvrlGjRqmoqEizZ89uVK3vvvuuPvroIy1durRRx+HiQ29ES6M3th4EYkMsXbpU11xzjSTpww8/1OTJk7Vy5Ur16tXLp/NNmzatOctDK/fUU0+pvr5e77zzjsLDw3XixAm98847amho8Krpu1wuWSwWvfHGG/r1r3/tafr33HOPZ59Dhw6poKBARUVFslpPfrg1dOjQlrkgGIPeiJZEb2w9CMQGuu2221RcXKyVK1dq0aJFev7557V161Y1NDTo2muv1fz589W2bVulpqYqJCREu3fv1v79+9W7d29lZWXJYrGctprR0NBwznMcOHBAs2bN0sGDB9W5c2fPX1ZcPHbv3q3Nmzfrb3/7m8LDwyVJQUFBGjdunCRp+fLl+vDDD+V0OhUbG6unn35aMTExysnJ0bfffquamhqVlZVpzJgxqqio0GOPPabQ0FAtXrxYmzZt0s8//6xHHnlEEyZMUF1dncaOHauxY8cqMjLytNWM9evX680335TT6VR4eLjmz5+vq666Sg0NDcrMzNRnn32mdu3aKS4uLmB/Vriw0RvRnOiNrQt/Aw3Vq1cvfffdd1qxYoUiIiL09ttv6/3331eHDh20fPlyz37ffvutXnvtNeXn5+urr77Sp59+esa5zneOzMxM9e/fXxs3blRaWpr++c9/+u0a4R+lpaW64oordOmll54xlpubq7179+qtt97S+vXrNXjwYD377LOe8eLiYi1atEgffPCBpk6dqg4dOmjp0qXKzc3V1Vdf7dkvPDxcy5cvV0REhHJzcz0fE55SVFSkTZs2afXq1Xr33Xf14IMPas6cOZKkP/3pT9q3b582bNigVatWqbi4uGX+IHBRoDeiudAbWxdWiA116n0shYWFqqmpUUFBgSSpoaFB1113nWe/W265RaGhoZKkHj166IcfftBNN9102rnOd47PP/9c8+bNkyRddtlluvHGG1v2wnBBKSwsVElJicaOHStJnhWKUwYPHtwsr1svLCzUN998o7vuukvSyfv7yJEjkk7eg7fffruCg4MVHBys0aNH68svv2zynLg40RvhD/TGCw+B2FDbt29X9+7dtW/fPqWnp5+zGZ9q+JJks9nkdDrP2Mftdp/3HLi49ejRQ3v27NFPP/10xkqI2+3W1KlTdeedd5712LZt2zZLDW63W3fccQfPb6LJ6I1oLvTG1oVHJgy0efNmrVmzRhMnTlRSUpJWrVqluro6SVJNTY127tzZqPOd7xwDBgzQO++8I0nau3evtmzZ0oxXggtB165dlZSUpLS0NNXU1Eg6udqxbt06JSUl6c0339RPP/0k6eQK2TfffHPOc7Vt21ZHjx5tdA1JSUnKzc3V/v37PfOXlJRIOnkP5ubm6sSJE6qrq1N+fn6jzw8z0BvRnOiNrQsrxIZ47LHHPF8t1K1bNy1fvly9evVSjx499OKLL+rOO++UxWKRxWJRSkqKunXr5vW5J0+efM5zzJ07V7NmzVJ+fr66dOmixMTEFrxKBMqzzz6rl156SXfccYeCg4Plcrk0ZMgQzZgxQ9XV1Z6vknK73brnnntO++j5v02YMEFz5sxRWFiYFi9e7PX8/fv31+OPP66pU6fK6XTq+PHjGj58uOLj43X33Xdrx44dGjFihNq1a6frr79elZWVzXLdaP3ojWhJ9MbWw+I+9cAUAAAAYCAemQAAAIDRCMQAAAAwGoEYAAAARiMQAwAAwGgEYgAAABiNQAwAAACjEYgBAABgNAIxECD33Xef1q1b5/X+OTk5mjlzZgtWBACBR29EIBCIAQAAYDQCMS5q5eXlSklJ0YABA5SYmKiMjAz98MMPmjBhghITE5WYmKgnnnhCR44c8RyzfPlyDRo0SH369NGwYcO0ZcsWSZLL5dLy5ct1yy23KDExUdOmTVN1dfV556+vr9fMmTOVmJiohIQE3XHHHTp06JCef/55FRUVKSMjQ3369FFGRoYkKTMzU0OGDFHfvn31m9/8RkVFRZKkv//973r11Ve1adMm9enTR6NHj5Z08j31n376qWe+/14pOdfcAEBvpDfidEGBLgBoKU6nU1OmTNGAAQNUWFgom82m7du3y+12a8qUKerfv79qamr06KOPKicnR3PnztX333+v1atX6+2331ZsbKz27dsnl8slSfrDH/6gzZs3649//KPsdrsyMzOVkZGh55577pw1rF+/XjU1Nfroo48UEhKir7/+WmFhYZo+fbq+/PJLjR49WnfddZdn/+uvv16PPPKIIiIi9MYbb2jatGkqLCzU4MGDNWXKFO3Zs0eLFi3y6vrPNTcAs9Eb6Y04EyvEuGgVFxeroqJCs2bNUps2bRQaGqqEhARdccUVuummmxQSEiK73a4HHnhAW7dulSTZbDY1NDRo586dOn78uLp06aLLL79ckrR27VpNnz5dHTt2VEhIiFJSUlRQUKATJ06cs4agoCBVV1drz549stlsio+PV3h4+Dn3HzNmjNq1a6egoCBNnDhRDQ0N2rVrl0/X39i5AZiB3khvxJlYIcZFq7y8XJ06dVJQ0Om3+aFDh7RgwQIVFRXp2LFjcrvdioyMlCRdccUVmjNnjnJycvTdd99p4MCBSk1NVWxsrMrKyvTII4/Iav2/f0darVZVVlYqNjb2rDWMGTNG+/fv14wZM3TkyBGNHj1a06dPV3Bw8Fn3X7lypd5++21VVFTIYrGopqZGhw8f9un6Gzs3ADPQG+mNOBMrxLhoORwOlZeXn7FK8dxzz8lisSgvL09ffvmlFi5cKLfb7RkfNWqU1qxZo7/+9a+yWCyej+E6duyo1157TUVFRZ5f27dvP2fDl6Tg4GClpKRo48aNWrt2rT766CO99957Z923qKhIK1as0AsvvKCtW7eqqKhIERERntosFssZx1xyySWqra31/Hzw4EGf5gZgDnojvRFnIhDjotWzZ0/FxMRo8eLF+vnnn1VfX68vvvhCx44dU5s2bRQREaEDBw5oxYoVnmO+//57bdmyRQ0NDQoJCVFoaKhn1eOee+7RCy+8oB9//FGSVFVVpc2bN5+3hs8++0w7duyQ0+lUeHi4goKCPOdr37699u7d69n32LFjstlsstvtOnHihF588UXV1NR4xqOjo/Xjjz96ntuTpOuuu04bN27U8ePHtX37dhUUFHg1NwBz0RvpjTgTdwAuWjabTcuWLdOePXt08803a/Dgwdq0aZNSUlJUWlqqhIQETZ48WbfddpvnmIaGBi1evFiJiYkaOHCgqqqqNGPGDEnShAkTlJSUpIkTJ6pPnz66++67VVxcfN4aDh06pMcee0z9+vXTiBEjdMMNN2jMmDGe8xUUFKh///7KzMzUwIEDNWjQIA0bNkxJSUkKDQ2Vw+HwnGv48OGSpMTERI0dO1aS9Pjjj+uHH37QDTfcoJycHI0aNcqruQGYi95Ib8SZLO7//jwEAAAAMAwrxAAAADAa3zIBNNH777+v9PT0M7Z36tRJGzZsCEBFABB49Ea0JjwyAQAAAKPxyAQAAACMRiAGAACA0QjEAAAAMBqBGAAAAEYjEAMAAMBo/wtJT3L3fd6eVAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Looking toward our dependent variable, it appears that ```case_status``` is influenced by education. The trouble here is that it is difficult to compare the regions, as the scale is different for each. Is the _percentage_ Certified for Doctorate any greater or less than that for, say, Bachelor's?\n",
"\n",
"Let's instead examine the percentage Certified and Denied."
],
"metadata": {
"id": "YofS02QG8SIF"
},
"id": "YofS02QG8SIF"
},
{
"cell_type": "code",
"source": [
"# dataframe of percentages\n",
"a=visa.groupby('education_of_employee')['case_status'].value_counts(normalize=True)\n",
"b=pd.DataFrame(index=['High School',\"Bachelor's\",\"Master's\",'Doctorate'],\n",
" columns=['Certified','Denied'])\n",
"for (c,d) in a.index:\n",
" b.loc[c,d]=a[(c,d)]\n",
"b"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "omF0GmgRF4MK",
"outputId": "6cefc292-cfac-417a-f9a6-f90d9e455eb7"
},
"id": "omF0GmgRF4MK",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Certified Denied\n",
"High School 0.340351 0.659649\n",
"Bachelor's 0.622142 0.377858\n",
"Master's 0.786278 0.213722\n",
"Doctorate 0.872263 0.127737"
],
"text/html": [
"\n",
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFTCAYAAADV8x5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1gU59oG8HsXFiGCIgiILSoqohHFhiWKwY4gNpSgRkGxxEj02AANYIkENbFgbKjYYuxRwRpbbFgSjXjsLTYQESSCtC3z/cFxvhAQFtylrPfvukzYKe88s++yN9MlgiAIICIiIp0iLe0CiIiISPMY8ERERDqIAU9ERKSDGPBEREQ6iAFPRESkgxjwREREOogBT1RODBs2DLNnzxZfZ2RkwM/PDy1btoStrS2ePn2aZ5riuHbtmtjeuzg7O2Pt2rXvtRxNWbt2LZydnUu7DAB5+0iXlaXPAOVPv7QLIN3i7++PX375BQCgr6+PatWqoXv37pgwYQI++uijUq6uYOHh4Th8+DCio6MLnTY7OxsbN25EdHQ0Hj58iAoVKqBOnTro378/+vfvDwMDg2LXsXv3bsyZMwdXrlzJU5++/v//yu7atQuXLl3Cli1bYGZmBjMzszzTlCdPnz5Fly5d8h0XERGBTp06lXBF76ZuH2mLs7MzhgwZgpEjR2p9WVR+lc9vAirT2rdvj/nz50OhUOD333/HzJkzkZ6ejlmzZhWrPblcDplMpuEqiy87OxsjR47EzZs34efnh1atWsHExATXrl3D+vXrUbduXTg6Oharbblc/s5xpqamuV4/evQINjY2sLW1fec05dGaNWvQqFGjXMMqV65cStUUjS68/6Q7uIueNM7AwAAWFhawtraGm5sb3NzccOzYMQCAIAiIiIhA165dYW9vDzc3N+zdu1ec9+nTp7C1tUV0dDS++OIL2NvbY9u2bQCAX375BW5ubvjkk0/Qvn17TJ8+XZwvNTUV33zzDdq1awcHBwcMHToU165dE8fv3r0bDg4OiImJgaurK5o3b45hw4bhyZMn4vhly5bh7t27sLW1ha2tLXbv3p3v+m3YsAGXLl1CZGQkvvjiCzRu3Bi1atWCi4sLtm7diiZNmrzXugYEBCA9PV2sIzw8HEDu3b/Dhg3Dxo0bcenSJdja2mLYsGF5pgFy/hhZsGABOnXqhGbNmmHAgAE4ffp0rvU5deoUevbsiaZNm8LLywt//fWXWv2cnp6OKVOmwMHBAR06dMi1uzYgIABjxozJNb1KpULnzp0RGRlZYLumpqawsLDI9e+fe0QiIiLQoUMHODg4YNq0aUhPT881v7+/f55lh4eHw9XVNdewgj5PkZGRcHNzQ/PmzdGxY0fMmDEDr1+/BgBcuHBBrT4CgL///hvTp09H69atYW9vjxEjRuDu3bvi+MI+l8V1/Phx9O/fH02bNoWzszMWLVqE7OxsAMAPP/yA/v3755nH09MTc+fOFV/v2rULLi4uaNq0KXr06IH169dDpVK9V11UshjwpHWGhobilunixYuxc+dOBAUFYf/+/Rg9ejSCg4Nx8uTJXPP88MMP8PLywv79+9G1a1ds3boVQUFB6N+/P/bt24fVq1ejQYMGAHKCdPTo0UhISMCqVauwZ88etGrVCsOHD8eLFy/ENrOzs7Fq1SrMmzcPW7duRWpqKkJCQgAALi4u8PHxQd26dXHmzBmcOXMGLi4u+a5PVFQU2rdvj6ZNm+YZJ5VKYWxsXOx1dXZ2RmBgIIyMjMQ6fHx88iwnPDwc/fv3h4ODA86cOSMGzL8FBATg0qVL+P777xEdHY1+/fph3LhxuHXrFgAgPj4e48ePR4cOHbBnzx4MHToUCxYsyLetf4uMjISNjQ12796NCRMmYNGiRThy5AgAYNCgQTh9+nSu9//s2bN4+fIl3N3d1Wo/PwcOHMCSJUswYcIE7N69G3Xr1i30D4b8FPR5AgCJRILAwEBER0fj+++/R2xsLObMmQMAcHBwUKuPgJw/Nq5evYrly5djx44dMDQ0xKhRo5CZmSlOU9DnsjhOnz6NKVOmYMiQIdi/fz/mzZuHQ4cOYdGiRQCAPn364Pr167h//744z5MnT3DlyhX06dMHALB9+3YsWrQIfn5+OHDgAKZPn46IiAhs2bKl2HVRyeMuetKq2NhYREVFoV27dkhPT0dkZCTWrVuHVq1aAQBq1aqF2NhY/PTTT+jcubM439ChQ9GzZ0/x9fLlyzF8+HB4e3uLwz755BMAwPnz53Hr1i3ExMTA0NAQADBx4kScOHECe/fuha+vLwBAoVAgKCgI9erVAwD4+PggMDAQgiDA0NAQH330EfT19WFhYVHgOj169Aht2rQpcJr3WVcTExNIJJIC6zA1NYWRkRFkMtk7p3v8+DH279+P48ePo3r16uKyzp07h61btyIkJAQ///wzqlevjpkzZ0IikcDGxgZ//fUXlixZUuD6AUCzZs0wbtw4AEDdunVx7do1REZGonv37nBwcEC9evWwZ88ejB49GkDOFqGzszPMzMwKbHfo0KGQSnNve5w6dQomJibYuHEj+vbtC09PTwDAuHHjcOHCBTx+/LjQev+poM8TAIwYMUL8uWbNmpg6dSq+/PJLhIWFwcDAQK0++uuvv3D8+HFs3rwZrVu3BgAsWLAAnTt3RlRUFDw8PAAU/LmUSCRFWi8AWLlyJUaOHIkBAwYAAGrXro2pU6di6tSpmDZtGurXr4/GjRsjKioKEydOBJDzR2udOnVgb28vvj9TpkwRP5e1atXC48ePsWXLFgwdOrTINVHpYMCTxp0+fRoODg5QKBRQKBTo0qULvvnmG9y7dw9ZWVkYNWpUri8uuVyOGjVq5Grjn1+2SUlJSEhIQLt27fJd3vXr15GRkZFnfFZWVq5dnQYGBuKXKABYWlpCLpfj77//LtKxU3Wez1TcddWk69evQxAE9O7dO9fw7OxstG3bFgBw//59NGvWLFeNDg4OarXfvHnzPK9//fVX8bWHhwe2bNmC0aNHIyUlBceOHcOyZcsKbff777/PtTUNABUrVhTrHThwYJ7lFiXgC/s8AUBMTAxWr16N+/fvIzU1FSqVCnK5HImJibCyslJrOffv34dUKs31PpmYmKBhw4a4d++eOExTn8u3rl+/jtjYWKxZs0YcplKpkJmZicTERFhaWqJPnz746aefcgW8m5sbACA5ORnx8fEIDg7Odd6MQqFQ67NPZQcDnjSuVatWmDNnDvT19WFpaSmeIPf2sqsVK1aIW5Rv/fvMYyMjI7WXp1KpULVqVfz00095xr3dXZ7fMt6GWlGPK9apUwcPHjwocJq3X4SaXteieLsFuHPnzjzLfLunQ5vc3d2xcOFC/P7777h58ybMzMzQsWPHQuezsrLCxx9/XOzlSiSSPEGkUCjUnv/Zs2cYM2YMBg0aBD8/P5iamuLGjRv4z3/+U+BJkEWt8S1NfS7fUqlU+Oqrr3LtFXrr7d6T3r17Y8GCBbhy5QoMDAzw4MED8dDJ2+XOmjVL7T/2qGxiwJPGGRkZ5fsFbWNjAwMDA8TFxRW49fRv5ubmsLKyQkxMDDp06JBnfJMmTfDy5UtIpVLUqlWr2HXLZDIolcpCp3N1dcUPP/yAa9eu5TkOr1KpkJ6eXux1LUodhbGzs4MgCEhMTBS32P/NxsYGhw8fzrU7+M8//1Sr/atXr+Z5/c8tUVNTU3Tv3h27du3CzZs30bdv3zy73ovKxsYGV69ezbUV/+86zMzMxHMM3rp586b4c2Gfp//+97+Qy+UICAiAnp4eAOQ5b0KdPrKxsYFKpcKff/4p7qJPS0vDnTt38j3JTVMaN26MBw8eFPhHkqWlJdq2bYuoqCgYGBjAwcFB/N2pWrUqLC0t8fjxY/Tt21drdZL2MeCpxBgbG8PHxwfz58+HIAho3bo10tPT8eeff0IqlWLw4MHvnHfs2LEIDQ1F1apV4eTkhMzMTMTExMDHxwft27dHixYt8OWXX2LKlCmoV68eXr58idOnT6N9+/biMfDC1KhRA3Fxcbh+/Tqsra1hbGyc7/XsI0aMwG+//QYfHx9MmDABrVu3hrGxMW7evIl169Zh0qRJcHR0LPa61qhRA1lZWTh79izs7OxgZGRUrK38unXrws3NDQEBAZg+fTqaNGmClJQUXLx4EbVq1UL37t3h6emJdevW4dtvv4WXlxfu3LmDrVu3qtX+n3/+iVWrVqFHjx64ePEi9uzZg4ULF+aaxsPDA6NGjYJCoXjniYD/lpKSgsTExFzDTExMYGhoiC+++ALTpk1D06ZN0aZNGxw+fBhXr17NtSu7bdu2WLNmDXbu3InWrVvjyJEjuHz5MqpVqyZOU9Dn6eOPP4ZKpcKGDRvQrVs3XL16FRs2bMhVjzp9VKdOHXTp0gVBQUGYM2cOTExMsGjRIhgbG4u7w9/Hixcvcv3hAuTs/Rg/fjzGjh2L6tWro1evXtDT08Pdu3cRGxuLadOmidP26dMH3333HWQyGcaOHZurHT8/P8yZMweVKlVCp06doFAocOPGDSQkJOS5QoHKLgY8laiJEyeiatWqWLduHUJCQmBsbAw7OzuMGjWqwPm8vLwgk8kQGRmJhQsXonLlyuKNTyQSCVavXo3Fixfjm2++QXJyMszNzdGiRYsibYH06NEDv/76K0aMGIHXr18jNDQ03y0tAwMDREZGYv369di5cycWLlyIChUqoG7duuKZ7e+zri1atICnpyf+85//ICUlBV999RUmTJig9nr8U2hoKFauXIkFCxYgISEBlStXRtOmTcXr9KtXr45ly5YhNDQU27ZtQ5MmTTB58mRMnTq10La9vb1x+/ZtrFy5EkZGRvDz88uzW9jR0RHVqlVD9erV1d67kt/7M3fuXHh4eMDFxQVPnjzBokWLkJmZCWdnZ3h7e4s3VwKAjh074quvvsLixYuRkZEBNzc3eHl54fjx4+I0BX2eGjVqhBkzZiAiIgKLFy8WL8ebNGmSOL+6fRQaGop58+Zh3LhxyMrKQosWLbBmzRqNHCJZv3491q9fn2vYN998g6FDh2LVqlVYvnw51q1bBz09PfEmTP/UrVs3hISEIC0tLc8VIx4eHjAyMsLatWvx/fffw9DQEPXr1+cJduWMROBZE0SkJZmZmejUqRNmzpwpXoJFRCWDW/BEpHEqlQqvXr3Cxo0bUaFCBfTq1au0SyL64DDgiUjj4uLi0KVLF1SrVg2hoaFl6lbDRB8K7qInIiLSQbxVLRERkQ5iwBMREekgBjwREZEO0rmT7F69egOV6sM7rcDc3BhJSWmlXQapgX1VfrCvyocPtZ+kUgmqVKn4zvE6F/AqlfBBBjyAD3a9yyP2VfnBviof2E95cRc9ERGRDmLAExER6SAGPBERkQ5iwBMREekgBjwREZEOYsATERHpoBIJ+LCwMDg7O8PW1hZ37tzJdxqlUolZs2aha9eu6NatG3bs2FESpREREemkEgn4Ll264KeffkKNGjXeOU1UVBQeP36MI0eOYNu2bQgPD8fTp09LojwiIiKdUyIB36pVK1hbWxc4zYEDB+Dh4QGpVAozMzN07doVhw4dKonyiIiIdE6ZuZNdfHw8qlevLr62trbG8+fPi9yOubmxxmpSKbIh1TfQWHvaZmFhUtolqEUb7yv7SjvYV+Wjr7T1npanvioP/QSU7HtaZgJeU5KS0jR2y0ILCxM8+HaARtqi/1dvxi4kJqZqtE32lXawr8oHbfQTwL7SBk32lVQqKXCjtsycRW9tbY24uDjxdXx8PKpVq1aKFREREZVfZSbge/bsiR07dkClUiE5ORlHjx5Fjx49SrssIiKicqlEAn7u3Lno1KkTnj9/Dm9vb/Tu3RsA4Ovri2vXrgEA3N3dUbNmTXTv3h2DBg3C+PHjUatWrZIoj4iISOeUyDH4mTNnYubMmXmGR0REiD/r6elh1qxZJVEOERGRziszu+iJiIhIcxjwREREOogBT0REpIMY8ERERDqIAU9ERKSDGPBEREQ6iAFPRESkgxjwREREOogBT0REpIMY8ERERDqIAU9ERKSDGPBEREQ6iAFPRESkgxjwREREOogBT0REpIMY8ERERDqIAU9ERKSDGPBEREQ6iAFPRESkgxjwREREOogBT0REpIMY8ERERDqIAU9ERKSDGPBEREQ6iAFPRESkgxjwREREOogBT0REpIMY8ERERDpIv7QLICKiskklz0a9GbtKuwydopJnl9iyGPBERJQvqcwAbpP3lnYZOiXqe3cAWSWyLO6iJyIi0kEMeCIiIh3EgCciItJBDHgiIiIdxIAnIiLSQQx4IiIiHcSAJyIi0kEMeCIiIh3EgCciItJBDHgiIiIdxIAnIiLSQQx4IiIiHcSAJyIi0kEl9jS5hw8fwt/fHykpKTA1NUVYWBjq1KmTa5qkpCQEBAQgPj4eCoUCjo6OmDlzJvT1+dA7IiKioiixLfjg4GB4eXnh8OHD8PLyQlBQUJ5pVq5cCRsbG0RFRWHfvn24fv06jhw5UlIlEhER6YwSCfikpCTcuHEDrq6uAABXV1fcuHEDycnJuaaTSCR48+YNVCoVsrOzIZfLYWVlVRIlEhER6ZQC932rVCq1GpFKC/47IT4+HlZWVtDT0wMA6OnpwdLSEvHx8TAzMxOn+/LLLzFhwgR8+umnyMjIwJAhQ9CyZUu1anjL3Ny4SNNT6bCwMCntEkhN7Kvygf1UfpRUXxUY8I0bN4ZEIim0kZs3b2qkmEOHDsHW1hYbNmzAmzdv4Ovri0OHDqFnz55qt5GUlAaVStBIPfyF0Z7ExFSNtse+0h72Vfmg6X4C2Ffaoqm+kkolBW7UFhjwx44dE38+efIkDh8+jDFjxqB69eqIi4tDREQEunfvXmgR1tbWSEhIgFKphJ6eHpRKJV68eAFra+tc023evBnz5s2DVCqFiYkJnJ2dceHChSIFPBERERUS8DVq1BB/Xr9+PXbt2oVKlSoBAOrWrYtPPvkEAwYMgJeXV4ELMTc3h52dHaKjo+Hu7o7o6GjY2dnl2j0PADVr1sSpU6dgb2+P7OxsxMTEoFu3bsVdNyIiog+W2tefpaamIiMjQwx4AMjMzERqqnq7GkJCQuDv74/ly5ejUqVKCAsLAwD4+vrCz88PTZs2RWBgIIKDg+Hm5galUglHR0cMGjSoiKtERGWZSp6NejN2lXYZOkUlzy7tEqgMUjvg+/XrB29vbwwfPhzVqlXD8+fPsWnTJvTr10+t+W1sbLBjx448wyMiIsSfa9eujcjISHVLIqJySCozgNvkvaVdhk6J+t4dQFZpl0FljNoBP3XqVNSuXRsHDhzAixcvYGFhgSFDhnALm4iIqAxSO+ClUik+//xzfP7559qsh4iIiDRA7RvdCIKA7du3Y/jw4XBzcwMAXLp0CQcOHNBacURERFQ8agf8kiVLsHPnTgwaNAjx8fEAgGrVqmHNmjVaK46IiIiKR+2A/+WXX7By5Ur07t1bvPlNzZo18eTJE60VR0RERMWjdsArlUpUrFgRAMSAf/PmDT766CPtVEZERETFpnbAOzk5ITQ0FNnZOddbCoKAJUuW4LPPPtNacURERFQ8agd8QEAAEhMT0bJlS6SmpsLBwQFxcXGYMmWKNusjIiKiYlD7MjljY2P8+OOPePnyJeLi4mBtbQ0LCwtt1kZERETFVGDAC4IgHm9/++hYMzMz8R7yb4cV9rhYIiIiKlkFBnzLli1x+fJlAPk/OvbtHwCaelwsERERaUaBAb9//37x538+OpaIiIjKtgID/p/Pa//no2OJiIiobFP7JLuUlBSsW7cON2/eRHp6eq5xP/30k8YLIyIiouJTO+AnT56M7Oxs9OrVC0ZGRtqsiYiIiN6T2gF/5coVnD9/HgYGBtqsh4iIiDRA7evbbG1t8fz5c23WQkRERBqi9hZ827ZtMWrUKPTv3x9Vq1bNNW7gwIEaL4yIiIiKT+2A//3332FlZYWzZ8/mGi6RSBjwREREZYzaAb9p0yZt1kFEREQaVKR7zL569Qp79uzBmjVrAAAJCQk8Lk9ERFQGqR3wFy9eRM+ePREVFYUff/wRAPDo0SOEhIRoqzYiIiIqJrUDft68eVi8eDHWrl0Lff2cPfvNmjVDbGys1oojIiKi4lE74J89e4Z27doBgPjQGZlMBqVSqZ3KiIiIqNjUDngbGxucPn0617Bz586hYcOGGi+KiIiI3o/aZ9H7+/tjzJgx6Ny5MzIzMxEUFITjx49j+fLl2qyPiIiIikHtLfjmzZtj3759qF+/PgYMGICaNWti586dsLe312Z9REREVAxqb8EDgJWVFXx9fbVVCxEREWmIWgF/7949hIeH448//kBKSgpMTU3RqlUrfPXVV6hfv762ayQiIqIiKnQX/V9//YVBgwYhKysLkyZNwooVKzBx4kRkZGRg0KBBePDgQUnUSUREREVQ6Bb8qlWr4O7ujuDg4FzDBw4ciDlz5iAiIgKhoaFaK5CIiIiKrtAt+EuXLsHHxyffcd7e3rhw4YLGiyIiIqL3U2jAJycno2bNmvmOq169Ol69eqXxooiIiOj9qHWZ3Ns71+WZWSp95zgiIiIqPYUeg8/MzMSQIUPyHScIArKysjReFBEREb2fQgP+22+/LXC8h4eHxoohIiIizSg04BUKBTp16gQrK6uSqIeIiIg0oNCAv3btGpYvX45KlSqhc+fO6NSpE1q0aMFj70RERGVYoQE/e/ZsAMDt27fx22+/4YcffsDDhw/Rtm1bODk5oWPHjjAzM9N6oURERKQ+te9Fb2trC1tbW4wePRqpqak4ffo0Tp06hQULFqB69eqYMGECOnbsqM1aiYiISE1FetjMWyYmJnBxcYGLiwsAIDY2VqNFERWVSp6NejN2lXYZOkclzy7tEoiomAoM+J07d6rVyMCBAzVSDFFxSWUGcJu8t7TL0DlR37sD4KWwROVRgQG/d2/uL8zLly+jatWqsLa2Rnx8PF6+fIkWLVow4ImIiMqYAgN+06ZN4s9z5sxBly5dMGLECHHYhg0b8OTJE7UW9PDhQ/j7+4uPmw0LC0OdOnXyTHfgwAGsWLECgiBAIpEgMjISVatWVW9tiIiICICat6oFgH379mHYsGG5hg0dOjTPVv67BAcHw8vLC4cPH4aXlxeCgoLyTHPt2jUsW7YM69atQ3R0NLZs2QITExN1SyQiIqL/UTvgq1atiuPHj+caduLECbUukUtKSsKNGzfg6uoKAHB1dcWNGzeQnJyca7r169fDx8cHFhYWAHJO5qtQoYK6JRIREdH/qH0W/cyZMzFhwgSsXbsW1apVQ3x8PO7du4clS5YUOm98fDysrKygp6cHANDT04OlpSXi4+Nz/YFw//591KxZE0OGDEF6ejq6deuGcePGFemmOubmxmpPS6XHwoJ7ZsoL9lX5wH4qP0qqr9QO+A4dOuDo0aM4deoUXrx4gc6dO8PJyQlVqlTRWDFKpRK3b99GZGQksrOzMWrUKFSvXh19+/ZVu42kpDSoVIJG6uEvjPYkJqZqtD32lfawr8oHTfcTwL7SFk31lVQqKXCjtkjXwZuZmcHR0REJCQlo3ry52vNZW1sjISEBSqUSenp6UCqVePHiBaytrXNNV716dfTs2RMGBgYwMDBAly5dEBsbW6SAJyIioiIcg4+Li4Onpyd69eoFb29vAMChQ4cwY8aMQuc1NzeHnZ0doqOjAQDR0dGws7PLc/ze1dUVZ86cgSAIkMvlOH/+PBo1alSU9SEiIiIUIeCDgoLQuXNnXL58Gfr6ORv+HTp0wLlz59SaPyQkBJs3b0aPHj2wefNmzJo1CwDg6+uLa9euAQB69+4Nc3NzuLi4oG/fvqhfvz6vsSciIioGtXfRX7t2DatXr4ZUKhVPejMxMUFqqnrHEmxsbLBjx448wyMiIsSfpVIpAgICEBAQoG5ZRERElA+1t+DNzc3x6NGjXMPu3buX5zg6ERERlT61A97Hxwdjx47Frl27oFAoEB0djUmTJsHX11eb9REREVExqL2LfuDAgTA1NcW2bdtgbW2NX375BV9//TW6du2qzfqIiIioGIp0mVzXrl0Z6EREROVAgQG/Z88e8Rr0gh4dyzPdiYiIypYCA37//v1iwL/roTISiYQBT0REVMYUGPCenp7iz+vWrYNMJtN6QURERPT+CjyLfurUqeLPjo6OWi+GiIiINKPALXgLCwts3rwZNjY2UCqVOH/+PAQh74Nc2rVrp7UCiYiIqOgKDPjQ0FAsXboUGzduhFwuR2BgYJ5pJBIJjh07prUCiYiIqOgKDPgWLVpg/fr1AIBu3brh119/LYmaiIiI6D2pfSc7hjsREVH5UeAW/MiRI7F27VoAgJeXl/iQmX/76aefNF8ZERERFVuBAf/2GngA8PDw0HoxREREpBkFBrybm5v4c7169dCsWbM808TGxmq+KiIiInovah+D9/b2znf4qFGjNFYMERERaUahD5tRqVQQBCHXv7ceP34MPT09rRZIRERERVdowDdu3BgSiQSCIKBx48a5xkmlUowdO1ZrxREREVHxFBrwx44dgyAIGDZsGDZv3iwOl0gkMDMzg6GhoVYLJCIioqIrNOBr1KgBpVKJmjVrwsLCAgYGBiVRFxEREb0HtU6y09PTw9OnT6FSqbRdDxEREWmA2mfRjx8/HiEhIXj27BmUSiVUKpX4j4iIiMqWQnfRvzVz5kwAwN69e8VhgiBAIpHg5s2bmq+MiIiIik3tgOcT44iIiMoPtQO+Ro0aAHKui3/58iUsLS21VhQRERG9H7WPwb9+/RqTJ0+Gvb09unfvDiBnq37RokVaK46IiIiKR+2ADw4OhrGxMY4fPw6ZTAYAcHBwwMGDB7VWHBERERWP2rvoY2JicPr0achkMvGxsWZmZkhKStJacURERFQ8am/Bm5iY4NWrV7mGxcXFwcLCQuNFERER0ftRO+A9PDzg5+eH8+fPQ6VS4cqVK5g+fTo8PT21WR8REREVg9q76H19fVGhQgXMnj0bCoUCgYGBGDx4MIYPH67N+oiIiKgY1A54iUSC4cOHM9CJiIjKgUJ30f/xxx9YsGBBvuMWLk6C3VIAACAASURBVFyIP//8U+NFERER0fspNOBXrVqF1q1b5zuuTZs2WLlypcaLIiIiovdTaMDfvHkTHTt2zHdc+/bt8d///lfjRREREdH7KTTg09LSIJfL8x2nUCjw5s0bjRdFRERE76fQgK9Xrx7OnDmT77gzZ86gXr16Gi+KiIiI3k+hAT9ixAgEBwfjyJEj4rPfVSoVjhw5gpCQEHh7e2u9SCIiIiqaQi+Tc3Nzw8uXLzF9+nTI5XKYmpoiJSUFMpkMfn5+cHV1LYk6iYiIqAjUug7e29sbHh4euHLlClJSUmBqagoHBwcYGxtruz4iIiIqBrVvdGNsbPzOs+mJiIiobFH7XvRERERUfpRYwD98+BCDBw9Gjx49MHjwYPz111/vnPbBgwdo1qwZwsLCSqo8IiIinVJiAR8cHAwvLy8cPnwYXl5eCAoKync6pVKJ4OBgdO3ataRKIyIi0jlqB3zfvn3zHd6/f/9C501KSsKNGzfEM+5dXV1x48YNJCcn55l29erV6Ny5M+rUqaNuaURERPQvagf8o0eP8gwTBAFPnz4tdN74+HhYWVlBT08PAKCnpwdLS0vEx8fnmu7WrVs4c+YMRowYoW5ZRERElI9Cz6KfNm0aAEAul4s/v/Xs2TPUr19fI4XI5XJ88803CA0NFf8QKA5zc166Vx5YWJiUdgmkJvZV+cB+Kj9Kqq8KDfjatWvn+zMAtGjRAj179ix0IdbW1khISIBSqYSenh6USiVevHgBa2trcZrExEQ8fvwYo0ePBgC8fv0agiAgLS0Nc+bMUXuFkpLSoFIJak9fEP7CaE9iYqpG22NfaQ/7qnzQdD8B7Ctt0VRfSaWSAjdqCw34r776CgDQrFmzYl8Hb25uDjs7O0RHR8Pd3R3R0dGws7ODmZmZOE316tVx4cIF8XV4eDjS09Mxffr0Yi2TiIjoQ6b2jW46duyIBw8e4NatW0hPT881buDAgYXOHxISAn9/fyxfvhyVKlUSL4Hz9fWFn58fmjZtWsTSiYiI6F3UDviVK1fixx9/RKNGjWBoaCgOl0gkagW8jY0NduzYkWd4REREvtNPmDBB3dKIiIjoX9QO+A0bNmDHjh1o1KiRNushIiIiDVD7MjlDQ0M++52IiKicUDvgv/76a8ydOxcvXryASqXK9Y+IiIjKFrV30fv7+wNAruPogiBAIpHg5s2bmq+MiIiIik3tgD927Jg26yAiIiINUjvga9SoAQBQqVR4+fIlLC0ttVYUERERvR+1j8G/fv0akydPhr29Pbp37w4gZ6t+0aJFWiuOiIiIikftgA8ODoaxsTGOHz8OmUwGAHBwcMDBgwe1VhwREREVj9q76GNiYnD69GnIZDJIJBIAgJmZGZKSkrRWHBERERWP2lvwJiYmePXqVa5hcXFxsLCw0HhRRERE9H7U3oL38PCAn58fJk6cCJVKhStXruCHH36Ap6enNusrVSp5NurN2FXaZegclTy7tEsgItJ5age8r68vKlSogNmzZ0OhUCAwMBCDBw/G8OHDtVlfqZLKDOA2eW9pl6Fzor53B5BV2mUQEek0tQNeIpFg+PDhOh3oREREukLtY/CrV69GbGxsrmGxsbHvfBocERERlR61A37jxo2oX79+rmE2NjbYsGGDxosiIiKi96N2wMvlcujr596jL5PJkJ3NE6aIiIjKGrUDvkmTJtiyZUuuYVu3bkXjxo01XhQRERG9H7VPsgsICIC3tzf27duHWrVq4cmTJ0hMTERkZKQ26yMiIqJiUCvgBUGAoaEhDh8+jJMnTyI+Ph7du3dH586dUbFiRW3XSEREREWkVsBLJBK4ubnh8uXL6N27t7ZrIiIiovek9jF4Ozs7PHz4UJu1EBERkYaofQy+TZs28PX1Rb9+/VCtWjXxgTMAMHDgQK0UR0RERMWjdsBfvnwZNWrUwMWLF3MNl0gkDHgiIqIyRu2A37RpkzbrICIiIg1S+xg8ALx69Qp79uzBmjVrAAAJCQl4/vy5VgojIiKi4lM74C9evIiePXsiKioKP/74IwDg0aNHCAkJ0VZtREREVExqB/y8efOwePFirF27VrxlbbNmzfI8gIaIiIhKn9oB/+zZM7Rr1w4AxDPoZTIZlEqldiojIiKiYlM74G1sbHD69Olcw86dO4eGDRtqvCgiIiJ6P2qfRe/v748xY8agc+fOyMzMRFBQEI4fP47ly5drsz4iIiIqBrW34Js3b459+/ahfv36GDBgAGrWrImdO3fC3t5em/URERFRMRS6BZ+RkYEVK1bgzp07aNKkCcaMGQMDA4OSqI2IiIiKqdAt+NmzZ+PEiROoV68eDh8+jLCwsJKoi4iIiN5DoQF/+vRprF27FtOmTUNERAROnDhREnURERHReyg04NPT02FpaQkAsLa2RlpamtaLIiIiovdT6DF4pVKJ8+fPQxAEAIBCocj1GoB4fTwRERGVDYUGvLm5OQIDA8XXpqamuV5LJBIcO3ZMO9URERFRsRQa8MePHy+JOoiIiEiDivQ0OSIiIiofGPBEREQ6iAFPRESkgxjwREREOogBT0REpIPUfprc+3r48CH8/f2RkpICU1NThIWFoU6dOrmm+fHHH3HgwAFIpVLIZDJMmjQJHTt2LKkSiYiIdEaJBXxwcDC8vLzg7u6OvXv3IigoCBs3bsw1jb29PXx8fGBkZIRbt25h6NChOHPmDAwNDUuqTCIiIp1QIrvok5KScOPGDbi6ugIAXF1dcePGDSQnJ+earmPHjjAyMgIA2NraQhAEpKSklESJREREOqVEAj4+Ph5WVlbQ09MDAOjp6cHS0hLx8fHvnGfPnj2oXbs2qlWrVhIlEhER6ZQS20VfFBcvXsSSJUuwbt26Is9rbm6shYpI0ywsTEq7BFIT+6p8YD+VHyXVVyUS8NbW1khISIBSqYSenh6USiVevHgBa2vrPNNeuXIFU6dOxfLly1GvXr0iLyspKQ0qlVD4hGrgL4z2JCamarQ99pX2sK/KB033E8C+0hZN9ZVUKilwo7ZEdtGbm5vDzs4O0dHRAIDo6GjY2dnBzMws13SxsbGYNGkSli5diiZNmpREaURERDqpxK6DDwkJwebNm9GjRw9s3rwZs2bNAgD4+vri2rVrAIBZs2YhMzMTQUFBcHd3h7u7O27fvl1SJRIREemMEjsGb2Njgx07duQZHhERIf68a9eukiqHiIhIp/FOdkRERDqIAU9ERKSDGPBEREQ6iAFPRESkgxjwREREOogBT0REpIMY8ERERDqoTN6LnoiIyqeKFaTo284clqYGkEhKu5qy5/r1G1CpVEWeT1/fAFWqWEBPT/3YZsATEZHG9G1njro1LCDVMwITPq/q1U2hUBQt4AVBwJs3r/HqVSKqVs37DJd34S56IiLSGEtTA4a7hkkkElSsWAkKRXaR5mPAExGRxkgkYLhrgaQY7yl30RMRkdY0bmCBikYGGm/3TUY2btxN1Hi7uoQBT0REWlPRyABuk/dqvN2o793VnlahUGDPzk04f+4EZDIDSKVSNP7EAYOH+EJfX/0YPLR/J9p92gWVK1cBABw7sg/Z2Vno5eoBAFj1Yxge3LuFmrXqon3HLrh98xq8vhhbpPU6cCAK586dxty584s0X34Y8EREpNNWL58PeXYW5oSthJHRR1Aqlfjt+EEo5HK1Al6lUkEikeDQ/l1o0rSlGPBduvcRp/k7JRmXLpzG6vX7IJXmHP1u2bqDdlZITQx4IiLSWc/jn+KPi2ewdOU2GBl9BADQ09ODczdXAEDUnp9x6fwpKFVKmJlVxcgxU2BaxQy7tq/Hsyd/IT39DZJevsCnnbrhVXISln4fApnMAOO/noHzMSeRlZmBfh7D8W3IZGRnZWLmtDHo2Lk7KlY0wZU/zuPrKSEAgFMnD+PY4b3Q1wMqVjTGlCn+qF27DuRyORYtmo/Ll39H5cqmaNDAVmPrzoAnIiKd9dfDe7CqVgMVjU3yjDtz6le8eB6HkHk/QiqV4ujhvdiycQW+/HoGAOD+3VuYO38VTCpVBgCcOLYffpNDUKt23ZwGYnL+Z2T0EaYGhuIb/7GYtzACAHDqxCFxObduxuLCuZOYOXsx7OpZ4vTp0wgNnY0VK9Zh795diI+Pw+bNO6BQKDB+vC+srdW/FK4gDHgiIvogXf79HB7ev4OZ08YAAFQqJYw+qiiOb9bCUQz393Hl9xg8fnQfwQHjUcFADyqVgNTU1zk1XP4DvXq5Ql9fH/r6+ujRoxdiY/9872UCDHgiItJhderWR8LzZ3iTlpp3K14Q0HfAUDg598p3XkNDQ43UIAgCnD7rhYGe3qhfq+g3uikuXgdPREQ6q5p1TTi0aoe1q39ARkY6AEClVOLEsf1o0ao9jh7eizdpqQAAuTwbj/66/862jIwqIiP9TZFraNGqHc6cOoKkpJzL+pRKJW7dugkAaNmyFQ4dOgCFQoGsrEz8+uuhgpoqEm7BExGR1rzJyC7SJW1FaVddY8f7Y/eOjfhm+ljo6+tDpRLQvEUbDPLyRWrq35gbPAkAIAgqdOnhjo/r2OTbTneXfli9fD4MDCpg/P+O06ujUeNm8Ph8JH4ImwGZngRyuRyffdYVjRrZoU+f/rh37x6GDvVA5cqmaNSoCV69SlK77YJIBEEQNNJSGZGUlAaVSjOrZGFhopXrNz90Ud+7IzExVaNtsq+0g31VPmijn4Di9dV/+tWAcSXNnCSmi95nF/3z549QrdrH4mupVAJzc+N3Ts9d9ERERDqIAU9ERKSDGPBEREQ6iAFPRESkgxjwREREOogBT0REpIN4HTwREWmNfQNzVDDSzB3h/ikrIxOxdwu/Xnzil59DJjOATCZDZmYmataqA9e+nmho+0mxl71zayRq1qqDth0+K9J8q5aFoU2rZujXb1Cxl10UDHgiItKaCkaGePDtAI23W2/GLrWn/ecDYi5dOIWF8wIwbeZ81G9gV6xlD/T0LtZ8JY0BT0REH4zWjp1w/+4tHNi3DV/6zcD2n9fi1o2rUCjkqFW7Hrx9J8HQyAirloVBZmCA53FPkJSUiAYNG2PMV/6QSCRYtSwMdW0aonuvflDI5e9sIzkpESuXfYeUV8mwsLSCRFKyR8V5DJ6IiD4oNg3s8PTJI0Tv24qPKlbE7O9WYN7CNahiVhX7ftkiTvf08UNMCfwOYT+sw8MHd/Df2D/ytFVQG5sil6FRY3vMXxyJ4SP9cOvG1RJbR4Bb8ERE9MHJuZ355UvnkJGRjosxpwAACoUctT/+//vQt2zTAQYGBgCAOnUb4EVCXJ6WCmrjxn//xDDvrwAAllbV0aRpC+2tUj4Y8ERE9EF5cO82ataug8QXzzFi1NfvDF6ZzED8WSrVg1KpzDONABTYRmniLnoiIvpg/HHpLI4d2QcXt0Fo0ao9DkbvRHZWFgAgIyMdz54+KlJ7BbXR+BMHnDqZ8/jXFwnxuH7tsgbXpHDcgiciIq3Jysgs0hnvRWlXXUu/DxEvk6tR82NMCQxF/QZ2qFO3AXZv34CggHGQSKSQSIB+Hl+gRs2PC2/0f9z6fv7ONoZ5j8fKZd/h3OnjsLCsBrsmzYqzqsXGx8UWgI+11A4+grT8YF+VD3xcbPnBx8USERHRe2HAExER6SAGPBERkQ5iwBMRkcYIwtv/kCYV53Q5BjwREWnMi5RsqJQZDHkNEgQBb968hr6+QeET/wMvkyMiIo3ZE5OEvu0AS1MDSCSlXU3ZExf3N1Sqop9Fr69vgCpVLIo2T5GXQkRE9A5vslT46WRiaZdRZmnrksb8lNgu+ocPH2Lw4MHo0aMHBg8ejL/++ivPNEqlErNmzULXrl3RrVs37Nixo6TKIyIi0iklFvDBwcHw8vLC4cOH4eXlhaCgoDzTREVF4fHjxzhy5Ai2bduG8PBwPH36tKRKJCIi0hklsos+KSkJN27cQGRkJADA1dUVc+bMQXJyMszMzMTpDhw4AA8PD0ilUpiZmaFr1644dOgQRo0apfaypFLNHvSxrGKk0fYoh6b7CWBfaQv7qnzQRj8B7Ctt0FRfFdZOiQR8fHw8rKysoKenBwDQ09ODpaUl4uPjcwV8fHw8qlevLr62trbG8+fPi7SsKlUqaqbo/1k7s7tG26McBd1esbjYV9rBvioftNFPAPtKG7TVV//Gy+SIiIh0UIkEvLW1NRISEsRn6SqVSrx48QLW1tZ5pouLixNfx8fHo1q1aiVRIhERkU4pkYA3NzeHnZ0doqOjAQDR0dGws7PLtXseAHr27IkdO3ZApVIhOTkZR48eRY8ePUqiRCIiIp1SYo+LvX//Pvz9/fH69WtUqlQJYWFhqFevHnx9feHn54emTZtCqVRi9uzZOHv2LADA19cXgwcPLonyiIiIdIrOPQ+eiIiIeJIdERGRTmLAExER6SAGPBERkQ5iwBMREekgBryGODs7486dO7mG9e/fHxcuXAAALFmyBAcOHCi0nfDwcISFham1zIMHD6Jv375wd3dHz549MXny5GLV+T52794NPz8/jbVXGpydndGzZ0/xfZw5cybkcnmx2vL398fmzZuLPN+wYcNw4sSJIs934cIF+Pv7F3k+XePs7IxPP/1UvNcGkPPZtLW1LVZ/ADm/i9nZ2cWa9+nTpxg2bFix5tUlb3+3+vTpg27dumHcuHG4fPlysds7evQoYmNjNVhhjtevXyMiIkLj7ZY2BnwJ+frrr+Hi4qKx9l68eIFZs2ZhxYoV2Lt3Lw4ePIiRI0dqrP0PzdKlS7F3717s378f9+7dw6+//lraJRVKoVCUdglliqWlJc6cOSO+/uWXX9CkSZNit7ds2bJi/aHHfslt6dKl2LdvH3799Vf069cPo0ePxtWrV4vVVnEDXqVSoaALxl6/fo01a9YUq6ayjM+DLyH+/v745JNPMHToUKSmpiIwMBB3796FlZUVrKysYG5ujunTpwMAEhIS4OvriydPnqB27dpYsmQJjIxyP/Dh5cuX0NfXh6mpKQBAIpGgcePG4vgrV65g/vz5ePPmDQBg2rRp+PTTTwHkbPl/8803SExMhI+PD4YOHQoAiI2Nxbfffov09HR89NFHmDFjBuzt7QEAe/bswdq1awEAtWvXxuzZs2Fubq7Fd6x0ZGVlISsrC5UqVUJMTAwWL16MrKwsKJVKjB07Fr179waQ00dz584VH3vs6uqKMWPGAADu3LmDL774As+fP0fz5s0RFhYGiUSCtLQ0hIaG4vbt28jKyoKjoyMCAgLEZzS89fLlSwQHB+Px48cAgJEjR6Jv374AcraIXFxccP78eTRs2BADBw6EsXHOfa0vX76MOXPmQKVSQaFQYNy4cXB1dS2Jt61M6NevH3bv3g0nJyc8efIE6enpaNiwIQAU2JfLli1DdHQ0KlSoAIlEgo0bN2LRokUAAE9PT0ilUmzatAlSqfSd/Tds2DA0atQIV69eReXKlTF79mxUrlwZAPDgwQMEBAQgIyMDKpUK/fr1+2D/GO/evTtiY2Oxdu1ahIaGYu7cubh27RoAwN3dHb6+vgDy//1q3Lgxjh8/jnPnzmHHjh3w9vZG3759sXr1auzbtw8A0LRpU8ycORMVK1ZEeHg47t69i7S0NMTFxWHbtm1YuXIlLl68CLlcjipVqmDevHmoUaMGZs+ejdTUVLi7u8PIyAhbt27FixcvMHfuXMTFxSErKwu9e/fG2LFjS+V9KzaBNOKzzz4TevToIfTp00f8Z29vL5w/f14QBEGYPn26sGnTJkEQBCE0NFQIDAwUBEEQXr16JXz22WfCd999JwiCICxdulTo1q2b8PfffwsqlUrw9vYWtm3blmd5SqVSGDdunNCmTRthwoQJQmRkpJCcnCy22b59e+GPP/4QBEEQFAqFkJKSItb5dllPnjwRmjdvLqSlpQlZWVmCk5OTcO7cOUEQBOHs2bOCk5OTkJWVJdy+fVvo0KGDkJCQIAiCICxatEj4+uuvBUEQhF27dgkTJkzQ/Btagv7Zd82bNxe++uorQRAEISUlRVAoFIIgCEJiYqLQsWNH8X0cOnSoEBERIbaRlJQkCEJOP3t6egqZmZlCVlaW4OLiIpw5c0YQBEEIDAwUfvnlF0EQcvpv0qRJYt8OHTpUOH78uCAIgvD1118LixYtEgRBEBISEoQOHToIt2/fFmsNDg7Odz3Gjh0rREVFCYIgCCqVSvj777818waVA5999plw69YtoWfPnkJKSoqwZMkSYePGjeLv3bv68tWrV0LLli2FjIwMQRAEITU1VZDL5YIgCELDhg2FtLQ0cRmF9d+YMWPEef9pzpw5wsqVK8XXbz9DH4LPPvtM/Oy+deTIEaFXr17C/PnzhWnTpgkqlUpITU0VXFxchJMnTwqCUPDv19vvUUEQhJMnTwq9e/cWUlNTBZVKJUydOlWYP3++IAg536VOTk7ivP9sRxAEYfv27cLEiRMFQcj5LmzTpk2uOkeMGCFcvHhREARByMrKEj7//HPxd7m84Ba8Bi1dulTcYgByjsHn58KFC5g5cyYAwNTUFF27ds01/tNPP0WlSpUAAPb29uKW3D9JpVIsX74cd+7cwaVLl3D06FGsXbsWUVFR+PPPP2FjY4MWLVoAyHl639utCQDioYKaNWuiUqVKeP78ORQKBWQyGdq1awcAaN++PWQyGR4+fIiLFy/CyckJlpaWAHK2atzd3Yv1HpVVb/suKysLEyZMwPr16+Hk5ITAwEA8evQIenp6+Pvvv/Hw4UM0aNAAV65cER9/DCDXbZe7du2KChUqAAAaN26Mx48fo0OHDjh+/DhiY2PF+TIzM2FlZZWnlpiYGPG4uqWlJZycnHDhwgXxs/V2a/7fHB0dsWLFCnF5zZo108ybU05IJBL06tUL+/fvx/79+7F161Zcv34dAJCcnJxvXzZt2hS1a9cW93B17txZ3CPyb4X1n5ubG/T1836ltm7dGgsWLEBGRgYcHR3Rtm1bLax9+SH8b1d5TEwMAgMDIZFIYGxsjN69eyMmJgatWrUq8Pfrn2JiYuDi4iL22aBBgzBv3jxxfKdOnXLNe+rUKWzZsgXp6ekFHkpJT0/HxYsXkZycLA578+YN7t+/jw4dOhRvxUsBA74MehsOQE44Z2VlvXPahg0bomHDhhgyZAhcXFxw8eJFGBgYFKn9f56Y9KGrUKECOnfujJMnT+LEiRNwdnbGsmXLIJFI0KNHjwL74p9tvPXP91cQBCxfvhy1atV6rxo/+uijfIePGDECzs7OOHfuHObMmYMOHTpg0qRJ77Ws8qZfv37w8PBA69atUaVKFXF4SEhIvn2pp6eH7du34/Llyzh//jz69++PNWvWoFGjRnnaLqz/3tUvPXr0QPPmzXH27FlERERg165dWLhwoWZWuBy6du0aGjRogCdPnmh9WRUr/v/jw589e4bQ0FDs3LkTtWrVwuXLlzFlypR851OpVJBIJNi5cydkMpnW69QWnmRXCtq0aYO9e/cCyDm549ixY0VuIyEhAVeuXBFfP3/+HMnJyahZsyaaN2+O+/fvi+OVSiX+/vvvAturW7cu5HI5zp8/DyDnL2OFQoG6devC0dERv/32GxITEwEA27dvR/v27Ytcc3mgUqlw6dIl1KlTB6mpqahRowYkEgnOnj2LR48eAcj50nBwcMD69evF+f75l/67ODs7Y/Xq1WLgJycn5/sl165dO2zfvh0AkJiYiN9++02trb6HDx+idu3a8PT0xBdffCEe2/yQ1KpVC5MmTcKXX36Za/i7+jItLQ3Jyclo06YN/Pz80LBhQ9y9exdATj+npaWJbajbf//26NEjWFhYoH///hg/fvwH2S9vHT16FD///DN8fHzQrl077Nq1C4IgIC0tDQcOHED79u0L/P0yNjZGamqqOLxdu3Y4ePAg0tLSIAgCdu7c+c7vprS0NMhkMlhYWEClUmHr1q3iOGNjY2RmZopb9cbGxmjZsiVWr14tThMfHy9+B5YX3IIvBePHj0dAQAB69uwJCwsLfPLJJ+/cLfguCoUC4eHhePbsGQwNDaFSqTBx4kTxRLvw8HB89913SE9Ph1QqxfTp0wsMZQMDAyxdujTXSXZLliyBgYEBGjZsiClTpsDHxwdAzpfo7Nmzi/8GlEF+fn6oUKEC5HI5GjRogPHjx+O///0vZs2ahfDwcDRt2hS2trbi9AsXLsSsWbPg6uoKqVQKV1dXjB49usBlBAYGYsGCBXB3d4dEIoFMJkNgYGCeLcKZM2ciKCgIbm5uAIApU6agQYMGha7Dpk2bcOHCBchkMhgYGIiHgT40+T2gavLkyfn2ZVpaGiZMmIDMzEwIgoDGjRuje/fuAAAfHx988cUXMDQ0xKZNm9Tuv387ePAgoqKiIJPJIJFIEBgYqPmVLsP8/PxgYGCAjIwM2NjYYPXq1WjWrBnq16+POXPmiJ/zPn36oFOnTgDe/fvVp08fBAQE4NChQ+JJdrdv34anpycA4JNPPsG4cePyrcPW1hY9e/aEi4sLqlSpAicnJ/z+++8Acg6Vurm5wc3NDZUrV8bWrVuxcOFChIaGivVVrFgR3377LSwsLLT9lmkMHzZTCuRyOVQqFSpUqIC0tDR8/vnnCAgI0NmtYiIiKnncgi8Fr1+/hq+vL5RKJbKysuDq6spwJyIijeIWPBERkQ7iSXZEREQ6iAFPRESkgxjwREREOogBT1ROPX36FLa2tiX+cJN9+/aJl0yWd7a2tuI18US6hgFPVIY4OzvD3t4eDg4O4r/SvOdAfn9E9OnTB+vWrdP4si5cuCBeB01E74+XyRGVMStXruRlk0T03rgFT1ROKJVKhIWFwdHREV26dMFvv/2Wa/zb+9C/FR4enute27///js8PT3RqlUrODk5Yffu3QCAkydPom/fvmjRogWcnJwQHh4uzvP2UcKtW7eGg4MDrly5gt27d+Pzzz8Xp7l8+TIGDBiAOPRBzQAABPVJREFUli1bYsCAAbh8+bI4btiwYVi8eDE8PT3h4OAAHx8ftW7r+28JCQmYMGEC2rZtC2dnZ2zcuFEcbm9vj5SUFHHaGzduwNHRUXyW+86dO9GrVy+0bt0aI0eOxLNnz4q8fKLyiAFPVE5s374dJ06cwJ49e7Br1y4cOnRI7XmfPXsGX19fDB06FDExMdizZw/s7OwAAEZGRggLC8Pvv/+OVatW4eeff8bRo0cBAJs3bwYAXLp0CVeuXIGDg0OudlNSUjBmzBgMGzYMFy5cgLe3N8aMGYNXr16J00RHRyM0NBQxMTGQy+VF3r2vUqkwbtw42Nra4tSpU9iwYQM2bNiA06dPw8rKCs2bN8eRI0fE6aOiotCjRw/IZDIcPXoUq1atwrJlyxATE4OWLVti8uTJRVo+UXnFgCcqY8aPH49WrVqJ/94+eObgwYMYPnw4rK2tYWpqijFjxqjdZnR0NNq3bw9XV1fIZDJUqVJFDHhHR0fY2tpCKpWiUaNG6N27Ny5evKhWuydPnsTHH3+Mvn37Ql9fH66urqhXrx5OnDghTtO/f3/UrVsXhob/197dhCQShnEA/yeRKx0kqWCmj0sXT0EhFlQURaGRfVykoGPEQB2irkGHKAg6FcJggocuXaOY8Nqhc9lBqQiJcHIORfSdSnuQfVG2XdzYwzr7/8GA77zM+LxeHueZ0ecbPB4PYrHYH3waue5jt7e3mJ2dRUVFBRoaGuD3+6FpGoBcm9b9/X0AuY5vmqaJ/w/f2dnB9PQ0mpqaUF5eDkVREIvFeBVP/wXegyf6xwQCgU/vwRuGAUmSxFiW5aLPqes6GhsbP507OTnB+vo6zs/PkU6n8f7+Do/HU9R5DcP4KQ5ZlpFKpcQ4vzmHzWbD8/Nz0XEDueqDYRhwuVxiXzabFeOBgQEsLy/DMAwkEglYLBYxl0wmsbq6irW1NXHsx8cHUqkU6urq/igOolLDBE9UImpqaqDruhjnvwZyyfPl5UWM81tbSpKEaDT66XkXFhYwOTmJUCgEq9WKlZUVUWIvKyv7bUy1tbVIJpMF+3RdR1dXV3GLKoIkSaivry8ow+ez2+3o6OiApmm4vLzE4OCgiFuSJCiKguHh4b8WD1GpYImeqER4vV5sb2/j5uYG9/f3Bb2qAcDpdELTNKTTaZyeniISiYg5n8+Ho6MjaJqGTCaDu7s7USp/enqC3W6H1WpFNBoV5W4AcDgcsFgsv+x73t3djUQigb29PWQyGWiahouLC/T09Hx5nW9vbwVbc3MzKisrEQwG8fr6imw2i7Ozs4IvLD6fD7u7u4hEIqI8DwDj4+MIBoOix/vDwwMODg6+HBtRKWGCJ/rHKIpS8Dv4mZkZAIDf70dnZydGRkYwNjYm+pb/MDc3h6urK7jdbmxubhYkOlmWsbW1hXA4DLfbjdHRUcTjcQDA0tISNjY20NLSgkAgAK/XK46z2WxQFAUTExNwuVw4Pj4ueM+qqiqoqopwOIy2tjaEQiGoqgqHw/Gltf94Kj5/u76+hqqqiMfj6OvrQ3t7OxYXF/H4+CiO6+3tRSKRQHV1NZxOp9jf39+PqakpzM/Po7W1FUNDQzg8PPxSbESlht3kiIiITIhX8ERERCbEBE9ERGRCTPBEREQmxARPRERkQkzwREREJsQET0REZEJM8ERERCbEBE9ERGRCTPBEREQm9B3u4gOwufzJDQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Indeed, here we can compare ```case_status``` on like scales. We find that applicants with a Doctorate are most often certified (over 87% of the time), while employees with only a High School education are certified around a third of the time. We find a clear trend: Visa status is directly connected with level of education. Higher levels of education lead to a greater percentage of visas certifed.\n",
"\n",
"To plot the rest of our features as percentages, we make the above code into a function."
],
"metadata": {
"id": "I3RqCDa89j9i"
},
"id": "I3RqCDa89j9i"
},
{
"cell_type": "code",
"source": [
"def percent_status(col):\n",
" '''Plot percent Certified/Denied\n",
" for classes of a categorical variable.'''\n",
"\n",
" # generate dataframe of percentages\n",
" a=visa.groupby(col)['case_status'].value_counts(normalize=True)\n",
" #compute ascending order of classes\n",
" ser=pd.Series(dtype='float')\n",
" for name in visa[col].unique():\n",
" ser[name]=a[(name,'Certified')]\n",
" # dataframe\n",
" b=pd.DataFrame(index=ser.sort_values().index.tolist(),\n",
" columns=['Certified','Denied'])\n",
" for (c,d) in a.index:\n",
" b.loc[c,d]=a[(c,d)]\n",
" \n",
" # plot percentages\n",
" plott()\n",
" plt.title('Percent Certified by '+col,fontsize=14)\n",
" plt.bar(b.index,b['Certified'],label='Certified')\n",
" plt.bar(b.index,b['Denied'],bottom=b['Certified'],label='Denied')\n",
" plt.legend(loc='lower right')\n",
" plt.xlabel(col)\n",
" plt.ylabel('Percent Certified/Denied')\n",
" plt.show()"
],
"metadata": {
"id": "Mf3NfypwtYps"
},
"id": "Mf3NfypwtYps",
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"percent_status('continent')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "ie73TsCbw4ky",
"outputId": "508fa520-1786-4355-b453-5cd5dabb39ea"
},
"id": "ie73TsCbw4ky",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFTCAYAAADV8x5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxU5f4H8M8wLC5YCoIsaipeETfE3QwTNUADwQU1csMkLRMrS3EJcSnXLHPP3LXNXXDBXEpNcFe4ipoboiAgiIIgMDPP7w8v85MY4DDMAI6f9+vVvTPnPOec73lm5DNnlwkhBIiIiMigGFV0AURERKR7DHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgPEgCd6xQ0dOhQzZ85Uv8/OzkZQUBDatm0LR0dH3Lt3r1AbbcTExKjnV5Tu3btjzZo1ZVpOZRIcHIzRo0dXdBn0ijKu6AKIpAgODsbOnTsBAMbGxrCxsYG7uzvGjRuHatWqVXB1xVuyZAkiIiIQHh5eYtvc3Fxs3LgR4eHhuH37NszMzNCgQQP069cP/fr1g6mpqdZ17NixA7NmzcKFCxcK1Wds/P9/CrZv344zZ87g559/hoWFBSwsLAq1oYJOnTqFYcOGITIyEhYWFurhU6dORUXcaqSoz5peLfwXSy+NN998E/Pnz4dCocDZs2cxbdo0ZGVlYcaMGVrNLy8vDyYmJjquUnu5ubn44IMPEBsbi6CgILRr1w41atRATEwM1q9fj4YNG6Jjx45azTsvL6/IcTVr1izwPi4uDg4ODnB0dCyyDUlTo0aNii6BXmHcRU8vDVNTU1hZWcHW1hbe3t7w9vbG4cOHAQBCCKxevRo9e/ZEq1at4O3tjd27d6unvXfvHhwdHREeHo5hw4ahVatW+O233wAAO3fuhLe3N1q0aIE333wTkyZNUk+XkZGBr776Cp07d4aLiwuGDBmCmJgY9fgdO3bAxcUFkZGR8PLyQuvWrTF06FDEx8erxy9duhT//PMPHB0d4ejoiB07dmhcvw0bNuDMmTNYt24dhg0bhmbNmqFevXro3bs3fv31VzRv3rxM6zp58mRkZWWp61iyZAmAgrvohw4dio0bN+LMmTNwdHTE0KFDC7UBnv8YWbBgAbp27QpnZ2f0798fx48fL7A+x44dg6enJ1q2bAl/f3/cuXNH0ueclZWFL774Ai4uLujSpUuBXfaTJ08utMtbpVKhW7duWLduXZHzvHnzJsaMGYO2bdvCxcUFgwYNwrVr19TTL1u2DG+//TZatGgBb29vHDp0qFB/RkREICAgAM7Ozujduzf+/vtv9fhhw4YBADp37gxHR0cEBwcDKLyLfujQoQgNDcWiRYvQsWNHdO7cGfPmzYNKpZLct6dOnYKjoyMiIyPh5+cHZ2dn9OvXD5cvX1aPL+qzpleMIHoJTJo0SXz44YcFhs2aNUt06NBBCCHEokWLhLu7u/jrr7/E3bt3xZ49e4Szs7M4evSoEEKI+Ph40aRJE+Hm5ib2798v7t69KxITE8Uvv/wiWrRoIdauXStu3rwpYmJixOrVq4UQQqhUKjF48GARGBgoLl26JO7cuSO+++474eLiIpKSkoQQQmzfvl00a9ZMDB8+XFy6dEnExsYKHx8fMXLkSCGEENnZ2WLu3LnCw8NDJCcni+TkZJGdna1xHb29vUVAQECJfaHNut6/f1+sX79eODs7q+vIzMwUQggxZMgQMWPGDCGEEI8ePRLBwcFi0KBBIjk5WTx69KhQGyGE+Pzzz4Wfn584ffq0uHv3rti0aZNo3ry5iI2NFUIIkZCQIFq0aCFmzpwpbty4Ifbu3StcXV1FkyZNRHx8fJHr5ubmJlxcXMTy5cvFrVu3xC+//CKaN28uIiIihBBCnD9/Xjg5Oan7Xwghjh07Jpo3by5SU1M1zvPBgweiQ4cOYsyYMeLSpUvi1q1bYteuXeLKlStCCCHWrVsnXFxcxJ49e8StW7fE999/L5o2baoen9+fHh4e4vDhw+L27dti4sSJokOHDiIzM1MoFAoREREhmjRpIv755x+RnJwsnjx5IoQo/L0dMmSIaNOmjfj+++/FrVu3xN69e4WTk5MICwuT3LdRUVGiSZMmon///iIyMlLcuHFDjBw5Unh6egqVSiVycnKK/Kzp1cJd9PRSio6ORlhYGDp37oysrCysW7cOa9euRbt27QAA9erVQ3R0NLZs2YJu3bqppxsyZAg8PT3V75cvX47hw4cjICBAPaxFixYAgKioKFy9ehWRkZGoUqUKAODTTz/F0aNHsXv3bgQGBgIAFAoFQkJC0KhRIwDAyJEjMWXKFAghUKVKFVSrVg3GxsawsrIqdp3i4uLQoUOHYtuUZV1r1KgBmUxWbB01a9ZE1apVYWJiUmS7u3fvYu/evThy5Ajs7OzUyzp58iR+/fVXhIaG4pdffoGdnR2mTZsGmUwGBwcH3LlzB4sXLy52/QDA2dkZH330EQCgYcOGiImJwbp16+Du7g4XFxc0atQIu3btwocffgjg+TkD3bt3L3Ds+0U///wzqlWrhsWLF6vPYWjYsKF6/Jo1azBy5Eh4e3sDAMaPH4+zZ89izZo1WLhwobrdiBEj0L17dwDA559/jl27diE2Nhbt2rXD66+/DgDqcxaK07hxY4wfP15dx9atW9V7gKT0bb7x48ejU6dOAICPP/4Y/v7+SEpKgo2NjaTPmgwfA55eGsePH4eLiwsUCgUUCgV69OiBr776Cjdu3EBOTg5GjRoFmUymbp+Xlwd7e/sC88gPbwBITU1FUlISOnfurHF5ly9fRnZ2dqHxOTk56l3wwPNDB/nhDgDW1tbIy8vD48ePS3XsWkg4GUvbddWly5cvQwiBd999t8Dw3NxcdeDcvHkTzs7OBWp0cXGRNP/WrVsXev/HH3+o3/v5+eHnn3/Ghx9+iPT0dBw+fBhLly4tcn5XrlxBmzZtNJ6gmJmZieTkZLRt27bA8DZt2uDYsWMFhr14ToK1tTUAIC0tTdI6FTWf/HmlpqYCkNa3xdWTmpoKGxubUtdEhokBTy+Ndu3aYdasWTA2Noa1tbX6BLn8y65WrFih3urJ9+8zv6tWrSp5eSqVCrVr18aWLVsKjTM3Ny9yGfmh9uJxVSkaNGiAW7duFdsm/0eArte1NIQQkMlk2LZtW6Fl5u/p0CcfHx8sXLgQZ8+eRWxsLCwsLODq6qrz5bz44wQo2L/afsb/nk/+vPI/19L0ra7qIcPFgKeXRtWqVfHGG28UGu7g4ABTU1MkJCQUuTWuiaWlJerUqYPIyEh06dKl0PjmzZvj4cOHMDIyQr169bSu28TEBEqlssR2Xl5eWLRoEWJiYtCyZcsC41QqFbKysrRe19LUURInJycIIZCSklJoqzKfg4MDIiIi1IEFABcvXpQ0/0uXLhV6/+Iekpo1a8Ld3R3bt29HbGwsfH19YWRU9PnCzZo1w549e5Cbm1toK97c3BzW1tY4d+5cgf48f/48HBwcJNULQP1js6wBK6Vvpdaji8+aXm48i55eeubm5hg5ciTmz5+Pbdu2IS4uDrGxsfjll1/UZ8oXZcyYMdiwYQPWr1+P27dvIzY2FmvXrgXw/LK8Nm3a4OOPP8Zff/2F+Ph4XLhwAT/88APOnj0ruT57e3skJCTg8uXLSEtLQ25ursZ2I0aMQNu2bTFy5Ehs3LgRsbGxiI+Px8GDB+Hv74/Lly+XaV3t7e2Rk5ODv//+G2lpacjOzpa8Di9q2LAhvL29MXnyZBw4cADx8fGIiYnBmjVrcPDgQQDA4MGDcf/+fXz99de4desWDhw4gF9//VXS/C9evIhVq1bhzp07+P3337Fr1y6MGDGiQBs/Pz+EhYXh6tWrGDBgQLHz8/f3R1ZWFj799FNER0cjLi4O4eHhiI2NBQB88MEHWLt2rfreA4sXL8bZs2fxwQcfSO4Te3t7yGQy/Pnnn0hLS8PTp08lT/siKX0rtR5dfNb0cuMWPBmETz/9FLVr18batWsRGhoKc3NzODk5YdSoUcVO5+/vDxMTE6xbtw4LFy7E66+/jq5duwJ4vtvzxx9/xPfff4+vvvoKaWlpsLS0RJs2beDr6yu5Ng8PD/zxxx8YMWIEnjx5gjlz5qBfv36F2pmammLdunVYv349tm3bhoULF8LMzAwNGzZEv3791MewtV3XNm3aYPDgwfj888+Rnp6OTz75BOPGjZO8Hi+aM2cOVq5ciQULFiApKQmvv/46WrZsqb5O387ODkuXLsWcOXPw22+/oXnz5pgwYQK+/PLLEucdEBCAa9euYeXKlahatSqCgoIKnCwIAB07doSNjQ3s7OxK3LtSp04dbN68GfPnz8fw4cMBPD9+nX/Z37Bhw/D06VMsWLAAqampaNiwIZYsWYKmTZtK7o86depg3Lhx+P777zFt2jT4+vpi7ty5kqd/UUl9K4UuP2t6ecmElDN7iIgqkWfPnqFr166YNm0a+vTpU9HlEFVK3IInopeGSqXCo0ePsHHjRpiZmaFXr14VXRJRpcWAJ6KXRkJCAnr06AEbGxvMmTOnUt1qmKiy4S56IiIiA8Sz6ImIiAwQA56IiMgAMeCJiIgMkMGdZPfo0VOoVC/naQWWluZITc2s6DIqHfaLZuwXzdgvmrFfNHuZ+8XISIZataoXOd7gAl6lEi9twAN4qWvXJ/aLZuwXzdgvmrFfNDPUfuEueiIiIgPEgCciIjJADHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkDlEvDz5s1D9+7d4ejoiOvXr2tso1QqMWPGDPTs2RPvvPMOtm7dWh6lERERGaRyCfgePXpgy5YtsLe3L7JNWFgY7t69i4MHD+K3337DkiVLcO/evfIoj4iIyOCUS8C3a9cOtra2xbbZt28f/Pz8YGRkBAsLC/Ts2RMHDhwoj/KIiIgMTqW5k11iYiLs7OzU721tbfHgwYNSz8fS0lxnNakUuTAyNtXZ/KSwsqpRbsvSdv3YL7qdrizYL5qxXzRjv2j2MvSLNipNwOtKamqmzm47aGVVA7e+7q+TeVVGjaZuR0pKRqmnY79oxn7RjP2iGftFM/aLdEZGsmI3aivNWfS2trZISEhQv09MTISNjU0FVkRERPTyqjQB7+npia1bt0KlUiEtLQ2HDh2Ch4dHRZdFRET0UiqXgJ89eza6du2KBw8eICAgAO+++y4AIDAwEDExMQAAHx8f1K1bF+7u7hg4cCDGjh2LevXqlUd5REREBqdcjsFPmzYN06ZNKzR89erV6tdyuRwzZswoj3KIiIgMXqXZRU9ERES6w4AnIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgPEgCciIjJADHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgPEgCciIjJADHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgPEgCciIjJADHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgPEgCciIjJADHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgPEgCciIjJADHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgPEgCciIjJADHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgPEgCciIjJADHgiIiIDZFxeC7p9+zaCg4ORnp6OmjVrYt68eWjQoEGBNqmpqZg8eTISExOhUCjQsWNHTJs2DcbG5VYmERGRQSi3Lfjp06fD398fERER8Pf3R0hISKE2K1euhIODA8LCwrBnzx5cvnwZBw8eLK8SiYiIDEa5BHxqaiquXLkCLy8vAICXlxeuXLmCtLS0Au1kMhmePn0KlUqF3Nxc5OXloU6dOuVRIhERkUEpdt+3SqWSNBMjo+J/JyQmJqJOnTqQy+UAALlcDmtrayQmJsLCwkLd7uOPP8a4cePw1ltvITs7G++//z7atm0rqYZ8lpbmpWr/qrOyqlHRJVRK7BfN2C+asV80Y79oVl79UmzAN2vWDDKZrMSZxMbG6qSYAwcOwNHRERs2bMDTp08RGBiIAwcOwNPTU/I8UlMzoVIJndTzKnw5U1IySj0N+0Uz9otm7BfN2C+asV+kMzKSFbtRW2zAHz58WP36zz//REREBEaPHg07OzskJCRg9erVcHd3L7EIW1tbJCUlQalUQi6XQ6lUIjk5Gba2tgXabd68Gd988w2MjIxQo0YNdO/eHadOnSpVwBMR0ctLlZeLRlO3V3QZeqPKyy23ZRUb8Pb29urX69evx/bt2/Haa68BABo2bIgWLVqgf//+8Pf3L3YhlpaWcHJyQnh4OHx8fBAeHg4nJ6cCu+cBoG7dujh27BhatWqF3NxcREZG4p133tF23YiI6CVjZGIK7wm7K7oMvQn71gdATrksS/JJdhkZGcjOzi4w7NmzZ8jIkLarITQ0FJs3b4aHhwc2b96MGTNmAAACAwMRExMDAJgyZQrOnTsHb29v+Pr6okGDBhg4cKDUEomIiOh/JF9g3rdvXwQEBGD48OGwsbHBgwcPsGnTJvTt21fS9A4ODti6dWuh4atXr1a/rl+/PtatWye1JCIiIiqC5ID/8ssvUb9+fezbtw/JycmwsrLC+++/zy1sIiKiSkhywBsZGeG9997De++9p896iIiISAckH4MXQuD333/H8OHD4e3tDQA4c+YM9u3bp7fiiIiISDuSA37x4sXYtm0bBg4ciMTERACAjY0NfvrpJ70VR0RERNqRHPA7d+7EypUr8e6776pvflO3bl3Ex8frrTgiIiLSjuSAVyqVqF69OgCoA/7p06eoVq2afiojIiIirUkO+Lfffhtz5sxBbu7zu/AIIbB48WK4ubnprTgiIiLSjuSAnzx5MlJSUtC2bVtkZGTAxcUFCQkJ+OKLL/RZHxEREWlB8mVy5ubmWLZsGR4+fIiEhATY2trCyspKn7URERGRlooNeCGE+nh7/qNjLSws1PeQzx9W0uNiiYiIqHwVG/Bt27bF+fPnAWh+dGz+DwBdPS6WiIiIdKPYgN+7d6/69YuPjiUiIqLKrdiAf/F57S8+OpaIiIgqN8kn2aWnp2Pt2rWIjY1FVlZWgXFbtmzReWFERESkPckBP2HCBOTm5qJXr16oWrWqPmsiIiKiMpIc8BcuXEBUVBRMTU31WQ8R0StBlZeLRlO3V3QZeqPKy63oEl55kgPe0dERDx48QP369fVZDxHRK8HIxBTeE3ZXdBl6E/atD4Ccii7jlSY54Dt16oRRo0ahX79+qF27doFxAwYM0HlhREREpD3JAX/27FnUqVMHf//9d4HhMpmMAU9ERFTJSA74TZs26bMOIiIi0qFS3WP20aNH2LVrF3766ScAQFJSEh48eKCXwoiIiEh7kgP+9OnT8PT0RFhYGJYtWwYAiIuLQ2hoqL5qIyIiIi1JDvhvvvkG33//PdasWQNj4+d79p2dnREdHa234oiIiEg7kgP+/v376Ny5MwCoHzpjYmICpVKpn8qIiIhIa5ID3sHBAcePHy8w7OTJk2jSpInOiyIiIqKykXwWfXBwMEaPHo1u3brh2bNnCAkJwZEjR7B8+XJ91kdERERakLwF37p1a+zZsweNGzdG//79UbduXWzbtg2tWrXSZ31ERESkBclb8ABQp04dBAYG6qsWIiIi0hFJAX/jxg0sWbIE586dQ3p6OmrWrIl27drhk08+QePGjfVdIxEREZVSibvo79y5g4EDByInJwefffYZVqxYgU8//RTZ2dkYOHAgbt26VR51EhERUSmUuAW/atUq+Pj4YPr06QWGDxgwALNmzcLq1asxZ84cvRVIREREpVfiFvyZM2cwcuRIjeMCAgJw6tQpnRdFREREZVPiFnxaWhrq1q2rcZydnR0ePXqk86KIyHCo8nLRaOr2ii5Db1R5uRVdApFGkk6yy79z3b8ZGRkVOY6ICACMTEzhPWF3RZehN2Hf+gDIqegyiAopMeCfPXuG999/X+M4IQRycvjFJiIiqmxKDPivv/662PF+fn46K4aIiIh0o8SAVygU6Nq1K+rUqVMe9RAREZEOlBjwMTExWL58OV577TV069YNXbt2RZs2bXjsnehfeDIZEVUmJQb8zJkzAQDXrl3DX3/9hUWLFuH27dvo1KkT3n77bbi6usLCwkLvhRJVdjyZjIgqE8n3ond0dISjoyM+/PBDZGRk4Pjx4zh27BgWLFgAOzs7jBs3Dq6urvqslYiIiCQq1cNm8tWoUQO9e/dG7969AQDR0dE6LYqIiIjKptiA37Ztm6SZDBgwQCfF0MuBx5qJiCq/YgN+9+6CxxPPnz+P2rVrw9bWFomJiXj48CHatGnDgH/F8FgzEVHlV2zAb9q0Sf161qxZ6NGjB0aMGKEetmHDBsTHx0ta0O3btxEcHKx+3Oy8efPQoEGDQu327duHFStWQAgBmUyGdevWoXbt2tLWhoiIiABIeNhMvj179mDo0KEFhg0ZMqTQVn5Rpk+fDn9/f0RERMDf3x8hISGF2sTExGDp0qVYu3YtwsPD8fPPP6NGjRpSSyQiIqL/kRzwtWvXxpEjRwoMO3r0qKRL5FJTU3HlyhV4eXkBALy8vHDlyhWkpaUVaLd+/XqMHDkSVlZWAJ6fzGdmZia1RCIiIvofyWfRT5s2DePGjcOaNWtgY2ODxMRE3LhxA4sXLy5x2sTERNSpUwdyuRwAIJfLYW1tjcTExAI/EG7evIm6devi/fffR1ZWFt555x189NFHpbqpjqWlueS2BFhZcQ+JJuwXzdgvmrFfNGO/aFZe/SI54Lt06YJDhw7h2LFjSE5ORrdu3fD222+jVq1aOitGqVTi2rVrWLduHXJzczFq1CjY2dnB19dX8jxSUzOhUgmd1PMqfDlTUjJKPQ37RTP2i2bsF83YL5qxX6QzMpIVu1FbquvgLSws0LFjRyQlJaF169aSp7O1tUVSUhKUSiXkcjmUSiWSk5Nha2tboJ2dnR08PT1hamoKU1NT9OjRA9HR0aUKeCIiIirFMfiEhAQMHjwYvXr1QkBAAADgwIEDmDp1aonTWlpawsnJCeHh4QCA8PBwODk5FTp+7+XlhRMnTkAIgby8PERFRaFp06alWR8iIiJCKQI+JCQE3bp1w/nz52Fs/HzDv0uXLjh58qSk6UNDQ7F582Z4eHhg8+bNmDFjBgAgMDAQMTExAIB3330XlpaW6N27N3x9fdG4cWNeY09ERKQFybvoY2Ji8OOPP8LIyEh90luNGjWQkSHtWIKDgwO2bt1aaPjq1avVr42MjDB58mRMnjxZallERESkgeSAt7S0RFxcHBo2bKgeduPGjULH0Q0Jb8lKREQvK8kBP3LkSIwZMwYffvghFAoFwsPDsWrVKgQGBuqzvgrFW7ISEdHLSnLADxgwADVr1sRvv/0GW1tb7Ny5E+PHj0fPnj31WR8RERFpoVSXyfXs2ZOBTkRE9BIoNuB37dqlvga9uEfH8kx3IiKiyqXYgN+7d6864It6qIxMJmPAExERVTLFBvzgwYPVr9euXQsTExO9F0RERERlV+yNbr788kv1644dO+q9GCIiItKNYrfgrayssHnzZjg4OECpVCIqKgpCFH6QS+fOnfVWIBEREZVesQE/Z84c/PDDD9i4cSPy8vIwZcqUQm1kMhkOHz6stwKJiIio9IoN+DZt2mD9+vUAgHfeeQd//PFHedREREREZST5YTMMdyIiopdHsVvwH3zwAdasWQMA8Pf3Vz9k5t+2bNmi+8qIiIhIa8UGfP418ADg5+en92KIiIhIN4oNeG9vb/XrRo0awdnZuVCb6Oho3VdFREREZSL5GHxAQIDG4aNGjdJZMURERKQbJT5sRqVSQQhR4L98d+/ehVwu12uBREREVHolBnyzZs0gk8kghECzZs0KjDMyMsKYMWP0VhwRERFpp8SAP3z4MIQQGDp0KDZv3qweLpPJYGFhgSpVqui1QCIiIiq9EgPe3t4eSqUSdevWhZWVFUxNTcujLiIiIioDSSfZyeVy3Lt3DyqVSt/1EBERkQ5IPot+7NixCA0Nxf3796FUKqFSqdT/ERERUeVS4i76fNOmTQMA7N69Wz1MCAGZTIbY2FjdV0ZERERakxzwfGIcERHRy0NywNvb2wN4fl38w4cPYW1trbeiiIiIqGwkH4N/8uQJJkyYgFatWsHd3R3A86367777Tm/FERERkXYkB/z06dNhbm6OI0eOwMTEBADg4uKC/fv36604IiIi0o7kXfSRkZE4fvw4TExM1I+NtbCwQGpqqt6KIyIiIu1I3oKvUaMGHj16VGBYQkICrKysdF4UERERlY3kgPfz80NQUBCioqKgUqlw4cIFTJo0CYMHD9ZnfURERKQFybvoAwMDYWZmhpkzZ0KhUGDKlCkYNGgQhg8frs/6iIiISAuSA14mk2H48OEMdCIiopdAibvoz507hwULFmgct3DhQly8eFHnRREREVHZlBjwq1atQvv27TWO69ChA1auXKnzooiIiKhsSgz42NhYuLq6ahz35ptv4r///a/OiyIiIqKyKTHgMzMzkZeXp3GcQqHA06dPdV4UERERlU2JAd+oUSOcOHFC47gTJ06gUaNGOi+KiIiIyqbEgB8xYgSmT5+OgwcPqp/9rlKpcPDgQYSGhiIgIEDvRRIREVHplHiZnLe3Nx4+fIhJkyYhLy8PNWvWRHp6OkxMTBAUFAQvL6/yqJOIiIhKQdJ18AEBAfDz88OFCxeQnp6OmjVrwsXFBebm5vquj4iIiLQg+UY35ubmRZ5NT0RERJWL5HvRExER0cuj3AL+9u3bGDRoEDw8PDBo0CDcuXOnyLa3bt2Cs7Mz5s2bV17lERERGZRyC/jp06fD398fERER8Pf3R0hIiMZ2SqUS06dPR8+ePcurNCIiIoMjOeB9fX01Du/Xr1+J06ampuLKlSvqM+69vLxw5coVpKWlFWr7448/olu3bmjQoIHU0oiIiOhfJAd8XFxcoWFCCNy7d6/EaRMTE1GnTh3I5XIAgFwuh7W1NRITEwu0u3r1Kk6cOIERI0ZILYuIiIg0KPEs+okTJwIA8vLy1K/z3Y+2pYUAACAASURBVL9/H40bN9ZJIXl5efjqq68wZ84c9Q8BbVha8tK90rCyqlHRJVRK7BfN2C+asV80Y79oVl79UmLA169fX+NrAGjTpg08PT1LXIitrS2SkpKgVCohl8uhVCqRnJwMW1tbdZuUlBTcvXsXH374IQDgyZMnEEIgMzMTs2bNkrxCqamZUKmE5PbFeRW+nCkpGaWehv2iGftFM/aLZuwXzdgv0hkZyYrdqC0x4D/55BMAgLOzs9bXwVtaWsLJyQnh4eHw8fFBeHg4nJycYGFhoW5jZ2eHU6dOqd8vWbIEWVlZmDRpklbLJCIiepVJvtGNq6srbt26hatXryIrK6vAuAEDBpQ4fWhoKIKDg7F8+XK89tpr6kvgAgMDERQUhJYtW5aydCIiIiqK5IBfuXIlli1bhqZNm6JKlSrq4TKZTFLAOzg4YOvWrYWGr169WmP7cePGSS2NiIiI/kVywG/YsAFbt25F06ZN9VkPERER6YDky+SqVKnCZ78TERG9JCQH/Pjx4zF79mwkJydDpVIV+I+IiIgqF8m76IODgwGgwHF0IQRkMhliY2N1XxkRERFpTXLAHz58WJ91EBERkQ5JDnh7e3sAgEqlwsOHD2Ftba23ooiIiKhsJB+Df/LkCSZMmIBWrVrB3d0dwPOt+u+++05vxREREZF2JAf89OnTYW5ujiNHjsDExAQA4OLigv379+utOCIiItKO5F30kZGROH78OExMTCCTyQAAFhYWSE1N1VtxREREpB3JW/A1atTAo0ePCgxLSEiAlZWVzosiIiKispEc8H5+fggKCkJUVBRUKhUuXLiASZMmYfDgwfqsj4iIiLQgeRd9YGAgzMzMMHPmTCgUCkyZMgWDBg3C8OHD9VkfERERaUFywMtkMgwfPpyBTkRE9BKQvIv+xx9/RHR0dIFh0dHRRT4NjoiIiCqO5IDfuHEjGjduXGCYg4MDNmzYoPOiiIiIqGwkB3xeXh6MjQvu0TcxMUFubq7OiyIiIqKykRzwzZs3x88//1xg2K+//opmzZrpvCgiIiIqG8kn2U2ePBkBAQHYs2cP6tWrh/j4eKSkpGDdunX6rI+IiIi0ICnghRCoUqUKIiIi8OeffyIxMRHu7u7o1q0bqlevru8aiYiIqJQkBbxMJoO3tzfOnz+Pd999V981ERERURlJPgbv5OSE27dv67MWIiIi0hHJx+A7dOiAwMBA9O3bFzY2NuoHzgDAgAED9FIcERERaUdywJ8/fx729vY4ffp0geEymYwBT0REVMlIDvhNmzbpsw4iIiLSIcnH4AHg0aNH2LVrF3766ScAQFJSEh48eKCXwoiIiEh7kgP+9OnT8PT0RFhYGJYtWwYAiIuLQ2hoqL5qIyIiIi1JDvhvvvkG33//PdasWaO+Za2zs3OhB9AQERFRxZMc8Pfv30fnzp0BQH0GvYmJCZRKpX4qIyIiIq1JDngHBwccP368wLCTJ0+iSZMmOi+KiIiIykbyWfTBwcEYPXo0unXrhmfPniEkJARHjhzB8uXL9VkfERERaUHyFnzr1q2xZ88eNG7cGP3790fdunWxbds2tGrVSp/1ERERkRZK3ILPzs7GihUrcP36dTRv3hyjR4+GqalpedRGREREWipxC37mzJk4evQoGjVqhIiICMybN6886iIiIqIyKDHgjx8/jjVr1mDixIlYvXo1jh49Wh51ERERURmUGPBZWVmwtrYGANja2iIzM1PvRREREVHZlHgMXqlUIioqCkIIAIBCoSjwHoD6+ngiIiKqHEoMeEtLS0yZMkX9vmbNmgXey2QyHD58WD/VERERkVZKDPgjR46URx1ERESkQ6V6mhwRERG9HBjwREREBogBT0REZIAY8ERERAaIAU9ERGSAJD9Nrqxu376N4OBgpKeno2bNmpg3bx4aNGhQoM2yZcuwb98+GBkZwcTEBJ999hlcXV3Lq0QiIiKDUW4BP336dPj7+8PHxwe7d+9GSEgINm7cWKBNq1atMHLkSFStWhVXr17FkCFDcOLECVSpUqW8yiQiIjII5bKLPjU1FVeuXIGXlxcAwMvLC1euXEFaWlqBdq6urqhatSoAwNHREUIIpKenl0eJREREBqVcAj4xMRF16tSBXC4HAMjlclhbWyMxMbHIaXbt2oX69evDxsamPEokIiIyKOW2i740Tp8+jcWLF2Pt2rWlntbS0lwPFRkuK6saFV1CpcR+0Yz9ohn7RTP2i2bl1S/lEvC2trZISkqCUqmEXC6HUqlEcnIybG1tC7W9cOECvvzySyxfvhyNGjUq9bJSUzOhUomSG0rwKnw5U1IySj0N+0Uz9otm7BfN2C+asV+kMzKSFbtRWy676C0tLeHk5ITw8HAAQHh4OJycnGBhYVGgXXR0ND777DP88MMPaN68eXmURkREZJDK7Tr40NBQbN68GR4eHti8eTNmzJgBAAgMDERMTAwAYMaMGXj27BlCQkLg4+MDHx8fXLt2rbxKJCIiMhjldgzewcEBW7duLTR89erV6tfbt28vr3KIiIgMGu9kR0REZIAY8ERERAaIAU9ERGSAGPBEREQGiAFPRERkgBjwREREBogBT0REZIAq5b3oiYjo5VTdzAi+nS1x+fIVqFSqUk+fnGyEz/va66GyykHbfjE2NkWtWlaQy6XHNgOeiIh0xrezJRraW8HW1hZKZemfC2JsbIQspeE+JtzOriYUitIFvBACT58+waNHKahdu/AzXIrCXfRERKQz1jVNYSSvCplMVtGlGAyZTIbq1V+DQpFbqukY8EREpDMyWf7/kC5p84OJu+iJiEhvarxWFVXMShc17WtVL7HN0+xcXPknRduyXgkMeCIi0psqZsbwnrBb5/MN+9ZHcluFQoFd2zYh6uRRmJiYwsjICM1auGDQ+4EwNpYegwf2bkPnt3rg9ddrAQAOH9yD3Nwc9PLyAwCsWjYPt25cRd16DfGmaw9ci42B/7AxpVqvffvCcPLkccyePb9U02nCgCciIoP24/L5yMvNwax5K1G1ajUolUr8dWQ/FHl5kgJepVJBJpPhwN7taN6yrTrge7j3Ubd5nJ6GM6eO48f1e2Bk9Pzod9v2XfSzQhIx4ImIyGA9SLyHc6dP4IeVv6Fq1WoAALlcju7veAEAwnb9gjNRx6BUKWFhURsfjP4CNWtZYPvv63E//g6ysp4i9WEy3ur6Dh6lpeKHb0NhYmKKseOnIiryT+Q8y0Zfv+H4OnQCcnOeYdrE0XDt5o7q1WvgwrkojP8iFABw7M8IHI7YDWM5UL26Ob74Ihj16zdAXl4evvtuPs6fP4vXX6+J//zHUWfrzoAnIiKDdef2DdSxsUd18xqFxp049geSHyQg9JtlMDIywqGI3fh54wp8PH4qAODmP1cxe/4q1HjtdQDA0cN7ETQhFPXqN3w+g8jn/1e1ajV8OWUOvgoeg28WrgYAHDt6QL2cq7HROHXyT0yb+T2cGlnj+PHjmDNnJlasWIvdu7cjMTEBmzdvhUKhwNixgbC1lX4pXHEY8ERE9Eo6f/Ykbt+8jmkTRwMAVColqlb7/xP8nNt0VId7WVw4G4m7cTcxffJYmJnKoVIJZGQ8eV7D+XPo1csLxsbGMDY2hodHL0RHXyzzMgEGPBERGbAGDRsj6cF9PM3MKLwVLwR8+w/B2917aZy2SpUqOqlBCIG33XphwOAANK5X+hvdaIvXwRMRkcGysa0Ll3adsebHRcjOzgIAqJRKHD28F23avYlDEbvxNDMDAJCXl4u4OzeLnFfVqtWRnfW01DW0adcZJ44dRGrq88v6lEolrl6NBQC0bdsOBw7sg0KhQE7OM/zxx4HiZlUq3IInIiK9eZajKNUlbVI9zZZ+V7cxY4OxY+tGfDVpDIyNjaFSCbRu0wED/QORkfEYs6d/BgAQQoUeHj54o4GDxvm49+6LH5fPh6mpGcb+7zi9FE2bOcPvvQ+waN5UmMhlyMvLg5tbTzRt6oQ+ffrhxo0bGDLED6+/XhNNmzbHo0epkuddHAY8ERHpTcaTbGSUor2xsRFuxOv2XvTGJiYY6P8BBvp/UGhcLy8/9XXsL+o/cEShYW493oVbj3f/v029/29jZW2DlWt3qd93dfNEVzdP9fsurj3RxbVnoV30JiYmmDRJ+o+F0uAueiIiIgPEgCciIjJADHgiIiIDxIAnIiIyQAx4IiIiA8SAJyIiMkC8TI6IiPSm1uumMDY1K9U0Up4Hn5P9DNH/lHy9+KcfvwcTE1OYmJjg2bNnqFuvAbx8B6OJY4tS1fSibb+uQ916DdCpi1upplu1dB46tHNG374DtV52aTDgiYhIb4xNzXDr6/46n2+jqdslt33xATFnTh3Dwm8mY+K0+Wj8Hyetlj1gcIBW05U3BjwREb0y2nfsipv/XMW+Pb/h46Cp+P2XNbh65RIUijzUq98IAYGfoUrVqli1dB5MTE3xICEeqakp+E+TZhj9STBkMhlWLZ2Hhg5N4N6rLxR5eUXOIy01BSuXzkX6ozRYWdeBTFa+R8V5DJ6IiF4pDv9xwr34OITv+RXVqlfHzLkr8M3Cn1DLojb27PxZ3e7e3dv4YspczFu0FrdvXcd/o88Vmldx89i0bimaNmuF+d+vw/APgnD1yqVyW0eAW/BERPTKEQCA82dOIjs7C6cjjwEAFIo81H/j/+9D37ZDF5iamgIAGjT8D5KTEgrNqbh5XPnvRQwN+AQAYF3HDs1bttHfKmnAgCciolfKrRvXULd+A6QkP8CIUeOLDF4TE1P1ayMjOZRKZaE2Aih2HhWJu+iJiOiVce7M3zh8cA96ew9Em3ZvYn/4NuTm5AAAsrOzcP9eXKnmV9w8mrVwwbE/nz/+NTkpEZdjzutwTUrGLXgiItIbRW5Oqc54lyon+5nktj98G6q+TM6+7hv4YsocNP6PExo0/A92/L4BIZM/gkxmBJkM6Os3DPZ135A8b2/f94qcx9CAsVi5dC5OHj8CK2sbODV31mZVtcaAJyIivXn0OBeA9Ge36/pxsd8v/6WYZRkX+RjZ0Z9MKvL9i6+Lm4eFpRWmTP+2wLB/Py5Wn7iLnoiIyAAx4ImIiAwQA56IiMgAMeCJiEhnhMj/H9IloUWfMuCJiEhnktNzoVJmaxVIpJkQAk+fPoGxsWnJjV/As+iJiEhndkWmwrczYG6WB5Wq9GeLGxkZIfNJlh4qqxwSEh5r1S/GxqaoVcuqdNOUeilERERFeJqjwpY/UxDm/SZSUjJKPb2VVQ0ET9ith8oqh7BvfbTqF22U2y7627dvY9CgQfDw8MCgQYNw586dQm2USiVmzJiBnj174p133sHWrVvLqzwiIiKDUm4BP336dPj7+yMiIgL+/v4ICQkp1CYsLAx3797FwYMH8dtvv2HJkiW4d+9eeZVIRERkMMplF31qaiquXLmCdevWAQC8vLwwa9YspKWlwcLCQt1u37598PPzg5GRESwsLNCzZ08cOHAAo0aNkrwsIyOZTmu3rlVVp/OrbLTtL/aLZuwXzdgvmrFfNGO/6GY+5RLwiYmJqFOnDuRyOQBALpfD2toaiYmJBQI+MTERdnZ26ve2trZ48OBBqZZVq1Z13RT9P2umuet0fpWNpaW5VtOxXzRjv2jGftGM/aIZ+0U3eJkcERGRASqXgLe1tUVSUpL6WbpKpRLJycmwtbUt1C4hIUH9PjExETY2NuVRIhERkUEpl4C3tLSEk5MTwsPDAQDh4eFwcnIqsHseADw9PbF161aoVCqkpaXh0KFD8PDwKI8SiYiIDIpMlNPthm7evIng4GA8efIEr732GubNm4dGjRohMDAQQUFBaNmyJZRKJWbOnIm///4bABAYGIhBgwaVR3lEREQGpdwCnoiIiMoPT7IjIiIyQAx4IiIiA8SAJyIiMkAMeCIiIgP0ygX8/v374evrCx8fH3h6emLChAllml9sbCz27dtXYJijoyOePn0qeR4LFixAixYtkJqaWqZapJo6dSrOnj1bYFj37t3h5eVV4DGG3bt3x/Xr10s9f0PpE13Kzc3F3Llz0bNnT3h6esLX1xeHDh3S2/KKsnjx4kKfzcvk8ePHaNWqFWbPnl1iW31/phVFUx+cP38eXl5e8PX1RVRUVKFpYmJiyvy3rrLp3r07PD094ePjo/6Pzy75F/EKSUpKEh07dhQJCQlCCCFUKpW4fPlymea5fft2MW7cuALDmjRpIjIzMyVNr1AoRJcuXcTQoUPFmjVrylSL1OVp4ubmJtzc3MSOHTsKDLt27Vqp5p+Xl2cwfaJLkydPFuPHjxfPnj0TQghx7do14erqKk6fPq33ZRuSzZs3iyFDhohOnTqJnJycii6nQmjqg5CQELF69WqN7fPy8sqzvHKjzd+nFxlqv7zoldqCf/jwIYyNjVGzZk0AgEwmQ7NmzdTjjx07Bl9fX3h7e2P48OGIi4sDAOzYsQNBQUHqdvnvHz16hB9++AEnT56Ej49PgV/UmzZtQv/+/dGjRw9EREQUWdNff/2F+vXrIygoCDt27CgwztHREStWrFDPJzIyEt9++y18fX3h5eWFmzdvqtvu3LkTfn5+6NevH4YNG4Zbt26pax0xYgTGjh0LLy8vXL9+HUOHDsXRo0cBABkZGZg8ebL6ToOzZ89Gbm4uIiMjkZycjKCgIHh7e2P9+vUYPnw4vL290bdvXxw7dqxAnUuWLEH//v0xZ84cg+kTb29v9OnTBzNnzgQAREZGYtCgQervyN69e4tchxfdv38f+/fvR2hoKMzMzAAATZo0wZgxY7B06VIAwKpVq9TLGzx4sHpPSlHrcO3aNfj7+6Nv377o3bs31q9fr15ecHAwQkJCMGzYMLi7u2PixIkQ/7saNjg4GJs3by7T+lSk7du34+OPP4ajoyMOHz4MADh06BC8vb3h4+MDLy8vnDp1CgAKfKZhYWHw8/ODr68vfH19ERkZWWHrUFb/7oOffvoJ+/fvx8aNG+Hj44Nnz56he/fuWLhwIQYMGICQkBCcOnUK/fr1U8/j6NGj6NevH/r06QNfX19cvXoVADBhwgT069cP3t7eGDt2LB4/flxRq6mVe/fuoWPHjhrf57+eN28e+vbti61btyIuLq7Yv2s//PADfHx84OHhUeBv1qVLlzB06FD069cP/fr1w59//llu61gqFf0LozwplUrx0UcfiQ4dOohx48aJdevWibS0NCGEEA8fPhQdO3YU//zzjxBCiN9//10MGDBACFF4K/3F90VtrW7atEkIIcTZs2fFW2+9VWRNH3/8sdi6dasQQgh3d3dx8eLFAvPZvHmzEEKIffv2idatW4sjR44IIYT48ccfxYQJE4QQQpw5c0YEBgaqf83/+eefYtCgQer6WrduLeLi4tTzHTJkiHo+wcHBYubMmaJbt27i2rVrYvTo0WL9+vUiPT1dPSwlJUU0a9ZMbNiwQQghxD///CM6dOggUlNT1XWuWrVKY/+8zH2iVCqFEEK9nunp6eqt/ZSUFOHq6irS09OLXI98R44cEX369Ck0/PLly6JDhw5ix44dYuDAgSIjI0MIIdTfyeLWISMjQz08MzNT9OrVS9y4cUMIIcSkSZPE4MGDxbNnz0ROTo7o3bu3OHHihHpc/ueg7fpUlNjYWOHm5iZUKpXYvXu3+OCDD4QQQnh7e4vz588LIZ7vjcnvxxc/07S0NKFSqYQQQty8eVO4urpWwBqUXVF98OLnKsTzrdvp06er30dFRYm+ffsKIYS4deuWePPNN8Xt27eFEELk5OSo+yz/uy6EEIsWLRILFizQ8xppz83NTXh4eIg+ffqIPn36iL59+4r4+HjRoUMHdZsX38fHx4smTZqIvXv3qscPGDBA/P7770IIzX/XlixZIoR4/p3p0KGDePjwoXj8+LHw8fERSUlJQojne4ZdXV3F48ePy2W9S6NcniZXWRgZGWH58uW4fv06zpw5g0OHDmHNmjUICwvDpUuX0LRpUzRu3BgA0L9/f8yYMQOZmZlaLat3794AgNatWyM5ORk5OTnqrbd8qampOH36NObNmwcA8PX1xfbt2+Hs7Kxu06tXLwBA8+bNAQBubm4AgBYtWuCPP/4AABw5cgRXr16Fn58fAEAIgSdPnqjn0aZNG9SvX19jnUePHsWOHTvUWzoTJ07EsGHD0L59e6SlpWHs2LEwMzODQqFAixYtAACNGzeGk5MTLl68iO7duwMA+vbta3B9YmT0fAdX/i2V09LSMGXKFMTFxUEul+Px48e4ffs2WrduXex6ixLuJXX06FG89957MDd//oSpWrVqlbgOz549Q2hoKK5duwaZTIbk5GRcvXoVDg4OAICePXuq+7ZZs2a4e/cuunTpUmC52q5PRdm2bRt8fHwgk8ng7u6O2bNnIykpCZ06dcKcOXPg7u6Orl27okmTJoWmjY+Px4QJE5CUlARjY2M8fPgQKSkpsLKyqoA10V5RfaCJr6+vxuEnT55E165d0aBBAwCAqakpTE1NAQC7d+9GWFgY8vLykJWVpW5TWf3www8FPu+SjsGbmZmp/35kZmYiNjYW/fv3B6D571r+v71GjRqhWbNmuHjxIoyNjXHv3j0EBgaq5yuTyRAXF4eWLVvqdP3K6pUK+HxNmjRBkyZN8P7776N37944ffo0jI2L7gq5XF7g5LOcnJwSl5H/xzX/EbkKhaJQmO3evRsKhQJ9+vRRt8nOzsaUKVNQpUqVAvMxMjJS/yPMf69QKAA8/8Pfv39/jB8/XmMt1atLf4Ruo0aN8Pbbb2PcuHEwMzPD0qVLYW9vj7Zt2xa73tWqVStx3i9rn+QLDQ1F9+7dsXTpUshkMnh4eEj6LjRp0gR3795Fenq6+vAQAFy8eBGOjo5FTlfcOixatAhWVlaYO3cujI2NMXLkyAK1vNivcrlc/aAnXaxPRcjNzUV4eDhMTU2xe/duAEBeXh527NiBKVOm4Nq1a4iKisL48eMREBCAgQMHFpj+888/R3BwMHr27AmVSgVnZ+dKu65FKa4PNJHyb/JFZ8+exS+//IJff/0VFhYWCAsLw++//17musuTsbFxgR/U//6Mq1atCpmsbM9iF0LA0dERW7ZsKdN8ysMrdQw+KSkJFy5cUL9/8OAB0tLSULduXbRu3RpXr15VH8PduXMnmjVrBnNzc7zxxhu4du0acnNzkZubW+BYjLm5OTIyMrSqZ8eOHVi2bBmOHDmCI0eO4NixY2jVqhUOHDhQqvl0794du3fvxoMHDwA8f1rff//7X0nTurm5Yc2aNep/FGlpaRg3bhwSExOhUCggk8lw6dIlAMCJEycAPH+uwNWrV4vc0jPEPgGeH5u3t7eHTCbD33//rT5HoyR169aFp6cnQkND1X9wrl+/jpUrV+KTTz6Bm5sbfvnlF/XeokePHpW4DhkZGbCxsYGxsTGuX7+u1dni2q5PRTh8+DAaNmyIY8eOqb8ba9euxc6dO3Hr1i04Ojpi+PDh6NOnD2JiYgpNn5GRgbp16wJ4fgw7Nze3vFehzIrrg9Lo0qULjh07hjt37gB4/sMhMzMTT548gbm5OWrWrInc3Fxs375dD2uhX7Vr10ZeXp76u5z/gDNNzM3N4eTkpO4/TX/X8vvgzp07uHLlClq3bg0XFxfExcUVuFohOjq6xD11FeGV2oJXKBRYsmQJ7t+/jypVqkClUuHTTz9Vn2g3f/58fPHFF1AoFLCwsMCCBQsAPN+l3LlzZ7z77ruwtrZG06ZNkZKSAgDo3Lkz1q5diz59+qBDhw6YNm2apFouXbqE9PR0dOrUqcBwb29vbN++vcjda5q0b98en376KT766CMolUrk5eXB09NTvUu9OJMnT8Y333yD5ORkjBs3Dq6urpg2bRp69uyJiIgIBAUFoV27dmjUqBFOnjwJb29vGBsbY/78+YWeBpjPUPrEy8sLcrlcvQ4TJkzAjBkzsGTJErRs2bLYre9/mz59OhYtWoTevXvDxMQEZmZmmDp1Kjp06AAhBJKSkjBo0CAYGxujWrVq2LJlS7Hr8NFHH2HixInYtm0bGjZsiPbt20uuJV9Z1qe8bd++Hd7e3gWGubi4QKVSYfr06Xj06BHkcjlee+01fP3114Wmnzx5Mj7++GO8/vrrcHV1LbAn5WVRXB/cv39f0ncbABo0aIBZs2bhs88+g1KphFwux9y5c+Hq6oo9e/bAw8MDtWrVQrt27TT+WKpMgoKCCuytmj17NqZOnYqAgABYWFigW7duxU6/cOFChISEYP369Rr/rimVSvj6+iI7OxszZ86EpaUlAGD58uVYsGABvvnmG+Tl5aFevXpYuXJlmfcO6BofNkNERPQvjo6OOH/+vFaH8yqLV2oXPRER0auCW/BEREQGiFvwREREBogBT0REZIAY8ERERAaIAU9EWhs1alSpr8MmovLBk+yISJIlS5YgLi4OCxcuLPdlDx06FH369FHfOpSISsYteCIiIgPEgCcyUImJifjkk0/QqVMndOzYETNnzoRKpcLy5cvh5uaGzp07Y+LEierbCt+7dw+Ojo7YuXMnunXrho4dO2LFihUAnj9KedWqVdi/fz9cXFzUzwoYOnQotm7dCuD5bYbfe+89zJs3D+3bt0f37t3x119/qevJyMjAlClT8NZbb8HV1RXfffed+h75xU373Xff4ezZs5g5cyZcXFzUj+8louIx4IkMkFKpxOjRo2FnZ6e+p3/v3r2xY8cO7Ny5Exs3bsShQ4eQlZVVKDDPnTuHAwcOYMOGDVi2bBlu3ryJrl27YvTo0ejVqxcuXLiAPXv2aFxudHQ0GjZsiKioKIwaNQpTp04t8Cx6Y2NjHDx4ELt27cLff/+t/nFQ3LSfffYZ2rVrh5CQEFy4cAEhISH66zgiA8KAJzJA0dHRSE5OxsSJE1GtWjWYmZmhXbt2CAsLw4gRI1CvXj1Ur14dn3/+Ofbt26d+Ch8A4AbaiwAAAfhJREFUfPLJJ6hSpQqaNm2Kpk2b4urVq5KXa2dnh4EDB0Iul6Nv375ISUnBw4cP8fDhQ/z111+YMmUKqlWrBktLS4wYMQJ79+4tcVoi0s4r9bAZoldFYmIi7OzsCj0GOTk5Gfb29ur39vb2UCgUSE1NVQ+rXbu2+nXVqlWRlZUlebn/nhYAsrKy8PjxYygUCrz11lvq8SqVCra2tiVOS0TaYcATGSBbW1v1I39fDHlra2vcv39f/T4hIQHGxsawtLRUP5a2KGV5UpaNjQ1MTU0RFRVV6EcHEekHd9ETGaBWrVrBysoK3377LbKyspCTk4Nz587By8sLGzZsQHx8PJ4+fYrvvvsOvXr1khS6lpaWuH//PlQqVanrsba2RpcuXTB37lxkZmZCpVLh7t27OH36tKTpa9eujfj4+FIvl+hVxoAnMkByuRwrV65EXFwc3Nzc0LVrV+zfvx/9+/dHnz59MGTIEPTo0QOmpqb46quvJM3T09MTANCxY0f07du31DXNnz8feXl56N27N9q3b4+goCCkpKRImnbYsGGIiIhA+/btMXv27FIvm+hVxBvdEBERGSBuwRMRERkgBjwREZEBYsATEREZIAY8ERGRAWLAExERGSAGPBERkQFiwBMRERkgBjwREZEBYsD/30bBKBgFo2AUjIJhCACU2ITpwOKeaAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"* Europe, Africa, and Asia see the greatest percentage of certified visas.\n",
"* South America sees the least.\n",
"* Every region has over 50% certification rate."
],
"metadata": {
"id": "oLMPOdP9-bXd"
},
"id": "oLMPOdP9-bXd"
},
{
"cell_type": "code",
"source": [
"percent_status('has_job_experience')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "15xyJn4S9Vcm",
"outputId": "946b4c76-6581-4ace-af7a-6aca265f6555"
},
"id": "15xyJn4S9Vcm",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFTCAYAAADV8x5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1yO9/8H8Nd9dyDHlFIxM5kkp3IaFiFllJzCGqMmZnOY2b7KqRzGjDmfjQwz5jASi81hMqcI9SOslFMnKkOl7u778/vD1/11r9RV3Xdxez0fD9t9X9fn+lzv6+6+enWdZUIIASIiItIr8oougIiIiLSPAU9ERKSHGPBERER6iAFPRESkhxjwREREeogBT0REpIcY8EQVYNiwYZg1a5b6fU5ODsaPH4/WrVvDzs4Od+/eLdCmNGJiYtT9vUy3bt2wYcOGMs3n386ePQs7OztkZGRotV9dzl8Xn8OrxM7ODuHh4RVdBpUjw4ougF5dAQEB+PXXXwEAhoaGsLKygpubG8aNG4cqVapUcHVFW758OQ4dOoSwsLBi2+bl5WHz5s0ICwtDQkICKlWqhAYNGqB///7o378/jI2NS13Hnj17MHv2bFy8eLFAfYaG/1v9du/ejcjISGzbtg1mZmYwMzMr0Iakc3R0xMmTJ1GrVq2KLuWVcfLkSdSsWbOiy6ByxN8eVKSOHTviu+++Q35+Ps6fP49p06YhOzsbM2fOLFV/CoUCRkZGWq6y9PLy8vDJJ58gNjYW48ePR5s2bVC9enXExMRg06ZNeOedd9C+fftS9a1QKF46ztTUVOP9rVu3YGtrCzs7u5e2IemMjY1hYWFR0WW8EvLy8vh5vKG4i56K9PwXg7W1NTw9PeHp6YkjR44AAIQQWL9+PVxdXdGiRQt4enpi37596mnv3r0LOzs7hIWF4eOPP0aLFi2wY8cOAMCvv/4KT09PNGvWDB07dsTkyZPV0z1+/BjTp09Hhw4d4OjoiKFDhyImJkY9fs+ePXB0dMTp06fh4eGBVq1aYdiwYbhz5456/IoVK/D333/Dzs4OdnZ22LNnT6HL9+OPPyIyMhIhISH4+OOP0bRpU7z11lvo1asXtm/fDgcHhzIta2BgILKzs9V1LF++HIDmLvphw4Zh8+bNiIyMhJ2dHYYNG1agDfDsF/WCBQvQuXNntGzZEgMGDEBERITG8pw4cQI9e/ZE8+bN4ePjg8TEREk/5+zsbHz11VdwdHREp06dNHZVBwYGYvTo0RrtVSoVXFxcEBISUmS/169fh7e3N1q2bIn+/fvjypUr6nGZmZn48ssv0blzZ7Ro0QK9e/fG7t27NaaPjIzEoEGD4OjoiNatW2PgwIG4ceNGsctT2C76w4cPq79zXbp0werVq/HvG3kW9TkUp6jvbW5uLjw8PBAYGKhun5qaivbt2+OHH34A8L/v9dGjR+Hu7o7mzZtrfK+fO3r0KPr374/mzZujW7duWLx4MfLy8tTju3XrhuXLlyMwMBBt2rTBV199BaDgLvrU1FRMnDgRbdu2Rdu2bTFq1CiN78vy5cvh4eGBAwcOwNXVFY6Ojvjss88KHPYoy7pMOiaIXmLy5Mli1KhRGsNmz54t2rVrJ4QQYtGiRcLNzU38+eef4vbt2yI0NFS0bNlSHDt2TAghxJ07d0Tjxo1F165dxW+//SZu374tkpOTxc8//yyaNWsmNm7cKOLj40VMTIxYv369EEIIlUolhgwZIvz9/cXly5dFYmKiWLx4sXB0dBSpqalCCCF2794tmjZtKoYPHy4uX74sYmNjhZeXl/Dz8xNCCJGTkyO+/fZb4e7uLtLS0kRaWprIyckpdBk9PT2Fr69vsZ9FaZb13r17YtOmTaJly5bqOp48eSKEEGLo0KFi5syZQgghMjMzRUBAgBg8eLBIS0sTmZmZBdoIIcSXX34pvL29xblz58Tt27fFli1bhIODg4iNjRVCCJGUlCSaNWsmZs2aJeLi4sSBAweEs7OzaNy4sbhz585Ll61r167C0dFRrFq1Sty8eVP8/PPPwsHBQRw6dEgIIURUVJSwt7dXf/5CCHHixAnh4OAg0tPTC+3zzJkzonHjxmLAgAHi9OnTIi4uTvj5+YmePXsKlUolhBAiJSVFrF+/Xly9elXcvn1bbN++XTg4OIhTp04JIYRQKBSiTZs24ttvvxW3bt0ScXFxIjQ0VMTFxRX783o+/+f1xcTEiCZNmoilS5eKmzdvin379olWrVqJzZs3S/4ciiLlexsbGyuaNWsmDh48KFQqlRg+fLj4+OOP1Z/H8+91v379xPnz58WVK1eEj4+P6NOnj7rNiRMnhKOjo9i1a5e4deuWOH36tHBzcxPffvttgeVYt26dSExMFAkJCUIIIRo3bix+++03IYQQ2dnZws3NTUyePFnExsaKuLg4MWXKFOHi4iKys7OFEEIsW7ZMtGrVSnz22WciNjZWREVFCRcXFzF9+nT1vMq6LpNuMeDppf4d8JcvXxbt2rUTEyZMEFlZWaJ58+YiMjJSY5o5c+aIkSNHCiH+F3obNmzQaOPs7CwWLFhQ6DxPnTolWrVqVSCQ+/TpI9atWyeEePaLsHHjxiI+Pl49ft++fcLBwUH9i3DZsmWid+/exS5jixYtxOzZs4tsU5Zl3b17t2jVqlWBPv8d3jNnzhRDhw59aZtbt24JOzs7ce/ePY02Y8aMEUFBQUIIIb7//nvh5uam/gyEEGLlypWSAn7EiBEaw6ZMmSKGDBmift+7d2+xdu1a9fsJEyaIcePGvbTP5wF74sQJ9bDz58+Lxo0bi+Tk5JdO98UXX4gpU6YIIZ794dO4cWNx9uzZl7Yvbv7PA/7LL78Uw4YN02izbNky4ezsrH4v5XN4GSnfWyGECAkJEW3bthVz584V7dq1EykpKepxz7/X58+fVw+7e/euaNKkifjrr7+EEEL4+PiIFStWaMzj999/F61atVL/3Lt27SpGjx5doMYXA37nzp2iR48eGt+V/Px80a5dO3HgwAH159OsWTPx6NEjdZtVq1YJV1dX9fuyrsukWzwGT0WKiIiAo6Mj8vPzkZ+fj+7du2P69OmIi4tDbm4uRo4cCZlMpm6vUChQt25djT6aNWumfp2eno7U1FR06NCh0PlduXIFOTk5Bcbn5uZq7Ko0NjZGw4YN1e8tLS2hUCjwzz//lOjYtZDwrKXSLqs2XblyBUII9O7dW2N4Xl4e3nvvPQBAfHw8WrZsqVGjo6OjpP5btWpV4P3vv/+ufu/t7Y1t27Zh1KhRePjwIY4cOYIVK1YU2++L5xRYWloCePYdsLKyglKpxLp163Dw4EGkpaUhLy8PCoUC7dq1A/DsHIT+/fvjk08+QYcOHdChQwe4u7vDxsZG0jK96ObNm+jSpYvGsNatW2PFihV48uQJqlWrJulzeBmp39vhw4fj6NGj2LRpE5YsWYI6depotJfL5WjRooX6fd26dWFpaYm4uDh07NgRV65cQXR0tHq3PvDscMnTp09x//599Wdc3PfwypUruHv3LpycnDSG5+TkaNRrY2OD6tWrq99bWloiPT0dgPbWZdIdBjwVqU2bNpg9ezYMDQ1haWmpPkHu+WVXq1evLvAL999nfpuYmEien0qlQu3atfHTTz8VGPf8l3Bh83geaiqVSvK8AKBBgwa4efNmkW2e/xGg7WUtCSEEZDIZdu3aVWCelStX1sk8X+Tl5YWFCxfi/PnziI2NhZmZGZydnYud7sVa//0z2rBhA0JCQjBlyhTY2dmhSpUqWLRokcYx3nnz5mH48OE4ceIEjh49isWLF2PlypWS5l2epH5vMzMzER8fDwMDA9y+fbvQvl78A62w+YwdOxY9e/YsMM7MzEz9urjvoUqlQpMmTbB48eIC41480/7fJ8TKZDJJfxQ/n4eUz4R0hwFPRTIxMcHbb79dYLitrS2MjY2RlJT00r/gC2Nubo46derg9OnT6NSpU4HxDg4OePDgAeRyOd56661S121kZASlUllsOw8PDyxatAgxMTFo3ry5xjiVSoXs7OxSL2tJ6iiOvb09hBC4f/++eov932xtbXHo0CH1HwMAcOnSJUn9X758ucD7F/eQmJqaws3NDbt370ZsbCz69u0Lubxs5+hGRUWha9eu6Nu3L4Bnf8QkJiaiRo0aGu2aNGmCJk2aYNSoURg5ciT27t1b4oBv2LAhoqKiNIZduHABVlZWGmFT3OfwMlK/t1OmTEH9+vUxY8YMTJo0CZ06ddLY2lapVIiOjlZvWSclJSEtLQ22trYAgKZNm+LmzZuFrpMl4eDggAMHDqBWrVoFPm+pymtdptLjWfRUKtWqVYOfnx++++477Nq1C7du3UJsbCx+/vln9ZnyL/Ppp5/ixx9/xKZNm5CQkIDY2Fhs3LgRwLPL8pycnPDZZ5/hzz//xJ07d3Dx4kUsW7YM58+fl1xf3bp1kZSUhCtXriAjI0PjLOMXjRgxAq1bt4afnx82b96M2NhY3LlzB4cPH4aPjw+uXLlSpmWtW7cucnNz8ddffyEjIwM5OTmSl+FF77zzDjw9PREYGIjw8HDcuXMHMTEx2LBhAw4fPgwAGDJkCO7du4dvvvkGN2/eRHh4OLZv3y6p/0uXLmHt2rVITEzEL7/8gr1792LEiBEabby9vbF//35cu3YNAwcOLNVyvKhBgwY4ffo0zp8/j/j4eMyaNUvjhjx37tzBwoULERUVhXv37uHMmTO4fv26OuxKws/PD5GRkVi+fDkSEhIQGhqKjRs3YuTIkRrtpHwOhZHyvf35558RGRmJBQsWwN3dHf369cNXX32l8Z0wNDTE3LlzcfHiRcTGxmLy5Mlo1KgROnbsCAD4/PPPERYWhqVLl+LGjRuIj49HeHg4vvvuuxJ9Hp6enjA3N8dnn32Gc+fO4c6dO4iMjMS3334r+coLoHzWZSo9bsFTqX3xxReoXbs2Nm7ciODgYFSrVg329vYFfmn+m4+PD4yMjBASEoKFCxeiZs2a6Ny5M4BnuwDXrVuHJUuWYPr06cjIyIC5uTmcnJzUW3pSuLu74/fff8eIESPw6NEjzJs3D/379y/QztjYGCEhIdi0aRN27dqFhQsXolKlSnjnnXfQv39/9THs0i6rk5MThgwZgi+//BIPHz7E2LFjMW7cOMnL8aJ58+ZhzZo1WLBgAVJTU1GzZk00b95cfZ2+jY0NVqxYgXnz5mHHjh1wcHDApEmT8PXXXxfbt6+vL65fv441a9bAxMQE48ePL7AbuH379rCysoKNjY1WtsjGjBmDu3fvwt/fH5UrV0a/fv3g6emJ+Ph4AM/2HiUmJmLChAnIzMxE7dq14enpCX9//xLPy8HBAUuXLsXy5cuxdu1amJubY9SoURg6dKhGOymfQ2GK+97evHkT8+fPR3BwMOrVqwfg2dZ8v379MG/ePPXlkMbGxvj0008xefJkJCUloVWrVlixYoV6j4yzszPWrl2LVatWYePGjTAwMFDflKkkTExM8NNPP+H777/HhAkT8PjxY1haWqJ9+/Yl2qIvj3WZSk8mpB5QIaI32tOnT9G5c2dMmzYNffr0qehyihQREYGRI0fi8uXL5XKOgja87K6HRKXFLXgiKpJKpUJmZiY2b96MSpUq4YMPPqjokor04MEDHDlyBPXr139twp1IFxjwRFSkpKQkdO/eHVZWVpg3b94rcavhkSNH4sKFC4WOy87ORoMGDUp9O+XChIaGIigoqNBxNjY2OHDggNbmRaQt3EVPRK+d1NRUPH36tNBxNWvW1Pp9/J88eaK+/vvfDA0NC9wPgehVwIAnIiLSQ7xMjoiISA8x4ImIiPSQ3p1kl5mZBZWKRx1eN+bm1ZCe/qSiyyB6Y3EdfP3I5TLUqlX1peP1LuBVKsGAf03x50ZUsbgO6hfuoiciItJDDHgiIiI9xIAnIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj1ULgE/f/58dOvWDXZ2drhx40ahbZRKJWbOnAlXV1f06NEDO3fuLI/SiIiI9FK5BHz37t3x008/FflAhv379+P27ds4fPgwduzYgeXLl+Pu3bvlUR4REZHeKZeAb9OmDaytrYtsc/DgQXh7e0Mul8PMzAyurq4IDw8vj/KIiIj0zitzJ7vk5GTY2Nio31tbWyMlJaXE/ZibV9NaTar8PMgNjbXWHxXNwqJ6RZeg917H7/TrWPPriuug7pXn9/mVCXhtSU9/orXbLVpYVMfNbwZopS+iV0HDqbtx//7jii6jRLgekj7R5jool8uK3Kh9Zc6it7a2RlJSkvp9cnIyrKysKrAiIiKi19crE/A9e/bEzp07oVKpkJGRgT/++APu7u4VXRYREdFrqVwCfs6cOejcuTNSUlLg6+uL3r17AwD8/f0RExMDAPDy8kK9evXg5uaGQYMG4fPPP8dbb71VHuURERHpHZkQQq+eD8hj8EQvx2PwRBXrjTwGT0RERNrDgCciItJDDHgiIiI9xIAnIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj3EgCciItJDDHgiIiI9xIAnIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj3EgCciItJDDHgiIiI9xIAnIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj3EgCciItJDDHgiIiI9xIAnIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj3EgCciItJDDHgiIiI9xIAnIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj3EgCciItJDDHgiIiI9xIAnIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj3EgCciItJDDHgiIiI9xIAnIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj1kWF4zSkhIQEBAAB4+fAhTU1PMnz8fDRo00GiTnp6OwMBAJCcnIz8/H+3bt8e0adNgaFhuZRIREemFctuCDwoKgo+PDw4dOgQfHx/MmDGjQJs1a9bA1tYW+/fvR2hoKK5cuYLDhw+XV4lERER6o1wCPj09HVevXoWHhwcAwMPDA1evXkVGRoZGO5lMhqysLKhUKuTl5UGhUKBOnTrlUSIREZFeKXLft0qlktSJXF703wnJycmoU6cODAwMAAAGBgawtLREcnIyzMzM1O0+++wzjBs3Du+//z5ycnLw0UcfoXXr1pJqeM7cvFqJ2hO9aSwsqld0CURvtPJaB4sM+KZNm0ImkxXbSWxsrFaKCQ8Ph52dHX788UdkZWXB398f4eHh6Nmzp+Q+0tOfQKUSWqmHvwhJH92//7iiSygRroekb7S1DsrlsiI3aosM+CNHjqhfHz9+HIcOHcLo0aNhY2ODpKQkrF+/Hm5ubsUWYW1tjdTUVCiVShgYGECpVCItLQ3W1tYa7bZu3Yq5c+dCLpejevXq6NatG86ePVuigCciIqJiAr5u3brq15s2bcLu3btRo0YNAMA777yDZs2aYcCAAfDx8SlyJubm5rC3t0dYWBi8vLwQFhYGe3t7jd3zAFCvXj2cOHECLVq0QF5eHk6fPo0ePXqUdtmIiIjeWJJPsnv8+DFycnI0hj19+hSPH0vb1RAcHIytW7fC3d0dW7duxcyZMwEA/v7+iImJAQBMmTIFFy5cgKenJ/r27YsGDRpg0KBBUkskIiKi/5J8gXm/fv3g6+uL4cOHw8rKCikpKdiyZQv69esnaXpbW1vs3LmzwPD169erX9evXx8hISFSSyIiIqKXkBzwX3/9NerXr4+DBw8iLS0NFhYW+Oijj7iFTURE9AqSHPByuRwffvghPvzwQ13WQ0RERFog+Ri8EAK//PILhg8fDk9PTwBAZGQkDh48qLPiiIiIqHQkB/zSpUuxa9cuDBo0CMnJyQAAKysr/PDDDzorjoiIiEpHcsD/+uuvWLNmDXr37q2++U29evVw584dnRVHREREpSM54JVKJapWrQoA6oDPyspClSpVdFMZERERlZrkgO/SpQvmzZuHvLw8AM+OyS9duhRdu3bVWXFERERUOpIDPjAwEPfv30fr1q3x+PFjODo6IikpCV999ZUu6yMiIqJSkHyZXLVq1bBy5Uo8ePAASUlJsLa2hoWFhS5rIyIiolIqMuCFEOrj7c8fHWtmZqa+h/zzYcU9LpaIqLRUijw0nLq7ossg0gqVIq/c5lVkwLdu3RpRUVEACn907PM/ALT1uFgion+TGxnDc9K+ii6DSCv2f+8FILdc5lVkwB84cED9+sVHxxIREdGrrciAf/F57S8+OpaIiIhebZJPsnv48CE2btyI2NhYZGdna4z76aeftF4YERERlZ7kgJ80aRLy8vLwwQcfwMTERJc1ERERURlJDviLFy/izJkzMDY21mU9REREpAWSr2+zs7NDSkqKLmshIiIiLZG8Bf/ee+9h5MiR6N+/P2rXrq0xbuDAgVovjIiIiEpPcsCfP38ederUwV9//aUxXCaTMeCJiIheMZIDfsuWLbqsg4iIiLSoRPeYzczMxN69e/HDDz8AAFJTU3lcnoiI6BUkOeDPnTuHnj17Yv/+/Vi5ciUA4NatWwgODtZVbURERFRKkgN+7ty5WLJkCTZs2ABDw2d79lu2bIno6GidFUdERESlIzng7927hw4dOgCA+qEzRkZGUCqVuqmMiIiISk1ywNva2iIiIkJj2KlTp9C4cWOtF0VERERlI/ks+oCAAIwePRouLi54+vQpZsyYgaNHj2LVqlW6rI+IiIhKQfIWfKtWrRAaGopGjRphwIABqFevHnbt2oUWLVrosj4iIiIqBclb8ABQp04d+Pv766oWIiIi0hJJAR8XF4fly5fjwoULePjwIUxNTdGmTRuMHTsWjRo10nWNREREVELF7qJPTEzEoEGDkJubi4kTJ2L16tX44osvkJOTg0GDBuHmzZvlUScRERGVQLFb8GvXroWXlxeCgoI0hg8cOBCzZ8/G+vXrMW/ePJ0VSERERCVX7BZ8ZGQk/Pz8Ch3n6+uLs2fPar0oIiIiKptiAz4jIwP16tUrdJyNjQ0yMzO1XhQRERGVjaTL5J7fua7AxHL5S8cRERFRxSn2GPzTp0/x0UcfFTpOCIHc3FytF0VERERlU2zAf/PNN0WO9/b21loxREREpB3FBnx+fj46d+6MOnXqlEc9REREpAXFBnxMTAxWrVqFGjVqwMXFBZ07d4aTkxOPvRMREb3Cig34WbNmAQCuX7+OP//8E4sWLUJCQgLee+89dOnSBc7OzjAzM9N5oURERCSd5HvR29nZwc7ODqNGjcLjx48RERGBEydOYMGCBbCxscG4cePg7Oysy1qJiIhIohI9bOa56tWro1evXujVqxcAIDo6WqtFERERUdkUGfC7du2S1MnAgQO1UgwRERFpR5EBv2/fPo33UVFRqF27NqytrZGcnIwHDx7AycmJAU9ERPSKKTLgt2zZon49e/ZsdO/eHSNGjFAP+/HHH3Hnzh1JM0pISEBAQID6cbPz589HgwYNCrQ7ePAgVq9eDSEEZDIZQkJCULt2bWlLQ0RERAAk3qoWAEJDQzFs2DCNYUOHDi2wlf8yQUFB8PHxwaFDh+Dj44MZM2YUaBMTE4MVK1Zg48aNCAsLw7Zt21C9enWpJRIREdF/SQ742rVr4+jRoxrDjh07JukSufT0dFy9ehUeHh4AAA8PD1y9ehUZGRka7TZt2gQ/Pz9YWFgAeHYyX6VKlaSWSERERP8l+Sz6adOmYdy4cdiwYQOsrKyQnJyMuLg4LF26tNhpk5OTUadOHRgYGAAADAwMYGlpieTkZI0/EOLj41GvXj189NFHyM7ORo8ePTBmzJgS3VTH3Lya5LZEbyILC+4VI6pI5bUOSg74Tp064Y8//sCJEyeQlpYGFxcXdOnSBbVq1dJaMUqlEtevX0dISAjy8vIwcuRI2NjYoG/fvpL7SE9/ApVKaKUe/iIkfXT//uOKLqFEuB6SvtHWOiiXy4rcqC3RdfBmZmZo3749UlNT0apVK8nTWVtbIzU1FUqlEgYGBlAqlUhLS4O1tbVGOxsbG/Ts2RPGxsYwNjZG9+7dER0dXaKAJyIiohIcg09KSsKQIUPwwQcfwNfXFwAQHh6OqVOnFjutubk57O3tERYWBgAICwuDvb19geP3Hh4eOHnyJIQQUCgUOHPmDJo0aVKS5SEiIiKUIOBnzJgBFxcXREVFwdDw2YZ/p06dcOrUKUnTBwcHY+vWrXB3d8fWrVsxc+ZMAIC/vz9iYmIAAL1794a5uTl69eqFvn37olGjRrzGnoiIqBQk76KPiYnBunXrIJfL1Se9Va9eHY8fSzuWYGtri507dxYYvn79evVruVyOwMBABAYGSi2LiIiICiF5C97c3By3bt3SGBYXF1fgODoRERFVPMkB7+fnh08//RS7d+9Gfn4+wsLCMHHiRPj7++uyPiIiIioFybvoBw4cCFNTU+zYsQPW1tb49ddfMWHCBLi6uuqyPiIiIiqFEl0m5+rqykAnIiJ6DRQZ8Hv37lVfg17Uo2P19Ux3lSIPDafurugyiLRGpcir6BKIqJwUGfAHDhxQB/zLHiojk8n0NuDlRsbwnCTtYTpEr4P933sByK3oMoioHBQZ8EOGDFG/3rhxI4yMjHReEBEREZVdkWfRf/311+rX7du313kxREREpB1FbsFbWFhg69atsLW1hVKpxJkzZyBEwQe5dOjQQWcFEhERUckVGfDz5s3DsmXLsHnzZigUCkyZMqVAG5lMhiNHjuisQCIiIiq5IgPeyckJmzZtAgD06NEDv//+e3nURERERGUk+U52DHciIqLXR5Fb8J988gk2bNgAAPDx8VE/ZObffvrpJ+1XRkRERKVWZMA/vwYeALy9vXVeDBEREWlHkQHv6empft2wYUO0bNmyQJvo6GjtV0VERERlIvkYvK+vb6HDR44cqbViiIiISDuKfdiMSqWCEELj33O3b9+GgYGBTgskIiKikis24Js2bQqZTAYhBJo2baoxTi6X49NPP9VZcURERFQ6xQb8kSNHIITAsGHDsHXrVvVwmUwGMzMzVK5cWacFEhERUckVG/B169aFUqlEvXr1YGFhAWNj4/Koi4iIiMpA0kl2BgYGuHv3LlQqla7rISIiIi2QfBb9559/juDgYNy7dw9KpRIqlQEZ520AAB1GSURBVEr9j4iIiF4txe6if27atGkAgH379qmHCSEgk8kQGxur/cqIiIio1CQHPJ8YR0RE9PqQHPB169YF8Oy6+AcPHsDS0lJnRREREVHZSD4G/+jRI0yaNAktWrSAm5sbgGdb9YsXL9ZZcURERFQ6kgM+KCgI1apVw9GjR2FkZAQAcHR0xG+//aaz4oiIiKh0JO+iP336NCIiImBkZKR+bKyZmRnS09N1VhwRERGVjuQt+OrVqyMzM1NjWFJSEiwsLLReFBEREZWN5ID39vbG+PHjcebMGahUKly8eBGTJ0/GkCFDdFkfERERlYLkXfT+/v6oVKkSZs2ahfz8fEyZMgWDBw/G8OHDdVkfERERlYLkgJfJZBg+fDgDnYiI6DVQ7C76CxcuYMGCBYWOW7hwIS5duqT1ooiIiKhsig34tWvXom3btoWOa9euHdasWaP1ooiIiKhsig342NhYODs7FzquY8eO+L//+z+tF0VERERlU2zAP3nyBAqFotBx+fn5yMrK0npRREREVDbFBnzDhg1x8uTJQsedPHkSDRs21HpRREREVDbFBvyIESMQFBSEw4cPq5/9rlKpcPjwYQQHB8PX11fnRRIREVHJFHuZnKenJx48eIDJkydDoVDA1NQUDx8+hJGREcaPHw8PD4/yqJOIiIhKQNJ18L6+vvD29sbFixfx8OFDmJqawtHREdWqVdN1fURERFQKkm90U61atZeeTU9ERESvFsn3oiciIqLXR7kFfEJCAgYPHgx3d3cMHjwYiYmJL2178+ZNtGzZEvPnzy+v8oiIiPRKuQV8UFAQfHx8cOjQIfj4+GDGjBmFtlMqlQgKCoKrq2t5lUZERKR3JAd83759Cx3ev3//YqdNT0/H1atX1Wfce3h44OrVq8jIyCjQdt26dXBxcUGDBg2klkZERET/Ijngb926VWCYEAJ3794tdtrk5GTUqVMHBgYGAAADAwNYWloiOTlZo921a9dw8uRJjBgxQmpZREREVIhiz6L/z3/+AwBQKBTq18/du3cPjRo10kohCoUC06dPx7x589R/CJSGuTkv3SMqioVF9YougeiNVl7rYLEBX79+/UJfA4CTkxN69uxZ7Eysra2RmpoKpVIJAwMDKJVKpKWlwdraWt3m/v37uH37NkaNGgUAePToEYQQePLkCWbPni15gdLTn0ClEpLbF4W/CEkf3b//uKJLKBGuh6RvtLUOyuWyIjdqiw34sWPHAgBatmxZ6uvgzc3NYW9vj7CwMHh5eSEsLAz29vYwMzNTt7GxscHZs2fV75cvX47s7GxMnjy5VPMkIiJ6k0m+0Y2zszNu3ryJa9euITs7W2PcwIEDi50+ODgYAQEBWLVqFWrUqKG+BM7f3x/jx49H8+bNS1g6ERERvYzkgF+zZg1WrlyJJk2aoHLlyurhMplMUsDb2tpi586dBYavX7++0Pbjxo2TWhoRERH9i+SA//HHH7Fz5040adJEl/UQERGRFki+TK5y5cp89jsREdFrQnLAT5gwAXPmzEFaWhpUKpXGPyIiInq1SN5FHxAQAAAax9GFEJDJZIiNjdV+ZURERFRqkgP+yJEjuqyDiIiItEhywNetWxcAoFKp8ODBA1haWuqsKCIiIiobycfgHz16hEmTJqFFixZwc3MD8GyrfvHixTorjoiIiEpHcsAHBQWhWrVqOHr0KIyMjAAAjo6O+O2333RWHBEREZWO5F30p0+fRkREBIyMjCCTyQAAZmZmSE9P11lxREREVDqSt+CrV6+OzMxMjWFJSUmwsLDQelFERERUNpID3tvbG+PHj8eZM2egUqlw8eJFTJ48GUOGDNFlfURERFQKknfR+/v7o1KlSpg1axby8/MxZcoUDB48GMOHD9dlfURERFQKkgNeJpNh+PDhDHQiIqLXgORd9OvWrUN0dLTGsOjo6Jc+DY6IiIgqjuSA37x5Mxo1aqQxzNbWFj/++KPWiyIiIqKykRzwCoUChoaae/SNjIyQl5en9aKIiIiobCQHvIODA7Zt26YxbPv27WjatKnWiyIiIqKykXySXWBgIHx9fREaGoq33noLd+7cwf379xESEqLL+oiIiKgUJAW8EAKVK1fGoUOHcPz4cSQnJ8PNzQ0uLi6oWrWqrmskIiKiEpIU8DKZDJ6enoiKikLv3r11XRMRERGVkeRj8Pb29khISNBlLURERKQlko/Bt2vXDv7+/ujXrx+srKzUD5wBgIEDB+qkOCIiIiodyQEfFRWFunXr4ty5cxrDZTIZA56IiOgVIzngt2zZoss6iIiISIskH4MHgMzMTOzduxc//PADACA1NRUpKSk6KYyIiIhKT3LAnzt3Dj179sT+/fuxcuVKAMCtW7cQHBysq9qIiIiolCQH/Ny5c7FkyRJs2LBBfcvali1bFngADREREVU8yQF/7949dOjQAQDUZ9AbGRlBqVTqpjIiIiIqNckBb2tri4iICI1hp06dQuPGjbVeFBEREZWN5LPoAwICMHr0aLi4uODp06eYMWMGjh49ilWrVumyPiIiIioFyVvwrVq1QmhoKBo1aoQBAwagXr162LVrF1q0aKHL+oiIiKgUit2Cz8nJwerVq3Hjxg04ODhg9OjRMDY2Lo/aiIiIqJSK3YKfNWsWjh07hoYNG+LQoUOYP39+edRFREREZVBswEdERGDDhg34z3/+g/Xr1+PYsWPlURcRERGVQbEBn52dDUtLSwCAtbU1njx5ovOiiIiIqGyKPQavVCpx5swZCCEAAPn5+RrvAaivjyciIqJXQ7EBb25ujilTpqjfm5qaaryXyWQ4cuSIbqojIiKiUik24I8ePVoedRAREZEWlehpckRERPR6YMATERHpIQY8ERGRHmLAExER6SEGPBERkR6S/DS5skpISEBAQAAePnwIU1NTzJ8/Hw0aNNBos3LlShw8eBByuRxGRkaYOHEinJ2dy6tEIiIivVFuAR8UFAQfHx94eXlh3759mDFjBjZv3qzRpkWLFvDz84OJiQmuXbuGoUOH4uTJk6hcuXJ5lUlERKQXymUXfXp6Oq5evQoPDw8AgIeHB65evYqMjAyNds7OzjAxMQEA2NnZQQiBhw8flkeJREREeqVcAj45ORl16tSBgYEBAMDAwACWlpZITk5+6TR79+5F/fr1YWVlVR4lEhER6ZVy20VfEufOncPSpUuxcePGEk9rbl5NBxUR6Q8Li+oVXQLRG6281sFyCXhra2ukpqZCqVTCwMAASqUSaWlpsLa2LtD24sWL+Prrr7Fq1So0bNiwxPNKT38ClUoU31AC/iIkfXT//uOKLqFEuB6SvtHWOiiXy4rcqC2XXfTm5uawt7dHWFgYACAsLAz29vYwMzPTaBcdHY2JEydi2bJlcHBwKI/SiIiI9FK5XQcfHByMrVu3wt3dHVu3bsXMmTMBAP7+/oiJiQEAzJw5E0+fPsWMGTPg5eUFLy8vXL9+vbxKJCIi0hvldgze1tYWO3fuLDB8/fr16te7d+8ur3KIiIj0Gu9kR0REpIcY8ERERHqIAU9ERKSHGPBERER6iAFPRESkhxjwREREeogBT0REpIdeyXvRExHR66lqJTn6djCHpakxZLKKrubVc+XKVahUqhJPZ2hojFq1LGBgID22GfBERKQ1fTuY4526FpAbmIAJX5CNjSny80sW8EIIZGU9QmbmfdSuXfAZLi/DXfRERKQ1lqbGDHctk8lkqFq1BvLz80o0HQOeiIi0RiYDw10HZKX4TLmLnoiIdKbpuxaoamKs9X6zcvJw9e/7Wu9XnzDgiYhIZ6qaGMNz0j6t97v/ey/JbfPz87F31xacOXUMRkbGkMvlaNrMEYM/8oehofQYDD+wCx3e746aNWsBAI4cDkVeXi4+8PAGAKxdOR83466h3lvvoKNzd1yPjYHPx5+WaLkOHtyPU6ciMGfOdyWarjAMeCIi0mvrVn0HRV4uZs9fAxOTKlAqlfjz6G/IVygkBbxKpYJMJkP4gd1waN5aHfDd3fqo2/zzMAORZyOwblMo5PJnR79bt+2kmwWSiAFPRER6KyX5Li6cO4lla3bAxKQKAMDAwADdengAAPbv/RmRZ05AqVLCzKw2Phn9FUxrmWH3L5tw704isrOzkP4gDe937oHMjHQs+z4YRkbG+HzCVJw5fRy5T3PQz3s4vgmehLzcp5j2n9FwdnFD1arVcfHCGUz4KhgAcOL4IRw5tA+GBkDVqtXw1VcBqF+/ARQKBRYv/g5RUedRs6Yp3n3XTmvLzoAnIiK9lZgQhzpWdVG1WvUC406e+B1pKUkInrsScrkcfxzah22bV+OzCVMBAPF/X8Oc79aieo2aAIBjRw5g/KRgvFX/nWcdnH72PxOTKvh6yjxMD/gUcxeuBwCcOBauns+12GicPXUc02YtgX1DS0RERGDevFlYvXoj9u3bjeTkJGzduhP5+fn4/HN/WFtLvxSuKAx4IiJ6I0WdP4WE+BuY9p/RAACVSgmTKlXV41s6tVeHe1lcPH8at2/FIyjwc1QyNoBKJfD48aNnNURdwAcfeMDQ0BCGhoZwd/8A0dGXyjxPgAFPRER6rME7jZCacg9ZTx4X3IoXAn0HDEWXbh8UOm3lypW1UoMQAl26foCBQ3zR6K2S3+imtHgdPBER6S0r63pwbNMBG9YtQk5ONgBApVTi2JEDcGrTEX8c2oesJ48BAApFHm4lxr+0LxOTqsjJzipxDU5tOuDkicNIT392WZ9SqcS1a7EAgNat2yA8/CDy8/ORm/sUv/8eXlRXJcIteCIi0pmsnLwSXdJWkn6l+vTzAOzZuRnTJ38KQ0NDqFQCrZzaYZCPPx4//gdzgiYCAIRQobu7F95uYFtoP269+mHdqu9gbFwJn//3OL0UTZq2hPeHn2DR/KkwMpBBoVCga1dXNGlijz59+iMuLg5Dh3qjZk1TNGnigMzMdMl9F0UmhBBa6ekVkZ7+BCqVdhbJwqK6Tq7fJKoo+7/3wv37jyu6jBLhevh6+bJfXVSroZ2TxPRRWXbRp6TcgpXV2+r3crkM5ubVXtqeu+iJiIj0EAOeiIhIDzHgiYiI9BADnoiISA8x4ImIiPQQA56IiEgP8Tp4IiLSmRbvmqOSiXbuCPei3JyniP67+OvFv/jsQxgZGcPIyAhPnz5FvbcawKPvEDS2a1bqee/aHoJ6bzXAe526lmi6tSvmo12blujXb1Cp510SDHgiItKZSiaVcfObAVrvt+HU3ZLbvviAmMizJ7BwbiD+M+07NHrXvlTzHjjEt1TTlTcGPBERvTHatu+M+L+v4WDoDnw2fip++XkDrl29jPx8Bd6q3xC+/hNR2cQEa1fMh5GxMVKS7iA9/T7ebdwUo8cGQCaTYe2K+XjHtjHcPuiHfIXipX1kpN/HmhXf4mFmBiws60AmK9+j4jwGT0REbxTbd+1x984thIVuR5WqVTHr29WYu/AH1DKrjdBft6nb3b2dgK+mfIv5izYi4eYN/F/0hQJ9FdXHlpAVaNK0Bb5bEoLhn4zHtauXy20ZAW7BExHRG+fZ7cyjIk8hJycb506fAADk5ytQ/+3/3Ye+dbtOMDY2BgA0eOddpKUmFeipqD6u/t8lDPMdCwCwrGMDh+ZOulukQjDgiYjojXIz7jrq1W+A+2kpGDFywkuD18jIWP1aLjeAUqks0EYARfZRkbiLnoiI3hgXIv/CkcOh6OU5CE5tOuK3sF3Iy80FAOTkZOPe3Vsl6q+oPpo2c8SJ488e/5qWmowrMVFaXJLicQueiIh0JjfnaYnOeC9Jv1It+z5YfZlc3Xpv46sp89DoXXs0eOdd7PnlR8wIHAOZTA6ZDOjn/THq1nu7+E7/y7Pvhy/tY5jv51iz4lucijgKC0sr2Du0LM2ilhofF1sEPqaS9A0fF0u6xsfFFo2PiyUiIqIyYcATERHpIQY8ERGRHmLAExGR1gjx/D+kTaU5XY4BT0REWpP2MA8qZQ5DXouEEMjKegRDQ+PiG7+Al8kREZHW7D2djr4dAEtTY8hkFV3Nqycp6R+oVCU/i97Q0Bi1almUbJoSz4WIiOglsnJV+On4/You45VVnpeqltsu+oSEBAwePBju7u4YPHgwEhMTC7RRKpWYOXMmXF1d0aNHD+zcubO8yiMiItIr5RbwQUFB8PHxwaFDh+Dj44MZM2YUaLN//37cvn0bhw8fxo4dO7B8+XLcvXu3vEokIiLSG+Wyiz49PR1Xr15FSEgIAMDDwwOzZ89GRkYGzMzM1O0OHjwIb29vyOVymJmZwdXVFeHh4Rg5cqTkecnl2j3oY1nLRKv9EVU0ba8j5YHrIekTba2DxfVTLgGfnJyMOnXqwMDAAABgYGAAS0tLJCcnawR8cnIybGxs1O+tra2RkpJSonnVqlVVO0X/14Zpblrtj6iiFXVry1cV10PSJ+W1DvIyOSIiIj1ULgFvbW2N1NRU9bN0lUol0tLSYG1tXaBdUlKS+n1ycjKsrKzKo0QiIiK9Ui4Bb25uDnt7e4SFhQEAwsLCYG9vr7F7HgB69uyJnTt3QqVSISMjA3/88Qfc3d3Lo0QiIiK9Um6Pi42Pj0dAQAAePXqEGjVqYP78+WjYsCH8/f0xfvx4NG/eHEqlErNmzcJff/0FAPD398fgwYPLozwiIiK9onfPgyciIiKeZEdERKSXGPBERER6iAFPRESkhxjwREREeogBTxWmW7du8PDw0Hh0Yrdu3XDjxo0KrIrozREYGIgFCxZoDBsxYgS2bdtWQRWRNjHgqUJlZ2dj3759FV0G0RtpypQp+O2333D58mUAwPbt2yGTyfDhhx9WcGWkDQx4qlBjx47FihUrkJeXV9GlEL1xqlevjtmzZyMwMBAJCQlYvXo1vvnmG8hkr98DiaggBjxVqGbNmsHBwQE///xzRZdC9Ebq1KkT2rZti4EDB2LcuHEaD/yi1xsDnircF198gfXr1yMrK6uiSyF6I33yyScwMDDAwIEDK7oU0iIGPFW4hg0bokuXLggJCanoUojeSHK5nLvl9VC5PA+eqDjjxo1D//791U8cJCKisuEWPL0SrKys4OXlhYcPH1Z0KUREeoEPmyEiItJD3IInIiLSQwx4IiIiPcSAJyIi0kMMeCIiIj3EgCciItJDDHgiHerWrRtOnTql8/mEhobCz89PUtthw4Zh586dOq5Id3r37o2zZ89WdBlErzze6IZID/Tp0wd9+vSp6DLKxYEDByq6BKLXArfgiei1kJ+fX9ElEL1WGPBEOhYbGwtPT0+0bt0aX3zxBXJzc/HPP/9g9OjReO+999C2bVuMHj0aKSkp6mn27NmD7t27w9HREd26dUNoaGiR89izZ4/GM7yjoqIwYMAAtG7dGgMGDEBUVJRG+9u3b2PgwIFwcnLCmDFjJN1B8NKlSxgyZAjatGmDPn36qHeTR0VFoX379khOTgYAXLt2DW3btkV8fDyAZ4cp1q5di169eqFt27YIDAxEbm6uut9jx47By8sLbdq0wZAhQ3Dt2jX1uG7dumHdunXw9PREq1atkJ+fr3HYQ6VSYd26dXB1dUX79u0xYcIE9bLcvXsXdnZ2+PXXX+Hi4oL27dtj9erV6r6VSiXWrFkDV1dXODo6on///upliI+Ph6+vL9q1awd3d3ccPHiw2M+H6JUjiEhnunbtKgYMGCBSUlJEZmam6Nmzp9i2bZvIyMgQ4eHhIjs7Wzx+/FiMGzdOjBkzRgghRFZWlnB0dBTx8fFCCCFSU1PFjRs3ipzP7t27xZAhQ4QQQmRmZoo2bdqIX3/9VSgUCrF//37Rpk0bkZGRIYQQYujQoeL9998X169fF1lZWWLs2LFi0qRJRfafkpIi2rVrJ44fPy6USqU4efKkaNeunUhPTxdCCLFo0SIxbNgwkZOTIzw8PMSWLVs0PoPevXuLpKQkkZmZKQYPHiwWLVokhBDiypUr4r333hOXLl0S+fn5Ys+ePaJr164iNzdXPW2fPn1EUlKSyMnJUQ/766+/hBBCbNq0SXh7e4vk5GSRm5srpk+fLiZOnCiEEOLOnTuicePGYurUqSInJ0fExsYKBwcHERcXJ4QQYv369cLDw0PEx8cLlUolYmNjRUZGhsjKyhKdO3cWu3btEgqFQly5ckW0a9dO/P3331J+5ESvDG7BE+nYsGHDUKdOHZiamqJr166IjY1FrVq14O7uDhMTE1SrVg1jxoxBZGSkehq5XI6///4bT58+haWlJd59913J8zt+/Djefvtt9O3bF4aGhvDw8EDDhg1x7NgxdRsvLy80btwYVapUwYQJExAeHl7kg3727duHzp07o0uXLpDL5ejUqROaNWuGP//8EwAwduxYPHnyBN7e3rC0tMRHH32kMf1HH30Ea2trmJqaYsyYMerj6Dt27MDgwYPRsmVLGBgYoF+/fjAyMsKlS5c0Pj9ra2tUrly5QF3bt2/HxIkTYWVlBWNjY4wdOxaHDh3S2J0/duxYVK5cGU2aNEGTJk3Uewh27tyJCRMmoGHDhpDJZGjSpAlq1aqF48ePo27duhgwYAAMDQ3RtGlTuLu7Izw8XPLPgOhVwJPsiHTMwsJC/drExARpaWnIycnBvHnzEBERgX/++QcAkJWVBaVSiSpVqmDx4sXYuHEjpk6dCicnJ0yePBm2traS5peWlgYbGxuNYTY2NkhNTVW/t7a21hinUCiQmZmJ2rVrF9pnUlISwsPDNf5IyM/PR/v27QEARkZG6NevH+bMmYOAgIACjx799/zS0tLU/e7duxdbt25Vj1coFOrx/562sLo+//xzyOX/21aRy+VIT09Xv39xmUxMTJCdnQ0ASElJQf369Qv0ee/ePURHR6NNmzbqYUql8o05iZH0BwOeqAJs3LgRCQkJ+OWXX2BhYYHY2Fj07dsX4r/PfnJ2doazszOePn2KJUuWYPr06di2bZukvi0tLZGUlKQxLDk5Gc7OzhrvX3xtZGSEWrVqvbRPa2treHl5Yc6cOYWOT01NxYoVK9C/f398++232L17N4yNjQudX1JSEiwtLdX9fvrppxgzZsxL513Uc8qtrKwwd+5ctG7dusC4u3fvvnS659Pevn0bjRs31hhubW2Ntm3bIiQkpMjpiV513EVPVAGysrJQqVIl1KhRAw8fPsSKFSvU4x48eIA//vgD2dnZMDY2RpUqVTS2UIvTpUsXJCYmYv/+/cjPz8fBgwcRFxcHFxcXdZvQ0FDExcUhJycHS5cuhbu7OwwMDF7aZ58+fXDs2DFERERAqVQiNzcXZ8+eRUpKCoQQCAgIwMCBAzF37lxYWlpiyZIlGtNv27YNKSkpePjwIdasWYNevXoBALy9vbF9+3ZcvnwZQghkZ2fj+PHjePLkiaRl/fDDD7FkyRLcu3cPAJCRkYE//vhD0rTe3t5YunQpEhMTIYTAtWvXkJmZCRcXFyQmJmLv3r1QKBRQKBSIjo5WnzRI9LpgwBNVgOHDhyM3NxfvvfceBg8erLF1rVKpsGnTJjg7O6Ndu3aIjIxEcHCw5L5r1aqFNWvWICQkBO3bt8cPP/yANWvWwMzMTN3Gy8sLAQEB6NSpE/Ly8jB16tQi+7S2tsaqVauwdu1adOjQAV26dMGGDRugUqmwefNmpKenY8KECZDJZJg7dy727NmD8+fPq6f38PCAn58fXF1dUb9+ffUWe/PmzTF79mzMmjULbdu2hZubG/bs2SN5WT/++GN069YNfn5+cHR0xKBBgxAdHS1pWl9fX3zwwQfw8/ODk5MTpk6ditzcXFSrVg0bNmzAwYMH4ezsjPfffx8LFy5EXl6e5LqIXgV8HjyRHti1axdCQ0OxefPmii6lgG7dumHOnDno2LFjRZdC9EbhFjyRHoiLi0O9evUqugwieoXwJDui18SMGTOwf//+AsOdnJyQkpKCpUuXlqn/0NBQBAUFFRhuY2PD28MSvYa4i56IiEgPcRc9ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeYsATERHpof8HT46vzoARVCUAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Having job experince certainly helps, as the proportion of Certified visas is higher for applicants with job experience. Let's test whether this difference is significant, assuming a level of siginificance of 5%. Please note that our populations are binomially distributed, independent, and simply randomly sampled; they furthermore satisfy the sample size inequalities. The assumptions for a two proportion z-test are therefore met. Our null hypothesis is that our sample proportions come from populations with the same ratios of Certification to Denial; the alternative is that the ratios are truly different."
],
"metadata": {
"id": "32RM_732-x7-"
},
"id": "32RM_732-x7-"
},
{
"cell_type": "code",
"source": [
"from statsmodels.stats.proportion import proportions_ztest\n",
"\n",
"def cert_ztest(col):\n",
" '''Run a two proportions independent\n",
" z-test for case_status.'''\n",
" # collect data\n",
" size=visa[col].value_counts()\n",
" a=visa.groupby(col)['case_status'].value_counts()\n",
" cert=[]\n",
" for idx in size.index.tolist():\n",
" cert.append(a[idx,'Certified'])\n",
" # run test\n",
" t,p_val=proportions_ztest(cert,size)\n",
" print('The p-value is',p_val)"
],
"metadata": {
"id": "KTyGNBDBCQPj"
},
"id": "KTyGNBDBCQPj",
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"cert_ztest('has_job_experience')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "N8kIy3TIComH",
"outputId": "6566e90d-b603-4e5f-e423-9b5a91c4508c"
},
"id": "N8kIy3TIComH",
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"The p-value is 1.2710489965841227e-206\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"With an astoundingly low p-value, we can confidently conclude that these sample proportions reflect a real-world difference for visa applications: We find that a greater proportion of applications are certified when the applicant has previous job experience."
],
"metadata": {
"id": "5zpQvyoil34u"
},
"id": "5zpQvyoil34u"
},
{
"cell_type": "code",
"source": [
"percent_status('requires_job_training')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "5TBKUwD19a4A",
"outputId": "a4e17603-7d53-4318-844b-deefcb64cee5"
},
"id": "5TBKUwD19a4A",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFTCAYAAADV8x5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVxUZf//8dewKSpKIAi4pGIh7rim5pK7hmnmFmnmQlqmlZpbJi6pUWZ2426KmZXlrmRaqZXmnpreaYtGbiAo6q0CCszM7w+/zi9CYcAZ0PH9fDy675kz17nO54wzvOdcZzOYzWYzIiIi4lCcCroAERERsT0FvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IAW8iIiIA1LAi9hZ7969mTRpkuV5amoqQ4cOpU6dOgQFBXHmzJksbfLiyJEjlv7upEWLFixatOiulnOvOXPmDEFBQRw5cqTAahg9ejQDBw60uv2ePXsICgri4sWLdqzKeqtXryYkJCRX80RFRREaGmqnisQWXAq6ALk3jB49mjVr1gDg4uKCn58fbdq0YciQIRQpUqSAq8teVFQUmzdvJiYmJse2aWlpLF26lJiYGGJjYylUqBDly5enS5cudOnSBTc3tzzXsXr1aiZPnszBgwez1Ofi8v+/aqtWrWLfvn189tlneHl54eXllaWNWM/f358dO3bw0EMPFVgNb775Jvl5SZE7fdbyqkOHDjRr1ixX8/Tr149evXrZZPliH/qLIhaNGjXi3XffJSMjg/379zNu3DhSUlKYOHFinvpLT0/H1dXVxlXmXVpaGv379+fYsWMMHTqUunXr4uHhwZEjR1iyZAkVKlSgQYMGeeo7PT39jq95enpmen7y5EkCAwMJCgq6Y5v7XX7+2zs7O+Pj41Og9Xh4eNit77uRlpZm1Y/WwoULU7hw4Vz1XbRoUYoWLZrX0iQfaIheLNzc3PDx8cHf35+OHTvSsWNHtmzZAoDZbGbhwoW0atWKGjVq0LFjR9atW2eZ99YwaUxMDM8//zw1atTgiy++AGDNmjV07NiRatWq0ahRI0aNGmWZ7+rVq7z11ls0bNiQkJAQevXqlWmo9dbQ4a5duwgNDaVWrVr07t2b06dPW16fNWsWf/75J0FBQQQFBbF69erbrt/HH3/Mvn37iI6O5vnnn6dKlSqULVuWDh06sHz5cqpWrXpX6zpmzBhSUlIsdURFRQGZh+h79+7N0qVL2bdvH0FBQfTu3TtLG7j5h/m9996jadOm1KxZk2eeeYbt27dnWp8ff/yRdu3aUb16dcLCwvj777+t+ndOSUlhxIgRhISE0Lhx40xD9mPGjMky1GwymWjevDnR0dG37e/WcPMPP/xA165dqVatGjt27MjxfQQ4fPgwXbp0oXr16nTu3Jnvv/+eoKAg9uzZk6nvfw5l/3tI/t/P76aeWbNm8cQTT1CtWjUaN27MyJEjrXpP/z1En5aWxpQpU2jUqBHVq1ene/fu7N+/P8t8v/zyC506daJ69ep06dKF//73vzkua8+ePXf8rLVo0YKoqCjGjBlD3bp1GTFiBADTp0+nbdu21KhRgxYtWvDuu+9y48YNS5//HqK/Nfz+1Vdf0apVK0JCQnj55Zcz/Tv8e4j+1nvw8ccf06RJE+rVq8eYMWNITU21tElJSWHkyJGEhITQqFEj5s+fz8CBAxk9erQ1b7Pkkrbg5Y4KFy5s2TKdOXMmmzZtYvz48VSoUIFDhw7x1ltvUaJECZo3b26ZZ8aMGYwcOZIpU6bg6urK8uXLmTJlCsOGDaNZs2akpKSwe/du4GaQvvjii3h4eDB//nxKlCjBmjVr6NOnD5s2bcLX1xe4+cdy/vz5TJ06FTc3N0aPHs2ECRNYtGgRHTp04M8//2Tbtm188sknwJ23pjZs2GD5g/tvTk5OFCtWLM/r6uzsjNFo5IMPPuDbb78FuO2ujaioKCIjI4mNjSUqKuqOW5Vjxozh9OnTvP/++/j5+fHDDz/w0ksvsXLlSipXrkx8fDyDBw+me/fuhIWF8fvvv/POO+9k989pER0dTXh4OIMHD2bPnj28/fbblC1bljZt2tC9e3eee+45EhMTLe//Tz/9xIULF+jUqVO2/U6fPp1Ro0bx8MMPU7Ro0Rzfx+TkZAYOHEi9evV45513SEhIYOrUqVatgzVyW8/mzZtZvHgxM2bM4NFHHyUpKYlffvklT8t+99132bRpE1OnTqVs2bKW93zz5s2W9xUgMjKSN998k1KlSjFr1iwGDRrEt99+i7u7+x37DgkJYezYsXf8rEVHR/PSSy+xatUqy24Dd3d3pk6dSqlSpThx4gQRERG4ubnx2muv3XE5Z8+eZePGjcyaNYvU1FSGDRvGzJkzsz1WZP/+/fj4+LBkyRLi4+N57bXXKF++vOXHzzvvvMO+ffuYNWsWvr6+zJkzh/3799O6dWvr3ljJFQW83Nbhw4fZsGEDDRs2JCUlhejoaBYvXkzdunUBKFu2LIcPH+bTTz/NFHq9evWiXbt2ludz5syhT58+9O3b1zKtWrVqAOzevZvffvuNXbt2WYYHX3vtNbZt28a6desIDw8HICMjg/Hjx1OxYkXg5r6/sWPHYjabKVy4MEWKFMHFxSXHYdqTJ09Sv379bNvczbp6eHhgMBiyrcPT0xN3d3dcXV3v2O7UqVN89dVXbN26lYCAAMuydu7cyfLly5kwYQKff/45AQEBjBs3DoPBQGBgIH///TcffvhhtusHULNmTV566SUAKlSowJEjR4iOjqZNmzaEhIRQsWJF1q5dy4svvgjcPGagRYsWeHl5ZdvvK6+8wuOPPw5Y9z7GxMSQnp7OtGnTKFq0KI8++iiDBg2yeqs5J7mtJy4uDh8fHxo3boyrqysBAQG3/TGYk5SUFJYvX87bb79t+bxMnDiR3bt38+mnn/L6669b2r788ss0adIEgGnTptGsWTNiYmLo1q3bHft3c3PL9rNWv359y3fnlsGDB1selylThoEDB7J48eJsAz4jI4N33nnH8oO5e/fudxwdu6VYsWJMnDgRZ2dnAgMDadeuHbt27WLgwIEkJyezevVqIiMjady4MQBTpkzJ9b5/sZ4CXiy2b99OSEgIGRkZZGRk0LJlS9566y2OHz/OjRs3GDBgAAaDwdI+PT2d0qVLZ+rjVngDJCUlkZCQQMOGDW+7vF9//ZXU1NQsr9+4ccMyBA83/6DdCncAX19f0tPT+d///perfdfWHASV13W1pV9//RWz2cyTTz6ZaXpaWhqPPfYYACdOnKBmzZqZarT2KOhatWpleX5rSxCgW7dufPbZZ7z44otcvnyZLVu2MGvWrBz7/ef7Yc37eOLECYKCgjLtx83tkdy2rKddu3YsXbqUli1b8vjjj9OkSRNatmyZ6wMvT506RXp6OrVr17ZMc3Z2platWpw4cSJT23+u760fOcePH8/V8v7tdp/LTZs28fHHH3Pq1ClSUlIwGo2YTKZs+wkICMg0Gubr60tSUlK281SqVAlnZ+dM89waBTl9+jTp6enUqFHD8nqRIkV45JFHrFovyT0FvFjUrVuXyZMn4+Ligq+vr2X4+NZpV3PnzrVsUd7y7yO/sxta/DeTyUTJkiX59NNPs7x2a7j8dsu49Qc6pz9Q/1a+fHn++uuvbNvc+hFg63XNDbPZjMFgYOXKlVmWmdsDofKiU6dOTJ8+nf3793Ps2DG8vLwsW5nZ+ef7kZv3MTtOTlkPE8rIyLBq3tzW4+/vz6ZNm9i1axc7d+4kMjKS2bNn8+WXX9rsTJJ//riwl39/Lg8dOsSwYcMYPHgwTZo0oXjx4mzdupXIyMhs+/n37iODwZDjj+TbfVd1w9KCo4AXC3d3dx5++OEs0wMDA3FzcyMuLu6OW+O34+3tTalSpdi1a5dlSO6fqlatyoULF3BycqJs2bJ5rtvV1RWj0Zhju9DQUGbMmMGRI0eyDL2aTCZSUlLyvK65qSMnwcHBmM1mzp8/b9li/7fAwEA2b95s+TEAN/+QW+Pf+5V/+eWXTCMknp6etGnThlWrVnHs2DE6d+5826DNjjXvY2BgIGvWrCElJcUSoP9eh1u7BRITEy2Pjx07lqtarK0HoFChQjRv3pzmzZvz4osv0rhxYw4cOGAZ6rdGuXLlcHV15cCBA5QrVw4Ao9HIoUOHspw3fujQIctnPyUlhT///JPOnTvnuIzcfNYOHDhAqVKlMg3Tx8XFWbs6NlO2bFlcXV05cuSIZZ1TU1P5888/Le+T2JYCXnJUrFgx+vXrx7vvvovZbKZevXqkpKRw6NAhnJyc6NGjxx3nHTRoENOmTaNkyZI0a9aM69evs2vXLvr160ejRo2oXbs2L7/8MiNGjKBixYpcuHCB7du306hRI8u+0pyULl2auLg4fv31V/z9/SlWrNhth1VfeOEFfvjhB/r168eQIUOoV68exYoV49ixYyxevJjXX3+dBg0a5HldS5cuzY0bN/jpp58IDg7G3d09T1v5FSpUoGPHjowZM4ZRo0ZRtWpVLl++zN69ey0Hw/Xs2ZPFixczZcoUwsLC+OOPP1i+fLlV/R86dIj58+fTtm1b9u7dy9q1a5k+fXqmNt26dWPAgAFkZGRYjtDODWs+M6GhoXzwwQeMHTuWwYMHk5iYyLx58zL1U65cOfz9/Zk1axbDhw/n7NmzzJ071y71rF69GqPRSI0aNShSpAhff/01rq6ut/3Rm50iRYrw7LPPMn36dB566CHKlCnDkiVLSEpKIiwsLFPbuXPn4uXlha+vL7Nnz8bV1dWqi8fk5rNWvnx5EhISWL9+PSEhIWzfvt2qa0bYWtGiRenSpYvlffHx8WHu3LmYTKZ8Gdl4ECngxSqvvfYaJUuWZPHixUyYMIFixYoRHBzMgAEDsp0vLCwMV1dXoqOjmT59OiVKlKBp06bAzeG7BQsWMHPmTN566y0uXryIt7c3tWvXtmor5pa2bdvy7bff8sILL3DlyhWmTZtGly5dsrRzc3MjOjqaJUuWsHLlSqZPn06hQoWoUKECXbp0sewPzeu61q5dm549ezJs2DAuX77MK6+8wpAhQ6xej3+aNm0a8+bN47333iMhIYESJUpQvXp1y3n6AQEBzJo1i2nTpvHFF19QtWpVhg8fzhtvvJFj33379uX3339n3rx5uLu7M3To0EwHCwI0aNAAPz8/AgIC8jy6ktP7WLRoUebPn8+ECRN4+umnqVixIiNGjLAcAAg3t1RnzJjBxIkT6dSpE8HBwQwbNixXV42ztp7ixYuzcOFCIiMjycjIIDAwkKioqDyt/61/hzFjxnDlyhWqVKnCwoULMx1BDzB8+HDeeecdYmNjeeSRR5g3b55VuwNy81lr0aIF/fv3Z+rUqdy4cYPGjRszdOjQPF/f4m6MGjWK1NRUXnrpJYoUKcILL7zAhQsX7uoCU3JnBrN2kIjIv1y/fp2mTZsybtw4nnrqqXxb7sWLF2nYsCFLly7N80WHCsKwYcMwm8188MEHBV3KfSUtLY0nnniC/v37069fv4Iux+FoC15ELEwmE5cuXWLp0qUUKlSI9u3bF3RJ97SMjAz+/vtvDh06RNeuXQu6nHve0aNHOXHiBDVq1CA5OZmFCxeSnJxMhw4dCro0h6SAFxGLuLg4WrZsiZ+fH9OmTbunLjVcUOLi4rKcsvhPqampNG3alOeee85myxwwYAA///zzbV8bOHAggwYNstmy8lt0dDSxsbG4uLhQuXJlli1bhp+fX0GX5ZA0RC8iko2MjAzOnj17x9dLly5t8xsFJSQkcP369du+VqJECYe7d4HYhwJeRETEAelmMyIiIg5IAS8iIuKAHO4gu0uXkjGZtNfhfuPtXYykpGsFXYbIA0vfwfuPk5OBhx4qesfXHS7gTSazAv4+pX83kYKl76Bj0RC9iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4oHwJ+MjISFq0aEFQUBB//PHHbdsYjUYmTpxIq1ataN26NStWrMiP0kRERBxSvgR8y5Yt+fTTTylduvQd22zYsIFTp07xzTff8MUXXxAVFcWZM2fyozwRERGHky8BX7duXfz9/bNts3HjRrp164aTkxNeXl60atWKTZs25Ud5IiIiDueeuZJdfHw8AQEBluf+/v6cO3cu1/14exezWU2mjDScXNxs1p9kz8fHo6BLcHj342f6fqz5fqXvoP3l5+f5ngl4W0lKumazyy36+Hjw15RnbNKXyL2g4purOH/+akGXkSv6HoojseV30MnJkO1G7T1zFL2/vz9xcXGW5/Hx8fj5+RVgRSIiIveveybg27Vrx4oVKzCZTFy8eJHvvvuOtm3bFnRZIiIi96V8Cfi3336bpk2bcu7cOfr27cuTTz4JQHh4OEeOHAGgU6dOlClThjZt2tC9e3cGDx5M2bJl86M8ERERh2Mwm80OdX9A7YMXuTPtgxcpWA/kPngRERGxHQW8iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IAW8iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IAW8iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IAW8iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IAW8iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IAW8iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IAW8iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IJf8WlBsbCyjR4/m8uXLeHp6EhkZSfny5TO1SUpKYsyYMcTHx5ORkUGDBg0YN24cLi75VqaIiIhDyLct+IiICMLCwti8eTNhYWGMHz8+S5t58+YRGBjIhg0bWL9+Pb/++ivffPNNfpUoIiLiMPIl4JOSkjh69CihoaEAhIaGcvToUS5evJipncFgIDk5GZPJRFpaGunp6ZQqVSo/ShQREXEo2Y59m0wmqzpxcsr+d0J8fDylSpXC2dkZAGdnZ3x9fYmPj8fLy8vS7uWXX2bIkCE8/vjjpKam8txzz1GnTh2rarjF27tYrtqLPGh8fDwKugSRB1p+fQezDfgqVapgMBhy7OTYsWM2KWbTpk0EBQXx8ccfk5ycTHh4OJs2baJdu3ZW95GUdA2TyWyTevSHUBzR+fNXC7qEXNH3UByNrb6DTk6GbDdqsw34LVu2WB5///33bN68mYEDBxIQEEBcXBwLFy6kTZs2ORbh7+9PQkICRqMRZ2dnjEYjiYmJ+Pv7Z2q3bNkypk6dipOTEx4eHrRo0YI9e/bkKuBFREQkh4AvXbq05fGSJUtYtWoVxYsXB6BChQpUq1aNZ555hrCwsGwX4u3tTXBwMDExMXTq1ImYmBiCg4MzDc8DlClThh9//JEaNWqQlpbGrl27aN26dV7XTURE5IFl9UF2V69eJTU1NdO069evc/WqdUMNEyZMYNmyZbRt25Zly5YxceJEAMLDwzly5AgAY8eO5eeff6Zjx4507tyZ8uXL0717d2tLFBERkf9j9QnmTz/9NH379qVPnz74+flx7tw5PvnkE55++mmr5g8MDGTFihVZpi9cuNDyuFy5ckRHR1tbkoiIiNyB1QH/xhtvUK5cOTZu3EhiYiI+Pj4899xz2sIWERG5B1kd8E5OTjz77LM8++yz9qxHREREbMDqffBms5kvv/ySPn360LFjRwD27dvHxo0b7VaciIiI5I3VAf/hhx+ycuVKunfvTnx8PAB+fn589NFHditORERE8sbqgF+zZg3z5s3jySeftFz8pkyZMpw+fdpuxYmIiEjeWB3wRqORokWLAlgCPjk5mSJFitinMhEREckzqwO+WbNmTJs2jbS0NODmPvkPP/yQJ554wm7FiYiISN5YHfBjxozh/Pnz1KlTh6tXrxISEkJcXBwjRoywZ30iIiKSB1afJlesWDFmz57NhQsXiIuLw9/fHx8fH3vWJiIiInmUbcCbzWbL/vZbt4718vKyXEP+1rScbhcrIiIi+SvbgK9Tpw4HDhwAbn/r2Fs/AGx1u1gRERGxjWwD/quvvrI8/uetY0VEROTelm3A//N+7f+8dayIiIjc26w+yO7y5cssXryYY8eOkZKSkum1Tz/91OaFiYiISN5ZHfDDhw8nLS2N9u3b4+7ubs+aRERE5C5ZHfAHDx5k9+7duLm52bMeERERsQGrz28LCgri3Llz9qxFREREbMTqLfjHHnuMAQMG0KVLF0qWLJnpta5du9q8MBEREck7qwN+//79lCpVip9++inTdIPBoIAXERG5x1gd8J988ok96xAREREbytU1Zi9dusTatWv56KOPAEhISNB+eRERkXuQ1QG/d+9e2rVrx4YNG5g9ezYAJ0+eZMKECfaqTURERPLI6oCfOnUqM2fOZNGiRbi43BzZr1mzJocPH7ZbcSIiIpI3Vgf82bNnadiwIYDlpjOurq4YjUb7VCYiIiJ5ZnXABwYGsn379kzTdu7cyaOPPmrzokREROTuWH0U/ejRoxk4cCDNmzfn+vXrjB8/nq1btzJnzhx71iciIiJ5YHXA16pVi/Xr17N+/XqeeeYZ/P39WblyJX5+fvasT0QecKb0NCq+uaqgyxCxCVN6Wr4ty+qAByhVqhTh4eH2qkVEJAsnVzc6Dl9X0GWI2MSG9zsBN/JlWVYF/PHjx4mKiuLnn3/m8uXLeHp6UrduXV555RUqVapk7xpFREQkl3IM+L///pvu3btTv359Xn/9dXx9fUlISODbb7+le/furFy5kooVK+ZHrflOQ4PiaPJzeFBEClaOAT9//nw6depEREREpuldu3Zl8uTJLFy4kGnTptmtwIKkoUFxNPk5PCgiBSvH0+T27dtHv379bvta37592bNnj82LEhERkbuTY8BfvHiRMmXK3Pa1gIAALl26ZPOiRERE5O5YdaGbW1euyzKzk9MdXxMREZGCk+M++OvXr/Pcc8/d9jWz2cyNG9qfJyIicq/JMeCnTJmS7evdunWzWTEiIiJiGzkGfEZGBk2bNqVUqVL5UY+IiIjYQI4Bf+TIEebMmUPx4sVp3rw5TZs2pXbt2tr3LiIicg/LMeAnTZoEwO+//84PP/zAjBkziI2N5bHHHqNZs2Y0adIELy8vuxcqIiIi1rP6WvRBQUEEBQXx4osvcvXqVbZv386PP/7Ie++9R0BAAEOGDKFJkyb2rFVERESslKubzdzi4eFBhw4d6NChAwCHDx+2aVEiIiJyd7IN+JUrV1rVSdeuXW1SjIiIiNhGtgG/bl3m67AfOHCAkiVL4u/vT3x8PBcuXKB27doKeBERkXtMtgH/ySefWB5PnjyZli1b8sILL1imffzxx5w+fdqqBcXGxjJ69GjL7WYjIyMpX758lnYbN25k7ty5mM1mDAYD0dHRlCxZ0rq1EREREcDKS9UCrF+/nt69e2ea1qtXryxb+XcSERFBWFgYmzdvJiwsjPHjx2dpc+TIEWbNmsXixYuJiYnhs88+w8PDw9oSRURE5P9YHfAlS5Zk69atmaZt27bNqlPkkpKSOHr0KKGhoQCEhoZy9OhRLl68mKndkiVL6NevHz4+PsDNg/kKFSpkbYkiIiLyf6w+in7cuHEMGTKERYsW4efnR3x8PMePH+fDDz/Mcd74+HhKlSqFs7MzAM7Ozvj6+hIfH5/pB8KJEycoU6YMzz33HCkpKbRu3ZqXXnopVxfV8fYuZnVbkQeRj49GxUQKUn59B60O+MaNG/Pdd9/x448/kpiYSPPmzWnWrBkPPfSQzYoxGo38/vvvREdHk5aWxoABAwgICKBz585W95GUdA2TyWyTevSHUBzR+fNXC7qEXNH3UByNrb6DTk6GbDdqc3UevJeXFw0aNCAhIYFatWpZPZ+/vz8JCQkYjUacnZ0xGo0kJibi7++fqV1AQADt2rXDzc0NNzc3WrZsyeHDh3MV8CIiIpKLffBxcXH07NmT9u3b07dvXwA2bdrEm2++meO83t7eBAcHExMTA0BMTAzBwcFZ9t+HhoayY8cOzGYz6enp7N69m8qVK+dmfURERIRcBPz48eNp3rw5Bw4cwMXl5oZ/48aN2blzp1XzT5gwgWXLltG2bVuWLVvGxIkTAQgPD+fIkSMAPPnkk3h7e9OhQwc6d+5MpUqVdI69iIhIHlg9RH/kyBEWLFiAk5OT5aA3Dw8Prl61bl9CYGAgK1asyDJ94cKFlsdOTk6MGTOGMWPGWFuWiIiI3IbVW/De3t6cPHky07Tjx49n2Y8uIiIiBc/qgO/Xrx+DBg1i1apVZGRkEBMTw+uvv054eLg96xMREZE8sHqIvmvXrnh6evLFF1/g7+/PmjVrePXVV2nVqpU96xMREZE8yNVpcq1atVKgi4iI3AeyDfi1a9dazkHP7taxOtJdRETk3pJtwH/11VeWgL/TTWUMBoMCXkRE5B6TbcD37NnT8njx4sW4urravSARERG5e9keRf/GG29YHjdo0MDuxYiIiIhtZLsF7+Pjw7JlywgMDMRoNLJ7927M5qw3cmnYsKHdChQREZHcyzbgp02bxn/+8x+WLl1Keno6Y8eOzdLGYDCwZcsWuxUoIiIiuZdtwNeuXZslS5YA0Lp1a7799tv8qElERETuktVXslO4i4iI3D+y3YLv378/ixYtAiAsLMxyk5l/+/TTT21fmYiIiORZtgF/6xx4gG7dutm9GBEREbGNbAO+Y8eOlscVK1akZs2aWdocPnzY9lWJiIjIXbF6H3zfvn1vO33AgAE2K0ZERERsI8ebzZhMJsxmc6b/bjl16hTOzs52LVBERERyL8eAr1KlCgaDAbPZTJUqVTK95uTkxKBBg+xWnIiIiORNjgG/ZcsWzGYzvXv3ZtmyZZbpBoMBLy8vChcubNcCRUREJPdyDPjSpUtjNBopU6YMPj4+uLm55UddIiIichesOsjO2dmZM2fOYDKZ7F2PiIiI2IDVR9EPHjyYCRMmcPbsWYxGIyaTyfKfiIiI3FtyHKK/ZWmes0oAABxQSURBVNy4cQCsW7fOMs1sNmMwGDh27JjtKxMREZE8szrgdcc4ERGR+4fVAV+6dGng5nnxFy5cwNfX125FiYiIyN2xeh/8lStXGD58ODVq1KBNmzbAza36Dz74wG7FiYiISN5YHfAREREUK1aMrVu34urqCkBISAhff/213YoTERGRvLF6iH7Xrl1s374dV1dXy21jvby8SEpKsltxIiIikjdWb8F7eHhw6dKlTNPi4uLw8fGxeVEiIiJyd6wO+G7dujF06FB2796NyWTi4MGDjBo1ip49e9qzPhEREckDq4fow8PDKVSoEJMmTSIjI4OxY8fSo0cP+vTpY8/6REREJA+sDniDwUCfPn0U6CIiIveBHIfof/75Z957773bvjZ9+nQOHTpk86JERETk7uQY8PPnz6devXq3fa1+/frMmzfP5kWJiIjI3ckx4I8dO0aTJk1u+1qjRo3473//a/OiRERE5O7kGPDXrl0jPT39tq9lZGSQnJxs86JERETk7uQY8BUrVmTHjh23fW3Hjh1UrFjR5kWJiIjI3ckx4F944QUiIiL45ptvLPd+N5lMfPPNN0yYMIG+ffvavUgRERHJnRxPk+vYsSMXLlxg1KhRpKen4+npyeXLl3F1dWXo0KGEhobmR50iIiKSC1adB9+3b1+6devGwYMHuXz5Mp6enoSEhFCsWDF71yciIiJ5YPWFbooVK3bHo+lFRETk3mL1tehFRETk/pFvAR8bG0uPHj1o27YtPXr04O+//75j27/++ouaNWsSGRmZX+WJiIg4lHwL+IiICMLCwti8eTNhYWGMHz/+tu2MRiMRERG0atUqv0oTERFxOFYHfOfOnW87vUuXLjnOm5SUxNGjRy1H3IeGhnL06FEuXryYpe2CBQto3rw55cuXt7Y0ERER+RerA/7kyZNZppnNZs6cOZPjvPHx8ZQqVQpnZ2cAnJ2d8fX1JT4+PlO73377jR07dvDCCy9YW5aIiIjcRo5H0Y8cORKA9PR0y+Nbzp49S6VKlWxSSHp6Om+99RbTpk2z/BDIC29vnbonkh0fH4+CLkHkgZZf38EcA75cuXK3fQxQu3Zt2rVrl+NC/P39SUhIwGg04uzsjNFoJDExEX9/f0ub8+fPc+rUKV588UUArly5gtls5tq1a0yePNnqFUpKuobJZLa6fXb0h1Ac0fnzVwu6hFzR91Acja2+g05Ohmw3anMM+FdeeQWAmjVr5vk8eG9vb4KDg4mJiaFTp07ExMQQHByMl5eXpU1AQAB79uyxPI+KiiIlJYVRo0blaZkiIiIPMqsvdNOkSRP++usvfvvtN1JSUjK91rVr1xznnzBhAqNHj2bOnDkUL17ccgpceHg4Q4cOpXr16rksXURERO7E6oCfN28es2fPpnLlyhQuXNgy3WAwWBXwgYGBrFixIsv0hQsX3rb9kCFDrC1NRERE/sXqgP/4449ZsWIFlStXtmc9IiIiYgNWnyZXuHBh3ftdRETkPmF1wL/66qu8/fbbJCYmYjKZMv0nIiIi9xarh+hHjx4NkGk/utlsxmAwcOzYMdtXJiIiInlmdcBv2bLFnnWIiIiIDVkd8KVLlwbAZDJx4cIFfH197VaUiIiI3B2r98FfuXKF4cOHU6NGDdq0aQPc3Kr/4IMP7FaciIiI5I3VAR8REUGxYsXYunUrrq6uAISEhPD111/brTgRERHJG6uH6Hft2sX27dtxdXXFYDAA4OXlRVJSkt2KExERkbyxegvew8ODS5cuZZoWFxeHj4+PzYsSERGRu2N1wHfr1o2hQ4eye/duTCYTBw8eZNSoUfTs2dOe9YmIiEgeWD1EHx4eTqFChZg0aRIZGRmMHTuWHj160KdPH3vWJyIiInlgdcAbDAb69OmjQBcREbkPWD1Ev2DBAg4fPpxp2uHDh+94NzgREREpOFYH/NKlS6lUqVKmaYGBgXz88cc2L0pERETujtUBn56ejotL5hF9V1dX0tLSbF6UiIiI3B2rA75q1ap89tlnmaYtX76cKlWq2LwoERERuTtWH2Q3ZswY+vbty/r16ylbtiynT5/m/PnzREdH27M+ERERyQOrAt5sNlO4cGE2b97M999/T3x8PG3atKF58+YULVrU3jWKiIhILlkV8AaDgY4dO3LgwAGefPJJe9ckIiIid8nqffDBwcHExsbasxYRERGxEav3wdevX5/w8HCefvpp/Pz8LDecAejatatdihMREZG8sTrgDxw4QOnSpdm7d2+m6QaDQQEvIiJyj7E64D/55BN71iEiIiI2ZPU+eIBLly6xdu1aPvroIwASEhI4d+6cXQoTERGRvLM64Pfu3Uu7du3YsGEDs2fPBuDkyZNMmDDBXrWJiIhIHlkd8FOnTmXmzJksWrTIcsnamjVrZrkBjYiIiBQ8qwP+7NmzNGzYEMByBL2rqytGo9E+lYmIiEieWR3wgYGBbN++PdO0nTt38uijj9q8KBEREbk7Vh9FP3r0aAYOHEjz5s25fv0648ePZ+vWrcyZM8ee9YmIiEgeWL0FX6tWLdavX0+lSpV45plnKFOmDCtXrqRGjRr2rE9ERETyIMct+NTUVObOncsff/xB1apVGThwIG5ubvlRm4iIiORRjlvwkyZNYtu2bVSsWJHNmzcTGRmZH3WJiIjIXcgx4Ldv386iRYsYOXIkCxcuZNu2bflRl4iIiNyFHAM+JSUFX19fAPz9/bl27ZrdixIREZG7k+M+eKPRyO7duzGbzQBkZGRkeg5Yzo8XERGRe0OOAe/t7c3YsWMtzz09PTM9NxgMbNmyxT7ViYiISJ7kGPBbt27NjzpERETEhnJ1NzkRERG5PyjgRUREHJACXkRExAEp4EVERByQAl5ERMQBWX03ubsVGxvL6NGjuXz5Mp6enkRGRlK+fPlMbWbPns3GjRtxcnLC1dWV119/nSZNmuRXiSIiIg4j3wI+IiKCsLAwOnXqxLp16xg/fjxLly7N1KZGjRr069cPd3d3fvvtN3r16sWOHTsoXLhwfpUpIiLiEPJliD4pKYmjR48SGhoKQGhoKEePHuXixYuZ2jVp0gR3d3cAgoKCMJvNXL58OT9KFBERcSj5EvDx8fGUKlUKZ2dnAJydnfH19SU+Pv6O86xdu5Zy5crh5+eXHyWKiIg4lHwbos+NvXv38uGHH7J48eJcz+vtXcwOFYk4Dh8fj4IuQeSBll/fwXwJeH9/fxISEjAajTg7O2M0GklMTMTf3z9L24MHD/LGG28wZ84cKlasmOtlJSVdw2Qy59zQCvpDKI7o/PmrBV1Cruh7KI7GVt9BJydDthu1+TJE7+3tTXBwMDExMQDExMQQHByMl5dXpnaHDx/m9ddf5z//+Q9Vq1bNj9JEREQcUr6dBz9hwgSWLVtG27ZtWbZsGRMnTgQgPDycI0eOADBx4kSuX7/O+PHj6dSpE506deL333/PrxJFREQcRr7tgw8MDGTFihVZpi9cuNDyeNWqVflVjoiIiEPTlexEREQckAJeRETEASngRUREHJACXkRExAEp4EVERByQAl5ERMQBKeBFREQc0D15LXoREbk/FS3kROeG3vh6umEwFHQ1955ffz2KyWTK9XwuLm489JAPzs7Wx7YCXkREbKZzQ28qlPbBydkdJXxWAQGeZGTkLuDNZjPJyVe4dOk8JUtmvYfLnWiIXkREbMbX003hbmMGg4GiRYuTkZGWq/kU8CIiYjMGAwp3OzDk4T3VEL2IiNhNlUd8KOruZvN+k1PTOPrneZv360gU8CIiYjdF3d3oOHydzfvd8H4nq9tmZGSwduUn7N65DVdXN5ycnKhSLYQez4Xj4mJ9DG76aiUNH29JiRIPAbDlm/Wkpd2gfWg3AObPjuSv479RpmwFGjVpye/HjhD2/KBcrdfGjRvYuXM7b7/9bq7mux0FvIiIOLQFc94lPe0GkyPn4e5eBKPRyA9bvyYjPd2qgDeZTBgMBjZ9tYqq1etYAr5lm6csbf53+SL79mxnwZL1ODnd3Ptdp15j+6yQlRTwIiLisM7Fn+HnvTv4z7wvcHcvAoCzszMtWocCsGHt5+zb/SNGkxEvr5L0HzgCz4e8WPXlEs6e/puUlGSSLiTyeNPWXLqYxH/en4CrqxuDX32T3bu+58b1VJ7u1ocpE4aTduM640YOpEnzNhQt6sHBn3fz6ogJAPz4/Wa2bF6HizMULVqMESNGU65cedLT0/ngg3c5cGA/JUp48sgjQTZbdwW8iIg4rL9jj1PKrzRFi3lkeW3Hj9+SeC6OCVNn4+TkxHeb1/HZ0rm8/OqbAJz48zfefnc+HsVLALBty1cMHT6BsuUq3Oxg183/c3cvwhtjp/HW6EFMnb4QgB+3bbIs57djh9mz83vGTZpJcEVftm/fzrRpk5g7dzHr1q0iPj6OZctWkJGRweDB4fj7W38qXHYU8CIi8kA6sH8nsSf+YNzIgQCYTEbcixS1vF6zdgNLuN+Ng/t3cerkCSLGDKaQmzMmk5mrV6/crOHAz7RvH4qLiwsuLi60bduew4cP3fUyQQEvIiIOrHyFSiScO0vytatZt+LNZjo/04tmLdrfdt7ChQvbpAaz2UyzJ9rTtWdfKpXN/YVu8krnwYuIiMPy8y9DSN2GLFowg9TUFABMRiPbtnxF7bqN+G7zOpKvXQUgPT2Nk3+fuGNf7u5FSU1JznUNtes2ZMeP35CUdPO0PqPRyG+/HQOgTp26bNq0kYyMDG7cuM63327Krqtc0Ra8iIjYTXJqWq5OactNv9YaNHg0q1cs5a1Rg3BxccFkMlOrdn26h4Vz9er/eDvidQDMZhMt23bi4fKBt+2nTYenWTDnXdzcCjH4//bTW6NylZp0e7Y/MyLfxNXZQHp6Ok880YrKlYN56qkuHD9+nF69ulGihCeVK1fl0qUkq/vOjsFsNptt0tM9IinpGiaTbVbJx8fDLudvihSUDe934vz5qwVdRq7oe3h/GfZ0aYoVt81BYo7oboboz507iZ/fw5bnTk4GvL2L3bG9huhFREQckAJeRETEASngRUREHJACXkRExAEp4EVERByQAl5ERMQB6Tx4ERGxmxqPeFPI3TZXhPunG6nXOfxnzueLv/bys7i6uuHq6sr169cpU7Y8oZ178mhQtTwve+XyaMqULc9jjZ/I1XzzZ0VSv25Nnn66e56XnRsKeBERsZtC7oX5a8ozNu+34purrG77zxvE7NvzI9OnjmHkuHep9EhwnpbdtWffPM2X3xTwIiLywKjXoCkn/vyNjeu/4OWhb/Ll54v47egvZGSkU7ZcRfqGv05hd3fmz4rE1c2Nc3GnSUo6zyOPVmHgK6MxGAzMnxVJhcBHadP+aTLS0+/Yx8Wk88yb9Q6XL13Ex7cUBkP+7hXXPngREXmgBD4SzJnTJ4lZv5wiRYsy6Z25TJ3+EQ95lWT9ms8s7c6cimXE2HeInLGY2L/+4L+Hf87SV3Z9fBI9i8pVavDuzGj69B/Kb0d/ybd1BG3Bi4jIA+fm5cwP7NtJamoKe3f9CEBGRjrlHv7/16GvU78xbm5uAJSv8AiJCXFZesquj6P/PUTvvq8A4FsqgKrVa9tvlW5DAS8iIg+Uv47/Tply5TmfeI4XBrx6x+B1dXWzPHZycsZoNGZpY4Zs+yhIGqIXEZEHxs/7fmLLN+vp0LE7tes24uuYlaTduAFAamoKZ8+czFV/2fVRpVoIP35/8/aviQnx/HrkgA3XJGfaghcREbu5kXo9V0e856Zfa/3n/QmW0+RKl3mYEWOnUemRYMpXeITVX37M+DEvYTA4YTDA092ep3SZh3Pu9P907PzsHfvo3Xcw82a9w87tW/Hx9SO4as28rGqe6Xax2dBtKsXR6HaxYm+6XWz2dLtYERERuSsKeBEREQekgBcREXFACngREbEZs/nW/4gt5eVwOQW8iIjYTOLlNEzGVIW8DZnNZpKTr+Di4pZz43/QaXIiImIza3cl0bkh+Hq6YTAUdDX3nri4/2Ey5f4oehcXNx56yCd38+R6KSIiIneQfMPEp9+fL+gy7ln5eapqvg3Rx8bG0qNHD9q2bUuPHj34+++/s7QxGo1MnDiRVq1a0bp1a1asWJFf5YmIiDiUfAv4iIgIwsLC2Lx5M2FhYYwfPz5Lmw0bNnDq1Cm++eYbvvjiC6Kiojhz5kx+lSgiIuIw8mWIPikpiaNHjxIdHQ1AaGgokydP5uLFi3h5eVnabdy4kW7duuHk5ISXlxetWrVi06ZNDBgwwOplOTnZdqeP70PuNu1PpKDZ+juSH/Q9FEdiq+9gTv3kS8DHx8dTqlQpnJ2dAXB2dsbX15f4+PhMAR8fH09AQIDlub+/P+fOncvVsh56qKhtiv4/i8a1sWl/IgUtu0tb3qv0PRRHkl/fQZ0mJyIi4oDyJeD9/f1JSEiw3EvXaDSSmJiIv79/lnZxcXGW5/Hx8fj5+eVHiSIiIg4lXwLe29ub4OBgYmJiAIiJiSE4ODjT8DxAu3btWLFiBSaTiYsXL/Ldd9/Rtm3b/ChRRETEoeTb7WJPnDjB6NGjuXLlCsWLFycyMpKKFSsSHh7O0KFDqV69OkajkUmTJvHTTz8BEB4eTo8ePfKjPBEREYficPeDFxERER1kJyIi4pAU8CIiIg5IAS8iIuKAFPAiIiIOSAEvBaZFixaEhoZmunViixYt+OOPPwqwKpEHx5gxY3jvvfcyTXvhhRf47LPPCqgisSUFvBSolJQU1q1bV9BliDyQxo4dy9dff80vv/wCwPLlyzEYDDz77LMFXJnYggJeCtQrr7zCrFmzSEtLK+hSRB44Hh4eTJ48mTFjxhAbG8vcuXOZMmUKBsP9d0MiyUoBLwWqWrVqVK1alc8//7ygSxF5IDVu3Jh69erRtWtXhgwZkumGX3J/U8BLgXvttddYuHAhycnJBV2KyAOpf//+ODs707Vr14IuRWxIAS8FrmLFijRr1ozo6OiCLkXkgeTk5KRheQeUL/eDF8nJkCFD6NKli+WOgyIicne0BS/3BD8/Pzp16sTly5cLuhQREYegm82IiIg4IG3Bi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4IAW8yH1o3rx5vPnmm/m2vPHjxzN79myr2gYFBXHy5Ek7V5RVXFwcISEhVl1LITdtRe5XOk1ORGwqKCiIb775hocfftjqeVavXs2KFSt0TwIRG9IWvIidZGRkPFDLtTdtbYvkjgJexIZatGjBggUL6NixI7Vq1WL//v307NmTunXr8tRTT7Fnzx5L29OnT9OrVy9CQkLo27cvkyZNYsSIEQDs2bOHpk2bZul7586dAERFRVnanjlzhqCgIFasWEHz5s3p06cPACtXrqR9+/bUq1eP/v37c/bsWQDMZjNTp06lYcOG1K5dm44dO/LHH39ku16jR4/mgw8+sDz/8ssvad26NfXr12fQoEEkJCRkav/DDz/QsmVLGjRoQGRkJCaT6Y59nzhxgoiICA4dOkRISAh169a1LDMiIoLw8HBq1arFnj17+P777+ncuTO1a9emWbNmREVFWfq59T7c+oHTu3dvZs6cSc+ePQkJCaFfv35cvHgx120B1q5dyxNPPEGDBg2YPXt2pn8LkXuVAl7Exr766isWLFjAli1bGDx4MC+99BJ79+5l1KhRDB061BIcI0aMoGrVquzZs4eXX36ZNWvW3NVy9+3bx8aNG1m0aBHfffcd8+fPZ9asWezatYs6deowfPhwAHbs2MH+/fvZvHkzP//8MzNnzsTT09Pq5ezatYv333+fmTNnsmPHDkqXLs2wYcMytfn2229ZtWoVa9asYevWraxateqO/QUGBjJx4kRq1arFwYMH2b9/v+W1mJgYBg0axIEDB6hTpw7u7u5ERkayf/9+5s+fz+eff8533313x75jYmKYNm0au3btIj09ncWLF+e67fHjx5k4cSLvvfce27dv59q1a1l+0IjcixTwIjbWu3dv/P39WbduHU2bNqVZs2Y4OTnRuHFjqlWrxg8//EBcXBxHjhzh1Vdfxc3NjXr16tGiRYu7Wu6QIUMoUqQIhQsXZvny5bz44osEBgbi4uLCoEGDOHbsGGfPnsXFxYXk5GT++usvzGYzgYGB+Pr6Wr2cDRs28Mwzz1C1alXc3NwYNmwYhw4d4syZM5Y24eHheHp6EhAQwPPPP09MTEye1qlly5bUqVMHJycnChUqRIMGDQgKCsLJyYnKlSvz5JNPsnfv3jvO36VLFypUqEDhwoVp164dx44dy3XbTZs28cQTT1C3bl3c3NwYOnSo7rwm9wXdTU7Exvz9/YGbR2pv2rSJbdu2WV7LyMigQYMGJCYmUrx4cYoUKWJ5LSAggPj4+Dwv18/Pz/I4Li6OqVOnEhkZaZlmNptJSEigYcOGPPfcc0yaNImzZ8/Spk0bRo0aRbFixaxaTmJiIlWrVrU8L1q0KJ6eniQkJFCmTBng/78HAKVLlyYxMTFP6/TPfgB++eUXpk+fzp9//kl6ejppaWm0a9fujvP7+PhYHru7u5OSkpLrtomJiZneW3d391yNeIgUFAW8iI3d2rrz9/enU6dOvP3221nanD17litXrpCSkmIJ+bi4OMu87u7uXL9+3dLeaDRm2iec3XJvLXvQoEE89dRTt237/PPP8/zzz5OUlMRrr73GRx99xGuvvWbV+vn6+lr25wOkpKRw+fJlSpUqZZkWHx/PI488YlmvnEYIrN0iHj58OL169eKjjz6iUKFCTJkyhUuXLlk1b175+voSGxtreX79+nXd9VDuCxqiF7GTp556im3btrF9+3aMRiM3btxgz549nDt3jtKlS1OtWjWioqJIS0tj//79mbb0K1SowI0bN/j+++9JT09n7ty5pKWlWb3snj17smDBAv78808Arl69ytdffw3A4cOH+eWXX0hPT8fd3R03NzecnKz/UxAaGsrq1as5duwYaWlpzJgxgxo1ali23gEWLVrE//73P+Lj41m6dCkdOnTItk9vb28SEhJyXMfk5GRKlChBoUKFOHz4cJ6H/nOjbdu2bN26lQMHDpCWlkZUVBQ6u1juB9qCF7ETf39/5syZw3vvvcfw4cNxcnKiRo0aTJgwAYD333+fUaNG0aBBA2rVqkXnzp25cuUKAB4eHkRERDBu3DiMRiMDBgzINEyck9atW5OcnMywYcM4e/YsHh4eNGrUiPbt25OcnMzUqVM5c+YMbm5uPP744/Tv39/qvhs1asSrr77KkCFDuHLlCiEhIZmOsIeb+867dOnCtWvXePrpp+natWu2fT722GNUqlSJxx9/HIPBkOlsg3+KiIggMjKSSZMmUb9+fdq3b295z+zlkUce4a233mLYsGGkpqby/PPP4+XlhZubm12XK3K3dKEbkXtEVFQUJ0+eZPr06QVdShYjR46kXLlyvPLKKwVdSoFLTk6mXr16bN68mbJlyxZ0OSJ3pCF6EclWRkYGsbGxmYbgHzRbt24lNTWVlJQUIiMjefTRRx/o90PuDxqiFxEAnnzySeLi4rJMT0lJ4fHHH6dt27Z31f/48ePZsGFDlukdO3Zk0qRJd9W3vW3ZsoWRI0diNpupVq0aM2bM0Klycs/TEL2IiIgD0hC9iIiIA1LAi4iIOCAFvIiIiANSwIuIiDggBbyIiIgDUsCLiIg4oP8HlQU4epQg56YAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"visa.groupby('requires_job_training')['case_status'].value_counts(normalize=True)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "odC2i4ZsDgVI",
"outputId": "fe6d20bc-ebdb-4971-927d-1a5454ae2474"
},
"id": "odC2i4ZsDgVI",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"requires_job_training case_status\n",
"N Certified 0.666459\n",
" Denied 0.333541\n",
"Y Certified 0.678849\n",
" Denied 0.321151\n",
"Name: case_status, dtype: float64"
]
},
"metadata": {},
"execution_count": 43
}
]
},
{
"cell_type": "markdown",
"source": [
"Unlike the previous feature, the requirement of job training has very close proportions: 66.6% Certified (N) versus 67.9% (Y). There is apparently no difference in ```case_status``` based on the job training requirement. To confirm, we can run another two proportion z-test. (As before, the assumptions for the test are met.) We set the level of siginificance at 0.05. Our null hypothesis is that our sample proportions come from populations with the same ratios of Certification to Denial; the alternative is that the ratios are truly different."
],
"metadata": {
"id": "VTl-G-WyZvG5"
},
"id": "VTl-G-WyZvG5"
},
{
"cell_type": "code",
"source": [
"cert_ztest('requires_job_training')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GpPEclpDDRu6",
"outputId": "98d68242-15c8-46ee-fd65-df8b24e7c51b"
},
"id": "GpPEclpDDRu6",
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"The p-value is 0.1787590242870024\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Our p-value exceeds 0.05, so we fail to reject the null hypothesis. We must conclude that there is no significant difference between the two proportions. Put another way, ```requires_job_training``` does not impact ```case_status``` on its own."
],
"metadata": {
"id": "UFd8cU8FarTH"
},
"id": "UFd8cU8FarTH"
},
{
"cell_type": "code",
"source": [
"percent_status('region_of_employment')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "Pne0v1rv9egO",
"outputId": "525506ee-cc9e-426a-bc70-f25bf72ad619"
},
"id": "Pne0v1rv9egO",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFTCAYAAADV8x5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1hT598G8DthqBUcIAiuWrUgIAIOcNStSBUEVBxUq1ipdqh1VbRWQK1UbW2r1r1n6x4466ijbrFCFa0oRREEZSjKTPK8f/CanykrQBI0vT/X5SU55znnfM/DCXfOypEIIQSIiIhIr0grugAiIiLSPAY8ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeYsATacDQoUMxc+ZM5eusrCyMHTsWLVu2hK2tLeLj4wu0KYuoqCjl/IrStWtXrF69ulzL0aX4+HjY2toiKiqqoktRcezYMbi7u8Pe3h5BQUEVXU6RXtf+o4pnWNEFkO4EBQVh9+7dAABDQ0NYWVnB3d0dY8aMwVtvvVXB1RVv0aJFOHLkCMLDw0tsm5ubiw0bNiA8PByxsbGoVKkSGjZsiL59+6Jv374wNjYucx27du3CrFmzcO3atQL1GRr+7+20c+dOXL58GVu2bIGZmRnMzMwKtKF81tbWOHv2LGrWrFnRpaj46quv4Ofnh6FDh7727w99UtR7jEqPf23+Y9q1a4d58+ZBJpPhypUrmD59OjIzMxEaGlqm+eXl5cHIyEjDVZZdbm4uPvroI0RHR2Ps2LFo1aoVTE1NERUVhXXr1uGdd96Bm5tbmeadl5dX5LgaNWqovI6Li0Pjxo1ha2tbZJs3naZ+9wYGBrCwsNBARZrz7NkzpKen47333kPt2rUruhyiMuEh+v8YY2NjWFhYwNraGl5eXvDy8sLx48cBAEIIrFy5Et27d0fz5s3h5eWFvXv3Kqd9eSgwPDwcH374IZo3b45ff/0VALB79254eXmhWbNmaNeuHaZMmaKcLiMjA19//TXatm0LFxcXDBkyROVw4q5du+Di4oLz58/D09MTzs7OGDp0KB48eKAcv3jxYty5cwe2trawtbXFrl27Cl2/9evX4/Lly1i7di0+/PBD2Nvbo379+ujVqxd++eUXODg4lGtdp06diszMTGUdixYtAqB6iH7o0KHYsGEDLl++DFtbWwwdOrRAGyD/w8j8+fPRsWNHODk5oV+/fjhz5ozK+pw+fRoeHh5wdHSEv78//vnnH7V+z5mZmZg0aRJcXFzQvn17lUP2U6dOxahRo1TaKxQKdO7cGWvXri10fhcvXoStrS1OnTqF/v37o1mzZjh79myJ/QgA169fh6+vLxwdHeHj44NTp07B1tYWFy9eVOnrV7eJy5cvw8/PD46OjmjXrh3mzJmD3Nxc5fihQ4ciJCQECxYsgJubG9q2bYu5c+dCoVCo1T9Pnz7FlClT0Lp1azRv3hzDhw/HnTt3lOvaunVrAMCwYcNUai1OREQEhgwZAicnJ3To0AHBwcF4/vy5Ss3BwcH49ttv4erqijZt2mD9+vXIzc1FaGgoWrVqhc6dO2PPnj3KaV72zf79+zF48GA4OjrCw8MDZ8+eLbaW4vpvz549cHNzU+lPAJg4cSJGjx4NIP+IlKenJ3bv3o2uXbvC2dkZU6dORW5uLjZv3oxOnTrBzc0NYWFhKn1e0jb9cjs6f/48/Pz84OTkhL59++LGjRvK8UW9x6gMBP1nTJkyRXz88ccqw2bNmiVcXV2FEEIsWLBAuLu7i1OnTon79++Lffv2CScnJ3Hy5EkhhBAPHjwQNjY2okuXLuLQoUPi/v37IjExUWzdulU0a9ZMrFmzRty9e1dERUWJlStXCiGEUCgUYtCgQSIwMFBcv35d/PPPP+KHH34QLi4uIikpSQghxM6dO4W9vb0YNmyYuH79uoiOjhbe3t5ixIgRQgghsrKyxLfffit69uwpkpOTRXJyssjKyip0Hb28vERAQECJfVGWdX348KFYt26dcHJyUtbx/PlzIYQQQ4YMEaGhoUIIIdLS0kRQUJAYOHCgSE5OFmlpaQXaCCHEhAkThJ+fn7h06ZK4f/++2Lhxo3BwcBDR0dFCCCESEhJEs2bNxMyZM0VMTIw4cOCA6NChg7CxsREPHjwoct26dOkiXFxcxJIlS8S9e/fE1q1bhYODgzhy5IgQQoiIiAhhZ2en7H8hhDh9+rRwcHAQKSkphc7zwoULwsbGRnh6eoozZ86I+/fvi5SUlBL78fnz58LNzU1MmDBB/P333+Ls2bOiV69ewsbGRly4cEGlryMjI4UQQjx69Eg4OTmJr7/+WsTExIgTJ06Idu3aibCwMGU9Q4YMES1atBA//vijuHfvnjhw4ICws7MT+/fvL/F3L4QQo0ePFj179hSXLl0St27dEqNGjRIdO3YUWVlZIicnR9y5c0fY2NiII0eOiOTkZJGTk1Ps/G7duiWcnZ3F6tWrRWxsrPjzzz/FgAEDxJgxY1RqdnFxEQsXLhSxsbFi9erVwsbGRnz00Udi3bp1yveGg4OD8nfzsm86dOggDhw4IGJiYsTMmTOFo6OjePToUZn6LysrS7Rq1UocOHBAWduzZ89E8+bNxW+//SaEEGLhwoXC2dlZfPbZZ+L27dvi9OnTwtnZWYwYMUIEBQWJmJgYcfToUWFvby8OHz6snE9J2/TL7ahfv37i/PnzIiYmRowYMUJ4eHgIhUIhcnJyinyPUekx4P9D/h3w169fF66urmLcuHHixYsXwtHRUVy+fFllmtmzZ4uRI0cKIf73h2T16tUqbTp06CDmz59f6DLPnTsnnJ2dCwRynz59xIoVK4QQ+QFvY2Mj7t69qxy/d+9e4eDgIBQKhRAi/w9O7969S1zH5s2bi1mzZhXbpjzrunPnTuHs7Fxgnv8O79DQUDFkyJAi28TFxQlbW1vx8OFDlTaffPKJCA4OFkII8f333wt3d3dlHwghxM8//6xWwA8fPlxl2LRp08SgQYOUr3v37i2WL1+ufD1u3DiVMPq3l3+YX/1jrk4/bt26VbRu3Vrl979v375iA37BggWiR48eQi6XK6fZuXOncHBwEJmZmUKI/L4cMGCAynKHDx8upk2bVuQ6vBQbGytsbGzEpUuXlMOePXsmWrRoIbZt2yaEECIlJUWlxpJMnjxZTJ06VWXYzZs3hY2NjXjy5EmhNSsUCuHm5iZGjRqlHJabmyscHBzEoUOHhBD/65slS5Yo28jlcuHu7i4WLFig0qY0/RcaGqr8AC2EEJs3bxbt2rUTeXl5Qoj895ujo6N49uyZss2YMWOEm5ubyoed0m7TL7ej06dPK8dfuXJF2NjYiMTERGWthb3HqPR4Dv4/5syZM3BxcYFMJoNMJkO3bt3w9ddfIyYmBjk5ORg5ciQkEomyfV5eHurWrasyj2bNmil/TklJQVJSEtq2bVvo8m7cuIGsrKwC43NycpSH4IH8UweNGjVSvra0tEReXh6ePn1aqnPXQo1nJ5V1XTXpxo0bEEKgd+/eKsNzc3PRpk0bAMDdu3fh5OSkUqOLi4ta83d2di7w+rffflO+9vPzw5YtW/Dxxx8jPT0dx48fx+LFi0uc76v9oU4/3rt3D++++y4qV66sHO/k5FTsMl6ut1T6vzOILVu2RF5eHuLi4tC0aVMAULm+AcjfZlJSUkpch7t370Iqlar0kampKWxsbBATE1Pi9IW5ceMG4uLicOjQIeWwl9vi/fv3YW5uXqBmiUQCc3NzlWFGRkaoVq1agfV4tVapVIrmzZvj7t27Ra5fSf03YMAA+Pr64tGjR7CyssLOnTvh4+OjchGotbU1TE1Nla/Nzc3RsGFDlYtUzc3NlbWqs02/9Oo6W1paAsj/W2JlZVXoOlHZMOD/Y1q1aoVZs2bB0NAQlpaWyoukXt52tXTpUtSpU0dlmn9f+V2lShW1l6dQKFCrVi1s3ry5wDgTE5Mil/EyMNQ9p/pSw4YNce/evWLbvPzDq+l1LQ0hBCQSCXbs2FFgma+GobZ4e3vju+++w5UrVxAdHQ0zMzN06NChxOle7Y/S9KOmvPpBorBtRp0PeOrOvzQUCgX8/PwwfPjwAuNevUivsJq1sR5Febl+TZs2hb29PXbt2oXu3bvjr7/+wvz581Xa/vsCSolEUuiwl+/R0mzTr44v63udSsaA/4+pUqUK3n777QLDGzduDGNjYyQkJBS5N14Yc3Nz1K5dG+fPn0f79u0LjHdwcMCTJ08glUpRv379MtdtZGQEuVxeYjtPT08sWLAAUVFRcHR0VBmnUCiQmZlZ5nUtTR0lsbOzgxACjx8/LrB381Ljxo1x5MgR5R9OAPjzzz/Vmv/169cLvH71CEmNGjXg7u6OnTt3Ijo6Gj4+Pip7fOpQpx8bNWqEPXv2IDs7W/lHPjIyssT5Hjp0CAqFQlnT1atXYWRkhAYNGpSqxqLmr1Ao8Oeffyovpnv+/Dn+/vtv9O3bt0zztLe3R0xMTKHvLU24fv26so+FEIiMjISHh0ehbdXtvwEDBmDVqlVIS0tDixYtVLaPslBnm1aHpt5jxKvo6f+ZmJhgxIgRmDdvHnbs2IG4uDhER0dj69atyivlizJ69GisX78e69atQ2xsLKKjo7FmzRoA+bfltWjRAp9++ilOnTqFBw8e4Nq1a1i4cCGuXLmidn1169ZFQkICbty4gdTU1AJXAL80fPhwtGzZEiNGjMCGDRsQHR2NBw8e4OjRo/D398eNGzfKta5169ZFTk4O/vjjD6SmpiIrK0vtdXjVO++8Ay8vL0ydOhWHDx/GgwcPEBUVhdWrV+Po0aMAgEGDBuHhw4f45ptvcO/ePRw+fBi//PKLWvP/888/sXz5cvzzzz/Ytm0b9uzZU2Dv0s/PD/v378etW7fQv3//Uq+DOv3o6ekJqVSK6dOnIyYmBufOncPy5csBFL237O/vj+TkZISEhODu3bv4/fff8f3332PIkCEaOaLSsGFDdOvWDTNmzMCVK1dw+/ZtTJo0CSYmJvDy8irTPAMDAxEZGYkZM2bg5s2biIuLw8mTJzFjxoxy1wsAW7duxeHDh3Hv3j188803SEhIwODBgwttq27/9e7dG0+ePMHWrVvL9Pv/N3W2aXVo6j1G3IOnV3zxxReoVasW1qxZg5CQEJiYmMDOzg4jR44sdjp/f38YGRlh7dq1+O6771C9enV07NgRQP4f8RUrVuDHH3/E119/jdTUVJibm6NFixbw8fFRu7aePXvit99+w/Dhw/Hs2TOEhYUVurdlbGyMtWvXYt26ddixYwe+++47VKpUCe+88w769u2rPIdd1nVt0aIFBg0ahAkTJiA9PR2ff/45xowZo/Z6vCosLAzLli3D/PnzkZSUhOrVq8PR0VF5n36dOnWwePFihIWF4ddff4WDgwMmTpyIyZMnlzjvgIAA3L59G8uWLUOVKlUwduzYAnt8bm5usLKyQp06dcp8dKWkfjQxMcGyZcsQEhICHx8fNGnSBJ9//jnGjh2LSpUqFTrP2rVrY+XKlZg3bx68vb1RrVo1eHp6YsKECWWqsTBhYWGYM2cOPvnkE+Tk5KBFixZYtWpVmU+PNG3aFJs2bcKPP/6IIUOGQKFQoH79+ujevbtG6p04cSLWrVuHGzduKLeLos5Xq9t/JiYm8PDwwJEjR/D+++9rpM6Stml1aPI99l8nEdo62UNEr7Xs7Gx07NgR06dPR58+fXS23GPHjuHzzz/HuXPnYGZmprPlvoni4+PRrVs37Nixo8ApJ00YOXIkrKysMHv2bI3Pmyoe9+CJ/mMUCgXS0tKwYcMGVKpUSWN7b0XZvXs36tevDysrK9y5cwdz5sxBly5dGO4V6OnTp7hy5Qr++OOPAl9MRPqDAU/0H5OQkIBu3brBysoKYWFhWv+q4SdPnmDRokVITk6GhYUFOnXqhEmTJmlteVeuXEFgYGCR48vyHecjR47E1atXCx03atQo5TfAvSl8fX2Rnp6O8ePHw8bGpqLLIS3hIXoi0ivZ2dlISkoqcnxZrnRPSkpCdnZ2oeOqV6+ud88ZIP3AgCciItJDvE2OiIhIDzHgiYiI9JDeXWSXlvYCCoV+nXUwNzdBSsrzkhuS2tinmsX+1Dz2qWbpY39KpRLUrFm1yPF6F/AKhdC7gAegl+tU0dinmsX+1Dz2qWb91/qTh+iJiIj0EAOeiIhIDzHgiYiI9BADnoiISA8x4ImIiPQQA56IiEgP6STg586di65du8LW1hZ///13oW3kcjlCQ0PRvXt39OjRA9u3b9dFaURERHpJJwHfrVs3bN68GXXr1i2yzf79+3H//n0cPXoUv/76KxYtWoT4+HhdlEdERKR3dBLwrVq1grW1dbFtDh48CD8/P0ilUpiZmaF79+44fPiwLsojIiLSO6/NN9klJiaiTp06ytfW1tZ49OhRqedjbm6isZoUslxIDY01Nr/ysLAwregSNNIf7FNV5e0P9qcqbqOap099qi/9qa7XJuA1JSXluca+jtDCwhT3vumnkXnpg0Zf7cTjxxnlmgf7VFV5+5T9qYrbqOaxTzVLE/35klQqKXan9rW5it7a2hoJCQnK14mJibCysqrAioiIiN5cr03Ae3h4YPv27VAoFEhNTcWxY8fQs2fPii6LiIjojaSTgJ89ezY6duyIR48eISAgAL179wYABAYGIioqCgDg7e2NevXqwd3dHQMGDMBnn32G+vXr66I8IiIivaOTc/DTp0/H9OnTCwxfuXKl8mcDAwOEhobqohwiIiK999ocoiciIiLNYcATERHpIQY8ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeYsATERHpIQY8ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeYsATERHpIQY8ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeYsATERHpIQY8ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeYsATERHpIQY8ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeYsATERHpIQY8ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeYsATERHpIQY8ERGRHmLAExER6SEGPBERkR5iwBMREekhBjwREZEeMtTVgmJjYxEUFIT09HTUqFEDc+fORcOGDVXapKSkYOrUqUhMTIRMJoObmxumT58OQ0OdlUlERKQXdLYHHxwcDH9/fxw5cgT+/v6YMWNGgTbLli1D48aNsX//fuzbtw83btzA0aNHdVUiERGR3tBJwKekpODmzZvw9PQEAHh6euLmzZtITU1VaSeRSPDixQsoFArk5uYiLy8PtWvX1kWJREREeqXYY98KhUKtmUilxX9OSExMRO3atWFgYAAAMDAwgKWlJRITE2FmZqZs9+mnn2LMmDF47733kJWVhQ8++AAtW7ZUq4aXzM1NStWeSsfCwrSiS9A77FPNYn9qHvtUs3TVn8UGvL29PSQSSYkziY6O1kgxhw8fhq2tLdavX48XL14gMDAQhw8fhoeHh9rzSEl5DoVCaKQebtQFPX6cUa7p2acFladP2Z8FcRvVPPapZpW3P1+SSiXF7tQWG/DHjx9X/vz777/jyJEjGDVqFOrUqYOEhASsXLkS7u7uJRZhbW2NpKQkyOVyGBgYQC6XIzk5GdbW1irtNm3ahDlz5kAqlcLU1BRdu3bFxYsXSxXwREREVELA161bV/nzunXrsHPnTlSrVg0A8M4776BZs2bo168f/P39i12Iubk57OzsEB4eDm9vb4SHh8POzk7l8DwA1KtXD6dPn0bz5s2Rm5uL8+fPo0ePHmVdNyIiov8stS+yy8jIQFZWlsqw7OxsZGSod6ghJCQEmzZtQs+ePbFp0yaEhoYCAAIDAxEVFQUAmDZtGq5evQovLy/4+PigYcOGGDBggLolEhER0f9T+wZzX19fBAQEYNiwYbCyssKjR4+wceNG+Pr6qjV948aNsX379gLDV65cqfy5QYMGWLt2rbolERERURHUDvjJkyejQYMGOHjwIJKTk2FhYYEPPviAe9hERESvIbUDXiqVYvDgwRg8eLA26yEiIiINUPscvBAC27Ztw7Bhw+Dl5QUAuHz5Mg4ePKi14oiIiKhs1A74n376CTt27MCAAQOQmJgIALCyssKqVau0VhwRERGVjdoBv3v3bixbtgy9e/dWfvlNvXr18ODBA60VR0RERGWjdsDL5XJUrVoVAJQB/+LFC7z11lvaqYyIiIjKTO2L7Dp16oSwsDBMmzYNQP45+Z9++gldunTRWnFERPTmU+TlotFXOyu6jNeCIi9XZ8tSO+CnTp2KKVOmoGXLlpDJZHBxcUH79u0xd+5cbdZHRERvOKmRMbwm7q3oMl4L+7/3BpCjk2WpHfAmJib4+eef8eTJEyQkJMDa2hoWFhbarI2IiIjKqNiAF0Ioz7e/fHSsmZmZ8jvkXw4r6XGxREREpFvFBnzLli0REREBoPBHx778AKCpx8USERGRZhQb8AcOHFD+/OqjY4mIiOj1VmzAv/q89lcfHUtERESvN7UvsktPT8eaNWsQHR2NzMxMlXGbN2/WeGFERERUdmoH/MSJE5Gbm4v3338fVapU0WZNREREVE5qB/y1a9dw4cIFGBsba7MeIiIi0gC172+ztbXFo0ePtFkLERERaYjae/Bt2rTByJEj0bdvX9SqVUtlXP/+/TVeGBEREZWd2gF/5coV1K5dG3/88YfKcIlEwoAnIiJ6zagd8Bs3btRmHURERKRBagc8AKSlpeHUqVN48uQJRo4ciaSkJAghYGVlpa36iIh0ik8+U6XLp5+RZqkd8JcuXcKYMWPQrFkzREREYOTIkYiLi8OaNWuwbNkybdZIRKQzfPKZKl0+/Yw0S+2r6OfMmYMff/wRq1evhqFh/ucCJycnREZGaq04IiIiKhu1A/7hw4do27YtACgfOmNkZAS5XK6dyoiIiKjM1A74xo0b48yZMyrDzp07BxsbG40XRUREROWj9jn4oKAgjBo1Cp07d0Z2djZmzJiBEydOYMmSJdqsj4iIiMpA7T14Z2dn7Nu3D02aNEG/fv1Qr1497NixA82bN9dmfURERFQGpbpNrnbt2ggMDNRWLURERKQhagV8TEwMFi1ahKtXryI9PR01atRAq1at8Pnnn6NJkybarpGIiIhKqcRD9P/88w8GDBiAnJwcjB8/HkuXLsUXX3yBrKwsDBgwAPfu3dNFnURERFQKJe7BL1++HN7e3ggODlYZ3r9/f8yaNQsrV65EWFiY1gokIiKi0itxD/7y5csYMWJEoeMCAgJw8eJFjRdFRERE5VNiwKempqJevXqFjqtTpw7S0tI0XhQRERGVj1q3yb385roCE0ulRY4jIiKiilPiOfjs7Gx88MEHhY4TQiAnhw8hICIiet2UGPDffPNNseP9/Pw0VgwRERFpRokBL5PJ0LFjR9SuXVsX9RAREZEGlBjwUVFRWLJkCapVq4bOnTujY8eOaNGiBc+9ExERvcZKDPiZM2cCAG7fvo1Tp05hwYIFiI2NRZs2bdCpUyd06NABZmZmWi+UiApS5OWi0Vc7K7qM14YiL7eiSyB6baj9XfS2trawtbXFxx9/jIyMDJw5cwanT5/G/PnzUadOHYwZMwYdOnTQZq1E9C9SI2N4Tdxb0WW8NvZ/7w2AF/4SAaV82MxLpqam6NWrF3r16gUAiIyM1GhRpL+4x6mKe5xEpC3FBvyOHTvUmkn//v01UgzpP+5xquIeJxFpS7EBv3ev6h/iiIgI1KpVC9bW1khMTMSTJ0/QokULBjwREdFrptiA37hxo/LnWbNmoVu3bhg+fLhy2Pr16/HgwQO1FhQbG4ugoCDl42bnzp2Lhg0bFmh38OBBLF26FEIISCQSrF27FrVq1VJvbYiIiAiAml9VCwD79u3D0KFDVYYNGTKkwF5+UYKDg+Hv748jR47A398fM2bMKNAmKioKixcvxpo1axAeHo4tW7bA1NRU3RKJiIjo/6l9kV2tWrVw4sQJ9OjRQzns5MmTat0il5KSgps3b2Lt2rUAAE9PT8yaNQupqakq069btw4jRoyAhYUFAFR4uPOCMFW8IIyI6M2hdsBPnz4dY8aMwerVq2FlZYXExETExMTgp59+KnHaxMRE1K5dGwYGBgAAAwMDWFpaIjExUSXg7969i3r16uGDDz5AZmYmevTogU8++aRUX6pjbm6idlt18IKw/9n/vTcsLIwrugy9Y2HBo1SaxP7UPPapZumqP9UO+Pbt2+PYsWM4ffo0kpOT0blzZ3Tq1Ak1a9bUWDFyuRy3b9/G2rVrkZubi5EjR6JOnTrw8fFRex4pKc+hUAiN1MONuqDHjzPKNT37tKDy9Cn7syBuo5rHPtWs8vbnS1KppNid2lLdB29mZgY3NzckJSXB2dlZ7emsra2RlJQEuVwOAwMDyOVyJCcnw9raWqVdnTp14OHhAWNjYxgbG6Nbt26IjIwsVcATERFRKS6yS0hIwKBBg/D+++8jICAAAHD48GF89dVXJU5rbm4OOzs7hIeHAwDCw8NhZ2dX4Py9p6cnzp49CyEE8vLycOHCBTRt2rQ060NEREQoRcDPmDEDnTt3RkREBAwN83f827dvj3Pnzqk1fUhICDZt2oSePXti06ZNCA0NBQAEBgYiKioKANC7d2+Ym5ujV69e8PHxQZMmTXiPPRERURmofYg+KioKK1asgFQqVV70ZmpqiowM9c4lNG7cGNu3by8wfOXKlcqfpVIppk6diqlTp6pbFhERERVC7T14c3NzxMXFqQyLiYkpcB6diIiIKp7aAT9ixAiMHj0aO3fuhEwmQ3h4OMaPH4/AwEBt1kdERERloPYh+v79+6NGjRr49ddfYW1tjd27d2PcuHHo3r27NusjIiKiMijVbXLdu3dnoBMREb0Big34PXv2KO9BL+7RsbzSnYiI6PVSbMAfOHBAGfBFPVRGIpEw4ImIiF4zxQb8oEGDlD+vWbMGRkZGWi+IiIiIyq/Yq+gnT56s/NnNzU3rxRAREZFmFLsHb2FhgU2bNqFx48aQy+W4cOEChHVDCIYAACAASURBVCj4IJe2bdtqrUAiIiIqvWIDPiwsDAsXLsSGDRuQl5eHadOmFWgjkUhw/PhxrRVIREREpVdswLdo0QLr1q0DAPTo0QO//fabLmoiIiKiclL7m+wY7kRERG+OYvfgP/roI6xevRoA4O/vr3zIzL9t3rxZ85URERFRmRUb8C/vgQcAPz8/rRdDREREmlFswHt5eSl/btSoEZycnAq0iYyM1HxVREREVC5qn4MPCAgodPjIkSM1VgwRERFpRokPm1EoFBBCqPx76f79+zAwMNBqgURERFR6JQa8vb09JBIJhBCwt7dXGSeVSjF69GitFUdERERlU2LAHz9+HEIIDB06FJs2bVIOl0gkMDMzQ+XKlbVaIBEREZVeiQFft25dyOVy1KtXDxYWFjA2NtZFXURERFQOal1kZ2BggPj4eCgUCm3XQ0RERBqg9lX0n332GUJCQvDw4UPI5XIoFArlPyIiInq9lHiI/qXp06cDAPbu3ascJoSARCJBdHS05isjIiKiMlM74PnEOCIiojeH2gFft25dAPn3xT958gSWlpZaK4qIiIjKR+1z8M+ePcPEiRPRvHlzuLu7A8jfq//hhx+0VhwRERGVjdoBHxwcDBMTE5w4cQJGRkYAABcXFxw6dEhrxREREVHZqH2I/vz58zhz5gyMjIyUj401MzNDSkqK1oojIiKislF7D97U1BRpaWkqwxISEmBhYaHxooiIiKh81A54Pz8/jB07FhcuXIBCocC1a9cwZcoUDBo0SJv1ERERURmofYg+MDAQlSpVwsyZMyGTyTBt2jQMHDgQw4YN02Z9REREVAZqB7xEIsGwYcMY6ERERG+AEg/RX716FfPnzy903HfffYc///xT40URERFR+ZQY8MuXL0fr1q0LHefq6oply5ZpvCgiIiIqnxIDPjo6Gh06dCh0XLt27fDXX39pvCgiIiIqnxID/vnz58jLyyt0nEwmw4sXLzReFBEREZVPiQHfqFEjnD17ttBxZ8+eRaNGjTReFBEREZVPiQE/fPhwBAcH4+jRo8pnvysUChw9ehQhISEICAjQepFERERUOiXeJufl5YUnT55gypQpyMvLQ40aNZCeng4jIyOMHTsWnp6euqiTiIiISkGt++ADAgLg5+eHa9euIT09HTVq1ICLiwtMTEy0XR8RERGVgdpfdGNiYlLk1fRERET0elH7u+iJiIjozaGzgI+NjcXAgQPRs2dPDBw4EP/880+Rbe/duwcnJyfMnTtXV+URERHpFZ0FfHBwMPz9/XHkyBH4+/tjxowZhbaTy+UIDg5G9+7ddVUaERGR3lE74H18fAod3rdv3xKnTUlJwc2bN5VX3Ht6euLmzZtITU0t0HbFihXo3LkzGjZsqG5pRERE9C9qB3xcXFyBYUIIxMfHlzhtYmIiateuDQMDAwCAgYEBLC0tkZiYqNLu1q1bOHv2LIYPH65uWURERFSIEq+i//LLLwEAeXl5yp9fevjwIZo0aaKRQvLy8vD1118jLCxM+UGgLMzNeeueNllYmFZ0CXqHfapZ7E/NY59qlq76s8SAb9CgQaE/A0CLFi3g4eFR4kKsra2RlJQEuVwOAwMDyOVyJCcnw9raWtnm8ePHuH//Pj7++GMAwLNnzyCEwPPnzzFr1iy1Vygl5TkUCqF2++Jwoy7o8eOMck3PPi2oPH3K/iyI26jmsU81q7z9+ZJUKil2p7bEgP/8888BAE5OTmW+D97c3Bx2dnYIDw+Ht7c3wsPDYWdnBzMzM2WbOnXq4OLFi8rXixYtQmZmJqZMmVKmZRIREf2Xqf1FNx06dMC9e/dw69YtZGZmqozr379/idOHhIQgKCgIS5YsQbVq1ZS3wAUGBmLs2LFwdHQsZelERERUFLUDftmyZfj555/RtGlTVK5cWTlcIpGoFfCNGzfG9u3bCwxfuXJloe3HjBmjbmlERET0L2oH/Pr167F9+3Y0bdpUm/UQERGRBqh9m1zlypX57HciIqI3hNoBP27cOMyePRvJyclQKBQq/4iIiOj1ovYh+qCgIABQOY8uhIBEIkF0dLTmKyMiIqIyUzvgjx8/rs06iIiISIPUDvi6desCABQKBZ48eQJLS0utFUVERETlo/Y5+GfPnmHixIlo3rw53N3dAeTv1f/www9aK46IiIjKRu2ADw4OhomJCU6cOAEjIyMAgIuLCw4dOqS14oiIiKhs1D5Ef/78eZw5cwZGRkaQSCQAADMzM6SkpGitOCIiIiobtffgTU1NkZaWpjIsISEBFhYWGi+KiIiIykftgPfz88PYsWNx4cIFKBQKXLt2DVOmTMGgQYO0WR8RERGVgdqH6AMDA1GpUiXMnDkTMpkM06ZNw8CBAzFs2DBt1kdERERloHbASyQSDBs2jIFORET0BlD7EP2KFSsQGRmpMiwyMrLIp8ERERFRxVE74Dds2IAmTZqoDGvcuDHWr1+v8aKIiIiofNQO+Ly8PBgaqh7RNzIyQm5ursaLIiIiovJRO+AdHBywZcsWlWG//PIL7O3tNV4UERERlY/aF9lNnToVAQEB2LdvH+rXr48HDx7g8ePHWLt2rTbrIyIiojJQK+CFEKhcuTKOHDmC33//HYmJiXB3d0fnzp1RtWpVbddIREREpaRWwEskEnh5eSEiIgK9e/fWdk1ERERUTmqfg7ezs0NsbKw2ayEiIiINUfscvKurKwIDA+Hr6wsrKyvlA2cAoH///lopjoiIiMpG7YCPiIhA3bp1cenSJZXhEomEAU9ERPSaUTvgN27cqM06iIiISIPUPgcPAGlpadizZw9WrVoFAEhKSsKjR4+0UhgRERGVndoBf+nSJXh4eGD//v34+eefAQBxcXEICQnRVm1ERERURmoH/Jw5c/Djjz9i9erVyq+sdXJyKvAAGiIiIqp4agf8w4cP0bZtWwBQXkFvZGQEuVyuncqIiIiozNQO+MaNG+PMmTMqw86dOwcbGxuNF0VERETlo/ZV9EFBQRg1ahQ6d+6M7OxszJgxAydOnMCSJUu0WR8RERGVgdp78M7Ozti3bx+aNGmCfv36oV69etixYweaN2+uzfqIiIioDErcg8/KysLSpUvx999/w8HBAaNGjYKxsbEuaiMiIqIyKnEPfubMmTh58iQaNWqEI0eOYO7cubqoi4iIiMqhxIA/c+YMVq9ejS+//BIrV67EyZMndVEXERERlUOJAZ+ZmQlLS0sAgLW1NZ4/f671ooiIiKh8SjwHL5fLceHCBQghAAAymUzlNQDl/fFERET0eigx4M3NzTFt2jTl6xo1aqi8lkgkOH78uHaqIyIiojIpMeBPnDihizqIiIhIg0r1NDkiIiJ6MzDgiYiI9BADnoiISA8x4ImIiPQQA56IiEgPqf00ufKKjY1FUFAQ0tPTUaNGDcydOxcNGzZUafPzzz/j4MGDkEqlMDIywvjx49GhQwddlUhERKQ3dBbwwcHB8Pf3h7e3N/bu3YsZM2Zgw4YNKm2aN2+OESNGoEqVKrh16xaGDBmCs2fPonLlyroqk4iISC/o5BB9SkoKbt68CU9PTwCAp6cnbt68idTUVJV2HTp0QJUqVQAAtra2EEIgPT1dFyUSERHpFZ0EfGJiImrXrg0DAwMAgIGBASwtLZGYmFjkNHv27EGDBg1gZWWlixKJiIj0is4O0ZfGpUuX8NNPP2HNmjWlntbc3EQLFdFLFhamFV2C3mGfahb7U/PYp5qlq/7UScBbW1sjKSkJcrkcBgYGkMvlSE5OhrW1dYG2165dw+TJk7FkyRI0atSo1MtKSXkOhUKU3FAN3KgLevw4o1zTs08LKk+fsj8L4jaqeexTzSpvf74klUqK3anVySF6c3Nz2NnZITw8HAAQHh4OOzs7mJmZqbSLjIzE+PHjsXDhQjg4OOiiNCIiIr2ks/vgQ0JCsGnTJvTs2RObNm1CaGgoACAwMBBRUVEAgNDQUGRnZ2PGjBnw9vaGt7c3bt++rasSiYiI9IbOzsE3btwY27dvLzB85cqVyp937typq3KIiIj0Gr/JjoiISA8x4ImIiPQQA56IiEgPMeCJiIj0EAOeiIhIDzHgiYiI9BADnoiISA+9lt9FT0REbya5XIa0tMeQyXKVw5KTpZjgW7cCq3p93LhxEwqFotTTGRoao2ZNCxgYqB/bDHgiItKYtLTHqFz5LVStagWJRAIAMDSUIlPOR38DQJ06NSCTlS7ghRB48eIZ0tIeo1atgs9wKQoP0RMRkcbIZLmoWrWaMtyp/CQSCapWraZyVEQdDHgiItIohrvmlaVPeYieiIi0xrRaFVSuZIjWNatqdL4vsnJx885jjc5T3zDgiYhIaypXMoTXxL0an+/+773VbiuTybBnx0ZcOHcSRkbGkEqlsG/mgoEfBMLQUP0YPHxgB9q+1w3Vq9cEABw/ug+5uTl439MPALD857m4F3ML9eq/g3YduuF2dBT8PxxdqvU6eHA/zp07g9mz55VqusIw4ImISK+tWDIPebk5mDV3GapUeQtyuRynThyCLC9PrYBXKBSQSCQ4fGAnHBxbKgO+m3sfZZun6am4fPEMVqzbB6k0/+x3y9bttbNCamLAExGR3nqUGI+rl85i4bJfUaXKWwAAAwMDdO3hCQDYv2crLl84DblCDjOzWvho1CTUqGmGndvW4eGDf5CZ+QIpT5LxXsceSEtNwcLvQ2BkZIzPxn2FC+d/R052Fnz9huGbkInIzcnG9C9HoUNnd1StaoprVy9g3KQQAMDp34/g+JG9MDQAqlY1waRJQWjQoCHy8vLwww/zEBFxBdWr18C779pqbN0Z8EREpLf+iY1Bbau6qGpiWmDc2dO/IflRAkLm/AypVIpjR/Ziy4al+HTcVwCAu3duYfa85TCtVh0AcPL4AYydGIL6Dd7Jn8H5/P+qVHkLk6eF4eug0Zjz3UoAwOmTh5XLuRUdiYvnfsf0mT/CrpElzpw5g7CwmVi6dA327t2JxMQEbNq0HTKZDJ99Fghra/VvhSsOA56IiP6TIq6cQ+zdvzH9y1EAAIVCjipv/e9iQKcWbspwL49rV87jftxdBE/9DJWMDaBQCGRkPMuvIeIq3n/fE4aGhjA0NETPnu8jMvLPci8TYMATEZEea/hOEyQ9eogXzzMK7sULAZ9+Q9Cp6/uFTlu5cmWN1CCEQKcu76P/oAA0qV/6L7opK94HT0REesvKuh5cWrXF6hULkJWVCQBQyOU4efwAWrRqh2NH9uLF8wwAQF5eLuL+uVvkvKpUqYqszBelrqFFq7Y4e/ooUlLyb+uTy+W4dSsaANCyZSscPnwQMpkMOTnZ+O23w8XNqlS4B09ERFqTnSMr1S1t6nqRpf63uo3+LAi7tm/A11NGw9DQEAqFgHMLVwzwD0RGxlPMDh4PABBCgW49vfF2w8aFzse9ly9WLJkHY+NK+Oz/z9Oro6m9E/wGf4QFc7+CkYEEeXl56NKlO5o2tUOfPn0RExODIUP8UL16DTRt6oC0tBS1510ciRBCaGROr4mUlOdQKDSzShYWplq5f/NNtf97bzx+nFGuebBPVZW3T9mfqriNal5p+/TRozhYWb2tMszQUIqYB/wuegDlOkT/776VSiUwNzcpsj0P0RMREekhBjwREZEeYsATERHpIQY8ERGRHmLAExER6SEGPBERkR7iffBERKQ1Nasbw9C4ksafB5+TlY3IOyXfL/7Fp4NhZGQMIyMjZGdno179hvD0GQQb22ZlXvaOX9aiXv2GaNO+S6mmW754LlxbOcHXd0CZl10aDHgiItIaQ+NKuPdNP43Pt9FXO9Vu++oDYi5fPI3v5kzFl9Pnocm7dmVadv9BAWWaTtcY8ERE9J/R2q0j7t65hYP7fsWnY7/Ctq2rcevmdchkeajfoBECAsejcpUqWL54LoyMjfEo4QFSUh7jXRt7jPo8CBKJBMsXz8U7jW3g/r4vZHl5Rc4jNeUxli3+FulpqbCwrA2JRLdnxXkOnoiI/lMav2uH+AdxCN/3C96qWhUzv12KOd+tQk2zWti3e4uyXfz9WEya9i3mLliD2Ht/46/IqwXmVdw8Nq5djKb2zTHvx7UY9tFY3Lp5XWfrCHAPnoiI/nPyv8484vI5ZGVl4tL50wAAmSwPDd7+3/fQt3RtD2NjYwBAw3feRXJSQoE5FTePm3/9iaEBnwMALGvXgYNjC+2tUiEY8ERE9J9yL+Y26jVoiMfJjzB85Lgig9fIyFj5s1RqALlcXqCNAIqdR0XiIXoiIvrPuHr5Dxw/ug+9vAagRat2OBS+A7k5OQCArKxMPIyPK9X8ipuHfTMXnP49//GvyUmJuBEVocE1KRn34ImISGtkuTmluuJdXTlZ2Wq3Xfh9iPI2ubr13sakaWFo8q4dGr7zLnZtW48ZUz+BRCKFRAL4+n2IuvXeLnmm/8/LZ3CR8xga8BmWLf4W586cgIWlFewcnMqyqmXGgCciIq1Je5oLQ0NZhT0u9sclW4scZ2hoiAH+H2GA/0cFxo36fEqRr1/9ubh5mJlbYFrw9yrDyvO42NLiIXoiIiI9xIAnIiLSQwx4IiIiPcSAJyIijRJCVHQJeqcsfcqAJyIijTE0NMaLF88Y8hokhMCLF89gaGhccuNX8Cp6IiLSmJo1LZCW9hjPn//vqnmpVIrnzzIrsKrXR0LCUygUpb+K3tDQGDVrWpRumlIvhYiIqAgGBoaoVctaZZiFhSmCJu6toIpeL/u/98bjxxk6WZbODtHHxsZi4MCB6NmzJwYOHIh//vmnQBu5XI7Q0FB0794dPXr0wPbt23VVHhERkV7RWcAHBwfD398fR44cgb+/P2bMmFGgzf79+3H//n0cPXoUv/76KxYtWoT4+HhdlUhERKQ3dHKIPiUlBTdv3sTatWsBAJ6enpg1axZSU1NhZmambHfw4EH4+flBKpXCzMwM3bt3x+HDhzFy5Ei1lyWVSjRau2XNKhqd35tOE/3LPlVV3j5lf6riNqp57FPN0lROlTQfnQR8YmIiateuDQMDAwCAgYEBLC0tkZiYqBLwiYmJqFOnjvK1tbU1Hj16VKpl1axZVTNF/7/V0901Or83nbm5SbnnwT5VVd4+ZX+q4jaqeexTzdJEf6qDt8kRERHpIZ0EvLW1NZKSkpTP0pXL5UhOToa1tXWBdgkJCcrXiYmJsLKy0kWJREREekUnAW9ubg47OzuEh4cDAMLDw2FnZ6dyeB4APDw8sH37digUCqSmpuLYsWPo2bOnLkokIiLSKxKho68bunv3LoKCgvDs2TNUq1YNc+fORaNGjRAYGIixY8fC0dERcrkcM2fOxB9//AEACAwMxMCBA3VRHhERkV7RWcATERGR7vAiOyIiIj3EgCciItJDDHgiIiI9xIAnIiLSQwx4HenatSv+/vvvIsfb2trixYsXGltefHw83NzcNDa/19UPP/yA4OBg5euTJ0/C1tYWd+7cUQ4bNWpUqR9c9OzZM6xcuVJjdVaUrl27wtPTU+XxlCVti4WJjo7GwYMHVYZpepstyrFjxxAZGan15WjLoUOH4OPjA29vb3h4eGDixIllnldF/h50qWvXrnjvvfeU350CALt27YKtrS02bdqErVu3Yt26dYVOu2vXLowdO1ar9e3atQuxsbFaXYYmMODpjdamTRtcunRJ+frSpUtwcnJSDpPL5bh69WqpP+w8e/YMq1at0mitFSUzMxN795b9UZ0ymQzR0dE4fPiwBqtS35sc8MnJyQgNDcXSpUuxd+9eHDp0CB999FGZ51eRvwdds7S0xNmzZ5Wvd+/eDQcHBwDA4MGDMXz48AqqLL+Wwp6I+rphwOvY4sWL4eHhAW9vb/j4+ODZs2cF2sydOxf9+vVDnz59MGzYMDx8+BDA//bKf/jhB/j4+KBnz564cuWKcrrNmzejR48e8PX1xY4dO3S2ThXJxcUF8fHxePLkCQDg8uXL+PTTT3Hx4kUAwM2bN2FiYoLKlStj7Nix6N+/P7y8vLBs2TIAgEKhQEhICDw8PNCnTx8MGjQIADBz5kxkZGTA29tbOexN9fnnn2Px4sXIzc1VGR4XF4dhw4bBy8sLvr6+OH36tHKcra0tFi1ahH79+iEsLAwLFy7EuXPn4O3tjdmzZyvbbdy4Ef369UO3bt1w5MgR5fDr169j6NCh6Nu3L/r27Yvff/8dQP6HhY8++gh9+/ZF7969MXXqVGVdERER8PX1hbe3N3r37o3w8HCcOXMGJ06cwIoVK+Dt7Y09e/Zosac078mTJzA0NESNGjUAABKJBPb29gCA06dPw8fHB15eXhg2bBji4uIAFNwDffk6LS2t1L+HN5mvry927doFAHjw4AEyMzNhY2MDAFi0aBHmzp0LAMjNzcWMGTPg7u6OgQMHqnwYfPV1SEgIevfuDSB/O3Rzc0NmZiYAYMWKFejfvz98fX0xevRoPH78GED+h0svLy94e3vD09MTFy9exM6dO/HXX39h9uzZ8Pb2xrlz53TTIWUhSCe6dOkiLl26JFq2bCmysrKEEEJkZGSIvLw8IYQQNjY24vnz50IIIVJSUpTTbdu2TXzxxRdCCCEePHggbGxsxIkTJ4QQQuzdu1cMHDhQCCFEdHS0aN++vXj8+LEQQojg4GDh6uqqm5WrYP7+/uLAgQMiIyND9OrVS8hkMtGjRw8hhBCrVq0SkydPFsOHDxeXLl0SQgiRk5MjBg8eLM6ePStu3LghPDw8hFwuF0IIkZ6eLoTI72t96L8uXbqI27dvizFjxoh169apDOvfv7/Ytm2bEEKIO3fuCFdXV+W2Z2NjI5YvX66cz86dO8WYMWNU5m1jYyM2btwohBDiypUr4r333hNCCPH06VPh7e0tkpKShBBCJCUliQ4dOoinT58KhUIhUlNThRBCKBQKMXnyZLFlyxYhhBCjR48W+/fvV457+vSpEEKIKVOmKJfzppHL5eKTTz4Rrq6uYsyYMWLt2rUiNTVVPHnyRLi5uYk7d+4IIfLf5/379xdCFOzrV1+X5vfwJuvSpYu4deuW8PDwEOnp6eKnn34SGzZsUG4LCxcuFN9++60QQogNGzaIgIAAkZubKzIzM4Wvr6+yjxYsWKDcjj09PYWvr69ISkoSERERYvDgwUIIIfbs2SOmT5+u/BuwefNmMWHCBCGEEF5eXiIiIkIIIYRMJhMZGRlCCCGGDBmi/Dv8OtPJ0+Qon6mpKRo0aIAvv/wS7733Hjp37gwTk4JPFTp9+jS2bNmCzMxMyGQylXFvvfUWunTpAgBwdnZWfoq9dOkSOnfujFq1agHI/+R66NAhLa/R68HV1RUXL15E1apV0bJlSxgYGODtt9/GnTt3cOnSJXTs2BFz5sxBamqqcpoXL17g7t278PX1hUwmw1dffQU3Nzdl3+qbL774Ah9++CH69+8PABBCIDo6Gv369QMANGnSBHZ2dvjzzz/RtWtXAPl7UCXp1asXgPxtMTk5GTk5Obh27Rri4+MRGBiobCeRSBAXFwd7e3usWbMGp0+fhkKhwNOnT1G5cmUAgJubG5YuXYr79++jffv2cHJy0mgfVASpVIolS5bg77//xuXLl3Hs2DGsXr0aEyZMQNOmTdGkSRMAQL9+/RAaGornz5+XaTmF/R4qVaqksfWoCBKJBO+//z4OHDiAAwcO4JdffsGNGzcKtLt48SJ8fHxgZGQEIyMj9OnTBxEREQCAtm3bYtmyZfDy8kKNGjXg6uqK8+fPIz4+Hm3atAEAnDhxAn/99Zdye5fL5cq/y23atEFYWBjc3d3RsWNH5RGENwUDXoekUim2bduGiIgIXLhwAX379sWqVavQtGlTZZuHDx8iLCwMO3bsQP369REREYFJkyYpxxsbG6vM798fAP6L3NzcEBoaClNTU7Ru3RoA0Lp1a5w/fx5Xr17FhAkTIJFIsGPHDhgZGRWY/sCBA7h48SLOnTuH7777Drt379b1Kmhdo0aN0KlTJ6xdu1btad56660S27wMkZePgpbJZBBCwNbWFps3by7Qfs+ePbh69So2b94MExMTLFu2THkuc/jw4ejatSvOnTuHWbNmoX379hg/frza9b7ObGxsYGNjgw8++EAZxkUxMDBQuSgyJyenxPkX9nt40wMeyP+Q6efnh9atW6NmzZqlnr5Fixa4efMmfv/9d7Rt2xaurq7YuXMn4uPjladBhBD45JNPlB9+XzVt2jTcvn0bFy5cwLhx4xAQEIABAwaUe710hefgdUgIgdTUVLi6umLs2LGwsbFRudobAJ4/fw4jIyNYWFhAoVDgl19+UWverq6uOHXqFFJSUgDgP3MOHsg/D//w4UMcPXoUrq6uAIBWrVph8+bNqFatGmxtbdGyZUusWLFCOU1iYiIeP36M1NRUZGVloUOHDpg0aRJMTU3x4MEDmJiYIDs7W68+QI0ZMwZbtmzBixcvIJFIYGdnp/wwc/fuXdy6dQvOzs6FTmtiYoKMjAy1luPi4oK4uDhcuHBBOSwyMhJCCGRkZKBmzZrK+b18ABUAxMbGokGDBhg0aBA+/PBDREVFlXrZr5ukpCRcu3ZN+frRo0dITU1F48aNcevWLdy9exdA/kVb9vb2MDExwdtvv43bt28jNzcXubm5KufU3+S+KIv69etj/Pjx+PTTT4ts06ZNG+zduxcymQzZ2dkq25SxsTHs7e2xcuVKtGvXDk5OToiIiMDt27eVR4i6du2KLVu24OnTpwDyz+nfunULAHDv3j3Y2tpi2LBh6NOnj3KbrFq16hvxe+AevA5lZGRg+vTpyM7OhhAC9vb2cHd3V2lja2sLDw8P9OrVCzVr1kSnTp1ULqQrStOmTTF69GgMHjwYJiYm6Nixo7ZW47VTqVIlODk5ISkpCbVr1wYAODo6IikpCR4eHgCA7777DmFhYfDy8gKQ/wb95ptvkJ2dja+//hoymQxyuRwdO3aEs7MzpFIpdKizXgAACcZJREFUvLy84OXlherVq6v9Qet1ZmVlBW9vb6xZswZAfp/MmDED69atg6GhIebNm1fgCY8vtW3bFmvWrEGfPn3g6uqK6dOnF7mc6tWrY8mSJZg/fz7mzJmDvLw81K9fH8uWLYOPjw+OHz8ODw8PmJubo2XLlso91I0bN+LixYswMjKCsbGxchl9+vTB1KlTcfjwYQQEBMDHx0fDPaM9MpkMixYtwsOHD1G5cmUoFAp88cUXaN68OebNm4dJkyZBJpPBzMwM8+fPB5B/mL1t27bo3bs3LC0t0bRpU+VFX6X5PeiLkh44NmDAANy+fVv5N9PR0VG5owPk91lUVBQcHR1hYGCABg0aoF69esqjoT4+PkhPT8eQIUMA5O+IDR48GE2bNsX333+PuLg4GBgYoFq1avjmm2+UNX377bdYvXo1pkyZgnbt2mlp7cuHD5shIiLSQzxET0REpIcY8ERERHqIAU9ERKSHGPBERER6iAFPRESkhxjwRBUsISEBLi4uKk/O0qXs7GyMHj0aLVu21PpTuNQVFBSEH374oaLLIHqj8T54ogpWp04dlS9D0bXDhw/jyZMnuHjxIgwN+SehLOLj49GtWzfcuHGDfUivDe7BE2nAm/yNdwkJCWjYsCGDiUjPMOCJyqhr165YsWIFvLy84OzsjCtXrmDQoEFo1aoV+vTpo3xkLZD/uMsPPvgALi4uGD58OEJDQ5XPGIiPj4etra3yQ0JSUhJGjx4NV1dX9OjRA9u2bVPOZ9GiRRg3bhy+/PJL/F97dxvSVP/GAfybxZyUFmHm1KCSIh9azeamLR2WSj40LTNMnC9KZC8yw5KgF6USZg8MUTILg+hVlAgqVhCmWVjDoFmmYdkLzW2agVpM59N1v/DvufXW7Fa7q79cn1ee7ey3a+cnXDu/M85XJpMhKipKuH3mbNra2qDVaiGXyxEVFYXq6moAQEFBAYqKivDgwQPIZDLcu3dv1nFKS0sREREBf39/HD16VIgyBiDcfz48PBwymQz5+flob29HQkIC/Pz8kJ6eLkTDGgwGBAcHo7i4GEqlErt370ZFRcV33/fu3bsICwuDQqGATqdDV1cXACA7Oxt5eXlT9tXpdLh16xaA8TkqKSkR5ujMmTPo6elBSkqKMBcTtygFAKPR+N051Gq1yM/PR0JCAmQyGY4cOSIEGE3cBc3f3x8ymey3rsgwJvhtOXaM/Z8LCQkhjUZDJpOJLBYLKRQKqq2tpdHRUXr27NmU+NVDhw5RXl4e2Ww2amhoIJlMRidPniSiv2OAJ6KDExMT6dy5czQ4OEjNzc2kVCqpvr6eiIgKCgrI19eXamtraWRkhK5cuULx8fGz1jk0NEShoaF07do1stlsVF9fT9u3b6e2tjZhzIlaZvPo0SMKDQ2lDx8+0PDwMF29elWIKyYajy3V6XT09etXam1tJR8fH0pOTqb29nbq7++niIgIKisrIyKiFy9ekJeXF+Xm5pLNZiODwUDbtm0Tajp9+jTp9XoiIqqvryeFQkFNTU1ks9koJyeHEhMTiYiosbGRVCqVEPX55csXkkqlQmxySEgIxcfH0+fPn8lisVBAQADFxsbS27dvaXBwkLRaLRUWFhIR/XAOk5KSaM+ePfTx40caGBigpKQkunz58oxzyNifgM/gGVsArVYLiUSC8vJyBAcHQ61Ww87ODiqVCr6+vnjy5AlMJhPevHmD48ePQyQSQS6XC5Gs/2Q2m4UEQXt7e3h5eSE+Ph7l5eXCPjt27IBarcbSpUsRExMjBGN8T2NjI6xWK1JTUyESiRAYGIiQkBBUVVXN6bPeuXMHqamp8PT0xLJly6DT6dDS0jLlLD4lJQUrVqzApk2bsHnzZqhUKqxbtw6Ojo4IDg5Gc3PzlDHT09MhEomgUCigVqtnjDiurKxEXFwcfHx8IBKJkJGRAaPRiE+fPkEqlcLR0RHPnz8HANy/fx8KhUKITQbGz66dnZ2xdu1ayOVySKVSeHt7w97eHmFhYUJNs83hhAMHDmDDhg0Qi8XYu3cvWlpa5nQMGfuV+KIbYwsgkUgAjF/HfvjwIWpqaoTnRkZGoFQq0d3djZUrV8LBwWHK68xm87TxJvadyKMGxn+E19TUJGxPbl5isRg2mw0jIyPfvYbe3d0NV1dX2Nn9/X3ezc1NWOb+t0wmE3Jzc3Hx4kXhMSJCV1cX3N3dp9Vmb28/bbunp0fYdnJymhJJ6+bmhu7u7hnr9/HxEbaXL1+OVatWoaurCx4eHti/fz8qKiqgUqlQUVGB5OTkKa+frSaxWAyr1Sp8vu/N4YQ1a9YIfzs4OAivZexPxA2esQVYsmQJgPGGHRMTg/Pnz0/bp7OzE319fRgYGBCa/EzNHQBcXFzQ19eHb9++CU3ebDYLKXnz4eLiAovFgrGxMaHJm81mrF+/fk7jSCQS6HQ6aDSaedcyWX9/P6xWq9DkzWYzNm3aNG0/FxeXKasEVqsVvb29wjHRaDSIjo4W4ldDQ0PnVc9sc/gjE/8HjP1JeImesZ9Ao9GgpqYGT58+xejoKGw2GwwGAywWC9zd3eHr64vCwkIMDQ3h1atXU84SJ5NIJJDJZNDr9bDZbHj37h1KS0sX1FSlUinEYjFKSkowPDwMg8GAx48fIzIyck7jJCQk4MaNG3j//j2A8fjjmZbU52LimLx8+RK1tbVCvO9k0dHRKCsrQ0tLC4aGhqDX6yGVSuHh4QFgPAZ369atyMzMRHh4OMRi8bxqmW0Of2T16tWws7NDR0fHvN6bsf8CN3jGfgKJRIKioiJcv34dgYGBUKvVuHnzJsbGxgCMZ68bjUYolUrk5+cjMjJSyKP+J71ej87OTgQFBeHYsWNIS0tbUN60SCRCcXEx6urqEBAQgOzsbFy6dAmenp5zGicsLAwpKSnIyMiAn58foqOjUVdXN++6nJ2d4eTkhKCgIJw6dQpZWVkz1rRz506kp6cjLS0Nu3btQkdHx7Sb4MTGxqK1tRUxMTHzrudHczgbBwcH6HQ6HD58GHK5HEajcd51MPazcB48Y7/BiRMnsHHjxj/mznG/msFgQGZm5oK+IEzW0NCAzMxM1NTU8HI5Y//DZ/CM/QKvX79Ge3s7xsbGUFdXh+rq6nlfK2ZTDQ8P4/bt2zh48CA3d8Ym4R/ZMfYL9PT0IC0tDb29vXB1dUVWVha8vb1/2vgmkwlRUVEzPldVVQU3N7d/Nc7Zs2dRWVk57fF9+/YhJydnQTX+F9ra2hAXF4ctW7bgwoULv7scxv4ovETPGGOMLUK8RM8YY4wtQtzgGWOMsUWIGzxjjDG2CHGDZ4wxxhYhbvCMMcbYIsQNnjHGGFuE/gKdFOovbbrzswAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"There seems to be little difference in visa certification rate among island, western, and northeastern jobs. The south and midwest look to have appreciably higher rates."
],
"metadata": {
"id": "rRfhzqqXbwlQ"
},
"id": "rRfhzqqXbwlQ"
},
{
"cell_type": "code",
"source": [
"percent_status('unit_of_wage')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "du7GY_gx9mdA",
"outputId": "6cda8957-28f8-46fc-a5e0-e6c4685e8c6e"
},
"id": "du7GY_gx9mdA",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFTCAYAAADV8x5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfVyN9/8H8NfpjqgtpfsYMqmQUJb7uQuV3IWFUTTGNMamzCpsfBtjm9vN3C5m7ik3+c7NMEloatRGQiqVbqb7m3Ou3x++zm9npU6nc0rH6/l47Ps957o+53O9r/Mpr657kSAIAoiIiEitaDR0AURERKR8DHgiIiI1xIAnIiJSQwx4IiIiNcSAJyIiUkMMeCIiIjXEgCdSI1OmTMGyZcuk74uLi+Hv74/u3bvDxsYGjx49qtRGEfHx8dL+XmTgwIHYunVrnZajKtHR0bCxsUFOTo5Kl/PLL79g6NChsLOzQ0BAgEqXRfRvWg1dAL16AgICcPjwYQCAlpYWzMzMMHToUMydOxfNmjVr4Oqqt27dOkRGRiIiIqLGtmVlZdi1axciIiKQnJyMJk2aoE2bNhgzZgzGjBkDHR0dhes4dOgQli9fjtjY2Er1aWn9/6/1wYMHERMTgz179sDQ0BCGhoaV2ryKHB0dcenSJbRo0QLAi7/Puvr000/h5eWFKVOmvPQ/26R+Xu3fcmowvXr1wpdffomKigpcu3YNS5YsQVFREZYuXapQf+Xl5dDW1lZylYorKyvD9OnTkZCQAH9/f/To0QP6+vqIj4/Hjh070LZtW/Ts2VOhvsvLy184z8DAQOb9gwcPYG1tDRsbmxe2eRXp6OjA2NhYpct4+vQp8vLy0KdPH5iamqp0WURV4S56ahDP/4E1NzeHh4cHPDw8cObMGQCAIAjYsmULBg8ejC5dusDDwwNHjx6VfvbRo0ewsbFBREQE3n33XXTp0gU///wzAODw4cPw8PBAp06d0KtXLyxatEj6ufz8fHz22WdwcXGBo6MjJk+ejPj4eOn8Q4cOwdHREVFRUXB3d0fXrl0xZcoUpKSkSOevX78ed+7cgY2NDWxsbHDo0KEq12/nzp2IiYnB9u3b8e6778LOzg6tWrXCiBEjsHfvXtjb29dpXQMDA1FUVCStY926dQBkd9FPmTIFu3btQkxMDGxsbDBlypRKbYBnf4ysWrUK/fr1g4ODA8aOHYuLFy/KrM+FCxcwbNgwdO7cGd7e3rh//75c41xUVISFCxfC0dERvXv3ltllHxgYiJkzZ8q0l0gkGDBgALZv315lf1XtWn/+HT0fy+dtoqKi4OXlBQcHB4wZMwa3bt2qsp/o6OgXfp/V+fvvv7Fo0SI4OTmhS5cumDZtGu7cuSPt38nJCQAwdepU2NjYIDo6utr++vTpg+PHj0vfv/POO3B0dERFRQWAZ3+s2djY4PHjxwCAo0ePYuzYsXB0dISLiwv8/f2RkZEh0+f58+fh6uqKzp07Y9KkSTh+/HilQys3btzA5MmT4eDggL59+yI4OBgFBQU1rj81AgJRPVu0aJHw3nvvyUxbvny54OzsLAiCIKxZs0YYOnSo8OuvvwoPHz4Ujh07Jjg4OAjnzp0TBEEQUlJShA4dOghvv/22cPLkSeHhw4dCenq68NNPPwmdOnUStm3bJiQlJQnx8fHCli1bBEEQBIlEIkycOFHw8/MTbt68Kdy/f19Yu3at4OjoKGRkZAiCIAgHDx4U7OzshKlTpwo3b94UEhISBE9PT8HX11cQBEEoLi4W/vOf/wiurq5CZmamkJmZKRQXF1e5jh4eHoKPj0+N34Ui65qamirs2LFDcHBwkNZRUFAgCIIgTJ48WVi6dKkgCIKQm5srBAQECBMmTBAyMzOF3NzcSm0EQRA++ugjwcvLS7h69arw8OFD4ccffxTs7e2FhIQEQRAEIS0tTejUqZOwbNky4e7du8Lx48eFvn37Ch06dBBSUlJeuG5vv/224OjoKGzcuFG4d++e8NNPPwn29vZCZGSkIAiCcOPGDcHW1lb6/QuCIFy4cEGwt7cXsrOzq+zzypUrQocOHWTmP/+O4uLiZNqMHTtWiIqKEu7evSv4+voKw4YNEyQSSaV+SktLX/h9VmfWrFmCq6urcPXqVSExMVGYOXOm0K9fP6G4uFgoLS0V7ty5I3To0EGIjIwUMjMzhdLS0mr7mzdvnvDZZ58JgiAIRUVFgr29veDs7CzExsYKgiAI+/btEwYPHixtv3//fuH8+fPCw4cPhZs3bwqTJ08WvL29pfNTU1MFe3t7YcWKFUJSUpJw8uRJoX///jLjlpiYKHTt2lXYunWrkJycLPz+++/C+PHjhblz59a4/vTy4y56anBxcXEIDw+Hi4sLioqKsH37dmzbtg09evQAALRq1QpxcXHYvXs3BgwYIP3c5MmTMWzYMOn7jRs3YurUqfDx8ZFO69SpEwDgypUrSExMRFRUFJo2bQoAmDdvHs6dO4ejR4/Cz88PAFBRUYGgoCC0a9cOAODr64vFixdDEAQ0bdoUzZo1g5aWVo27dx88eABnZ+dq29RlXfX19SESiaqtw8DAALq6utDW1n5hu4cPH+L48eM4e/YsLCwspMu6fPky9u7di5CQEPz000+wsLDAkiVLIBKJYG1tjfv37+Obb76pdv0AwMHBAe+//z4AoG3btoiPj8f27dsxdOhQODo6ol27djhy5Ajee+89AM/OGRg4cCAMDQ1r7LsmH374Id566y0AwOzZs+Ht7Y2MjAyYmZnJtNPR0ZHr+/yn+/fv4+zZswgLC5Nuqa9atQoDBgxAeHg4vLy8pOvw+uuvy9Wvs7MzduzYAQCIjY1Fq1at4ODggOjoaHTt2hXR0dEyP1Pjxo2Tvm7VqhVCQkIwYsQIPH78GGZmZvjpp5/QqlUrBAYGAgDatWuH+/fvY+3atdLPbd26FcOHD4evr690WkhICEaNGoXs7GwYGRnJ9X3Qy4kBTw3i4sWL0t2PFRUVGDRoED777DPcvXsXpaWlmDFjBkQikbR9eXk5LC0tZfp4Ht4AkJ2djYyMDLi4uFS5vFu3bqG4uLjS/NLSUukueODZP/bPwx0ATExMUF5ejr///rtWx64FOZ7hpOi6KtOtW7cgCALc3NxkppeVlUnDMSkpCQ4ODjI1Ojo6ytV/165dK73/73//K33v5eWFPXv24L333kNeXh7OnDmD9evXK7o6Mv553oGJiQmAZz8n/w54RSQlJUFDQ0Nm/fT19dGhQwfcvXtXoT6dnZ0REhKCzMxMREdHo2fPnujSpQuOHz+OmTNnIiYmBh999JG0/a1bt7B+/XokJiYiLy9POj0tLQ1mZma4d+8eOnfuLLMMBwcHmfe3bt3CgwcPcPLkSem05z+7Dx8+ZMA3cgx4ahA9evTA8uXLoaWlBRMTE+kJcs+PDW7atEm6Rfncv8/81tXVlXt5EokELVu2xO7duyvN09PTe+EynoeaRCKRe1kA0KZNG9y7d6/aNs//IVX2utaGIAgQiUQ4cOBApWU+39OhSp6enli9ejWuXbuGhIQEGBoaom/fvi9sr6FR+bSh58eo/+2f66PoOCrin38I1Ya1tTWMjY0RHR2Nq1ev4t1330Xnzp2xfPlyJCUl4fHjx9ITM4uKijB9+nTpyaqGhobIzc3FpEmTqj0J898kEgm8vLwwbdq0SvN4YmDjx4CnBqGrq4s33nij0nRra2vo6OggLS3thVvjVTEyMoKpqSmioqLQu3fvSvPt7e3x5MkTaGhooFWrVgrXra2tDbFYXGM7d3d3rFmzBvHx8ZW2oiQSCYqKihRe19rUURNbW1sIgoCsrCzpFvu/WVtbIzIyUvrHAAD8/vvvcvV/8+bNSu//uYfEwMAAQ4cOxcGDB5GQkIBRo0ZVGeLPPd/tnZmZKX2dkJAgVy3Vqe33aW1tDYlEgt9//126i76goAB//fUXxowZo3AdTk5OOH/+PP744w/07NkThoaGaNGiBX744Qe0bt1auvfh3r17yM3Nxfz586U/z6dPn5bpq127dtITV5+Li4uTeW9nZ4e7d+9W+btIjR/PoqeXip6eHnx9ffHll1/iwIEDePDgARISEvDTTz9Jz5R/kVmzZmHnzp3YsWMHkpOTkZCQgG3btgF4dllet27dMHv2bPz6669ISUlBbGwsvv32W1y7dk3u+iwtLZGWloZbt24hJycHZWVlVbabNm0aunfvDl9fX+zatQsJCQlISUnB6dOn4e3tjVu3btVpXS0tLVFaWorffvsNOTk5KC4ulnsd/qlt27bw8PBAYGAgTp06hZSUFMTHx2Pr1q3SwJg4cSJSU1PxxRdf4N69ezh16hT27t0rV/+///47vvvuO9y/fx/79u3DkSNHKm0tenl5ITw8HImJiTLHlavSunVrmJubY/369UhOTsalS5ewadMmhdb9n2r7fbZp0waDBg1CUFAQrl27hj///BMLFy6Enp4ePDw8FK7D2dkZp06dwhtvvCH9A8bZ2RnHjh2TOf5uYWEBHR0d7N69GykpKTh//nylcyImTpyIhw8fIjQ0FPfu3cPp06elP1fP/1Dz8/NDXFwcgoKCcPv2bTx48ADnzp1DUFCQwutALw8GPL105s2bhw8++ADbtm2Dm5sbfHx8cPr0aVhZWVX7OW9vbwQFBWHfvn3w8PDAjBkzpJctiUQifP/99+jZsyc+++wzDB8+HPPmzUNycrL0+Kw8XF1d0b9/f0ybNg0uLi4vvOGNjo4Otm/fDj8/Pxw4cAATJkzAmDFj8MMPP2DUqFHSY9iKrmu3bt0wceJEfPTRR3BxccEPP/wg9zr828qVKzFmzBisWrUKw4cPx6xZsxATEyM9bGBhYYH169fj4sWL8PT0xI4dO7BgwQK5+vbx8cGff/6J0aNH4+uvv4a/v7/MyYIA0LNnT5iZmcHZ2bnGvSva2tpYs2YNUlJS4OnpiXXr1skcl1aUIt/nypUr0aVLF7z//vvw8vJCSUkJfvjhhzod2nB2dkZFRYVMmFc1zdDQEKGhofjll18wYsQIrF+/vtKd8iwtLbFu3TqcPXtWOm5z5swBADRp0gQA0LFjR4SFhSE1NRWTJ0+Gp6cn1qxZw2PvakIkyHM2EBGRipSUlKBfv35YsmQJRo4c2dDlqLWdO3dK91opeq4ANR48Bk9EDUIikSA3Nxe7du1CkyZNMHz48IYuSe3s3r0bnTt3RosWLXDz5k1s3LgRo0ePZri/IhjwRNQg0tLSMGjQIJiZmWHlypUv1a2Gr127Jr03QlUUuWf9jBkzcP369SrnzZw5E7Nmzap1nzV58OABNm/ejLy8PJiZmWHixInS3fSk/riLnojoX0pKSird9vWfFDnrPCMjAyUlJVXOe/311/mMAFI6BjwREZEa4ln0REREaogBT0REpIbU7iS73NxCSCSv3lEHIyM9ZGfzEY+NAceq8eBYNQ6v6jhpaIjQokXzF85Xu4CXSIRXMuABvLLr3RhxrBoPjlXjwHGqjLvoiYiI1BADnoiISA0x4ImIiNQQA56IiEgNMeCJiIjUEAOeiIhIDdVLwIeGhmLgwIGwsbHBX3/9VWUbsViMpUuXYvDgwRgyZAj2799fH6URERGppXoJ+EGDBmH37t2wtLR8YZvw8HA8fPgQp0+fxs8//4x169bh0aNH9VEeERGR2qmXgO/RowfMzc2rbXPixAl4eXlBQ0MDhoaGGDx4ME6dOlUf5REREamdl+ZOdunp6bCwsJC+Nzc3x+PHj2vdj5GRntJqklSUQUNLR2n9qZqxsX5DlyAXVXyvHCvV4Fg1jrFS1XfamMaqMYwTUL/f6UsT8MqSnV2gtFsWGhvr494XY5XSF/2/dp8eRFZWvlL75FipBseqcVDFOAEcK1VQ5lhpaIiq3ah9ac6iNzc3R1pamvR9eno6zMzMGrAiIiKixuulCfhhw4Zh//79kEgkyMnJwS+//AJXV9eGLouIiKhRqpeA//zzz9GvXz88fvwYPj4+cHNzAwD4+fkhPj4eAODp6QkrKysMHToU48ePx5w5c9CqVav6KI+IiEjt1Msx+CVLlmDJkiWVpm/ZskX6WlNTE0uXLq2PcoiIiNTeS7OLnoiIiJSHAU9ERKSGGPBERERqiAFPRESkhhjwREREaogBT0REpIYY8ERERGqIAU9ERKSGGPBERERqiAFPRESkhhjwREREaogBT0REpIYY8ERERGqIAU9ERKSGGPBERERqiAFPRESkhhjwREREaogBT0REpIYY8ERERGqIAU9ERKSGGPBERERqiAFPRESkhhjwREREaogBT0REpIYY8ERERGqIAU9ERKSGGPBERERqiAFPRESkhhjwREREaogBT0REpIYY8ERERGqIAU9ERKSGGPBERERqiAFPRESkhhjwREREaogBT0REpIYY8ERERGqIAU9ERKSGGPBERERqiAFPRESkhhjwREREaogBT0REpIYY8ERERGpIq74WlJycjICAAOTl5cHAwAChoaFo06aNTJvs7GwEBgYiPT0dFRUV6NmzJ5YsWQItrXork4iISC3U2xZ8cHAwvL29ERkZCW9vbwQFBVVqs3nzZlhbWyM8PBzHjh3DrVu3cPr06foqkYiISG3US8BnZ2fj9u3bcHd3BwC4u7vj9u3byMnJkWknEolQWFgIiUSCsrIylJeXw9TUtD5KJCIiUivV7vuWSCRydaKhUf3fCenp6TA1NYWmpiYAQFNTEyYmJkhPT4ehoaG03ezZszF37lz06dMHxcXFmDRpErp37y5XDc8ZGenVqj01DGNj/YYugeTEsWocOE6NR32NVbUBb2dnB5FIVGMnCQkJSinm1KlTsLGxwc6dO1FYWAg/Pz+cOnUKw4YNk7uP7OwCSCSCUurhL4zqZGXlK7U/jpXqcKwaB2WPE8CxUhVljZWGhqjajdpqA/7MmTPS1+fPn0dkZCRmzpwJCwsLpKWlYcuWLRg6dGiNRZibmyMjIwNisRiampoQi8XIzMyEubm5TLuwsDCsWLECGhoa0NfXx8CBAxEdHV2rgCciIqIaAt7S0lL6eseOHTh48CBee+01AEDbtm3RqVMnjB07Ft7e3tUuxMjICLa2toiIiICnpyciIiJga2srs3seAKysrHDhwgV06dIFZWVliIqKwpAhQxRdNyIioleW3CfZ5efno7i4WGZaSUkJ8vPl29UQEhKCsLAwuLq6IiwsDEuXLgUA+Pn5IT4+HgCwePFiXL9+HR4eHhg1ahTatGmD8ePHy1siERER/Y/cF5iPHj0aPj4+mDp1KszMzPD48WP8+OOPGD16tFyft7a2xv79+ytN37Jli/R169atsX37dnlLIiIioheQO+A//vhjtG7dGidOnEBmZiaMjY0xadIkbmETERG9hOQOeA0NDbzzzjt45513VFkPERERKYHcx+AFQcC+ffswdepUeHh4AABiYmJw4sQJlRVHREREipE74L/55hscOHAA48ePR3p6OgDAzMwMP/zwg8qKIyIiIsXIHfCHDx/G5s2b4ebmJr35jZWVFVJSUlRWHBERESlG7oAXi8Vo3rw5AEgDvrCwEM2aNVNNZURERKQwuQO+f//+WLlyJcrKygA8Oyb/zTff4O2331ZZcURERKQYuQM+MDAQWVlZ6N69O/Lz8+Ho6Ii0tDQsXLhQlfURERGRAuS+TE5PTw8bNmzAkydPkJaWBnNzcxgbG6uyNiIiIlJQtQEvCIL0ePvzR8caGhpK7yH/fFpNj4slIiKi+lVtwHfv3h03btwAUPWjY5//AaCsx8USERGRclQb8MePH5e+/uejY4mIiOjlVm3A//N57f98dCwRERG93OQ+yS4vLw/btm1DQkICioqKZObt3r1b6YURERGR4uQO+AULFqCsrAzDhw+Hrq6uKmsiIiKiOpI74GNjY3HlyhXo6Oiosh4iIiJSArmvb7OxscHjx49VWQsREREpidxb8G+99RZmzJiBMWPGoGXLljLzxo0bp/TCiIiISHFyB/y1a9dgamqK3377TWa6SCRiwBMREb1k5A74H3/8UZV1EBERkRLJHfAAkJubi19//RVPnjzBjBkzkJGRAUEQYGZmpqr6iIiogUjKy9Du04MNXYZakZSX1duy5A74q1evYu7cuejUqRNu3LiBGTNm4MGDB9i2bRs2b96syhqJiKgBaGjrwGPB0YYuQ62Ef+UJoLReliX3WfQrVqzA119/ja1bt0JL69nfBQ4ODoiLi1NZcURERKQYuQM+NTUVLi4uACB96Iy2tjbEYrFqKiMiIiKFyR3w1tbWuHjxosy0y5cvo0OHDkovioiIiOpG7mPwAQEBmDlzJgYMGICSkhIEBQXh7Nmz2LhxoyrrIyIiIgXIvQXftWtXHDt2DO3bt8fYsWNhZWWFAwcOoEuXLqqsj4iIiBRQq8vkTE1N4efnp6paiIiISEnkCvi7d+9i3bp1uH79OvLy8mBgYIAePXrggw8+QPv27VVdIxEREdVSjbvo79+/j/Hjx6O0tBTz58/Hpk2bMG/ePBQXF2P8+PG4d+9efdRJREREtVDjFvx3330HT09PBAcHy0wfN24cli9fji1btmDlypUqK5CIiIhqr8Yt+JiYGPj6+lY5z8fHB9HR0UovioiIiOqmxoDPycmBlZVVlfMsLCyQm5ur9KKIiIiobuS6TO75nesqfVhD44XziIiIqOHUeAy+pKQEkyZNqnKeIAgoLa2fm+YTERGR/GoM+C+++KLa+V5eXkorhoiIiJSjxoCvqKhAv379YGpqWh/1EBERkRLUGPDx8fHYuHEjXnvtNQwYMAD9+vVDt27deOydiIjoJVZjwC9btgwA8Oeff+LXX3/FmjVrkJycjLfeegv9+/dH3759YWhoqPJCiYiISH5y34vexsYGNjY2eO+995Cfn4+LFy/iwoULWLVqFSwsLDB37lz07dtXlbUSERGRnGr1sJnn9PX1MWLECIwYMQIAEBcXp9SiiEh9ScrL0O7Tgw1dhlqRlJc1dAn0Eqo24A8cOCBXJ+PGjVNKMUSKYmiohiqCQ0NbBx4Ljiq931dZ+FeeAHjJMsmqNuCPHpX9Jbxx4wZatmwJc3NzpKen48mTJ+jWrRsDnhocQ0M1GBxEjVe1Af/jjz9KXy9fvhyDBg3CtGnTpNN27tyJlJQUuRaUnJyMgIAA6eNmQ0ND0aZNm0rtTpw4gU2bNkEQBIhEImzfvh0tW7aUb22IiIgIgJy3qgWAY8eOYcqUKTLTJk+eXGkr/0WCg4Ph7e2NyMhIeHt7IygoqFKb+Ph4rF+/Htu2bUNERAT27NkDfX19eUskIiKi/5E74Fu2bImzZ8/KTDt37pxcl8hlZ2fj9u3bcHd3BwC4u7vj9u3byMnJkWm3Y8cO+Pr6wtjYGMCzk/maNGkib4lERET0P3KfRb9kyRLMnTsXW7duhZmZGdLT03H37l188803NX42PT0dpqam0NTUBABoamrCxMQE6enpMn8gJCUlwcrKCpMmTUJRURGGDBmC999/v1Y31TEy0pO7LTUcY2PumWksOFaNA8ep8aivsZI74Hv37o1ffvkFFy5cQGZmJgYMGID+/fujRYsWSitGLBbjzz//xPbt21FWVoYZM2bAwsICo0aNkruP7OwCSCSCUurhL4zqZGXlK7U/jpXqcKwaB2WPE8CxUhVljZWGhqjajdpaXQdvaGiInj17IiMjA127dpX7c+bm5sjIyIBYLIampibEYjEyMzNhbm4u087CwgLDhg2Djo4OdHR0MGjQIMTFxdUq4ImIiKgWx+DT0tIwceJEDB8+HD4+PgCAU6dO4dNPP63xs0ZGRrC1tUVERAQAICIiAra2tpWO37u7u+PSpUsQBAHl5eW4cuUKOnbsWJv1ISIiItQi4IOCgjBgwADcuHEDWlrPNvx79+6Ny5cvy/X5kJAQhIWFwdXVFWFhYVi6dCkAwM/PD/Hx8QAANzc3GBkZYcSIERg1ahTat2/Pa+yJiIgUIPcu+vj4eHz//ffQ0NCQnvSmr6+P/Hz5jiVYW1tj//79laZv2bJF+lpDQwOBgYEIDAyUtywiIiKqgtxb8EZGRnjw4IHMtLt371Y6jk5EREQNT+6A9/X1xaxZs3Dw4EFUVFQgIiIC8+fPh5+fnyrrIyIiIgXIvYt+3LhxMDAwwM8//wxzc3McPnwYH374IQYPHqzK+oiIiEgBtbpMbvDgwQx0IiKiRqDagD9y5Ij0GvTqHh3LM92JiIheLtUG/PHjx6UB/6KHyohEIgY8ERHRS6bagJ84caL09bZt26Ctra3ygoiIiKjuqj2L/uOPP5a+7tmzp8qLISIiIuWodgve2NgYYWFhsLa2hlgsxpUrVyAIlR/k4uLiorICiYiIqPaqDfiVK1fi22+/xa5du1BeXo7FixdXaiMSiXDmzBmVFUhERES1V23Ad+vWDTt27AAADBkyBP/973/royYiIiKqI7nvZMdwJyIiajyq3YKfPn06tm7dCgDw9vaWPmTm33bv3q38yoiIiEhh1Qb882vgAcDLy0vlxRAREZFyVBvwHh4e0tft2rWDg4NDpTZxcXHKr4qIiIjqRO5j8D4+PlVOnzFjhtKKISIiIuWo8WEzEokEgiDI/Pfcw4cPoampqdICiYiIqPZqDHg7OzuIRCIIggA7OzuZeRoaGpg1a5bKiiMiIiLF1BjwZ86cgSAImDJlCsLCwqTTRSIRDA0N0bRpU5UWSERERLVXY8BbWlpCLBbDysoKxsbG0NHRqY+6iIiIqA7kOslOU1MTjx49gkQiUXU9REREpARyn0U/Z84chISEIDU1FWKxGBKJRPofERERvVxq3EX/3JIlSwAAR48elU4TBAEikQgJCQnKr4yIiIgUJnfA84lxREREjYfcAW9paQng2XXxT548gYmJicqKIiIiorqR+xj806dPsWDBAnTp0gVDhw4F8Gyrfu3atSorjoiIiBQjd8AHBwdDT08PZ8+ehba2NgDA0dERJ0+eVFlxREREpBi5d9FHRUXh4sWL0NbWlj421tDQENnZ2SorjoiIiBQj9xa8vr4+cnNzZaalpaXB2NhY6UURERFR3cgd8F5eXvD398eVK1cgkUgQGxuLRXjJYvcAAB8gSURBVIsWYeLEiaqsj4iIiBQg9y56Pz8/NGnSBMuWLUNFRQUWL16MCRMmYOrUqaqsj4iIiBQgd8CLRCJMnTqVgU5ERNQI1LiL/vr161i1alWV81avXo3ff/9d6UURERFR3dQY8N999x2cnJyqnOfs7IzNmzcrvSgiIiKqmxoDPiEhAX379q1yXq9evfDHH38ovSgiIiKqmxoDvqCgAOXl5VXOq6ioQGFhodKLIiIiorqpMeDbtWuHS5cuVTnv0qVLaNeundKLIiIiorqpMeCnTZuG4OBgnD59Wvrsd4lEgtOnTyMkJAQ+Pj4qL5KIiIhqp8bL5Dw8PPDkyRMsWrQI5eXlMDAwQF5eHrS1teHv7w93d/f6qJOIiIhqQa7r4H18fODl5YXY2Fjk5eXBwMAAjo6O0NPTU3V9REREpAC5b3Sjp6f3wrPpiYiI6OUi973oiYiIqPGot4BPTk7GhAkT4OrqigkTJuD+/fsvbHvv3j04ODggNDS0vsojIiJSK/UW8MHBwfD29kZkZCS8vb0RFBRUZTuxWIzg4GAMHjy4vkojIiJSO3IH/KhRo6qcPmbMmBo/m52djdu3b0vPuHd3d8ft27eRk5NTqe3333+PAQMGoE2bNvKWRkRERP8id8A/ePCg0jRBEPDo0aMaP5ueng5TU1NoamoCADQ1NWFiYoL09HSZdomJibh06RKmTZsmb1lERERUhRrPov/kk08AAOXl5dLXz6WmpqJ9+/ZKKaS8vByfffYZVq5cKf1DQBFGRrx0rzEwNtZv6BJIThyrxoHj1HjU11jVGPCtW7eu8jUAdOvWDcOGDatxIebm5sjIyIBYLIampibEYjEyMzNhbm4ubZOVlYWHDx/ivffeAwA8ffoUgiCgoKAAy5cvl3uFsrMLIJEIcrevDn9hVCcrK1+p/XGsVIdj1Tgoe5wAjpWqKGusNDRE1W7U1hjwH3zwAQDAwcFB4evgjYyMYGtri4iICHh6eiIiIgK2trYwNDSUtrGwsEB0dLT0/bp161BUVIRFixYptEwiIqJXmdw3uunbty/u3buHxMREFBUVycwbN25cjZ8PCQlBQEAANm7ciNdee016CZyfnx/8/f3RuXPnWpZORERELyJ3wG/evBkbNmxAx44d0bRpU+l0kUgkV8BbW1tj//79laZv2bKlyvZz586VtzQiIiL6F7kDfufOndi/fz86duyoynqIiIhICeS+TK5p06Z89jsREVEjIXfAf/jhh/j888+RmZkJiUQi8x8RERG9XOTeRR8QEAAAMsfRBUGASCRCQkKC8isjIiIihckd8GfOnFFlHURERKREcge8paUlAEAikeDJkycwMTFRWVFERERUN3Ifg3/69CkWLFiALl26YOjQoQCebdWvXbtWZcURERGRYuQO+ODgYOjp6eHs2bPQ1tYGADg6OuLkyZMqK46IiIgUI/cu+qioKFy8eBHa2toQiUQAAENDQ2RnZ6usOCIiIlKM3AGvr6+P3NxcmWPvaWlpMDY2VklhLwNJeRnafXqwoctQO5LysoYugYhI7ckd8F5eXvD398e8efMgkUgQGxuLNWvWYOLEiaqsr0FpaOvAY8HRhi5D7YR/5QmgtKHLICJSa3IHvJ+fH5o0aYJly5ahoqICixcvxoQJEzB16lRV1kdEREQKkDvgRSIRpk6dykAnIiJqBOQ+i/77779HXFyczLS4uLgXPg2OiIiIGo7cAb9r1y60b99eZpq1tTV27typ9KKIiIiobuQO+PLycmhpye7R19bWRlkZz4gmIiJ62cgd8Pb29tizZ4/MtL1798LOzk7pRREREVHdyH2SXWBgIHx8fHDs2DG0atUKKSkpyMrKwvbt21VZHxERESlAroAXBAFNmzZFZGQkzp8/j/T0dAwdOhQDBgxA8+bNVV0jERER1ZJcAS8SieDh4YEbN27Azc1N1TURERFRHcl9DN7W1hbJycmqrIWIiIiURO5j8M7OzvDz88Po0aNhZmYmfeAMAIwbN04lxREREZFi5A74GzduwNLSElevXpWZLhKJGPBEREQvGbkD/scff1RlHURERKREch+DB4Dc3FwcOXIEP/zwAwAgIyMDjx8/VklhREREpDi5A/7q1asYNmwYwsPDsWHDBgDAgwcPEBISoqraiIiISEFyB/yKFSvw9ddfY+vWrdJb1jo4OFR6AA0RERE1PLkDPjU1FS4uLgAgPYNeW1sbYrFYNZURERGRwuQOeGtra1y8eFFm2uXLl9GhQwelF0VERER1I/dZ9AEBAZg5cyYGDBiAkpISBAUF4ezZs9i4caMq6yMiIiIFyL0F37VrVxw7dgzt27fH2LFjYWVlhQMHDqBLly6qrI+IiIgUUOMWfHFxMTZt2oS//voL9vb2mDlzJnR0dOqjNiIiIlJQjVvwy5Ytw7lz59CuXTtERkYiNDS0PuoiIiKiOqgx4C9evIitW7fik08+wZYtW3Du3Ln6qIuIiIjqoMaALyoqgomJCQDA3NwcBQUFKi+KiIiI6qbGY/BisRhXrlyBIAgAgIqKCpn3AKTXxxMREdHLocaANzIywuLFi6XvDQwMZN6LRCKcOXNGNdURERGRQmoM+LNnz9ZHHURERKREtXqaHBERETUODHgiIiI1xIAnIiJSQwx4IiIiNcSAJyIiUkNyP02urpKTkxEQEIC8vDwYGBggNDQUbdq0kWmzYcMGnDhxAhoaGtDW1sb8+fPRt2/f+iqRiIhIbdRbwAcHB8Pb2xuenp44evQogoKCsGvXLpk2Xbp0ga+vL3R1dZGYmIjJkyfj0qVLaNq0aX2VSUREpBbqZRd9dnY2bt++DXd3dwCAu7s7bt++jZycHJl2ffv2ha6uLgDAxsYGgiAgLy+vPkokIiJSK/US8Onp6TA1NYWmpiYAQFNTEyYmJkhPT3/hZ44cOYLWrVvDzMysPkokIiJSK/W2i742rl69im+++Qbbtm2r9WeNjPRUUBEpm7GxfkOXQHLiWDUOHKfGo77Gql4C3tzcHBkZGRCLxdDU1IRYLEZmZibMzc0rtY2NjcXHH3+MjRs3ol27drVeVnZ2ASQSoeaGcuAvjOpkZeUrtT+OlepwrBoHZY8TwLFSFWWNlYaGqNqN2nrZRW9kZARbW1tEREQAACIiImBrawtDQ0OZdnFxcZg/fz6+/fZb2Nvb10dpREREaqneroMPCQlBWFgYXF1dERYWhqVLlwIA/Pz8EB8fDwBYunQpSkpKEBQUBE9PT3h6euLPP/+srxKJiIjURr0dg7e2tsb+/fsrTd+yZYv09cGDB+urHCIiIrXGO9kRERGpIQY8ERGRGmLAExERqSEGPBERkRpiwBMREakhBjwREZEaYsATERGpoZfyXvRERNQ4NW+igVEuRjAx0IFI1NDVvHxu3boNiURS689paemgRQtjaGrKH9sMeCIiUppRLkZoa2kMDU1dMOErs7AwQEVF7QJeEAQUFj5Fbm4WWras/AyXF+EueiIiUhoTAx2Gu5KJRCI0b/4aKirKavU5BjwRESmNSASGuwqIFPhOuYueiIhUxu5NYzTX1VF6v4XFZbh9J0vp/aoTBjwREalMc10deCw4qvR+w7/ylLttRUUFjhz4EVcun4O2tg40NDRg18kREyb5QUtL/hg8dfwAXPoMwuuvtwAAnDl9DGVlpRju7gUA+G5DKO7dTYRVq7bo1XcQ/kyIh/e7s2q1XidOhOPy5Yv4/PMva/W5qjDgiYhIrX2/8UuUl5Vieehm6Oo2g1gsxq9nT6KivFyugJdIJBCJRDh1/CDsO3eXBvygoSOlbf7Oy0FM9EV8v+MYNDSeHf3u7tRbNSskJwY8ERGprcfpj3D96iV8u/ln6Oo2AwBoampi4BB3AED4kZ8Qc+UCxBIxDA1bYvrMhTBoYYiD+3YgNeU+iooKkf0kE336DUFuTja+/SoE2to6mPPhp7gSdR6lJcUY7TUVX4QsQFlpCZZ8MhN9BwxF8+b6iL1+BR8uDAEAXDgfiTORR6GlCTRvroeFCwPQunUblJeXY+3aL3HjxjW8/roB3nzTRmnrzoAnIiK1dT/5LkzNLNFcT7/SvEsX/ovMx2kIWbEBGhoa+CXyKPbs2oTZH34KAEi6k4jPv/wO+q+9DgA4d+Y4/BeEoFXrts86iHr2f7q6zfDx4pX4LGAWVqzeAgC4cO6UdDmJCXGIvnweS5Z9Ddt2Jrh48SJWrlyGTZu24ejRg0hPT0NY2H5UVFRgzhw/mJvLfylcdRjwRET0Srpx7TKSk/7Ckk9mAgAkEjF0mzWXznfo1lMa7nURey0KDx8kIThwDproaEIiEZCf//RZDTeuY/hwd2hpaUFLSwuursMRF/d7nZcJMOCJiEiNtWnbHhmPU1FYkF95K14QMGrsZPQfOLzKzzZt2lQpNQiCgP5vD8e4iT5o36r2N7pRFK+DJyIitWVmbgXHHi7Y+v0aFBcXAQAkYjHOnTmObj164ZfIoygsyAcAlJeX4cH9pBf2pavbHMVFhbWuoVsPF1y6cBrZ2c8u6xOLxUhMTAAAdO/eA6dOnUBFRQVKS0vw3/+eqq6rWuEWPBERqUxhcVmtLmmrTb/ymjUnAIf278Jni2ZBS0sLEomArt2cMd7bD/n5f+Pz4PkAAEGQYJCrJ95oY11lP0NHjMb3G7+Ejk4TzPnfcXp5dLRzgNc707Em9FNoa4pQXl6Ot98ejI4dbTFy5BjcvXsXkyd74fXXDdCxoz1yc7Pl7rs6IkEQBKX09JLIzi6ARKKcVTI21lfJ9ZuvuvCvPJGVla/UPjlWqsGxahxUMU6AYmP10WhL6L2mnJPE1FFddtE/fvwAZmZvSN9raIhgZKT3wvbcRU9ERKSGGPBERERqiAFPRESkhhjwREREaogBT0REpIYY8ERERGqI18ETEZHKdHnTCE10lXNHuH8qLS5B3J2arxefN/sdaGvrQFtbGyUlJbBq1Qbuoyaig00nhZd9YO92WLVqg7d6v12rz323PhTOPRwwevR4hZddGwx4IiJSmSa6TXHvi7FK77fdpwflbvvPB8TERF/A6hWB+GTJl2j/pq1Cyx430Uehz9U3BjwREb0ynHr2Q9KdRJw49jNm+3+KfT9tReLtm6ioKEer1u3g4zcfTXV18d36UGjr6OBxWgqys7PwZgc7zPwgACKRCN+tD0Vb6w4YOnw0KsrLX9hHTnYWNq//D/Jyc2BsYgqRqH6PivMYPBERvVKs37TFo5QHiDi2F82aN8ey/2zCitU/oIVhSxw7vEfa7tHDZCxc/B+ErtmG5Ht/4Y+465X6qq6PH7evR0e7Lvjy6+2YOt0fibdv1ts6AtyCJyKiV86z25nfiLmM4uIiXI26AACoqChH6zf+/z703Z17Q0dHBwDQpu2byMxIq9RTdX3c/uN3TPH5AABgYmoB+87dVLdKVWDAExHRK+Xe3T9h1boNsjIfY9qMD18YvNraOtLXGhqaEIvFldoIQLV9NCTuoiciolfG9ZjfcOb0MYzwGI9uPXrhZMQBlJWWAgCKi4uQ+uhBrfqrrg+7To64cP7Z418zM9JxK/6GEtekZtyCJyIilSktLqnVGe+16Vde334VIr1MztLqDSxcvBLt37RFm7Zv4tC+nQgKfB8ikQZEImC017uwtHqj5k7/x2PUOy/sY4rPHGxe/x9cvngWxiZmsLV3UGRVFcbHxVaDj7VUDT6CtPHgWDUOfFxs48HHxRIREVGdMOCJiIjUEAOeiIhIDTHgiYhIaQTh+f+QMilyuhwDnoiIlCYzrwwScTFDXokEQUBh4VNoaenU3PgfeJkcEREpzZGobIxyAUwMdCASNXQ1L5+0tL8hkdT+LHotLR20aGFcu8/UeilEREQvUFgqwe7zWQ1dxktLVZc0VqXedtEnJydjwoQJcHV1xYQJE3D//v1KbcRiMZYuXYrBgwdjyJAh2L9/f32VR0REpFbqLeCDg4Ph7e2NyMhIeHt7IygoqFKb8PBwPHz4EKdPn8bPP/+MdevW4dGjR/VVIhERkdqol1302dnZuH37NrZv3w4AcHd3x/Lly5GTkwNDQ0NpuxMnTsDLywsaGhowNDTE4MGDcerUKcyYMUPuZWloKPegj0kLXaX2R88oe5wAjpWqcKwaB1WME8CxUgVljVVN/dRLwKenp8PU1BSampoAAE1NTZiYmCA9PV0m4NPT02FhYSF9b25ujsePH9dqWS1aNFdO0f+zdclQpfZHz1R3e0VFcaxUg2PVOKhinACOlSqoaqz+jZfJERERqaF6CXhzc3NkZGRIn6UrFouRmZkJc3PzSu3S0tKk79PT02FmZlYfJRIREamVegl4IyMj2NraIiIiAgAQEREBW1tbmd3zADBs2DDs378fEokEOTk5+OWXX+Dq6lofJRIREamVentcbFJSEgICAvD06VO89tprCA0NRbt27eDn5wd/f3907twZYrEYy5Ytw2+//QYA8PPzw4QJE+qjPCIiIrWids+DJyIiIp5kR0REpJYY8ERERGqIAU9ERKSGGPBERERqiAH/kho4cCD++usvmWljxoxBdHR0A1VEzw0cOBB9+vSR3tcBAA4dOgQbGxuEhYUp3O+hQ4eQnJws897f379OtRKwdu1aBAcHS9+fO3cONjY2uHPnjnTazJkzFX64lY2NDQoLC+tcJ8kKDAzEqlWrZKZNmzYNe/bsaaCKGh8G/CuqoqKioUto1ExMTHDp0iXp+8OHD8Pe3r5OfR4+fLjKpyxS3bz11lu4evWq9P3Vq1fh4OAgnSYWi3H9+nX07NmzoUqkKixevBgnT57EzZs3AQB79+6FSCTCO++8U6d+X6V/+xjwjdCTJ08wZ84ceHh4wMPDA0eOHJHO+/fWxD/f29jYYN26dRg7dizWr19f73Wrk9GjR+PQoUMAgJSUFBQVFaFDhw4AgMLCQgQGBsLd3R3u7u7YsmWL9HNTpkxBaGgo3nnnHQwaNAirV68GABw8eBB//PEHPv/8c3h6euLy5csAgIKCAsybNw9ubm6YOHEisrL4nO3acnR0xKNHj/DkyRMAQExMDGbPni3dG3b79m3o6emhadOm8Pf3x7hx4+Dh4YHNmzdL+7h37x5mzJiBsWPHYuTIkTh48GCl5UgkEqxYsQIfffQRysrK6mfl1Ji+vj6WL1+OwMBAJCcnY9OmTfj888/x4YcfVjlGoaGh0vGZOnUqUlNTAQCPHj1Cz549ERoaitGjR79SjyGvl4fNkGL8/f3RpEkT6fvnW3eff/453nzzTWzYsAGZmZkYM2YM7OzspAFTnSZNmlT5jxPVjrOzM/bs2YO///4bhw8fxqhRo3Dr1i0AwMaNGyGRSBAeHo7CwkJMmDABHTp0QP/+/QE8uwXz7t27UVhYiMGDB2PcuHEYO3Ysjhw5Al9fX7z99tsAnu2ij4+Px7Fjx2Bubo4lS5YgLCwM8+fPb7D1boyaNm2KLl264OrVq+jXrx+Ki4vRt29frFixAsCzLXpnZ2csWrQIs2fPhpOTE8rKyjBt2jR07twZPXv2xMKFC7Fq1SpYW1ujoKAAY8eORdeuXWFtbQ0AKC0tRWBgICwtLfHVV19BJFLNk91eNb1794aTkxPGjRuHwMBALFmypMox6t27N/z8/LBo0SIAwP79+7F69WqsXbsWAJCXl4fOnTtL578qGPAvsW+//VYmtMeMGQMAiIqKQkBAAIBnu4r79++P6OhouQJ+9OjRqin2FSMSiTB8+HAcP34cx48fx969e6UBHxUVhcWLF0MkEkFPTw9ubm6IioqSBvywYcOgoaEBfX19WFtb4+HDh2jTpk2Vy+nWrZv0mQ0ODg7SLXuqHWdnZ0RHR6N58+bo3r07NDU18cYbb+DOnTvS4F+xYgVycnKknyksLERSUhJMTU2RlJSEjz76SDqvvLwc9+7dkwb8jBkz4ObmhunTp9f7uqm76dOn4+TJkxgxYgSCg4OrHKPevXvjwoUL2LNnD4qKiirthm/SpAmGDx9e36U3OAa8mtHU1MTzmxOWlpZWmt+sWbP6LkltjR49Gl5eXnByckKLFi3k/tw/98poamrKnKxXl7b0Yj179sTSpUuhr68PJycnAICTkxOioqJw/fp1fPTRRxCJRDhw4AC0tbVlPnvnzh20aNECR48erbb/ixcvwtvbG7q6fH66MmloaEAkEkEikbxwjFJTU7Fy5UocOHAArVq1wo0bN7Bw4ULpfF1d3VdyrwqPwTdCLi4u2LdvHwAgKysLv/76K9566y0AQOvWrREfHw8ACA8Pb7AaXwWtWrXC/PnzMXv2bJnpLi4uOHjwIARBQEFBAU6cOIFevXrV2F/z5s2Rn5+vqnJfaY6OjkhNTcXp06fh7OwMAOjRowd2796N1157DTY2NujevTu+//576WfS09ORlZWFtm3bomnTpjLnuiQlJaGgoED6/oMPPkCvXr0wffp0memkPHp6ei8co4KCAmhra8PY2BgSiQR79+5twEpfHgz4RmjJkiVITEyEh4cHfH19sXDhQrz55psAnl1aEhQUhDFjxsjsyiLVmDBhAmxtbWWmzZ49G4IgwMPDAxMnTsTIkSPRr18/ufrasGGDzEl2pBxNmjSBg4MDAMDU1BQA0LlzZ2RkZEgDf/Xq1UhKSpKevDp//nw8ffoUWlpa2Lx5M06cOAEPDw+4ublh6dKllU6ke++99zBs2DBMmzYNeXl59buCr4gXjZGNjQ2GDRuGESNGwMvLC1ZWVg1d6kuBD5shIiJSQ9yCJyIiUkMMeCIiIjXEgCciIlJDDHgiIiI1xIAnIiJSQwx4oldEUFAQNmzYoPR+9+zZg169esHR0RG5ublK75+IFMPL5IheQdHR0fj4449x4cKFOvVTXl6O7t27Y9++fejYsaOSqiMiZeAWPBEpLDs7G6WlpWjfvn1Dl0JE/8KAJ2pEbGxs8ODBA+n7gIAA6ROzoqOj0a9fP2zbtg0uLi7o06ePzJMDn7ctKiqCn58fMjMz4ejoCEdHR2RkZLxwmWVlZfjiiy/Qp08f9OnTB1988QXKysqQnJyMYcOGAXh2X/d33333hX18++23WL58OYBnW/1du3ZFaGgoAKCkpASdO3eW3v3N398fvXv3Rvfu3TFp0iTcuXNH2k9ubi5mzZqFbt26YezYsVi7dq3M88GTkpLg4+MDZ2dnuLq64sSJE3J/t0TqhgFPpEaePHmC/Px8XLhwAV988QWWLVuGv//+W6ZNs2bNsGXLFpiYmCA2NhaxsbHS27dWZdOmTbh58yaOHj2KY8eOIT4+Hhs3bkTbtm0REREB4Nkz1nft2vXCPpycnHD16lUAQHx8PFq2bIlr164BAGJjY9G2bVsYGBgAAPr164fIyEhERUXBzs5O5qEhy5Ytg66uLn777TeEhobK3B++qKgIvr6+cHd3x+XLl7F27VosXboUd+/ereW3SKQeGPBEakRLSwtz5syBtrY2+vfvj2bNmiE5OblOfYaHh2POnDkwMjKCoaEh5syZg2PHjtWqD0dHR9y/fx+5ubm4du0axo0bh4yMDBQWFiImJkZ6P3gAGDduHPT09KCjo4O5c+ciMTER+fn5EIvFOH36NObOnQtdXV20b98eo0aNkn7u/PnzsLS0xNixY6GlpQU7Ozu4urri1KlTdVp/osaKj4slUiMGBgbQ0vr/X2tdXV0UFRXVqc/MzExYWFhI31tYWCAzM7NWfTRt2hSdOnVCTEwMYmJiMGvWLCQkJODGjRuIiYnB5MmTAQBisRhr167FqVOnkJOTAw2NZ9sgubm5KCkpQUVFBczNzaX9/vN1amoq4uLi0KNHD+k0sViMkSNHKrTeRI0dA56oEdHV1UVxcbH0fVZWVrW711+kNs/GNjExQVpamvSJhenp6TAxMan1Mp2dnXHlyhUkJCSgc+fOcHZ2xqVLlxAXFyd9Rnt4eDjOnDmD7du3w8rKCvn5+XBycoIgCDA0NISWlhYeP36Mtm3bSmt5ztzcHE5OTti+fXutayNSR9xFT9SIdOzYERERERCLxbhw4QJiYmIU6sfIyAh5eXlyPX/ezc0NmzZtQk5ODnJycrBhwwZ4eHjUeplOTk44cuQIrK2toaOjA2dnZ+zfvx9WVlYwNDQEABQWFkJHRwctWrRAcXEx1qxZI/28pqYmhgwZgvXr16O4uBhJSUk4evSodP6AAQNw//59HDlyBOXl5SgvL0dcXBySkpJqXSuROmDAEzUin376Kc6dO4cePXogPDwcgwcPVqgfa2truLm5YfDgwejRo0e1Z9HPnj0bnTp1wsiRIzFy5EjY29tj9uzZtV6mo6MjSktLpVvr7du3R5MmTWR2qY8aNQoWFhbo27cv3Nzc0LVrV5k+goKCkJ+fj969e+OTTz6Bm5sbdHR0AAB6enrYunUrTpw4gb59+6JPnz5YvXp1pee2E70qeKMbImq0Vq1ahSdPnkgvuSOi/8cteCJqNJKSkpCYmAhBEBAXF4cDBw5gyJAhDV0W0UuJJ9kREWbMmIHr169Xmj5z5kzMmjVLrj6uXbsGPz+/KufFxsbWqb7nCgsLsWDBAmRmZsLIyAi+vr4YNGiQUvomUjfcRU9ERKSGuIueiIhIDTHgiYiI1BADnoiISA0x4ImIiNQQA56IiEgNMeCJiIjU0P8BOWIiFTj1tDEAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Applicants to hourly jobs see far less than 50% certification. This is well below the rest, with yearly salaried jobs being most likely to lead to visa certification."
],
"metadata": {
"id": "wsCZ8xqFcfVq"
},
"id": "wsCZ8xqFcfVq"
},
{
"cell_type": "code",
"source": [
"percent_status('full_time_position')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "G-JVGarR9r0y",
"outputId": "8cbc7f5b-5cf5-4dcd-bae3-79aaea5e0989"
},
"id": "G-JVGarR9r0y",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAFTCAYAAADV8x5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVyU5f7/8dewKSpmICCgpmIHSdNQ0tzK3Bc4mEsZuRfmqdSTtuASoJ00W7RyySVFycrCXVxL86i5LyXfxDqZmgqCgp5UVJaZ3x8e5xeBMMAM6PR+Ph6dM3Pf133dn3tkeHNf92YwmUwmRERExK44lHcBIiIiYn0KeBERETukgBcREbFDCngRERE7pIAXERGxQwp4ERERO6SAF7nDDBgwgEmTJpnfX7t2jZEjR9KsWTMCAgI4c+ZMvjYlkZiYaO7vdtq3b8+CBQtKtZ6CHDx4kNDQUBo1asSAAQMsWubMmTMEBASQmJhY4PuSiIyM5Pnnny/x8ncLS7bTGp+n3FmcyrsAuTtFRkaycuVKAJycnKhRowadO3dmxIgRVKpUqZyrK9yMGTPYtGkTCQkJRbbNysoiLi6OhIQETpw4QYUKFahTpw69evWiV69euLi4lLiOFStW8Oabb3L48OF89Tk5/f+v5vLly9m/fz+ff/457u7uuLu752tzt3nrrbdo0KAB8+bNw9XV1ebr27t3LwMHDmT37t24u7ubp48fP56/wq1A/rydAwYM4P777ycqKso8zcfHh507d3LvvfeWR4liA3fvbwgpd61ateKdd94hJyeHAwcOMGHCBDIzM5k4cWKJ+svOzsbZ2dnKVZZcVlYWzz77LElJSYwcOZLg4GDc3NxITExk0aJF1K1blxYtWpSo7+zs7NvOq1atWp73p06dwt/fn4CAgNu2udv89ttvPPPMM/j4+JRrHW5ubuW6/rJiyXY6Ojri6elZBtVIWdEQvZSYi4sLnp6e+Pj4EBoaSmhoKFu2bAHAZDIxf/58OnbsSOPGjQkNDWX16tXmZW8NByYkJDBw4EAaN27Ml19+CcDKlSvNw7etWrXi9ddfNy93+fJl3njjDVq2bElQUBD9+/fPM6S4YsUKgoKC2L17NyEhITz00EMMGDCA06dPm+fPnDmT//znPwQEBBAQEMCKFSsK3L7Fixezf/9+YmNjGThwIA888AC1atWie/fuLF26lIYNG5ZqW8eOHUtmZqa5jhkzZgB5h+gHDBhAXFwc+/fvJyAgwDyc/ech+qysLN59910effRRmjRpQu/evdmxY0ee7dm+fTtdu3blwQcfJDw8nJMnT1r075yZmckrr7xCUFAQrVu3zjNkP3bs2HxDv0ajkXbt2hEbG5uvr1ufxeXLlxk3bpz589+7dy8BAQFkZGTka1vaIeMzZ84wcOBAAFq2bElAQACRkZFA/qHrAQMGEB0dzdtvv03z5s155JFHWLx4MVlZWUycOJHg4GDatWvHqlWr8qwjNTWVl19+mYcffpiHH36YYcOGWfz5zpgxg5CQEOLj42nXrh2NGzfmhRdeyPNZGI1GZs2axWOPPUajRo0IDQ3lm2++ydPPzJkzefzxx2nUqBGtW7fmtddeM8/743ZGRkayb98+PvvsM/PP3pkzZwr8vPfv30/fvn158MEHadWqFZMnTyYrKyvP5xUTE8O0adNo0aIFLVu2ZOrUqRiNRou2XWxLAS9WU7FiRfOe6QcffMCyZcuIiopi3bp1DBs2jOjoaLZt25ZnmWnTphEeHs66devo2LEjS5cuJSoqil69erFmzRrmzZvH/fffD9wM0mHDhpGamsrcuXNZtWoVwcHBDBo0iLS0NHOfWVlZzJ07l8mTJ7N06VIuX75MTEwMAN27d2fo0KHUrVuXnTt3snPnTrp3717g9qxdu5ZWrVrx4IMP5pvn4OBAlSpVSryt7du3Z9y4cbi6uprrGDp0aL71zJgxg169ehEUFMTOnTvNfwT82dixY9m/fz/vv/8+CQkJPPHEE/zjH//g2LFjAKSkpPDiiy/SunVrVq1aRf/+/Xn33XcL7OvPYmNj8ff3Z8WKFYwYMYLp06ezefNmAJ588kl27NiR5/P/7rvvuHDhAmFhYfn6ujUM7Orqyrhx4wr9/K3Fx8fH/LmtW7eOnTt3Mn78+Nu2X7t2LZUrV+arr75i2LBhTJ48mRdeeIE6deqwfPlyevbsyYQJE8zbfO3aNQYOHEiFChX49NNPWbp0KZ6engwZMoRr165ZVOPZs2dZs2YNs2fPJjY2llOnTjFu3Djz/Li4OBYsWMArr7zC2rVr6dixIyNGjCApKQmATZs2sXDhQqKjo9m8eTNz5syhcePGBa5r/PjxBAUF0atXL/PPXkEjKampqURERBAYGMiqVat46623WLduHdOmTcv3eTk6OrJ06VLeeOMNFi9ezPr16y3abrEtDdGLVRw5coS1a9fSsmVLMjMziY2NZeHChQQHBwNQq1Ytjhw5wmeffUa7du3My/Xv35+uXbua38+ePZtBgwYxZMgQ87RGjRoBsGfPHo4dO8bu3bupWLEiAP/85z/59ttvWb16NREREQDk5OQQFRVFvXr1ABg6dCjjxo3DZDJRsWJFKlWqhJOTU5HDkadOnaJ58+aFtinNtrq5uWEwGAqto1q1ari6uuLs7Hzbdr/99hvr1q1j69at+Pr6mte1a9culi5dSkxMDF988QW+vr5MmDABg8GAv78/J0+e5MMPPyx0+wCaNGnCP/7xDwDq1q1LYmIisbGxdO7cmaCgIOrVq8eqVasYNmwYcPOcgfbt2+c51n3LrWFgg8GAm5tbmQwJOzo6cs899wCYz2EozP3338+IESMAGDJkCPPmzcPJyYlBgwYB8OKLL/LJJ59w6NAhunbtyrp16zCZTEyZMgWDwQDApEmTaNWqFd9++61Ff8Bcv36dqVOnmv/9Jk6cyDPPPMPJkyepU6cOCxYsYOjQoYSGhgIwatQoDhw4wIIFC3jvvfdITk7G09OT1q1b4+zsjK+vb4F/mMLNnztnZ2dcXV0L/fw///xzvLy8iImJwcHBAX9/f8aMGUNUVBSjRo0ynztRv359Ro0aBdz8+YiPjzePoEn5UsBLie3YsYOgoCBycnLIycmhQ4cOvPHGG/zyyy/cuHGD5557zvwLD24ed/bz88vTx63wBkhPTyc1NZWWLVsWuL4ff/yRa9eu5Zt/48YN8xA83Dx0cCvcAby8vMjOzua///1vsY5dW3LyVUm31Zp+/PFHTCYTPXr0yDM9KyuLRx55BIDjx4/TpEmTPDUGBQVZ1P9DDz2U7/3XX39tft+3b18+//xzhg0bxqVLl9iyZQszZ84s6eaUuz+e62AwGPDw8MgzzdnZmapVq5Keng7c/PzPnDlD06ZN8/Rz7dq1PD+XhfH29jaHO9z8o8rBwYHjx49TvXp10tLSaNasWZ5lmjZtyvbt2wHo2rUrcXFxdOjQgTZt2tC2bVs6dOhQqpNAb/3MODj8/4HeZs2akZ2dzalTp2jQoAGQ9/OCm9+3W5+NlC8FvJRYcHAwb775Jk5OTnh5eZlPkLt12dXHH3+c55cWkO/M7+KcQW00GqlevTqfffZZvnm3hssLWsetUCvuccE6derw66+/Ftrm1h8B1t7W4jCZTBgMBpYtW5ZvnbdGOmwpLCyM9957jwMHDpCUlIS7uztt27YtVh9/DJFbcnJyrFVisRT081PQtFv/9kajkQYNGjB9+vR8fd0aObCVWz/bPj4+bNy4kd27d7Nr1y6mTp3KrFmz+Oqrr2xyVcsf/1As7LOR8qWAlxJzdXXlvvvuyzfd398fFxcXkpOTb7s3XhAPDw+8vb3ZvXs3rVu3zje/YcOGXLhwAQcHB2rVqlXiup2dncnNzS2yXUhICNOmTSMxMTHfcKfRaCQzM7PE21qcOooSGBiIyWTi/Pnz5j32P/P392fTpk3mPwYAvv/+e4v6/+GHH/K9/+MISbVq1ejcuTPLly8nKSmJnj17FhjYhbk1bJ6WlmZ+fev4sjXc+uPTFid/NWzYkHXr1nHvvfdStWrVEvWRmppKSkqK+Vj4kSNHMBqN+Pv7U6VKFby8vDh48GCen7FDhw7h7+9vfl+hQgXatWtHu3btGDZsGK1bt+bQoUO0adMm3/os+dnz9/dnw4YNGI1G87/nwYMHcXZ2pnbt2iXaTilbOslOrK5KlSoMHTqUd955h2XLlnHq1CmSkpL44osvzGfK387w4cNZvHgxixYt4sSJEyQlJbFw4ULg5mV5TZs25YUXXuDf//43p0+f5vDhw3z00UccOHDA4vr8/PxITk7mxx9/JCMjI89ZwX80ePBgmjVrxtChQ4mLiyMpKYnTp0+zefNmwsPD+fHHH0u1rX5+fty4cYPvvvuOjIwMi0/I+rO6desSGhrK2LFj2bhxI6dPnyYxMZEFCxaYT4br168fZ8+e5a233uLXX39l48aNLF261KL+v//+e+bOncvJkyf56quvWLVqFYMHD87Tpm/fvqxdu5Zjx47Rp0+fYm9D7dq18fHxYebMmZw4cYKdO3fy8ccfF7uf2/Hz88NgMLBt2zYyMjK4evWq1foODQ3Fw8ODF154gX379nH69Gn279/P22+/bfGZ9BUrVuT1118nKSmJw4cPExMTQ7t27ahTpw4Azz77LAsXLjTfj+HDDz/kwIEDPPvss8DNq0Pi4+P56aefOH36NCtWrMDZ2bnAP8Dh5ueRmJjImTNnyMjIKPAPn/DwcNLS0oiJieH48eNs27aN999/n/79+5fJvQuk9LQHLzbxz3/+k+rVq7Nw4UJiYmKoUqUKgYGBPPfcc4UuFx4ejrOzM7Gxsbz33nvcc889PProo8DNob958+bxwQcf8MYbb5CRkYGHhwdNmzalZ8+eFtfWpUsXvv76awYPHszvv//OlClT6NWrV752Li4uxMbGsmjRIpYtW8Z7771HhQoVqFu3rvnM9tJsa9OmTenXrx+jR4/m0qVLvPTSS+aTu4prypQpzJkzh3fffZfU1FTuueceHnzwQfN1+r6+vsycOZMpU6bw5Zdf0rBhQ8aMGcOrr75aZN9Dhgzhp59+Ys6cObi6ujJy5Mg8JwsCtGjRgho1auDr61ui0RVnZ2emTZvGxIkTCQsLIzAwkNGjR1vtLnPe3t6MGDGCDz74gAkTJtCzZ0/efvttq/Tt6urKZ599xvvvv8+oUaO4fPkyXl5etGjRwuI9ej8/P3r06MHw4cO5ePEirVu35q233jLPHzhwIFevXuXdd98lPT2dunXrMmPGDPNx8KpVqzJ//nymTp1KTk4O/v7+zJgx47b/FkOHDiUyMpIePXpw/fp18+Wtf+Tt7c38+fN55513CAsLo2rVqoSEhDB69OgSfEpSHgwmHSwRkVK6fv06jz76KBMmTODvf/97eZdzVynOnRVFikN78CJSYkajkYsXLxIXF0eFChXo1q1beZckIv+jgBeREktOTqZDhw7UqFGDKVOmlNuthqOioli7dm2B80JDQ0v9YJ7S6NGjB8nJyQXOK+ltnUUsoSF6Ebnrpaenc+XKlQLnValSBQ8PjzKu6P87e/bsbS/58/DwyHOJp4g1KeBFRETskC6TExERsUMKeBERETtkdyfZXbx4FaNRRx3uNh4eVUhPL/gYqojYnr6Ddx8HBwP33lv5tvPtLuCNRpMC/i6lfzeR8qXvoH3REL2IiIgdUsCLiIjYIQW8iIiIHVLAi4iI2CEFvIiIiB1SwIuIiNihMgn4qVOn0r59ewICAvj5558LbJObm8vEiRPp2LEjnTp1Ij4+vixKExERsUtlEvAdOnTgs88+w8/P77Zt1q5dy2+//cbmzZv58ssvmTFjBmfOnCmL8kREROxOmQR8cHAwPj4+hbZZv349ffv2xcHBAXd3dzp27MjGjRvLojwRERG7c8fcyS4lJQVfX1/zex8fH86dO1fsfjw8rPfoRWNOFg5OLlbrTwrn6elW3iXYvbvxZ/purPlupe+g7ZXlz/MdE/DWkp5+xWq3W/T0dOPXt3pbpS+RO0G98cs5f/5yeZdRLPoeij2x5nfQwcFQ6E7tHXMWvY+PD8nJyeb3KSkp1KhRoxwrEhERuXvdMQHftWtX4uPjMRqNZGRk8M0339ClS5fyLktEROSuVCYB/69//YtHH32Uc+fOMWTIEHr06AFAREQEiYmJAISFhVGzZk06d+7Mk08+yYsvvkitWrXKojwRERG7YzCZTHb1fEAdgxe5PR2DFylff8lj8CIiImI9CngRERE7pIAXERGxQwp4ERERO6SAFxERsUMKeBERETukgBcREbFDCngRERE7pIAXERGxQwp4ERERO6SAFxERsUMKeBERETukgBcREbFDCngRERE7pIAXERGxQwp4ERERO6SAFxERsUMKeBERETukgBcREbFDCngRERE7pIAXERGxQwp4ERERO6SAFxERsUMKeBERETukgBcREbFDCngRERE7pIAXERGxQwp4ERERO6SAFxERsUMKeBERETukgBcREbFDCngRERE7pIAXERGxQwp4ERERO6SAFxERsUMKeBERETukgBcREbFDCngRERE7pIAXERGxQwp4ERERO6SAFxERsUMKeBERETukgBcREbFDTmW1ohMnThAZGcmlS5eoVq0aU6dOpU6dOnnapKenM3bsWFJSUsjJyaFFixZMmDABJ6cyK1NERMQulNkefHR0NOHh4WzatInw8HCioqLytZkzZw7+/v6sXbuWNWvW8OOPP7J58+ayKlFERMRulEnAp6enc/ToUUJCQgAICQnh6NGjZGRk5GlnMBi4evUqRqORrKwssrOz8fb2LosSRURE7EqhY99Go9GiThwcCv87ISUlBW9vbxwdHQFwdHTEy8uLlJQU3N3dze1eeOEFRowYQZs2bbh27RrPPPMMzZo1s6iGWzw8qhSrvchfjaenW3mXIPKXVlbfwUID/oEHHsBgMBTZSVJSklWK2bhxIwEBASxevJirV68SERHBxo0b6dq1q8V9pKdfwWg0WaUe/SIUe3T+/OXyLqFY9D0Ue2Ot76CDg6HQndpCA37Lli3m19u2bWPTpk08//zz+Pr6kpyczPz58+ncuXORRfj4+JCamkpubi6Ojo7k5uaSlpaGj49PnnZLlixh8uTJODg44ObmRvv27dm7d2+xAl5ERESKCHg/Pz/z60WLFrF8+XKqVq0KQN26dWnUqBG9e/cmPDy80JV4eHgQGBhIQkICYWFhJCQkEBgYmGd4HqBmzZps376dxo0bk5WVxe7du+nUqVNJt01EROQvy+KT7C5fvsy1a9fyTLt+/TqXL1s21BATE8OSJUvo0qULS5YsYeLEiQBERESQmJgIwLhx4zh48CChoaH07NmTOnXq8OSTT1paooiIiPyPxReYP/HEEwwZMoRBgwZRo0YNzp07x6effsoTTzxh0fL+/v7Ex8fnmz5//nzz69q1axMbG2tpSSIiInIbFgf8q6++Su3atVm/fj1paWl4enryzDPPaA9bRETkDmRxwDs4OPD000/z9NNP27IeERERsQKLj8GbTCa++uorBg0aRGhoKAD79+9n/fr1NitORERESsbigP/www9ZtmwZTz75JCkpKQDUqFGDTz75xGbFiYiISMlYHPArV65kzpw59OjRw3zzm5o1a3L69GmbFSciIiIlY3HA5+bmUrlyZQBzwF+9epVKlSrZpjIREREpMYsD/rHHHmPKlClkZWUBN4/Jf/jhhzz++OM2K05ERERKxuKAHzt2LOfPn6dZs2ZcvnyZoKAgkpOTeeWVV2xZn4iIiJSAxZfJValShVmzZnHhwgWSk5Px8fHB09PTlrWJiIhICRUa8CaTyXy8/dajY93d3c33kL81rajHxYqIiEjZKjTgmzVrxqFDh4CCHx176w8Aaz0uVkRERKyj0IBft26d+fUfHx0rIiIid7ZCA/6Pz2v/46NjRURE5M5m8Ul2ly5dYuHChSQlJZGZmZln3meffWb1wkRERKTkLA74MWPGkJWVRbdu3XB1dbVlTSIiIlJKFgf84cOH2bNnDy4uLrasR0RERKzA4uvbAgICOHfunC1rERERESuxeA/+kUce4bnnnqNXr15Ur149z7w+ffpYvTAREREpOYsD/sCBA3h7e/Pdd9/lmW4wGBTwIiIidxiLA/7TTz+1ZR0iIiJiRcW6x+zFixdZtWoVn3zyCQCpqak6Li8iInIHsjjg9+3bR9euXVm7di2zZs0C4NSpU8TExNiqNhERESkhiwN+8uTJfPDBByxYsAAnp5sj+02aNOHIkSM2K05ERERKxuKAP3v2LC1btgQwP3TG2dmZ3Nxc21QmIiIiJWbxSXb+/v7s2LGDtm3bmqft2rWLv/3tbzYpTEQEwJidRb3xy8u7DBGrMGZnldm6LA74yMhInn/+edq1a8f169eJiopi69atzJ4925b1ichfnIOzC6FjVpd3GSJWsfb9MOBGmazL4iH6hx56iDVr1lC/fn169+5NzZo1WbZsGY0bN7ZlfSIiIlICFu/BA3h7exMREWGrWkRERMRKLAr4X375hRkzZnDw4EEuXbpEtWrVCA4O5qWXXqJ+/fq2rlFERESKqciAP3nyJE8++STNmzfn5ZdfxsvLi9TUVL7++muefPJJli1bRr169cqi1jKnk3vE3pTlCT4iUr6KDPi5c+cSFhZGdHR0nul9+vThzTffZP78+UyZMsVmBZYnndwj9qYsT/ARkfJV5El2+/fvZ+jQoQXOGzJkCHv37rV6USIiIlI6RQZ8RkYGNWvWLHCer68vFy9etHpRIiIiUjoWXSZ36851+RZ2cLjtPBERESk/RR6Dv379Os8880yB80wmEzdu6HieiIjInabIgH/rrbcKnd+3b1+rFSMiIiLWUWTA5+Tk8Oijj+Lt7V0W9YiIiIgVFBnwiYmJzJ49m6pVq9KuXTseffRRmjZtqmPvIiIid7AiA37SpEkA/PTTT/z73/9m2rRpnDhxgkceeYTHHnuMtm3b4u7ubvNCRURExHIW34s+ICCAgIAAhg0bxuXLl9mxYwfbt2/n3XffxdfXlxEjRuR5lKyIiIiUn2I9bOYWNzc3unfvTvfu3QE4cuSIVYsSERGR0ik04JctW2ZRJ3369LFKMSIiImIdhQb86tV578N+6NAhqlevjo+PDykpKVy4cIGmTZsq4EVERO4whQb8p59+an795ptv0qFDBwYPHmyetnjxYk6fPm3Rik6cOEFkZKT5cbNTp06lTp06+dqtX7+ejz/+GJPJhMFgIDY2lurVq1u2NSIiIgJYeKtagDVr1jBgwIA80/r3759vL/92oqOjCQ8PZ9OmTYSHhxMVFZWvTWJiIjNnzmThwoUkJCTw+eef4+bmZmmJIiIi8j8WB3z16tXZunVrnmnffvutRZfIpaenc/ToUUJCQgAICQnh6NGjZGRk5Gm3aNEihg4diqenJ3DzZL4KFSpYWqKIiIj8j8Vn0U+YMIERI0awYMECatSoQUpKCr/88gsffvhhkcumpKTg7e2No6MjAI6Ojnh5eZGSkpLnD4Tjx49Ts2ZNnnnmGTIzM+nUqRP/+Mc/inVTHQ+PKha3Ffkr8vTUqJhIeSqr76DFAd+6dWu++eYbtm/fTlpaGu3ateOxxx7j3nvvtVoxubm5/PTTT8TGxpKVlcVzzz2Hr68vPXv2tLiP9PQrGI0mq9SjX4Rij86fv1zeJRSLvodib6z1HXRwMBS6U1us6+Dd3d1p0aIFqampPPTQQxYv5+PjQ2pqKrm5uTg6OpKbm0taWho+Pj552vn6+tK1a1dcXFxwcXGhQ4cOHDlypFgBLyIiIsU4Bp+cnEy/fv3o1q0bQ4YMAWDjxo2MHz++yGU9PDwIDAwkISEBgISEBAIDA/Mdvw8JCWHnzp2YTCays7PZs2cPDRo0KM72iIiICMUI+KioKNq1a8ehQ4dwcrq549+6dWt27dpl0fIxMTEsWbKELl26sGTJEiZOnAhAREQEiYmJAPTo0QMPDw+6d+9Oz549qV+/vq6xFxERKQGLh+gTExOZN28eDg4O5pPe3NzcuHzZsmMJ/v7+xMfH55s+f/5882sHBwfGjh3L2LFjLS1LRERECmDxHryHhwenTp3KM+2XX37JdxxdREREyp/FAT906FCGDx/O8uXLycnJISEhgZdffpmIiAhb1iciIiIlYPEQfZ8+fahWrRpffvklPj4+rFy5klGjRtGxY0db1iciIiIlUKzL5Dp27KhAFxERuQsUGvCrVq0yX4Ne2KNjdaa7iIjInaXQgF+3bp054G/3UBmDwaCAFxERucMUGvD9+vUzv164cCHOzs42L0hERERKr9Cz6F999VXz6xYtWti8GBEREbGOQvfgPT09WbJkCf7+/uTm5rJnzx5MpvwPcmnZsqXNChQREZHiKzTgp0yZwkcffURcXBzZ2dmMGzcuXxuDwcCWLVtsVqCIiIgUX6EB37RpUxYtWgRAp06d+Prrr8uiJhERESkli+9kp3AXERG5exS6B//ss8+yYMECAMLDw80Pmfmzzz77zPqViYiISIkVGvC3roEH6Nu3r82LEREREesoNOBDQ0PNr+vVq0eTJk3ytTly5Ij1qxIREZFSsfgY/JAhQwqc/txzz1mtGBEREbGOIh82YzQaMZlMef675bfffsPR0dGmBYqIiEjxFRnwDzzwAAaDAZPJxAMPPJBnnoODA8OHD7dZcSIiIlIyRQb8li1bMJlMDBgwgCVLlpinGwwG3N3dqVixok0LFBERkeIrMuD9/PzIzc2lZs2aeHp64uLiUhZ1iYiISClYdJKdo6MjZ86cwWg02roeERERsQKLz6J/8cUXiYmJ4ezZs+Tm5mI0Gs3/iYiIyJ2lyCH6WyZMmADA6tWrzdNMJhMGg4GkpCTrVyYiIiIlZnHA64lxIiIidw+LA97Pzw+4eV38hQsX8PLysllRIiIiUjoWH4P//fffGTNmDI0bN6Zz587Azb366dOn26w4ERERKRmLAz46OpoqVaqwdetWnJ2dAQgKCmLDhg02K05ERERKxuIh+t27d7Njxw6cnZ3Nj411d3cnPT3dZsWJiIhIyVi8B5zC+n0AABogSURBVO/m5sbFixfzTEtOTsbT09PqRYmIiEjpWBzwffv2ZeTIkezZswej0cjhw4d5/fXX6devny3rExERkRKweIg+IiKCChUqMGnSJHJychg3bhxPPfUUgwYNsmV9IiIiUgIWB7zBYGDQoEEKdBERkbtAkUP0Bw8e5N133y1w3nvvvcf3339v9aJERESkdIoM+Llz5/Lwww8XOK958+bMmTPH6kWJiIhI6RQZ8ElJSbRt27bAea1ateL//u//rF6UiIiIlE6RAX/lyhWys7MLnJeTk8PVq1etXpSIiIiUTpEBX69ePXbu3FngvJ07d1KvXj2rFyUiIiKlU2TADx48mOjoaDZv3mx+9rvRaGTz5s3ExMQwZMgQmxcpIiIixVPkZXKhoaFcuHCB119/nezsbKpVq8alS5dwdnZm5MiRhISElEWdIiIiUgwWXQc/ZMgQ+vbty+HDh7l06RLVqlUjKCiIKlWq2Lo+ERERKQGLb3RTpUqV255NLyIiIncWi+9FLyIiInePMgv4EydO8NRTT9GlSxeeeuopTp48edu2v/76K02aNGHq1KllVZ6IiIhdKbOAj46OJjw8nE2bNhEeHk5UVFSB7XJzc4mOjqZjx45lVZqIiIjdsTjge/bsWeD0Xr16Fblseno6R48eNZ9xHxISwtGjR8nIyMjXdt68ebRr1446depYWpqIiIj8icUBf+rUqXzTTCYTZ86cKXLZlJQUvL29cXR0BMDR0REvLy9SUlLytDt27Bg7d+5k8ODBlpYlIiIiBSjyLPrXXnsNgOzsbPPrW86ePUv9+vWtUkh2djZvvPEGU6ZMMf8hUBIeHrp0T6Qwnp5u5V2CyF9aWX0Hiwz42rVrF/gaoGnTpnTt2rXIlfj4+JCamkpubi6Ojo7k5uaSlpaGj4+Puc358+f57bffGDZsGAC///47JpOJK1eu8Oabb1q8QenpVzAaTRa3L4x+EYo9On/+cnmXUCz6Hoq9sdZ30MHBUOhObZEB/9JLLwHQpEmTEl8H7+HhQWBgIAkJCYSFhZGQkEBgYCDu7u7mNr6+vuzdu9f8fsaMGWRmZvL666+XaJ0iIiJ/ZRbf6KZt27b8+uuvHDt2jMzMzDzz+vTpU+TyMTExREZGMnv2bKpWrWq+BC4iIoKRI0fy4IMPFrN0ERERuR2LA37OnDnMmjWLBg0aULFiRfN0g8FgUcD7+/sTHx+fb/r8+fMLbD9ixAhLSxMREZE/sTjgFy9eTHx8PA0aNLBlPSIiImIFFl8mV7FiRT37XURE5C5hccCPGjWKf/3rX6SlpWE0GvP8JyIiIncWi4foIyMjAfIcRzeZTBgMBpKSkqxfmYiIiJSYxQG/ZcsWW9YhIiIiVmRxwPv5+QFgNBq5cOECXl5eNitKRERESsfiY/C///47Y8aMoXHjxnTu3Bm4uVc/ffp0mxUnIiIiJWNxwEdHR1OlShW2bt2Ks7MzAEFBQWzYsMFmxYmIiEjJWDxEv3v3bnbs2IGzszMGgwEAd3d30tPTbVaciIiIlIzFe/Bubm5cvHgxz7Tk5GQ8PT2tXpSIiIiUjsUB37dvX0aOHMmePXswGo0cPnyY119/nX79+tmyPhERESkBi4foIyIiqFChApMmTSInJ4dx48bx1FNPMWjQIFvWJyIiIiVgccAbDAYGDRqkQBcREbkLWDxEP2/ePI4cOZJn2pEjR277NDgREREpPxYHfFxcHPXr188zzd/fn8WLF1u9KBERESkdiwM+OzsbJ6e8I/rOzs5kZWVZvSgREREpHYsDvmHDhnz++ed5pi1dupQHHnjA6kWJiIhI6Vh8kt3YsWMZMmQIa9asoVatWpw+fZrz588TGxtry/pERESkBCwKeJPJRMWKFdm0aRPbtm0jJSWFzp07065dOypXrmzrGkVERKSYLAp4g8FAaGgohw4dokePHrauSURERErJ4mPwgYGBnDhxwpa1iIiIiJVYfAy+efPmRERE8MQTT1CjRg3zA2cA+vTpY5PiREREpGQsDvhDhw7h5+fHvn378kw3GAwKeBERkTuMxQH/6aef2rIOERERsSKLj8EDXLx4kVWrVvHJJ58AkJqayrlz52xSmIiIiJScxQG/b98+unbtytq1a5k1axYAp06dIiYmxla1iYiISAlZHPCTJ0/mgw8+YMGCBeZb1jZp0iTfA2hERESk/Fkc8GfPnqVly5YA5jPonZ2dyc3NtU1lIiIiUmIWB7y/vz87duzIM23Xrl387W9/s3pRIiIiUjoWn0UfGRnJ888/T7t27bh+/TpRUVFs3bqV2bNn27I+ERERKQGL9+Afeugh1qxZQ/369enduzc1a9Zk2bJlNG7c2Jb1iYiISAkUuQd/7do1Pv74Y37++WcaNmzI888/j4uLS1nUJiIiIiVU5B78pEmT+Pbbb6lXrx6bNm1i6tSpZVGXiIiIlEKRAb9jxw4WLFjAa6+9xvz58/n222/Loi4REREphSIDPjMzEy8vLwB8fHy4cuWKzYsSERGR0inyGHxubi579uzBZDIBkJOTk+c9YL4+XkRERO4MRQa8h4cH48aNM7+vVq1anvcGg4EtW7bYpjoREREpkSIDfuvWrWVRh4iIiFhRsZ4mJyIiIncHBbyIiIgdUsCLiIjYIQW8iIiIHVLAi4iI2CGLnyZXWidOnCAyMpJLly5RrVo1pk6dSp06dfK0mTVrFuvXr8fBwQFnZ2defvll2rZtW1YlioiI2I0yC/jo6GjCw8MJCwtj9erVREVFERcXl6dN48aNGTp0KK6urhw7doz+/fuzc+dOKlasWFZlioiI2IUyGaJPT0/n6NGjhISEABASEsLRo0fJyMjI065t27a4uroCEBAQgMlk4tKlS2VRooiIiF0pk4BPSUnB29sbR0dHABwdHfHy8iIlJeW2y6xatYratWtTo0aNsihRRETErpTZEH1x7Nu3jw8//JCFCxcWe1kPjyo2qEjEfnh6upV3CSJ/aWX1HSyTgPfx8SE1NZXc3FwcHR3Jzc0lLS0NHx+ffG0PHz7Mq6++yuzZs6lXr16x15WefgWj0VR0QwvoF6HYo/PnL5d3CcWi76HYG2t9Bx0cDIXu1JbJEL2HhweBgYEkJCQAkJCQQGBgIO7u7nnaHTlyhJdffpmPPvqIhg0blkVpIiIidqnMroOPiYlhyZIldOnShSVLljBx4kQAIiIiSExMBGDixIlcv36dqKgowsLCCAsL46effiqrEkVEROxGmR2D9/f3Jz4+Pt/0+fPnm18vX768rMoRERGxa7qTnYiIiB1SwIuIiNghBbyIiIgdUsCLiIjYIQW8iIiIHVLAi4iI2CEFvIiIiB26I+9FLyIid6fKFRzo2dIDr2ouGAzlXc2d58cfj2I0Gou9nJOTC/fe64mjo+WxrYAXERGr6dnSg7p+njg4uqKEz8/Xtxo5OcULeJPJxNWrv3Px4nmqV8//DJfb0RC9iIhYjVc1F4W7lRkMBipXrkpOTlaxllPAi4iI1RgMKNxtwFCCz1RD9CIiYjMP3O9JZVcXq/d79VoWR/9z3ur92hMFvIiI2ExlVxdCx6y2er9r3w+zuG1OTg6rln3Knl3f4uzsgoODAw80CuKpZyJwcrI8BjeuW0bLNh245557AdiyeQ1ZWTfoFtIXgLmzpvLrL8eoWasurdp24KekRMIHDi/Wdq1fv5Zdu3bwr3+9U6zlCqKAFxERuzZv9jtkZ93gzalzcHWtRG5uLv/euoGc7GyLAt5oNGIwGNi4bjkNH2xmDvgOnf9ubvPfSxns37uDeYvW4OBw8+h3s4db22aDLKSAFxERu3Uu5QwH9+3kozlf4upaCQBHR0fadwoBYO2qL9i/Zzu5xlzc3avz7POvUO1ed5Z/tYizp0+SmXmV9AtptHm0Excz0vno/RicnV14cdR49uzexo3r13ii7yDeihlD1o3rTHjtedq260zlym4cPriHUa/EALB92ya2bFqNkyNUrlyFV16JpHbtOmRnZzN9+jscOnSAe+6pxv33B1ht2xXwIiJit06e+AXvGn5UruKWb97O7V+Tdi6ZmMmzcHBw4JtNq/k87mNeGDUegOP/Oca/3pmLW9V7APh2yzpGjomhVu26NzvYffP/XF0r8eq4KbwROZzJ780HYPu3G83rOZZ0hL27tjFh0gcE1vNix44dTJkyiY8/Xsjq1ctJSUlmyZJ4cnJyePHFCHx8LL8UrjAKeBER+Us6dGAXJ47/zITXngfAaMzFtVJl8/wmTVuYw700Dh/YzW+njhM99kUquDhiNJq4fPn3mzUcOki3biE4OTnh5OREly7dOHLk+1KvExTwIiJix+rUrU/qubNcvXI5/168yUTP3v15rH23ApetWLGiVWowmUw89ng3+vQbQv1axb/RTUnpOngREbFbNXxqEhTckgXzpnHtWiYAxtxcvt2yjqbBrfhm02quXrkMQHZ2FqdOHr9tX66ulbmWebXYNTQNbsnO7ZtJT795WV9ubi7HjiUB0KxZMBs3ricnJ4cbN67z9dcbC+uqWLQHLyIiNnP1WlaxLmkrTr+WGv5iJCvi43jj9eE4OTlhNJp4qGlzngyP4PLl//Kv6JcBMJmMdOgSxn11/Avsp3P3J5g3+x1cXCrw4v+O01uiwQNN6Pv0s0ybOh5nRwPZ2dk8/nhHGjQI5O9/78Uvv/xC//59ueeeajRo0JCLF9Mt7rswBpPJZLJKT3eI9PQrGI3W2SRPTzebXL8pUl7Wvh/G+fOXy7uMYtH38O4y+gk/qlS1zkli9qg0Q/Tnzp2iRo37zO8dHAx4eFS5bXsN0YuIiNghBbyIiIgdUsCLiIjYIQW8iIiIHVLAi4iI2CEFvIiIiB3SdfAiImIzje/3oIKrde4I90c3rl3nyH+Kvl78ny88jbOzC87Ozly/fp2ateoQ0rMffwtoVOJ1L1saS81adXik9ePFWm7uzKk0D27CE088WeJ1F4cCXkREbKaCa0V+fau31futN365xW3/+ICY/Xu3897ksbw24R3q3x9YonX36TekRMuVNQW8iIj8ZTzc4lGO/+cY69d8yQsjx/PVFws4dvQHcnKyqVW7HkMiXqaiqytzZ07F2cWFc8mnSU8/z/1/e4DnX4rEYDAwd+ZU6vr/jc7dniAnO/u2fWSkn2fOzLe5dDEDTy9vDIayPSquY/AiIvKX4n9/IGdOnyJhzVIqVa7MpLc/ZvJ7n3Cve3XWrPzc3O7Mbyd4ZdzbTJ22kBO//sz/HTmYr6/C+vg0diYNHmjMOx/EMujZkRw7+kOZbSNoD15ERP5ybt7O/ND+XVy7lsm+3dsByMnJpvZ9//8+9M2at8bFxQWAOnXvJy01OV9PhfVx9P++Z8CQlwDw8val4YNNbbdJBVDAi4jIX8qvv/xEzdp1OJ92jsHPjbpt8Do7u5hfOzg4kpubm6+NCQrtozxpiF5ERP4yDu7/ji2b19A99EmaBrdiQ8Iysm7cAODatUzOnjlVrP4K6+OBRkFs33bz8a9pqSn8mHjIiltSNO3Bi4iIzdy4dr1YZ7wXp19LffR+jPkyOb+a9/HKuCnUvz+QOnXvZ8VXi4ka+w8MBgcMBnii70D8at5XdKf/E9rz6dv2MWDIi8yZ+Ta7dmzF06sGgQ2blGRTS0yPiy2EHlMp9kaPixVb0+NiC6fHxYqIiEipKOBFRETskAJeRETEDingRUTEakymW/8j1lSS0+UU8CIiYjVpl7Iw5l5TyFuRyWTi6tXfcXJyKbrxH+gyORERsZpVu9Pp2RK8qrlgMJR3NXee5OT/YjQW/yx6JycX7r3Xs3jLFHstIiIit3H1hpHPtp0v7zLuWGV5qWqZDdGfOHGCp556ii5duvDUU09x8uTJfG1yc3OZOHEiHTt2pFOnTsTHx5dVeSIiInalzAI+Ojqa8PBwNm3aRHh4OFFRUfnarF27lt9++43Nmzfz5ZdfMmPGDM6cOVNWJYqIiNiNMhmiT09P5+jRo8TGxgIQEhLCm2++SUZGBu7u7uZ269evp2/fvjg4OODu7k7Hjh3ZuHEjzz33nMXrcnCw7kEfr3tdrdqfSHmz9nekLOh7KPbEWt/Bovopk4BPSUnB29sbR0dHABwdHfHy8iIlJSVPwKekpODr62t+7+Pjw7lz54q1rnvvrWydov9nwYTOVu1PpLwVdmvLO5W+h2JPyuo7qMvkRERE7FCZBLyPjw+pqanmZ+nm5uaSlpaGj49PvnbJycnm9ykpKdSoUaMsShQREbErZRLwHh4eBAYGkpCQAEBCQgKBgYF5hucBunbtSnx8PEajkYyMDL755hu6dOlSFiWKiIjYlTJ7XOzx48eJjIzk999/p2rVqkydOpV69eoRERHByJEjefDBB8nNzWXSpEl89913AERERPDUU0+VRXkiIiJ2xe6eBy8iIiI6yU5ERMQuKeBFRETskAJeRETEDingRURE7JACXsrF2LFjeffdd/NMGzx4MJ9//nk5VSTy19O+fXtCQkLyPL60ffv2/Pzzz+VYlViLAl7Kxbhx49iwYQM//PADAEuXLsVgMPD000+Xc2Uify2ZmZmsXr26vMsQG1DAS7lwc3PjzTffZOzYsZw4cYKPP/6Yt956C4Ph7nsQisjd7KWXXmLmzJlkZWWVdyliZQp4KTetW7fm4Ycfpk+fPowYMSLPg4ZEpGw0atSIhg0b8sUXX5R3KWJlCngpV88++yyOjo706dOnvEsR+cv65z//yfz587l69Wp5lyJWpICXcuXg4KBheZFyVq9ePR577DFiY2PLuxSxojJ5HryIiNzZRowYQa9evcxP/ZS7n/bgRUSEGjVqEBYWxqVLl8q7FLESPWxGRETEDmkPXkRExA4p4EVEROyQAl5ERMQOKeBFRETskAJeRETEDingRcrJr7/+SlhYGEFBQcTFxRXaNiAggFOnTgEQGRnJ9OnTi72+OXPmMH78+BLVeid57rnnWLly5W3nR0VFMWvWrDKsSOTOpBvdiJSTTz75hBYtWtjkSV579+7l1VdfZfv27eZpw4cPt/p6ysMnn3xifr1ixQri4+Pz3Ed90qRJ5VGWyB1He/Ai5SQ5OZn777+/vMsQETulgBcpBwMHDmTv3r1MmjSJoKAg2rRpQ3x8vHn+ihUrePrpp0vUd2ZmJhEREaSlpREUFERQUBCpqanMmDGDV155BYAzZ84QEBDA8uXLeeyxx3j44Yf54osvOHLkCKGhoQQHB+fbE162bBndunXj4Ycf5tlnn+Xs2bNF1hIQEEBcXBwdOnSgRYsWTJ06FaPRCIDRaGT27Nk8/vjjtGzZktdee43Lly8DcOPGDV555RVatGhBcHAwvXv35sKFCwAMGDCA+Ph4jh8/TnR0NN9//z1BQUEEBwcD+Q9hfPXVV3Tq1InmzZszfPhwUlNT89T3xRdf0LlzZ4KDg5k4cSK695fYCwW8SDmIi4sjODiYqKgoDh8+TN26da3Wd6VKlZg/fz5eXl4cPnyYw4cP4+3tXWDbH374gc2bNzN9+nQmT57MnDlzWLRoEevWrWPDhg3s27cPgG+++Ya5c+cyc+ZMdu/eTbNmzRgzZoxF9Xz99dcsX76clStXsnXrVpYvXw7c/CNm5cqVxMXF8c0335CZmWn+o2LlypVcuXKFbdu2sXfvXiZOnEjFihXz9Ovv78/EiRN56KGHOHz4MAcOHMi37t27d/P+++/zwQcfsHPnTvz8/Bg9enSeNtu2bWPZsmWsWbOGDRs2sGPHDou2S+ROp4AX+Qt78cUXqVChAm3atKFSpUqEhITg4eGBt7c3wcHBHD16FIClS5cybNgw/P39cXJyYvjw4SQlJVm0Fx8REUG1atXw9fVl4MCBJCQkALB27VoGDx5MrVq1qFy5MqNHj2b9+vXk5OTg5OTEpUuXOHXqFI6OjjRq1IgqVaoUe/vWrl1L7969adiwIS4uLowePZrvv/+eM2fO5KmvatWq+Pr60qJFC44dO1bs9YjciRTwIn9hHh4e5tcVKlTI9z4zMxO4eb7A5MmTCQ4OJjg4mObNm2MymfIMd9+Oj4+P+bWfnx9paWkApKWl4efnl2deTk4O6enphIWF0aZNG0aPHk2bNm145513yM7OLvb2/XkdlStXplq1annq9vT0NL92dXXVM9HFbugsepE7gKurK9euXTO/v3W8uaQMBkNpS8rDx8eH4cOH8/e//73Yy6akpJhPJkxOTsbLywsALy+vPCMAycnJODk54eHhgZOTEy+99BIvvfQSZ86cYdiwYdStW5e+ffvm6buo7fzzOjIzM7l06dJtD1mI2BPtwYvcAQIDA/n666+5du0ap06dYtmyZaXqz8PDg0uXLplPWiutfv36MW/ePP7zn/8AcPnyZTZs2GDRsgsWLOC///0vKSkpxMXF0b17dwBCQkJYvHgxp0+f5urVq0yfPp1u3brh5OTEnj17+Omnn8jNzaVKlSo4OTnh4JD/15WHhwepqalkZWUVuO6QkBBWrFhBUlISWVlZTJs2jcaNG1OzZs0SfhIidw/twYvcAQYNGkRiYiKtWrUiICCA0NBQdu3aVeL+/P396dGjBx07diQ3N5d169aVqr5OnTpx9epVRo8ezdmzZ3Fzc6NVq1Z069atyGU7dOhAr169uHLlCk888QR9+vQBoHfv3qSmptK/f39u3LhBmzZteOONN4CbIxjR0dGkpqZSqVIlunfvTlhYWL6+H3nkEerXr0+bNm0wGAzs3bs3z/xWrVoxatQoRowYwe+//05QUFCJbhIkcjfS8+BFxGYCAgLYvHkz9913X3mXIvKXoyF6ERERO6QhepG71Jw5c5g7d26+6c2aNctzO1dbOnDgABEREQXOO3z4cJnUICIF0xC9iIiIHdIQvYiIiB1SwIuIiNghBbyIiIgdUsCLiIjYIQW8iIiIHVLAi4iI2KH/BwHnx9QFIskZAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"visa.groupby('full_time_position')['case_status'].value_counts(normalize=True)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0wr9nW0NDnP2",
"outputId": "399cee15-5503-4286-cd4c-56900e625593"
},
"id": "0wr9nW0NDnP2",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"full_time_position case_status\n",
"N Certified 0.685260\n",
" Denied 0.314740\n",
"Y Certified 0.665832\n",
" Denied 0.334168\n",
"Name: case_status, dtype: float64"
]
},
"metadata": {},
"execution_count": 48
}
]
},
{
"cell_type": "markdown",
"source": [
"Similar to ```requires_job_training```, it appears here that there is not much difference in the resulting certification based on whether the position is full time. We find that 68.5% are Certified for part time work and 66.6% are Certified for full time work. Our assumptions being once more satisfied, we can run a two proportion z-test. We set the level of siginificance at 0.05. Our null hypothesis is that our sample proportions come from populations with the same ratios of Certification to Denial; the alternative is that the ratios are truly different."
],
"metadata": {
"id": "E0RvP4UAebK0"
},
"id": "E0RvP4UAebK0"
},
{
"cell_type": "code",
"source": [
"cert_ztest('full_time_position')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "W5QUkuBsDXVG",
"outputId": "c56c2f61-d214-4578-d116-ea0d262e2011"
},
"id": "W5QUkuBsDXVG",
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"The p-value is 0.042452929825717224\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"With a p-value under 0.05, we can reject the null hypothesis. In this case, there is a statistically significant difference between these two proportions. That means that an applicant is more likely to be certified for part time work than full time work."
],
"metadata": {
"id": "boxWk9Nze8PA"
},
"id": "boxWk9Nze8PA"
},
{
"cell_type": "code",
"source": [
"plott()\n",
"plt.title('Prevailing Wage and Case Status',fontsize=14)\n",
"sns.boxplot(data=visa,x='prevailing_wage',\n",
" y='case_status',\n",
" order=['Certified','Denied']);"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"id": "mJVJIYA5-jQV",
"outputId": "4265f790-7481-4a84-f9f2-b1d9306474f8"
},
"id": "mJVJIYA5-jQV",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
\n",
" "
]
},
"metadata": {},
"execution_count": 51
}
]
},
{
"cell_type": "markdown",
"source": [
"The mean prevailing wage for certified applications is higher than that for denied applications by about \\$8500. The middle 50% for certified is concentrated higher too. Interestingly, the whiskers extend further for denied applications. Taken with its wider IQR, this shows that denied applications have greater variance in prevailing wage.\n",
"\n",
"This is also true across various regions."
],
"metadata": {
"id": "jgq3D4hNiz4B"
},
"id": "jgq3D4hNiz4B"
},
{
"cell_type": "code",
"source": [
"plt.figure(figsize=(15,15))\n",
"for idx,region in enumerate(visa['region_of_employment'].unique()):\n",
" plt.subplot(3,2,idx+1)\n",
" plt.title('Prevailing wage in '+region)\n",
" sns.boxplot(data=visa.loc[visa['region_of_employment']==region],\n",
" x='prevailing_wage',\n",
" y='case_status',\n",
" order=['Certified','Denied'])\n",
"plt.tight_layout()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 975
},
"id": "VHiACbj9j9_x",
"outputId": "30e838dd-2f8b-4ab5-a339-d86fb3d5569e"
},
"id": "VHiACbj9j9_x",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABCwAAAQsCAYAAABaEg2QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd2AUZf7H8c8mm9ClhhKqgI2fiAiBQ0jAICAdBA/kBBU1EJpYTimnIuWE85RT4RQsoHcih9IRbGhoUoKgnAUFJaGTAAkQWrK78/sjlzEhu9lsSLKTzfv1j7szzzzP95mseb58d2ZiMwzDEAAAAAAAgIUE+TsAAAAAAACAK1GwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQJAvuzcuVPdunUz30dHR+vrr7+WJL3xxhuaPHmyv0IrVg8//LCWL1/u7zAAAPAr8oJMJSEvuOGGG5SYmOjvMIACsRmGYfg7CAB5i46O1smTJxUcHKxy5copKipKzzzzjCpUqODXmKZPn67bb7/dbzGUJPPmzVN8fLzeeustc1vXrl3VoEGDXNseffRR9ezZs0Dj3HDDDfrss8/UsGHDq44ZAGBN5AWBITo6WhcvXtT69etVvnx5SdKHH36oVatW6V//+leB+hw6dKj69Omje+65x9xW3LnB4cOH1blzZ/3www+y2+3FMiYCF1dYACXEG2+8od27d2v58uX6/vvv9frrr+dq43A4/BAZ8qN169bavXu3nE6nJCkpKUkOh0M//fRTjm2JiYlq3bq1P0MFAJQA5AWBweVy6b333rvqfgzDkMvlKoSIAGuhYAGUMLVq1VJkZKT27dsnKbNq/v7776tr167q2rWrJOmrr75S37591bp1aw0ePFh79+6VJM2fP1/jxo3L0d/06dM1ffp0SdLSpUvVvXt3tWzZUp07d9bixYvNdtu3b1dUVJTbmF577TU9+eSTkjKr6jfccIOWL1+uTp06qW3btjmSqEuXLunpp59WRESEunfvrjfffNNjv6+++qqmTZsmScrIyNCtt96qWbNmmf00b95cqampkqRx48apffv2atWqlf70pz+Z50eSUlJSNHLkSN12220aMGCAZs+erXvvvdfc/+uvv+rBBx9UmzZt1K1bN61du9bj+R86dKg+/PBDSdKyZct07733atasWYqIiFB0dLQ2bNjg9rjmzZubBQop81Latm3b6tprr82xrUGDBqpVq5bOnTunSZMmqUOHDoqMjNTs2bPNwkZiYqLuu+8+tWrVSm3bttX48eMlSX/6058kSX379lXLli3znAcAIDCQF5TMvCDLQw89pHfeeUdnz551u3/Xrl0aMGCAWrVqpQEDBmjXrl05xp49e7YGDx6sFi1a6M9//rN27typqVOnqmXLlpo6darZ9uuvv1bXrl3VunVrPf/888p+kf1HH32k7t27KyIiQg899JCOHDli7ps+fbo6duyo2267TXfffbd27txp7tuzZ4/uvvtu3Xbbbbr99tv1wgsvSJLuu+8+SVJERIRatmyp3bt353kOgLxQsABKmGPHjmnjxo266aabzG1ffPGFlixZorVr1+rHH3/UpEmTNHXqVG3fvl2DBg3SqFGjlJ6erp49e2rDhg1KS0uTJDmdTn3yySfq1auXJKl69eqaN2+edu3apRdeeEEvvPCCfvjhhwLF+c033+iTTz7Ru+++q7lz5+rXX3+VJM2ZM0dHjhzRF198oQULFmjVqlUe+4iIiNCOHTskSf/9739Vo0YNc6HcvXu3rr32WlWpUkWSFBUVpU8//VRbt25Vs2bNzERJkqZOnapy5cppy5YtmjVrllasWGHuu3DhgoYPH65evXrp66+/1uzZs/X8889r//79+Zrnnj17dO2112rbtm16+OGHNXnyZLm70y40NFS33HKLGf/OnTvVqlUrtWrVKse2rKsrJkyYILvdrs8++0wrVqzQli1bzITolVdeUfv27RUfH6+NGzeaicH7778vSVq5cqV2796tHj165GsOAICSi7ygZOYFWW6++Wa1adNGb7/9dq59qampGjFihIYOHart27frwQcf1IgRI5SSkmK2WblypaZNm6Zdu3Zp5syZat26tZ599lnt3r1bzz77rNkuLi5OH330kVatWqV169Zp06ZNkjI/K/PmzdOcOXO0detWtWrVSk888YR5XPPmzbVixQrt2LFDvXr10qOPPqrLly9LkmbMmKFhw4Zp165d+vzzz9W9e3dJ0r///W9JUnx8vHbv3q2WLVvm69wB7lCwAEqI0aNHq3Xr1hoyZIgiIiI0cuRIc19MTIyqVKmismXL6j//+Y8GDRqkFi1aKDg4WP3791dISIi+/fZb1a1bV82aNdMXX3whSdq2bZvKli2rW2+9VZLUqVMnNWjQQDabTW3atFH79u1zVNJ9MWbMGJUtW1Y33nijbrzxRvPbnHXr1mnEiBGqXLmyateurWHDhnnso2XLlkpISFBKSop27typgQMH6sSJEzp//rzi4+PVpk0bs+3AgQNVsWJFhYaGauzYsdq7d6/OnTsnp9Opzz77TGPHjlW5cuXUtGlT9evXzzwuLi5OdevW1YABA2S329WsWTN169ZNn3zySb7mGR4erj/+8Y/muU5OTtbJkyfdtm3Tpo3i4+Ml/V6caNWqVY5tbdq00cmTJ7VhwwZNmjRJ5cuXV/Xq1fXAAw/o448/liTZ7XYdPXpUSUlJKlOmDLeQAEApRF5Q8vOCLOPGjdO///1vnT59Osf2uLg4NWzYUP369ZPdblevXr3UuHFjffXVV2ab/v3767rrrpPdbldISIjHMR555BFdc801Cg8PV9u2bc3zv3jxYsXExKhJkyay2+0aOXKkfvrpJ/Mqi759+6pq1aqy2+0aPny40tPTdeDAAUmZ+cjBgwd1+vRpVahQwfzcAIWJp6AAJcTcuXM9PsiqTp065uujR49qxYoVZnVbyrxsMikpSZLUq1cvrVmzRv369dOaNWvMb1EkacOGDZo7d64SEhLkcrl06dIlXX/99QWKt0aNGubrcuXK6cKFC5Iyn9OQPd7atWt77KNs2bK6+eabFR8fr/j4eHMR3bVrl+Lj480rC5xOp2bPnq1PPvlEp0+fVlBQZi02JSVFly5dksPhyDFm9tdHjhzRnj17cvyj3+l0qk+fPgWapyRzrldq3bq13n//faWmpur06dNq1KiRatSooQkTJig1NVX79u1T69atdfToUTkcDnXo0ME81uVymXH/+c9/1iuvvKKBAweqcuXKevDBBzVw4MB8xQsACAzkBSU/L8hy/fXXq1OnTpo/f76aNGlibk9KSlJ4eHiOtuHh4Tpx4oTb2PMSFhaWI67z589Lyvx8/PWvfzVvrZEyn4dx4sQJ1a1bV2+//bY++ugjJSUlyWazKS0tzbzCY8aMGXr11VfVvXt31atXT2PGjNEdd9yRr3iA/KJgAQQAm81mvq5Tp45Gjhyp2NhYt227d++uWbNm6fjx4/r888/1n//8R5KUnp6ucePGadasWercubNCQkI0atSoPC9jLIiwsDAdP35cTZs2lSQdP348z/Zt2rTRtm3b9NNPP6l58+Zq06aNNm/erD179igiIkKStHr1aq1fv14LFixQvXr1dO7cOUVERMgwDFWrVk12u13Hjx/XtddeKynz8tksderUUUREhBYsWFCo83SnZcuWSktL05IlS3TbbbdJkipWrKiaNWtqyZIlqlmzpurXr68yZcooNDRU27Ztc/t07bCwMPP+4p07d+rBBx9UREQEfxkEACCJvKCk5AXZjRs3Tv3799fw4cPNbTVr1tTRo0dztDt27JgiIyPN99l/1gWR9flwV5DZuXOn3nrrLS1cuFDXXXedgoKCzPMoSY0aNdLLL78sl8ulzz77TOPGjdP27duvOiYgO24JAQLMPffco8WLF+u7776TYRi6cOGC4uLizPtTq1WrpjZt2mjixImqV6+eWclPT09Xenq6uZBv2LBBW7ZsKfT4unfvrnnz5unMmTM6ceJEjm983ImIiNCKFSvUpEkThYaGqk2bNvrwww9Vr149VatWTZJ0/vx5hYaGqmrVqrp48aJefvll8/jg4GB16dJFc+bM0cWLF/Xrr79q5cqV5v5OnTopISFBK1asUEZGhjIyMrRnzx7z3trClPXN0MKFC3N8c9OqVasc22rWrKn27dtr5syZSktLk8vl0sGDB837dtetW2cmdJUrV5bNZjO/PapRo4YOHTpU6LEDAEom8gLr5gXZNWzYUD169Mjx50w7duyohIQErV69Wg6HQ2vXrtX+/fvVqVMnj/34mgcMHjxY8+fPNx9Keu7cOa1bt05S5nkMDg5WtWrV5HA4NGfOHPNzI2U+PyPrCpZrrrlGkhQUFKRq1aopKCiIfASFgoIFEGCaN2+uadOmaerUqYqIiFDXrl21bNmyHG2yHiSV/bLPihUr6i9/+YvGjx+viIgIrVmzRtHR0YUe3+jRo1W7dm117txZDzzwgLp166bQ0FCP7Vu2bKnLly+b35o0bdo013Mb+vXrp/DwcEVGRqpnz5657qF89tlnde7cObVv315PPfWUevbsaY5ZsWJFvf3221q7dq0iIyPVoUMH/f3vf1d6enqhz13KTLROnTqlVq1amdtatWqlU6dOmXOUpL/97W/KyMhQjx49FBERoXHjxik5OVlS5oPG7rnnHrVs2VKxsbGaPHmy6tevLynzHuEJEyaodevW/JUQAAB5gcXzguxGjx6d4/aRqlWr6o033tCCBQvUtm1bvfXWW3rjjTfMwow7w4YN06effqqIiAjzasy8dOnSRQ8//LAef/xx3XbbberVq5c2btwoSeZfKuvWrZuio6NVpkyZHLegbNq0ST179lTLli01Y8YMzZ49W2XLllW5cuU0cuRI3XvvvWrdurW+/fbbqzgrKO1sRmFf1wUAPli0aJHWrl3r9RuVwvTiiy/q5MmTOe7XBAAA/kdeACA7rrAAUKySkpL0zTffyOVy6bffftOCBQt05513FumYv/76q/bu3SvDMLRnzx599NFH6tKlS5GOCQAAvCMvAJAXHroJoFhlZGToueee0+HDh1WpUiX17NlTQ4YMKdIxz58/ryeeeEJJSUmqXr26hg8frs6dOxfpmAAAwDvyAgB54ZYQAAAAAABgOdwSAgAAAAAALIeCBQAAAAAAsBwKFgAAAAAAwHJ46GYhSUk5L5er8B4HUr16RZ06lVZo/ZU0pX3+EuegtM9f4hxInAOrzj8oyKaqVSv4O4yAVph5hVU/R8WF+Zfe+ZfmuUvMvzTPvyTN3VtOQcGikLhcRqEWLLL6LM1K+/wlzkFpn7/EOZA4B6V9/qVVYecVpf1zxPxL7/xL89wl5l+a5x8oc+eWEAAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5dj9HQBKpkWL3tOhQ4lF1n9ISLAyMpxX3c+ZM6mSpMqVq1x1X8XthhuuU79+g/0dBgAARa4o84rCyimylLTcIvv869dvqCFDhvk5IgDIPwoWKJBDhxL18779Ci5r7cXaeSkzqUg+6/BzJL5xXkpVSEiwv8MAAKBYlJS8QirZuQUAlDQULFBgwWWrqHzDzv4OI08XEtdLkuXjvFJW3AAAlBYlIa+QyC0AoDjxDAsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDl2P0dAHLbsmWjrrmmnJo3j/B3KAAsYMuWjZKk9u2j/BwJgJKGnAKAJ+QXKAkoWFjQ5s0bFBISTHIBQFLm7wSJhAKA78gpAHhCfoGSgFtCAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgOXZ/BwAA8M7hyNAzzzylo0ePKDy8rp58cpIMw9A//vGijh8/JptN6tWrv5YuXayQkBCNG/ekFi/+l44ePaIRI8Zo7drVOnHimMLCaio0tIz69x+oOXNmyzAMVa9eQ6dPn1LVqtV0+vQpSVKdOnU1fvyfZRiG3njjNcXGjpNhGJozZ7acToecTqdOnkzW/fc/ooUL58swDIWF1VLZsmU0ZszjMgxDL730go4ePaKhQx/QkiUfqFatOho4cLDmzHlZhmGoTp1wPfjgCL3zzjwlJR3XxInPyTAMvfDC8zIMQzVr1lL58uU0ZMiDWrToXcXGjlPlylXydb5SU1PMuD0d466Np21z5syWJI0d+7gqV66igwcTzDhr1w7XY489lWuc/MTgLa6wsEpe2w0Zcn+e56egcQAAApvDkaEjRw7r+ecnyW63q1+/gfrnP1/R6NHjtWzZh0pPv6SkpCRJ+t+aHaNFi94z15Os9fHy5UtKTk6WzSZNmjRF9es31PbtX2vevDkKC6up8uXLy263q0uXuzRv3lyFhIRo+PDM9T89PV2xsWP16afr5HA4FBJi19ChD2nBgnk6evSIMjIyVK9efT3xxMQcucUTT0xUs2Y364cf9ujll2dpwIBBWrr0PzIMQ08+OUnNmt2s06dPa+bMFzRkyDC99947unz5kk6dOqmJE59T/foNc5yLgwcTNGvWNI0aNV7Ll3+oy5cv6eTJZNWuXUd33dVb8+fPUd269fTww7F67713ZLNJY8Y8nmtdzZp3bOw4RUT8wdyeda48HVcQ/lrfi3vc4ClTpkwp8lEkZWRkaM6cOXruuee0ZMkSLVmyRAkJCWrbtq2Cg4Pz3c/ChQtVv359lS9fXpL0wQcf6JtvvtGtt94qSZo4caJmz56t+Ph4hYSE6MMPP1SHDh18inXZsmV6/fXX1b1793wfc/FiugzDp2E82rJlo4KDg9SuXWThdFgEtmzZqNNnLyikSmN/h5KnjDMHJMnycV4p48wBhVWtaOnPQFGrUKGMLlxI93cYfpV1DrZs2aikpCQlJ2cmDefOnVV6+mX98stefffdLjmdTjmdTv300/eSJJfLpe++220WH3bv3qXU1NNyOp06e/asUlJO67vvduvSpYtyOp1KSzv3v/+mmX2dOZNqjrFrV7wuX858vXv3Tp05k6qzZ8/K4XDo2293KSMjQ06nU+fOZfadddyePd9Kkr777js5HA6dOZOaY9wzZ1L1yy97dfjwITkcDv3yy1598028UlNTzFhPnTqlX37Zq8TEBF2+fFktWrTM17n78MMPzLg9HeOujadtu3fvNOfWokVLvfjiDDPOrHN15Tj5icFbXO3a/cHj/wdZ7X755ac8z09B48iLzWZT+fKhhdJXQQR6TiEVXl5REnIKqeTkFVLJzi2qVS6vDh06+juUYlPacwlv81++/EOdP5+mM2dSzdzg4sUL+vbb3UpKOqGzZ8/myAuuXI+z1sdz535v98svexUd3VXPPz9ZhuHShQvnzf53794ll8slp9Op3bt3yeHIkJSZp5w+fdJsl5UbuFwuSdLZs2dz5RbffrtLPXr00dSpf1FGRrp+/PF7c15Z+5YsWaQdO7brl1/26uDBRJ07d9bMN6Kju+Y4Fy++OMM8B0lJJ8w5nTmTqm+/zYz77NmzZl/Zc4Lssua9e/c36tOnv7ndXS5xtfJa34vys1/YeYW3nKLYrrCYOHGiLl++rKVLl6pixYpyOBxaunSp0tPTFRIS4vV4l8slm82m9957T7fffruqV68uSbr33nvNNidPntSnn36qnTt3Kigo826Xzp07F82EAKCYOBwZOnMmNce2uLgvZbPZPB5z4cJ587XT6chzvyebNsVJkgzD0KZNG2S4+deTu743bYqT0+nMtuX3464c9+jRI25fu2uzefNG9elzt9dqfmpqijZvzozX0zHu2mS+zr1t06YN2ea2QbfdFpEr1o0b43KMk58Y8hP7gw8Ok7ulOnu7vM5PQeOwOnIKALg6qakpuXKLrDXaU46Qfb3p2LFzjvUxe5uPP17lNj/Ivs3T6+zjZLdx41c58pALF85r7dpVbmO9cOG8duzYqvXr1+dYJ7P3f+hQonmVxcGDCWYbd/1ljy97X5s3b8ixrm7f/rXZ1ul0KD5+myIi/qDU1BQzp3J3XEH4a333x7jFUrBISEjQF198oQ0bNqhixYqZA9vtGjRokCRp/vz5+uyzz+R0OlWrVi1NmzZNYWFheu2117Rv3z6lpaXp6NGj6tu3r5KSkjRu3DiVKVNGL730ktatW6cLFy5o9OjRGjZsmC5duqT+/furf//+uuaaaxQXF6dXX31VkrR8+XItWrRITqdTFStW1JQpU9S4cWOlp6dr+vTp2rZtm6pWraqbbrqpOE6LR5nfXp7RrFnT/BpHXg4eTJTLmf9vseAbl+OSfvvtN0t/BopaSEiwMjKc3hsGsKxzkJBwINc+w3AV2lVdnjgcDkm2bK/zN2Bm28Lncrm0atUyDR06PM92q1cvl8tl5HmMuzaZr3Nvy56oOBwOvf76q7nGdDodOcbJTwz5iX3x4sUaOPC+PNtlcTdOQeOwMnIK35SEnEIirygOLsclHTyYaPnPQmEq7blEXvM/fvxYgft1uVyaP3+O26KEJC1durjAfXuS84uQTB995HmcN998XXl8r6N58+Zo+vQXJUnz588tUEwOR861/6233sixf/78fyoi4g9avXq5HA6nx+MKwl/ruz/GLZaHbv74449q2LChKleunGvfypUrdejQIS1ZskTLly9XVFSUZs6cae7fs2eP/v73v+uTTz5RbGysatasqVdffVUrV65U06ZNzXYVK1bU/PnzValSJa1cuVIPPPBAjnF27typdevW6f3339eyZcv00EMPadKkSZKk//znPzp8+LA+/vhjLVy4UHv27CmaEwEABeBukS4+xhX/9R+n06GtW7d4bbd165Yc33C4O8ZdG0/bcl5ZYnj85in7OPmJIT+xf/XVV17bZXE3TkHjsDJyCgC4eufOnS3wsU6nQ0ePHnF75aVVOJ2OPL9Ayc8Vnt4YhpFjXXW3LktZ+YHh8biC8Nf67o9x/f7QzS+//FLff/+9+vfPvMcn65uKLFFRUapWrVqhjLN3717dc889kjI/KGfPZv6Pun37dvXr108hISEKCQlRnz59tGvXrqses6AqV66iGjWq6/HHJ/ktBm9mzZqm/YdO+juMgBVkL6vGjWtZ+jNQ1MLCKik5+Zy/w/CrrHPw2GOjcl22WXxsylxks/7rP8HBdrVr195ru3bt2mvjxjg5nQ6Px3hq425bXNz6bEmZTeXLl3dbtMg+Tn5iyE/sd9xxh9d2WdyNU9A4SipyitxKQk4hkVcUhyB7WTWoX0NPP/2Mv0MpNqU9l8hr/v/61zv66qsvCtRvcLBdtWrV0rFjRy1btAgOtstm83zVZ3h43RyvC1K0sNlsOdbV4GB7rnVZylyLv/pqvbLyqCuPKwh/re/+GLdYrrBo1qyZEhMTdebMmVz7DMNQbGysVq5cqZUrV2rNmjVavPj3y3sqVKhQKDEYhqEBAwaY46xatUpxcXGF0jcAFKUaNWrk2mazBSkoqGgvn7bb7bLbg83XWQtvfo7L6/kaBRUUFKQ+fe722q537/4KCrLleYy7Np62ZZ+33W5XbOy4XP0FB9tzjJOfGPIT++DBg722y+JunILGYWXkFABw9Xr37u+9kQdBQUGKiRnjMS8YMMD92nU1goODzecJZRk40PM4jzwSm6t9diNGjDFfx8SMLlBMdnvOtf/hh0fm2B8TM0pS5rnOyqfcHVcQ/lrf/TFusRQsGjVqpOjoaD377LNKS0uTlPmtx4cffqjo6GgtWrTITDzS09O1d+9ej31VqFBB5875XimNjo7WypUrdfz4cXP877/PfJrsH/7wB61cuVIOh0OXLl3SmjVrfO4fAIqK3R6S64FGnTpFq2NH99++S1L58r//w8xdQpF9vyeRkZ0UGdlJNptNkZEdFRXVKVcbd31HRnZSp07ZH074+z+srxz3ym84sr/Pvt1ms6lDh6h8PdipSpWq6tChY57HuGvjaVtk5O9P1I+M7Kj/+7/mueKMiuqUY5z8xJCf2KtWreq1XV7np6BxWBk5BQBcvSpVquZaE7LWaE85Qvb1pkGDhjnWx+xtevbs4zY/yL7N0+usPq4UFXWHOnaMzhFrjx593MZavnwFtWnTTp07dzbXySv7z/5nTRs0aGS2cddf9viy99WhQ8cc57Bt29vNtsHBdvPPmmbmEp08HlcQ/lrf/TFusRQsJGnmzJlq1KiRBgwYoF69eql379767bff1LNnT/Xp00f33XefevfurbvvvlvffPONx36GDRumSZMmqW/fvtq/f3++x4+IiND48eMVGxurPn36qFevXlq/fr0k6Y9//KPCw8PVo0cP3X///WrevPlVzxcAClONGjVUt2492Ww21a1bz/z2v0GDRgoNLaMyZcqY32iEhIQoNnac2f6RR2LVoEEjlSlTRvXq1Vfjxk0VGztWZcqUUWhoqOrUCVeZMmVUu3YdhYaGKjQ0VA0bXmuOcd11N5ivGzduqoYNG6levfoqW9nGy9cAACAASURBVLasHn441uynbt36atKkqdk2a/xhwx5Q2bJl1bDhtYqNHWe2b9iwkWJixqhBg0YqW7asRowYo5iY0eb+evXq6/rrr1dMzBgzhvzKHrcvbTxta9y4qRo3bmpuzx5ngwaNPF7F4WvcvhyX1c7b+SloHFZGTgEAV69GjRr/W58bqUmTzNygXLlyGjVqnBo3bqp69eplywsaKSZmdI71JGt9rFu3npmLZF25kHW1QVhYTbP/Rx4ZKZvNptDQUD3ySKxCQzP/lGVMTKwaN26qBg0y28XEjFHDho3Mv/pUr179XLnFqFGPSpJiY8fKZrNp4MDB5tWdWfsGDx78v3VytBlnVr5xpZiY0SpXrpxiY8eZbcuUKaOGDRvp4YdjZbPZVK9efbOvrHznSlnzzrq6IkvWufJ0XEH4a30v7nFthlVvPCphTp1Ky/XE9oKaNWuaQkKCLX2/ada9puUbWvtPvF1IzEwgrR7nlS4krtdNPMOiVN93Kv1+DrKe6F6a7jvOUto/B1adf1CQTdWrV/TeEAVWWHlFScgppJKTV0glO7doyjMsShVv8w/0/KI0//xL0ty95RTFdoUFAAAAAABAflGwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYjt3fASC3Dh066ppryvk7DAAW0aFDR3+HAKCEIqcA4An5BUoCChYW1L59lMLCKik5+Zy/QwFgAe3bR/k7BAAlFDkFAE/IL1AScEsIAAAAAACwHAoWAAAAAADAcihYAAAAAAAAy6FgAQAAAAAALIeCBQAAAAAAsBwKFgAAAAAAwHIoWAAAAAAAAMuhYAEAAAAAACyHggUAAAAAALAcnwoWp0+f1vnz5yVJTqdTS5cu1fLly+VyuYokOAAAEJjIKQAAgDc+FSxGjBihxMRESdLs2bP1zjvvaOHChZo5c2aRBAcAAAITOQUAAPDGp4JFQkKCbrrpJknSqlWr9Oabb+rdd9/V2rVriyQ4AAAQmMgpAACAN3ZfGgcFBSkjI0MHDhxQpUqVFB4eLpfLZV7SCQAAkB/kFAAAwBufChZRUVF69NFHlZqaqh49ekiS9u/fr1q1ahVJcAAAIDCRUwAAAG98KljMmDFDy5cvl91uV9++fSVJKSkpGjt2bJEEBwAAAhM5BQAA8MangkVoaKgGDRqUY1vbtm0LNSAAABD4yCkAAIA3PhUs/vznP8tms7nd97e//a1QAgIAAIGPnAIAAHjjU8GiYcOGOd4nJyfr008/Ve/evQs1KAAAENjIKQAAgDc+FSzGjBmTa9vAgQM1d+7cQgsIAAAEPnIKAADgTdDVdnDTTTdpx44dhRELAAAoxcgpAABAdj5dYbF169Yc7y9duqSPP/5YTZs2LdSgAABAYCOnAAAA3vhUsJg8eXKO9+XLl9eNN96ol156qVCDAgAAgY2cAgAAeONTweLLL78sqjgAAEApQk4BAAC88ekZFv369XO7/e677y6UYAAAQOlATgEAALzxqWCRmJiYa5thGDp8+HChBQQAAAIfOQUAAPAmX7eEPPXUU5KkjIwM83WWI0eO8IAsAACQL+QUAAAgv/JVsGjQoIHb15J022236a677ircqFAiOC+l6kLien+HkSfnpVRJsnycV8qMu5a/wwCAQkdOAU9KQl4hlfTcooa/wwAAn+SrYDFmzBhJUosWLRQZGVmkAaFkqF+/YZH2HxISrIwM51X3c+ZM5ke8cuUqV91X8aqhxo0b+zsIACh05BRwpyjzisLKKbKUtNzi9/nXKPL8DQAKm09/JSQyMlLp6ek6cOCAUlJSZBiGua9du3aFHhysa8iQYUXaf1hYJSUnnyvSMayOcwAgkJFTILuizCtK+3pa2ucPoGTzqWCxc+dOjR8/Xunp6UpLS1PFihV1/vx51a5dW+vXl6zL4gAAgP+QUwAAAG98+ishL7zwgh5++GHt2LFDFSpU0I4dOxQbG6shQ4YUVXwAACAAkVMAAABvfCpYJCQkaNiwnJfsxcTEaOHChYUZEwAACHDkFAAAwBufChaVKlVSWlqaJCksLEz79+/X2bNndeHChSIJDgAABCZyCgAA4I1Pz7Do0qWLNmzYoN69e2vAgAEaNmyY7Ha7unXrVlTxAQCAAEROAQAAvPGpYDF58mTz9UMPPaQWLVro/PnzioqKKvTAAABA4CKnAAAA3vh0S8j06dNzvG/durU6duyov/71r4UaFAAACGzkFAAAwBufChbLli1zu33VqlWFEgwAACgdyCkAAIA3+bol5KOPPpIkOZ1O83WWQ4cOqUqVKoUfGQAACDjkFAAAIL/yVbBYuXKlJCkjI8N8LUk2m001atTQrFmziiY6AAAQUMgpAABAfuWrYPGvf/1LkjR79mw99thjRRoQAAAIXOQUAAAgv3x6hsX999+v8+fPS8q8lHPp0qVasWKFXC5XkQQHAAACEzkFAADwxqeCxYgRI5SYmChJevnll/XOO+9owYIFmjlzZpEEBwAAAhM5BQAA8MangkVCQoJuuukmSdLq1av15ptv6t1339XatWuLJDgAABCYyCkAAIA3+XqGRZagoCBlZGTowIEDqlSpksLDw+VyucxLOgEAAPKDnAIAAHjjU8EiKipKjz76qFJTU9WjRw9J0v79+1WrVq0iCQ4AAAQmcgoAAOCNTwWLGTNmaPny5bLb7erXr58kKSUlRWPHji2S4AAAQGAipwAAAN74VLAIDQ3VoEGDcmxr27Ztjve9e/fW6tWrrz4yAAAQsMgpAACANz49dDM/Dh8+XNhdAgCAUoicAgCA0q3QCxY2m62wuwQAAKUQOQUAAKVboRcsAAAAAAAArhYFCwAAAAAAYDmFXrAwDKOwuwQAAKUQOQUAAKVbgQoWLpdLSUlJbvdNnTr1qgICAAClBzkFAADwxKeCxdmzZ/XEE0/olltuUdeuXSVJ69ev1+zZs802vXv3LtwIAQBAwCGnAAAA3vhUsHjuuedUsWJFffnllwoJCZEktWzZUuvWrSuS4AAAQGAipwAAAN7YfWm8detWbdq0SSEhIeafGqtWrZpOnTpVJMHBGhYtek+HDiUW65ghIcHKyHBeVR9nzqRKkipXrlIYIRW7rHNQv35DDRkyzN/hAEChIqewJn+s+UXNW05R0vMFd8gdAAQKnwoWlSpVUkpKimrWrGluO3r0qMLCwgo9MFjHoUOJSti/V7Ur+vRxuSqXCqGPlDSHJKnMxZOF0FvxuyTp+P/mAACBhpzCmvyx5hc1bzlFSc8XrkTuACCQ+LQa3XPPPRo3bpzGjx8vl8ul3bt36+WXX9bgwYOLKj5YRO2Kdj14SzV/h+GTBXtOS1KJizu7rDkAQKAhp7CukrjmX41AyBeyI3cAEEh8Klg88sgjKlOmjKZOnSqHw6FJkyZp0KBBuv/++4sqPgAAEIDIKQAAgDc+FSxsNpvuv/9+kgkAAHBVyCkAAIA3Pv2VkG3btunQoUOSpOTkZD399NOaOHGikpOTiyQ4AAAQmMgpAACANz4VLJ5//nkFBwdLkmbOnCmHwyGbzaZnnnmmSIIDAACBiZwCAAB449MtISdOnFB4eLgcDoc2b95s/u30yMjIoooPAAAEIHIKAADgjU8Fi4oVK+rkyZPat2+fmjRpogoVKig9PV0OB38+CQAA5B85BQAA8MangsV9992ngQMHKiMjQ5MmTZIk7dq1S40bNy6S4AAAQGAipwAAAN74VLCIiYlRly5dFBwcrAYNGkiSatWqpenTpxdJcAAAIDCRUwAAAG98KlhI0rXXXpvnewAAgPwgpwAAAHnxqWCRlpam1157TfHx8UpJSZFhGOa+uLi4wo4NAAAEKHIKAADgjU9/1nTKlCn68ccfNWrUKKWmpuovf/mL6tSpowceeKCIwgMAAIGInAIAAHjj0xUWW7Zs0dq1a1W1alUFBwfrzjvvVPPmzTVy5EgSDAAAkG/kFAAAwBufrrBwuVyqVKmSJKl8+fI6d+6cwsLClJiYWCTBAQCAwEROAQAAvPHpCosbb7xR8fHxateunVq3bq0pU6aoQoUKatSoURGFBwAAAhE5BQAA8ManKyymT5+uevXqSZImT56ssmXL6ty5c3rxxReLJDgAABCYyCkAAIA3PhUs3n33XSUnJ0uSqlevrhkzZmjo0KFavHhxkQQHAAACEzkFAADwxqeCxZo1a3TzzTfn2HbzzTdrzZo1hRoUAAAIbOQUAADAG58KFjabLcffSZckp9Mpl8tVqEEBAIDARk4BAAC88alg0bp1a/3jH/8wkwmXy6XXXntNrVu3LpLgAABAYCKnAAAA3vj0V0ImT56sESNGqEOHDgoPD9exY8cUFhamN954o6jiAwAAAYicAgAAeONTwaJ27dpavny59uzZo2PHjqlOnTq65ZZbFBTk04UaAACglCOnAAAA3vhUsJCkoKAg3Xrrrbr11luLIh4AAFBKkFMAAIC88DUGAAAAAACwHAoWAAAAAADAcihYAAAAAAAAy6FgAQAAAAAALMfnh26i6G3ZslHXXFNOzZtH+DsUACXYli0bJUnt20f5ORIA/kJOAcBKyE3gKwoWFrR58waFhASTXAC4Kps3b5BEUgCUZuQUAKyE3AS+4pYQAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULACglDh5M0MiRD+ihh/6kHTu26fnnJ2nUqOE6dCjR4zGpqSmaOXOqDh5MyNH+9+2Jmjlzqs6cSTXbT5/+rKZPf1ZnzqSa7X744b8aPfqhfI2V1ZcknT59Old/06c/qxkznjXbHTyY4LVvd/O5cix34/sSa373+zIOAACBxuHI0PTpz+qZZ57WyJEPaOTIBzRlyqQ810V3+UR+1tPseUP2nCW/x06Zkpn7/PDD94WydpMD+M4yBYvo6Gjddddd6tOnj7p06aLY2Fjt2rXrqvp85ZVXtHbtWp+PmzBhgv79739f1dgAYDXz589Venq6DMPQm2/+U4mJCbp06ZLmzZvj8ZjVq5dr376fNX/+3Bztf98+R/v2/axVq5aZ7X/7bb9++22/Vq1aZrZ7/fVXdfHixXyNldWXJC1evDhXf7/9tl+//rrfbDd//lyvfbubz5VjuRvfl1jzu9+XcVAw5BQAYF0nT57Ub7/t15Ejh5Senq709HQdPJiQ57roLp/Iz3qaPW/InrPk99iDBzNzn9dff6VQ1m5yAN9ZpmAhSa+++qpWrVqlzz//XP3791dMTIy+++67Avf36KOPqkePHoUYIQCUTAcPJujo0SPme6fTYb4+evSI26sTUlNTtHnzBhmGkePYo0ePaNOmOHO7YRjavHmjDh5M0KZNG8x2mzbFme0uXDif77E2b95ofvvxxRdf5Ohv48avzPebN2/QDz/sMWPz1Len+Vw51pXj56cfd23z2u/LOLg65BQAYD0OR4bHtW/jxjiPVyZmrZ3Z84mNG7/Kcz09ffq0Nm2KM9//vvZvMPMTT8empqbkyDkuXDh/1Ws3OUDB2P0dgCddu3bVnj179Pbbb+vvf/+7Zs+erfj4eKWnp+uGG27QlClTVKFCBU2YMEGhoaFKSEjQ8ePHdeutt2rWrFmy2WyaMGGCbr75Zt13331KT0/32MeJEyf01FNPKTk5WXXr1lVQkH/rOGfOpOrs2TOaNWuaX+PIcvBgosrL5e8wSqW0dJeSDiZa5rNQnEJCgpWR4fR3GH51tefg4MFEVa5cWVLmVQh5mTdvjqZPfzHHttWrl8vlMty2dzgcOd67XC7Nnz83RyEks43N57FcLpf5zUP2ca4c0+Fw6PXXX/Pad17zyT7WleMPHTrcaz/u2ua139uxKBrkFPnPKVjzS74rc4fSvJ6W5rlL1px/QsIBj/ucTofbddFTPuJ0Zs7N03q6ePFiORy55+9wOGT8rztPx65evdzsP7urWbvJAQrGUldYXKlFixbav3+/3nrrLVWqVEkfffSRVq1apZo1a2r+/Plmu3379unNN9/UmjVr9MMPP+jrr7/O1VdefUyfPl0RERFau3atnn32We3YsaPY5ggAxSH7FRL53b9165YcBYi8OJ0O85uLnHInGN7Gcjod2rp1i7Zu3eKmv2w9Z/umJa++3Y2RPe6ssa4cPz/9uGub135fxkHhIqcAAP9zVwTIzt266C0f8bSexsXFyV0ekplbGHke62l9vpq1mxygYCx7hYUkM1H98ssvlZaWpk8//VSSlJ6erhtvvNFsd+edd6pMmTKSpGbNmungwYNq3759jr7y6mP79u36y1/+IkmqX7++2rVrV7QT86Jy5SqqUaO6Hn98kl/jyDJr1jRdOr7f32GUShVDg1SjdkM9/fQz/g6l2IWFVVJy8jl/h+FXV3sOsn+jGh5eN89/zIeH1821rV279tq4MS5fRYvgYLtq1aqlY8eOXlFksOnKZMHbWMHBdrVrl/k7PC5uvceihc1mU7ly5XMULdz1ndd8so/lbnxv/bhrm9d+b8ei6JBT5C+nYM0v+a7MHUrzelqa5y5Zc/6PPTYqz1sh3K2L3vIRT+tpp06dtG7dJ7oyD7HZbP+7wsLweGy7du311Vdf5Np+NWs3OUDBWLpg8d///lfXXXedDh8+rOeee87jop+VWEhScHCw28qdYRh59gEAgSwmZrSmTPH8D5YRI8bk2ta7d39t3rxB7r4MsdvtOW7RCAoKUkzMaE2f/pwcjgyzjZT7Vg5vYwUFBalPn7vN+0wzMn7vzzAM83e83W5XbOxYvfTSzDz7zms+V46Vffz89OOubV77vR2LokNOAQD+V6NGDY8Fi+Bgu9t10VM+kvU72tN6OnjwYH3++ee58pCsfMLhcHg8tnfv/tq48atca8DVrN3kAAVj2VtCvvjiC33wwQcaPny4oqOjtXDhQl26dEmSlJaWpl9//dWn/vLq4w9/+IOWLl0qSTp06JC2bt1aiDMBAP9r0KBRjqsPgoN/r1eHh9dV/foNcx1TpUpVdejQUTabLcex4eF1FRnZydxus9nUoUOUGjRopMjIjma7yMhOZrvy5Svke6wOHaJUuXIVValSVXfeeWeO/qKi7jDfd+jQUf/3f7eYsXnq29N8rhzryvHz04+7tnnt92UcFB5yCgCwBrs9xOPaFxXVye2+7Gtn9nwiKuqOPNfTatWqKTKyk/n+97W/o5mfeDq2SpWqOXKO8uUrXPXaTQ5QMJa6wmLcuHEKDQ3VxYsX1aRJE82fP18tWrRQs2bNNGfOHA0cOFA2m002m01jxoxRkyZN8t13TEyMxz4mT56sp556SmvWrFG9evXUtm3bIpwlAPhHTMxo/fWvU5SRkaFHHhmldetW6cSJ416vSjhy5LCGDBmmBQvmm+0rVbrmf9vv16JF75rfEvTu3V+JiQmSZF65cOTIYfXu3V///Oc/8jVW9m8cBg8erJ9/3pejv8TEBNlsMtvFxIzWrFnT8uzb3XwWLXov19UPV47vS6z53e/LOCg4cgoAsKYaNWqoevUaunz5spKTT0iSatcO93p145X5RFYu4u24rLxh6NCHzJwlKz/xduyvv+5XUtJxxcY+qtWrl1312k0O4DubkdcTzZBvp06leXyavq9mzZqmkJBgyz3D4sFbqvk7FJ8s2HNakkpc3Nkt2HNaZWs35RkWpVRhPcOiJH9+SvvnwKrzDwqyqXr1iv4OI6AVVl7ha05RUtf8qxEI+UJ2V+YOVv09UhxK89wla86/OHMTK86/uJSkuXvLKSx7SwgAAAAAACi9KFgAAAAAAADLoWABAAAAAAAsh4IFAAAAAACwHAoWAAAAAADAcihYAAAAAAAAy6FgAQAAAAAALIeCBQAAAAAAsBwKFgAAAAAAwHIoWAAAAAAAAMuhYAEAAAAAACyHggUAAAAAALAcChYAAAAAAMByKFgAAAAAAADLoWABAAAAAAAsh4IFAAAAAACwHAoWAAAAAADAcihYAAAAAAAAy6FgAQAAAAAALIeCBQAAAAAAsBwKFgAAAAAAwHIoWAAAAAAAAMuhYAEAAAAAACzH7u8AkFuHDh11zTXl/B0GgBKuQ4eO/g4BgJ+RUwCwEnIT+IqChQW1bx+lsLBKSk4+5+9QAJRg7dtH+TsEAH5GTgHASshN4CtuCQEAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFiO3d8BoGQ4nubQgj2n/R2GT46nOSSpxMWd3fE0hxr5OwgAQKlSEtf8qxEI+UJ25A4AAgkFC3hVv37DYh8zJCRYGRnOq+qj6plUSVLZylUKI6RiFxISrLIZTr+cfwBA6RSIa463nKKk5wtXaqTA/DkCKJ0oWMCrIUOGFfuYYWGVlJx8rtjHtRLOAQCguPljzS9qrKcAUHLxDAsAAAAAAGA5FCwAAAAAAIDlULAAAAAAAACWQ8ECAAAAAABYDgULAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFiO3d8BBIqgIFuJ6LMkKe3zlzgHpX3+EudA4hxYcf5WjCnQFPY5Lu0/M+ZfeudfmucuMf/SPP+SMndvcdoMwzCKKRYAAAAAAIB84ZYQAAAAAABgORQsAAAAAACA5VCwAAAAAAAAlkPBAgAAAAAAWA4FCwAAAAAAYDkULAAAAAAAgOVQsAAAAAAAAJZDwQIAAAAAAFgOBQsAAAAAAGA5FCws5sCBAxo0aJC6deumQYMGKSEhwd8hFVh0dLTuuusu9e3bV3379tWmTZskSd9++6369Omjbt26afjw4Tp16pR5TFHsKy6zZs1SdHS0brjhBv3yyy/m9rx+psW9r6h5OgeePgtSYH0eUlJS9Mgjj6hbt27q3bu3xowZo9OnT/tlnlY8BzfccIN69+5tfg5+/vln87gvv/xSd911l7p06aLx48fr4sWLRbqvKI0aNUp9+vRRv379NGTIEP3000+SStfvAlhDoHwGyCcylZbfIaU5lyjteURpzyHIHzwwYClDhw41VqxYYRiGYaxYscIYOnSonyMquDvuuMP4+eefc2xzOp3GnXfeacTHxxuGYRhz5841JkyYUGT7ilN8fLxx9OjRXPPO62da3PuKmqdz4O6zYBiB93lISUkxtm3bZr6fOXOmMXHixGKfpxXPgWEYxvXXX2+kpaXlOiYtLc24/fbbjQMHDhiGYRiTJk0yXnvttSLbV9TOnj1rvv7888+Nfv36GYZRun4XwBoC5TNAPpGptPwOKc25RGnPI0p7DkH+4B4FCws5efKk0apVK8PhcBiGYRgOh8No1aqVcerUKT9HVjDuFpbvvvvO6Nmzp/n+1KlTxq233lpk+/wh+7zz+pkW9z5/nQN377ME+ufhk08+Me6///5in6cVz4FheE421q5da8TExJjv9+zZY/To0aPI9hWn5cuXG/379y+1vwvgP4H0GSCfKJ35BLkEeURpziHIH35n9+/1Hcju2LFjqlWrloKDgyVJwcHBqlmzpo4dO6Zq1ar5ObqCefLJJ2UYhlq1aqXHH39cx44dU3h4uLm/WrVqcrlcSk1NLZJ9VapUKZ6JepDXz9QwjGLd5+/P0JWfhWuuuSagPw8ul0sffPCBoqOji32eVjwHWYYOHSqn06moqCiNHTtWoaGhueINDw/XsWPHJKlI9hWHyZMna8uWLTIMQ2+99Ra/C1DsAi2nIJ/gd4hUunKJ0p5HlNYcgvwhN55hgSLz/vvva9WqVVq6dKkMw9DUqVP9HRL8pDR+FqZNm6by5cvrvvvu83cofnPlOYiLi9OyZcv0/vvva//+/Zo7d66fIyw6M2bMUFxcnB577DH97W9/83c4QIlWGtcQ5FbaPgelPY8orTkE+UNuFCwspE6dOjpx4oScTqckyel0KikpSXXq1Pl/9u49IKo6///4a7h5w1ABUVDLbCtbLS0HcwXti5lpipe0i3nL9aeZprVtaVppZptsbbapbVqZmrlulnhLs9USL5mXtKhNtzRFFBVUQMALzOX3B8sECgwDA3MYno9/YuZ85nPe54h+Xr3nnBkPV1Y+BXUHBARo8ODB2rdvn5o2baqUlBTHmHPnzsnHx0cNGjSolG2eVtqfaVVv86TifhcKnvfG34e4uDglJSXpzTfflI+PT5UfpxHPgfTb70FgYKAGDRpU4u9BSkqKY2xlbKtKy2m0BwAAIABJREFU/fr1065du9SkSRP+LUCV8qbfAfIEeUKqWVmipucIMgT5oTAaFgYSHBys1q1ba926dZKkdevWqXXr1tXy0s0LFy4oKytLkmS327V+/Xq1bt1abdq00aVLl7R3715J0vLly3XvvfdKUqVs87TS/kyrepunlPS7IFXOn7mnfx/eeOMN/fjjj5o3b54CAgI8cpxGPAeZmZm6dOmSJMlisWjjxo2O34Po6Gj98MMPjk+hXr58uXr27Flp2ypTTk5OkctGv/zySwUFBfFvAaqct/wOkCfy1fR/Q2pSlqjpOaKmZgjyQ8lMdrvd7rG94yqHDx/W5MmTdf78eV1zzTWKi4vT9ddf7+myXJacnKwnnnhCVqtVNptNrVq10vPPP6/GjRtr3759mjZtmi5fvqyIiAi99tprCgkJkaRK2VZVZs6cqS+++EJnzpxRw4YN1aBBA3322Wel/plW9TZPnIN33nmnxN8FqXL+zD31+/DLL7+od+/euu6661S7dm1JUrNmzTRv3rwqP06jnYNRo0bpxRdflMlkksViUfv27TVlyhTVq1dPkrRp0ya99tprstlsat26tWbNmqW6detW2rbKcubMGT3++OO6ePGifHx8FBQUpEmTJun3v/99jfq3AMbgDb8D5Imalydqcpao6TmiJmcI8kPJaFgAAAAAAADD4ZYQAAAAAABgODQsAAAAAACA4dCwAAAAAAAAhkPDAgAAAAAAGA4NCwAAAAAAYDg0LAB43DvvvKOpU6dKko4fP66bbrpJFotFkjRq1CjFx8d7sjwAAFBNkCkA78LXmgIwlOPHj6tbt276z3/+Iz8/P0+XAwAAqikyBVD9cYUFgDIpeHcCAACgIsgUAMqKhgVQw8XExGj+/Pnq1auXzGaznnvuOV2+fFm7du1Sly5dtGDBAnXu3FnPPfecbDabFixYoLvvvlsdO3bUxIkTlZGRISn/MsulS5cWmTs2NlZffPGFJGnmzJnq2rWrbr/9dg0YMEB79+51jJszZ47+/Oc/F1vf0KFDtWLFCknSypUr9fDDDysuLk5ms1kxMTFKSEhwjE1OTtYjjzyi9u3ba8SIEXrppZdKnLfApEmTtHDhQknS6dOnddNNN+mjjz6SJB07dkyRkZGy2WzKzMzUmDFjdOedd8psNmvMmDE6depUmff93Xff6aGHHlKHDh0UGxurXbt2lf4HAwBANUOmIFMA7kbDAoDWrl2r999/X//+97915MgRvf3225KkM2fOKDMzU1999ZVefvllffjhh9q0aZOWLl2qbdu2KSgoSDNmzJAk9e7dW+vWrXPMeejQIaWkpOiuu+6SJLVt21arVq3S7t271bt3b02cOFGXL192udbExES1bNlS33zzjUaNGqWpU6eq4M62P//5z7r11lu1a9cujR8/XqtXr3Y6n9ls1u7duyVJu3fvVvPmzbVnzx7H4zvuuEM+Pj6y2WwaMGCAvvrqK3311VeqVauW49id7fv06dMaM2aMxo4dq927d2vSpEmaMGGCzp075/LxAwBgZGQKMgXgTjQsAOiRRx5R06ZN1aBBA40dO1afffaZJMnHx0cTJkxQQECAateureXLl+upp55SkyZNFBAQoPHjx2vjxo2yWCy6++67dfDgQZ04cUJSfmDp3r27AgICJEl9+/ZVw4YN5efnp5EjRyo3N1dHjhxxudbw8HA98MAD8vX1Vf/+/ZWWlqYzZ84oJSVFP/zwg6PeDh06KCYmxul8kZGR+vbbb2Wz2bRnzx6NGjVK+/btkyTt2bNHkZGRkqSGDRuqR48eqlOnjgIDAzV27FhHCHG279WrV6tLly7q2rWrfHx81LlzZ7Vp06bIOzkAAHgDMgWZAnAnPn0GgJo2ber4OTw8XKmpqZLyF9RatWo5tqWkpGjcuHHy8fmt1+nj46OzZ88qLCxMXbt21WeffabRo0dr3bp1mjlzpmPc+++/r08++USpqakymUzKzs5Wenq6y7WGhIQ4fq5Tp44k6cKFC0pPT1dQUJDjuYLjOnnyZKnztWjRQnXq1NGBAwf07bffaty4cfrkk0/066+/as+ePRo6dKgk6eLFi3r11Ve1bds2ZWZmSpJycnJktVqVmppa6r5TUlL0+eef66uvvnJst1gs6tixo8vHDwCAkZEpyBSAO9GwAFBkAU5JSVHjxo0lSSaTqci4Jk2a6C9/+YvuuOOOYufp3bu35s6dK7PZrMuXLzsWz7179+q9997TokWL9Lvf/U4+Pj4ym81y55cUhYaGKjMzUxcvXnQs8s6CRQGz2ayNGzcqLy9PYWFhMpvNWrVqlTIzM9W6dWtJ0sKFC3XkyBF9/PHHCg0N1YEDB9SvXz/Z7Xan+27atKn69u1bJGwBAOCNyBRkCsCduCUEgJYtW6ZTp04pIyND77zzjnr16lXsuIcfflhvvvmm4xLNc+fOadOmTY7tXbt2VUpKit566y316tXL8a5JTk6OfH191ahRI1ksFs2dO1fZ2dluPYaIiAi1adNGc+bMUW5urvbv31/k3YfSREZGaunSperQoYMkqWPHjlq6dKnuuOMO+fr6Oo6hVq1auuaaa5SRkaG5c+eWed+xsbH66quvtG3bNlmtVscHkBX+gC0AALwBmYJMAbgTDQsA6t27t0aOHKm7775bLVq00NixY4sdN2zYMMXExGjkyJFq3769HnjgASUmJjq2BwQEqHv37vr666/Vu3dvx/NRUVGKjo5Wjx49FBMTo1q1ahW5ZNRdXn/9dX333Xfq2LGj3nzzTfXq1ctxv2tpzGazcnJyZDabJUl33HGHLl265AgbkjR8+HBdvnxZd955px588EFFR0eXed9NmzbV22+/rfnz56tTp07q2rWr3n//fdlsNjcePQAAnkemIFMA7mSyu/P6KQDVTkxMjGbOnKk//OEPni7F7Z588kldf/31mjBhQo3aNwAAnkCm8L59A57GFRYAvEZiYqKOHTsmm82mrVu3avPmzbr77ru9ft8AAMC9yBSAMfChmwC8xpkzZ/TEE08oIyNDTZo00fTp03XLLbdozZo1mjZt2lXjw8PDHV+3Vln7BgAA1Q+ZAjAGbgkBAAAAAACGwy0hAAAAAADAcGhYAAAAAAAAw6FhAQAAAAAADIeGBQAAAAAAMBwaFgAAAAAAwHBoWAAAAAAAAMOhYQEAAAAAAAyHhgUAAAAAADAcGhYAAAAAAMBwaFgAAAAAAADDoWEBAAAAAAAMh4YFAAAAAAAwHBoWAEq0d+9e9ejRw/E4JiZGX3/9tSTpnXfe0dSpUz1VWpUaNWqU4uPjPV2GU0OHDtWKFSs8XQYAoIYiN+Sritzw4osvat68eSVuv+mmm5SUlFSpNQBVwc/TBQAoXkxMjM6cOSNfX1/VqVNHXbp00QsvvKB69epVWQ0dOnTQxo0bi9322GOPVVkdnvbee++V+7V79+7V66+/rl9++UW+vr66/vrrNWXKFN16660VqmnOnDlKSkrS66+/XqF5AADegdxgHBXJDTExMUpNTdXWrVvVqFEjx/P9+vXTgQMHtHnzZjVr1kwzZsxwR6lucdNNN+mLL77Qtdde6+lS4IW4wgIwsHfeeUf79+9XfHy8fvzxR/3jH/+4aozFYvFAZSiL7OxsPfbYYxoyZIh2796trVu3avz48QoICPB0aQAAL0Ru8A4RERH67LPPHI//+9//6uLFix6sCPAcGhZANRAWFqbo6Gj98ssvkvI72R999JHuuece3XPPPZKkr776Sn379lWHDh300EMP6eDBg5KkBQsWaMKECUXmmzlzpmbOnClJ+vTTT9WzZ0+1b99e3bp10/Llyx3jdu3apS5duhRb05w5c/TnP/9ZknT8+HHddNNNio+P11133aWOHTsWCUmXLl3SpEmTZDab1bNnT7377rslzvvWW2/p5ZdfliTl5eWpXbt2iouLc8zTtm1bZWRkSJImTJigzp0764477tAjjzziOD+SlJ6erscee0y333677r//fs2ePVsPP/ywY/vhw4f16KOPKjIyUj169ND69etLPP+Fb7VYuXKlHn74YcXFxclsNismJkYJCQnFvu7IkSOSpN69e8vX11e1a9dWVFSUbr75ZkmSzWbT22+/rf/7v/9Tp06d9OyzzyorK6vEc19wae3WrVs1f/58bdiwQe3bt1dsbKxjzIkTJ/TQQw+pffv2GjlypM6dO1ficQEAvBO5oXrmhgJ9+/bVqlWrHI9XrVqlfv36FRkzefJkzZ492/H4vffeU1RUlKKiovTJJ584nk9OTlaHDh1ks9kkSc8//7w6derk2P7MM89o0aJFkqSsrCxNmTJFUVFRio6O1uzZs2W1WiVJSUlJGjJkiO644w517NhRTz75pCTpkUcecdTcvn37Us8LUB40LIBq4OTJk9q6datat27teG7Tpk36+OOPtX79ev3000+aMmWKZsyYoV27dunBBx/U448/rtzcXN13331KSEhQdna2JMlqterzzz9X7969JUnBwcGaP3++9u3bp1dffVWvvvqq/vOf/5Srzm+//Vaff/65Fi9erHnz5unw4cOSpLlz5+rEiRPatGmTPvjgA61Zs6bEOcxms3bv3i1J+uGHHxQSEqK9e/dKkvbv36+WLVuqQYMGkqQuXbpo48aN2rlzp2655RZHEJKkGTNmqE6dOtqxY4fi4uKKLPwXLlzQyJEj1bt3b3399deaPXu2XnrpJR06dKhMx5mYmKiWLVvqm2++0ahRozR16lTZ7farxrVs2VK+vr6aNGmSEhISlJmZWWT7ypUrFR8fryVLlmjTpk26cOFCmS7x7NKli8aMGaOePXtq//79Rc7nunXr9Oqrr2rnzp3Ky8vTwoULy3RMAADvQW6onrmhQLt27ZSdna3Dhw/LarXqs88+K/LmxJW2bt2qhQsXauHChfriiy+0c+dOx7bmzZsrMDBQP/30kyRpz549qlu3ruNc79mzR5GRkZLymyB+fn764osvtGrVKu3YscPRePn73/+uzp07a8+ePdq6dauGDBkiSfroo48kSatXr9b+/fvVq1evMp0ToKxoWAAGNm7cOHXo0EGDBw+W2Wwucv/n6NGj1aBBA9WuXVv/+te/9OCDD+q2226Tr6+v+vfvL39/f3333XeKiIjQLbfcok2bNkmSvvnmG9WuXVvt2rWTJN11111q0aKFTCaTIiMj1blzZ8dC76rx48erdu3auvnmm3XzzTc73q3ZsGGDxowZo6CgIDVp0kTDhg0rcY727dvr6NGjSk9P1969ezVw4ECdPn1aOTk5RRZVSRo4cKACAwMVEBCgJ554QgcPHlRWVpasVqu++OILPfHEE6pTp45uuOGGIu9MbNmyRREREbr//vvl5+enW265RT169NDnn39epuMMDw/XAw884DjXaWlpOnPmzFXjAgMDtWzZMplMJr3wwgvq1KmTHnvsMcfYtWvXasSIEWrevLnq1aunP/3pT1q/fn2FLtcdMGCAWrZsqdq1a+vee+/VgQMHyj0XAKB6ITdU79xQWMFVFjt27FCrVq0UFhZW4tgNGzZowIABuvHGG1W3bl2NHz++yHaz2aw9e/YoLS1NktSjRw/t3r1bycnJys7O1s0336wzZ84oISFBU6ZMUd26dRUcHKwRI0Y4bk3x8/NTSkqKUlNTVatWLXXo0KFMxw5UFB+6CRjYvHnz9Ic//KHYbU2bNnX8nJKSolWrVmnp0qWO5/Ly8pSamiop/5aEdevWqV+/flq3bp3jXRJJSkhI0Lx583T06FHZbDZdunRJN954Y7nqDQkJcfxcp04dXbhwQZKUmppapN4mTZqUOEft2rXVpk0b7dmzR3v27NFjjz2mAwcOaN++fdqzZ4+jo2+1WjV79mx9/vnnOnfunHx88vuv6enpunTpkiwWS5F9Fv75xIkTSkxMLLLYWq3WUt+9KO04JTmO9UqtWrXSrFmzJOVfTvrMM8/oL3/5i9544w2lpqYqIiLCMTYiIkIWi0Vnz54tUx3FCQ0NLVJbSXUBALwPuaH654YCffv21ZAhQ3T8+HH17du31LGpqalq06aN43HhbCFJkZGR2rx5s8LCwmQ2m9WxY0etXr3a0Xjw8fFRSkqKLBaLoqKiHK+z2WyO8/DMM8/o73//uwYOHKigoCA9+uijGjhwYJmOH6gIGhZANWUymRw/N23aVI899pjGjh1b7NiePXsqLi5Op06d0r///W/961//kiTl5uZqwoQJiouLU7du3eTv76/HH3+81MsUyyM0NFSnTp3SDTfcIEk6depUqeMjIyP1zTff6MCBA2rbtq0iIyO1fft2JSYmymw2S8q/OmHz5s364IMP1KxZM2VlZclsNstut6tRo0by8/PTqVOn1LJlS0n5l8cWaNq0qcxmsz744AO3HqczrVq10oABAxznv3Hjxjpx4oRje0pKivz8/BQcHKzTp0/r0qVLjm1Wq7XI51EU/vMHAMAZckP1yg0RERFq1qyZEhIS9Morr5Q6tnHjxkXqTUlJKbLdbDbrr3/9q5o0aSKz2aw77rhD06ZNU61atRznp0mTJgoICNA333wjP7+r/xcxNDTU8Tkme/fu1aOPPiqz2cw3g6DScUsI4AUGDRqk5cuX6/vvv5fdbteFCxe0ZcsWx/2njRo1UmRkpJ577jk1a9ZMrVq1kpQfPHJzcx0LdUJCgnbs2OH2+nr27Kn58+crMzNTp0+fLvKOTnHMZrNWrVqlVq1aKSAgQJGRkVqxYoWaNWvm+IqvnJwcBQQEqGHDhrp48aLeeOMNx+t9fX3VvXt3zZ07VxcvXtThw4e1evVqx/a77rpLR48e1apVq5SXl6e8vDwlJiY67ud0l8OHD2vhwoWOoHXy5EmtW7dOt912m6T8d7AWL16s5ORk5eTkaPbs2erZs6f8/PzUsmVLXb58WVu2bFFeXp7+8Y9/KDc31zF3cHCwTpw44fgQLQAAyorcYMzccKVXXnlFixcvVt26dUsdd++99yo+Pl6HDh3SxYsXNXfu3CLbr7vuOtWqVUtr1qxRZGSkAgMDFRwcrI0bNzoaFo0bN1bnzp01a9YsZWdny2az6dixY47PB9mwYYMjzwQFBclkMjmuUgkJCVFycrK7Dx+QRMMC8Apt27bVyy+/rBkzZshsNuuee+7RypUri4wp+KCowpd1BgYG6vnnn9eTTz4ps9msdevWKSYmxu31jRs3Tk2aNFG3bt00YsQI9ejRo9Sv9mzfvr0uX77sWERvuOGGq+6X7Nevn8LDwxUdHa377rvPcW9tgRdffFFZWVnq3Lmznn32Wd13332OfQYGBur999/X+vXrFR0draioKL3++utFGgLuEBgYqO+//16DBg1Su3bt9MADD+jGG2/U5MmTJUn333+/YmNjNWTIEHXr1k0BAQF64YUXJEn169fXtGnT9Pzzz6tLly6qU6dOkUti7733XklSx44d1b9/f7fWDQDwbuQGY+aGK7Vo0UJt27Z1Oq5r164aPny4hg8fru7du+vOO++8akxkZKQaNGjguMUjMjJSdrtdv//97x1j/vrXvyovL0+9evWS2WzWhAkTHJ978cMPP2jQoEFq3769xo4dq6lTp6p58+aS8j+LZPLkyerQoQPfEgK3M9ndfQ0XADixbNkyrV+/3uk7Ju702muv6cyZM46vOgMAANUDuQGoubjCAkClS01N1bfffiubzaZff/1VH3zwge6+++5K3efhw4d18OBB2e12JSYm6pNPPlH37t0rdZ8AAKDiyA0ACvChmwAqXV5enqZNm6bjx4+rfv36uu+++zR48OBK3WdOTo6efvpppaamKjg4WCNHjlS3bt0qdZ8AAKDiyA0ACnBLCAAAAAAAMBxuCQEAAAAAAIZDwwIAAAAAABgOn2HhJunpObLZ3Hd3TXBwoM6ezXbbfNUV5yEf5yEf5+E3nIt8nId8VX0efHxMatiwXpXtryZyZ66o6X9PavLx1+Rjl2r28dfkY5c4/up0/M4yBQ0LN7HZ7G5tWBTMCc5DAc5DPs7DbzgX+TgP+TgP3sXduaKm/37U5OOvyccu1ezjr8nHLnH83nL83BICAAAAAAAMh4YFAAAAAAAwHBoWAAAAAADAcGhYAAAAAAAAw6FhAQAAAAAADIeGBQAAAAAAMBwaFgAAAAAAwHBoWAAAAAAAAMOhYQEAAAAAAAyHhgUAAAAAADAcGhYAAAAAAMBw/DxdALzfsmVLlJycVK7X+vv7Ki/P6uaKSpeZmSFJCgpqUKX7LY2r56F582s1ePCwSqwIAIDqqSK5xFPKm008kaMKI48AqCgaFqh0yclJ+u8vh+Rb2zgNgNJYL+WHgrTzFg9XUj4F9QMAgKtVt1wiVc9sQh4B4A40LFAlfGs3UN1ru3m6jDK5kLRZkqpNvVcqqB8AABSvOuUSqXpmE/IIAHfgMywAAAAAAIDh0LAAAAAAAACGQ8MCAAAAAAAYDg0LAAAAAABgODQsAAAAAACA4dCwAAAAAAAAhkPDAgAAAAAAGA4NCwAAAAAAYDg0LAAAAAAAgOHQsAAAAAAAAIZDwwIAAAAAABgODQsAAAAAAGA4NCwAAAAAAIDh0LAAAAAAAACGQ8MCAAAAAAAYDg0LAAAAAABgODQsAAAAAACA4dCwAAAAAAAAhkPDAgAAAAAAGA4NCwAAAAAAYDg0LAAAAAAAgOHQsAAAAAAAAIZDwwIAAAAAABgODQsAAAAAAGA4NCwAAAAAAIDh0LAAAAAAAACG4+fpAnC1HTu26ppr6qhtW7OnSwHgxXbs2CpJ6ty5i4crAVBZyBQAjIb8AVfQsDCg7dsT5O/vS7gAUKm2b0+QRGAAvBmZAoDRkD/gCm4JAQAAAAAAhkPDAgAAAAAAGA4NCwAAAAAAYDg0LAAAAAAAgOHQsAAAAAAAAIZDwwIAAAAAABgODQsAAAAAAGA4NCwAAAAAAIDh0LAAAAAAAACGQ8MCAAAAAAAYDg0LAAAAAABgODQsAAAAAACA4dCwAAAAAAAAhkPDAgAAAAAAGA4NCwAAAAAAYDg0LAAAAAAAgOHQsAAAAAAAAIZDwwIAAAAAABgODQsAAAAAAGA4NCwAAAAAAIDh0LAAAAAAAACGQ8MCAAAAAAAYDg0LAAAAAABgODQsAAAAAACA4fhV1Y7y8vL09ttva/369QoICJCvr6/uvPNOPf300/L39y/zPIsWLVKfPn0UHBwsSfrnP/+py5cva8SIEZKk5557TomJifrd736nPn36aO/evZo0aZJLta5cuVJbtmzRW2+95dLrAKC6sVjyNHPmi8rKOq+0tFT5+/tr5MixWrRovmw2u0wmqVGjEJ07d1Z2u00+Pj4aP/5pxcd/LKvVIrtdstmsSktLVVhYU40cOUbLli3W4MHDtHDhAp08eUIWi0VDhozUihUfKSQkRD4+fvL391O/fgM1b96bCgkJkcVi1enTpxQREaFRo8ZpyZL3JUnDho3UsmVLNHbsBNntds2dO1uS9Ic/dNHSpQslSRERzfTnP09xbL98+ZLS0lJlt0smkxQaGiY/Pz9ZLHk6cyZNYWFNNWjQw5o3b7aCg0Pk5+cnPz8/jR//pyJznD17Rs89N03Nm19b5JxlZKTrnXfmaOzYCQoKalDqtisfHzt2VK+++pIkacqU6VfNXVal1eDKmOqKTAEA1ZfFkqfjx5M1duyjatQoWOfOnVVISKis1vwsEBbWRHXr1tOwYX/UvHmzlZaWqsaNw/T44xO1ZMlCmUxSv36DNG/ebMfrTp5MkST5+PgqPDxcAQH+Mpl8NHToHx25ZMmShbJYLDKZJD8/Pw0dOtLxnL9/fg4oWC8L1tDBg4dp2bIljv/26dNfb7/9pgYOfEgffviB/P39FRycn5Mkk0JDQ1W7dm316zdIb7/9piZPflEpKSc0f/5cjR07QWbznUXWZ7vd/r/9DNeyZYuLPOeONd6VLFDcWCNkCd/p06dPr4odTZo0SWlpaVqwYIFGjBihgQMH6uTJk2rVqpUCAgKcvt5ms0mSnn76aXXr1s0RLtq2bat27dpJks6cOaPp06dry5Yt6tmzp66//npFRUW5XOuBAwd09OhR9ezZs8yvuXgxV3a7y7sq1o4dW+Xr66NOnaLdM6GH7dixVefOX5B/g+s9XUqZ5GUekaRqU++V8jKPqFFQXUVFdfV0KW5Xr14tXbiQ6+kyDMEd52LHjq1KTU3VqVMpunAhR1L+v7Xfffet8vLyZLNZZbValZ2dJavVKpvNJqvVqu+/36fU1NPKzMxQZmaGzp8/L6vVqszMDP3880ElJR3Vzz8f1PHjyY5/uxMTv5PFYtH58+eVmZmh9PRz+v77/bp48aLOnz+v7OxsSdL58+f1888HdexYktLTzznmu3z5sn7++aD279+r9PRzSkz8znEcWVnnlZv72/asrPP/qze//qys/H0WPJ+ZmeHYd8G29PRzV81hsVj0888HFRNzT5HztmLFP7Vv3x5dvnxZt93WvtRtVz5+7bVXlJGRLqvVWuzcZXXlvMX9PpRWZ0WZTCbVret87a4s3p4pJPflCm/LFOVx5d+P6pZLpOqZTYyQR2pybjDyscfHr1BOTk6RjJGV9VsWyM7OdmSA06dPSZJycnKK5IOiGSLLMbfdbtf58+eVnp5eJEcUvLYguxRsK3iuIAcUrJcFa2jh1yclHdV33+3TxYsXlJj4vaT89SQ7O1tW62+Z47f6Lujnnw9q27YE2e027d//rWJj+xdZn3/++eD/9nOgSN5xtn47W+ML/vxdyQLFja3MLFHAWaaokissjh49qk2bNikhIUGBgYH5O/bz04MPPihJWrBggb744gtZrVaFhYXp5ZdfVmhoqObMmaNffvlF2dnZSklJUd++fZWamqoJEyaoVq1a+tvf/qYNGzbowoULGjdunIYNG6ZLly6pf//+6t+/v6655poi72rEx8dr2bK05/iDAAAgAElEQVRlslqtCgwM1PTp03X99dcrNzdXM2fO1DfffKOGDRuqdevWVXFaAMCjLJY8ZWZmXPW81Wop9XUFzY3ipKScKPLf31z9f14lzVP4tQU/b9uWcMUcRefbsuVL+fqW/S7H4va9bduWYmtJTk5yXAmRkZGu7dsTZLfbtX37VsXGDijyLkThbV27xhR5fPvt5quOrfDcZVVcDaGh9Z2O8ZarLMgUAFB9ZWSkF5s9inNllij8uLQsUtxrrs4lVz+3fXuCYmMH/G/tzF9Dr3z9b/stvaNcMK7wPqxWi7Zs2Vxofc7/b+H9FH6upPW7rGu8K1mguLGFa/RklqiShsVPP/2ka6+9VkFBQVdtW716tZKTk/Xxxx/Lx8dHy5Yt06xZs/S3v/1NkpSYmKiVK1eqUaNGkqQVK1borbfe0o033lhknsDAQC1YsED333+/Vq9eLSn/MswCe/fu1YYNG/TRRx8pICBACQkJmjJlipYvX65//etfOn78uD777DNZLBY98sgjatasWWWdDqfy37HMVFzcyx6rwZ2OHUuSzerr6TJqDJvlko4dS/Ka35/C/P19lZdn9XQZhuCOc3H06BE3VVP5LBaLSgsHdrtNFovNDfu42vz5czVz5muSpLVr42Wz5ddhs9m0Zs1KDR06sthtCxbMK/L4H/+4+paAwnOXVXE1/OlPE52OKaizuiNTuMbbMkV5XPnvJbmkahghj9Tk3GDUYz916qSnSyiRxWLRmjX5/9YXrKHutmTJQvn6+jr2d+WVdIWfK2n9Lusa70oWKG5s/s+ezxJV9hkWJfnyyy/1448/qn///pLkeKeiQJcuXRzBoqL7OXjwoAYNGiTpt8uFJGnXrl3q16+f/P395e/vr9jYWO3bt6/C+wQAI7NajRdkSlY5waEsCr87snPnDscVKFarRTt37nAs3lduu/JdlQsXrm6IFPeOjzPF1SBNdDrGWxoWpSFTAICxZWWd93QJJbLb7f9bU51fbVqBvTjmthdz31/h50pav8u6xruSBYrPFjJElqiShsUtt9yipKQkZWZmXvWOiN1u19ixYzVw4MBiX1uvXj231GC323X//fdr4sSJzgd7WFBQA4WEBOtPf5ri6VLcIi7uZR1KPuPpMmoMH7/aatE8RJMmveDpUtwuNLS+0tKynA+sAdxxLp566vEyX5bpeSZ5qmkRHh7h+LlTp87aunWLrFaLfH391KlT5xK3hYWF6fTp047HtWrVuuoS1sJzl1VpNbgyproiU7jG2zJFeVz57yW5pGoYIY/U5Nxg1GP/8MOF+uqrTZ4uo1gmk8mxXhasoZWwF/n6+spqtchkMv3vaorf8k3h5yq6xruSBUoaa4QsUSVfa3rdddcpJiZGL774ouPDVKxWq1asWKGYmBgtW7ZMmZmZkqTc3FwdPHiwxLnq1aunrCzX//LFxMRo9erVOnXqlGP/P/74oyTpzjvv1OrVq2WxWHTp0iWtW7fO5fkBoLoJCQnxdAllVvBNHiUxmXxK3V6RfYwZM97xc58+/eXjY5Ik+fj4KDZ2QInbRo8eV+Tx2LETSp27rEqrwZUx1RWZAgCqrz59+nu6hBL5+fkpNnZAkTXU3YYNG+mYOz93FL09rfBzFV3jXckCxY01SpaokoaFJM2aNUvXXXed7r//fvXu3Vt9+vTRr7/+qvvuu0+xsbEaMmSI+vTpowEDBujbb78tcZ5hw4ZpypQp6tu3rw4dOlTm/ZvNZj355JMaO3asYmNj1bt3b23evFmS9MADDyg8PFy9evXS8OHD1bZt2wofLwAYnZ+ff7EfnuTrW/r/+NetW/K71OHhETKZTMVcOXD1wl/SPIVfWzBfdHRXRUffVeJ8d90Vc8X20hW37+jou66aIzw8osiHYjZo0FBRUV1lMpkUFdWlyPm7cluLFtcVefz737e96tjK87WmpdXgypjqjEwBANVTgwYNy7wmXZklCj8uLYtc+Zric8nV80dFdVVQUIMia2jh1+d/m0XBfktvaBSMCw+PcOQqX18/3XVXt0Lrc362KTx/4ecqusa7kgWKG2uULFFln2EREBCgp556Sk899dRV20aMGOH4zvPCnnjiiaueGzRokOOe0SvHNGvWTLt27XI8HjBggAYM+K0TFBsbq9jY2GJre/nlmvthVABqrpCQEAUHhygr67zS0lLl7++vkSPHatGi+bLZ7DKZpEaN8r9f3G63/e9KgYmKj/9YVmv+B0PZbFalpaUqLKypRo4c4/i+84ULF+jkyROyWCwaMmSkVqz4SCEhIfLx8ZO/v5/69RuoefPeVEhIiCyW/O9ej4iI0KhR47RkyfuS8t+JWLZsiePTqpOSjkqS/vCHLlq6dKEkKSKiWZHtly9fUlpaqux2yWSSQkPD5OfnJ4slT2fOpCksrKkGDXpY8+bNVnBwiOPKiivnOHv2TLFXQPTp018nThwv8V2PwtuufDx69Di9+upLksp3dUVZanBlTHVFpgCA6iskJESXLl2UJDVqFKxz584qJCRUVmt+FggLa6K6detp2LA/at682UpLS1XjxmEaPXqclixZKJNJ6tdvkObNm+143cmTKZIkHx9fhYeHKyDAXyaTj4YO/aMjlyxZslAWi0UmU/6VDEOHjnQ85+/vd9VVkydOHNfgwcO0bNkSx3/79Omvt99+UwMHPqQPP/xA/v7+Cg7Oz0mSSaGhoapdu7b69Rukt99+U2PGjFdKygnNnz9Xo0c/XmTugtyRv5/hWrZscZHn3LHGu5IFihtrhCxhshf3aR9w2dmz2W77NNm4uJfl7+/rNfebFtwrWvfabp4upUwuJOW/S1Zd6r3ShaTNuoHPsPB67jgXBZ/cXp1/V/idyFfV58HHx6Tg4EDnA1Fu7soV3pYpyqOkz7CoTut8dcwmRsgjNXmNMPKxV0X+MPLxV4XqdPzOMkWV3RICAAAAAABQVjQsAAAAAACA4dCwAAAAAAAAhkPDAgAAAAAAGA4NCwAAAAAAYDg0LAAAAAAAgOHQsAAAAAAAAIZDwwIAAAAAABgODQsAAAAAAGA4NCwAAAAAAIDh0LAAAAAAAACGQ8MCAAAAAAAYDg0LAAAAAABgODQsAAAAAACA4dCwAAAAAAAAhkPDAgAAAAAAGA4NCwAAAAAAYDg0LAAAAAAAgOHQsAAAAAAAAIZDwwIAAAAAABgODQsAAAAAAGA4NCwAAAAAAIDh0LAAAAAAAACG4+fpAnC1qKiuuuaaOp4uA4CXi4rq6ukSAFQyMgUAoyF/wBU0LAyoc+cuCg2tr7S0LE+XAsCLde7cxdMlAKhkZAoARkP+gCu4JQQAAAAAABgODQsAAAAAAGA4NCwAAAAAAIDh0LAAAAAAAACGQ8MCAAAAAAAYDg0LAAAAAABgODQsAAAAAACA4dCwAAAAAAAAhkPDAgAAAAAAGI5LDYtz584pJydHkmS1WvXpp58qPj5eNputUooDAADeiUwBAACccalhMWbMGCUlJUmSZs+erYULF2rRokWaNWtWpRQHAAC8E5kCAAA441LD4ujRo2rdurUkac2aNXr33Xe1ePFirV+/vlKKAwAA3olMAQAAnPFzZbCPj4/y8vJ05MgR1a9fX+Hh4bLZbI5LOgEAAMqCTAEAAJxxqWHRpUsXTZw4URkZGerVq5ck6dChQwoLC6uU4gAAgHciUwAAAGdcali88sorio+Pl5+fn/r27StJSk9P1xNPPFEpxQEAAO9EpgAAAM641LAICAjQgw8+WOS5jh07urUgAADg/cgUAADAGZcaFs8884xMJlOx2/7617+6pSAAAOD9yBQAAMAZlxoW1157bZHHaWlp2rhxo/r06ePWogAAgHcjUwAAAGdcaliMHz/+qucGDhyoefPmua0gAADg/cgUAADAGZ+KTtC6dWvt3r3bHbUAAIAajEwBAAAKc+kKi507dxZ5fOnSJX322We64YYb3FoUAADwbmQKAADgjEsNi6lTpxZ5XLduXd18883629/+5taiAACAdyNTAAAAZ1xqWHz55ZeVVQcAAKhByBQAAMAZlz7Dol+/fsU+P2DAALcUAwAAagYyBQAAcMalhkVSUtJVz9ntdh0/ftxtBQEAAO9HpgAAAM6U6ZaQZ599VpKUl5fn+LnAiRMn+IAsAABQJmQKAABQVmVqWLRo0aLYnyXp9ttv17333uvequB1rJcydCFps6fLKBPrpQxJqjb1Xim//hBPlwEAxSJTwAiqUy6Rqmc2IY8AcIcyNSzGjx8vSbrtttsUHR1dqQXB+zRvfm25X+vv76u8PKsbq3EuMzP/r0VQUIMq3W9pXDsPIRU65wBQmcgU8LTquEaWN5t4Ikf9hjwCoOJc+paQ6Oho5ebm6siRI0pPT5fdbnds69Spk9uLg3cYPHhYuV8bGlpfaWlZbqymeuI8APA2ZAp4SkVySXVDfgBQ3bnUsNi7d6+efPJJ5ebmKjs7W4GBgcrJyVGTJk20eXP1uUQNAAB4FpkCAAA449K3hLz66qsaNWqUdu/erXr16mn37t0aO3asBg8eXFn1AQAAL0SmAAAAzrjUsDh69KiGDSt6Gd3o0aO1aNEid9YEAAC8HJkCAAA441LDon79+srOzpYkhYaG6tChQzp//rwuXLhQKcUBAADvRKYAAADOuPQZFt27d1dCQoL69Omj+++/X8OGDZOfn5969OhRWfUBAAAvRKYAAADOuNSwmDp1quPnP/7xj7rtttuUk5OjLl26uL0wAADgvcgUAADAGZduCZk5c2aRxx06dFDXrl31l7/8xa1FAQAA70amAAAAzrjUsFi5cmWxz69Zs8YtxQAAgJqBTAEAAJwp0y0hn3zyiSTJarU6fi6QnJysBg0auL8yAADgdcgUAACgrMrUsFi9erUkKS8vz/GzJJlMJoWEhCguLq5yqgMAAF6FTAEAAMqqTA2LDz/8UJI0e/ZsPfXUU5VaEAAA8F5kCgAAUFYufYbF8OHDlZOTIyn/Us5PP/1Uq1atks1mq5TiAACAdyJTAAAAZ1xqWIwZM0ZJSUmSpDfeeEMLFy7UBx98oFmzZlVKcQAAwDuRKQAAgDMuNSyOHj2q1q1bS5LWrl2rd999V4sXL9b69esrpTgAAOCdyBQAAMCZMn2GRQEfHx/l5eXpyJEjql+/vsLDw2Wz2RyXdAIAAJQFmQIAADjjUsOiS5cumjhxojIyMtSrVy9J0qFDhxQWFlYpxQEAAO9EpgAAAM641LB45ZVXFB8fLz8/P/Xr10+SlJ6erieeeKJSigMAAN6JTAEAAJxxqWEREBCgBx98sMhzHTt2LPK4T58+Wrt2bcUrAwAAXotMAQAAnHHpQzfL4vjx4+6eEgAA1EBkCgAAaja3NyxMJpO7pwQAADUQmQIAgJrN7Q0LAAAAAACAiqJhAQAAAAAADMftDQu73e7uKQEAQA1EpgAAoGYrV8PCZrMpNTW12G0zZsyoUEEAAKDmIFMAAICSuNSwOH/+vJ5++mndeuutuueeeyRJmzdv1uzZsx1j+vTp494KAQCA1yFTAAAAZ1xqWEybNk2BgYH68ssv5e/vL0lq3769NmzYUCnFAQAA70SmAAAAzvi5Mnjnzp3atm2b/P39HV811qhRI509e7ZSioP7LFu2RMnJSZ4uw2X+/r7Ky7NWaI7MzAxJUlBQA3eU5BElnYfmza/V4MHDPFARAFQMmQKVobi8444s4UkVyTFVdezkEQCVxaWGRf369ZWenq7GjRs7nktJSVFoaKjbC4N7JScn6eihg2oS6NIfucddcsMc6dkWSVKti2fcMJtnFHceTv3vuACgOiJToDIUl3fckSU8qSI5piqOnTwCoDK59H+vgwYN0oQJE/Tkk0/KZrNp//79euONN/TQQw9VVn1woyaBfnr01kaeLqPKfZB4TpK87tgLjgsAqiMyBSqLt+Udo+cY8giAyuRSw+L//b//p1q1amnGjBmyWCyaMmWKHnzwQQ0fPryy6gMAAF6ITAEAAJxxqWFhMpk0fPhwwgQAAKgQMgUAAHDGpW8J+eabb5ScnCxJSktL06RJk/Tcc88pLS2tUooDAADeiUwBAACccalh8dJLL8nX11eSNGvWLFksFplMJr3wwguVUhwAAPBOZAoAAOCMS7eEnD59WuHh4bJYLNq+fbvju9Ojo6Mrqz4AAOCFyBQAAMAZlxoWgYGBOnPmjH755Re1atVK9erVU25uriwWvs4IAACUHZkCAAA441LDYsiQIRo4cKDy8vI0ZcoUSdK+fft0/fXXV0pxAADAO5EpAACAMy41LEaPHq3u3bvL19dXLVq0kCSFhYVp5syZlVIcAADwTmQKAADgjEsNC0lq2bJlqY8BAADKgkwBAABK41LDIjs7W3PmzNGePXuUnp4uu93u2LZlyxZ31wYAALwUmQIAADjj0teaTp8+XT/99JMef/xxZWRk6Pnnn1fTpk01YsSISioPAAB4IzIFAABwxqUrLHbs2KH169erYcOG8vX11d133622bdvqscceI2AAAIAyI1MAAABnXLrCwmazqX79+pKkunXrKisrS6GhoUpKSqqU4gAAgHciUwAAAGdcusLi5ptv1p49e9SpUyd16NBB06dPV7169XTddddVUnkAAMAbkSkAAIAzLl1hMXPmTDVr1kySNHXqVNWuXVtZWVl67bXXKqU4AADgncgUAADAGZcaFosXL1ZaWpokKTg4WK+88oqGDh2q5cuXV0pxAADAO5EpAACAMy41LNatW6c2bdoUea5NmzZat26dW4sCAADejUwBAACccalhYTKZinxPuiRZrVbZbDa3FgUAALwbmQIAADjjUsOiQ4cOevPNNx1hwmazac6cOerQoUOlFAcAALwTmQIAADjj0reETJ06VWPGjFFUVJTCw8N18uRJhYaG6p133qms+gAAgBciUwAAAGdcalg0adJE8fHxSkxM1MmTJ9W0aVPdeuut8vFx6UINAABQw5EpAACAMy41LCTJx8dH7dq1U7t27SqjHgAAUEOQKQAAQGl4GwMAAAAAABgODQsAAAAAAGA4NCwAAAAAAIDh0LAAAAAAAACG4/KHbqLy7dixVddcU0dt25o9XQoAuMWOHVslSZ07d/FwJUDNQqYA4Ems/6goGhYGtH17gvz9fQkXALzG9u0JkggsQFUjUwDwJNZ/VBS3hAAAAAAAAMOhYQEAAAAAAAyHhgUAAAAAADAcGhYAAAAAAMBwaFgAAAAAAADDoWEBAAAAAAAMh4YFAAAAAAAwHBoWAAAAAADAcGhYAAAAAAAAw6FhAQAAAAAADIeGBQAAAAAAMBwaFgAAAAAAwHBoWAAAAAAAAMOhYQEAAAAAAAyHhgUAAAAAADAcGhYAAAAAAMBwaFgAAAAAAADDoWEBAAAAAAAMh4YFAAAAAAAwHBoWAAAAAADAcGhYAAAAAAAAw6FhAQAAAAAADIeGBQAAAAAAMBwaFgAAAAAAwHBoWAAAPCYjI12zZs1QZmaGjh07qnHj/qjk5KQSx7g6Z3nnuPJ1x44lOX19Sfso777dxdP7BwCgQHnWpN/W4qNlXt/PnTtX5PnSskFx85a1fmfH4+r4sqjoHBkZ6Zo580XNnPliueao6lxhmIZFTEyM7r33XsXGxqp79+4aO3as9u3bV6E5//73v2v9+vUuv27y5MlaunRphfYNAHBu7dp4/fLLf7VmzUotWDBPFy9e1Pz5c0sc4+qc5Z3jytctWDDX6etL2kd59+0unt6/J5ApAMCYyrMm/bYWzyvz+r58+fIiz5eWDYqbt6z1OzseV8eXRUXnWLs2Xr/+eki//nqoXHNUda4wTMNCkt566y2tWbNG//73v9W/f3+NHj1a33//fbnnmzhxonr16uXGCgEA7pKRka7t2xNkt9u1bdsWpaSckCSlpJxwXGVReMz27VuddvOLG+/qHMXNlZJyotTXl7SP8u7bXTy9f08iUwCAsZRnTSptLS5t7d28ebPj+WPHjpaaDZyt8SXVf+xYUqnH4+r4yjqHV75+27YEx+Nt2xJcvtqlqnOFX6XvoZzuueceJSYm6v3339frr7+u2bNna8+ePcrNzdVNN92k6dOnq169epo8ebICAgJ09OhRnTp1Su3atVNcXJxMJpMmT56sNm3aaMiQIcrNzS1xjtOnT+vZZ59VWlqaIiIi5OPj2T5OZmaGzp/PVFzcy26b89ixJNWVzW3zwfOyc21KPZbk1t8To/P391VentXTZRhCdTsXx44lKSgoqMhza9fGy2azS5IsFkuRbfPnz9XMma8VGWOz2bRmzUoNHTqyxP0UNz7/57LPUdxcBUp6fUl1ulq/u3l6/0ZBpnBvpjAy8k7VM3IeqW5rpTsZ5dgLr//lWZNKW4vzfy5p7bU5nl+wYF6p2eDKeUuq6cr6FyyYW+rxuDq+LCq6rq9dGy+r9bfMZbFYXJrDE7nCUFdYXOm2227ToUOH9N5776l+/fr65JNPtGbNGjVu3FgLFixwjPvll1/07rvvat26dfrPf/6jr7/++qq5Sptj5syZMpvNWr9+vV588UXt3r27yo4RAGqqnTt3FFk0Cyu42qLwGKvVop07d5R5zoLxrs5RWn0lvb6kfZR33+7i6f0bCZkCADyrPGtSaWtxaWtvwRshVqtFKSknSs0GV85b1vqLm7ci48uiouv6zp07ZLcXbtTYXZrDE7nCsFdYSHKczC+//FLZ2dnauHGjJCk3N1c333yzY9zdd9+tWrVqSZJuueUWHTt2TJ07dy4yV2lz7Nq1S88//7wkqXnz5urUqVPlHpgTQUENFBISrD/9aYrb5oyLe1mXTh1y23zwvMAAH4U0uVaTJr3g6VKqTGhofaWlZXm6DEOobueiuHfeOnXqrK1btxTbtAgPj7hqjK+vnzp16nzV2JLmLDzelTlKq6+k15e0X1frdzdP799IyBTuyxRGRt6pekbOI9VtrXQnoxx74fW/PGuSs7W4pLV327Ytsljynw8LC9Pp06dLzAbFzeusltLmLe/4sqjout6pU2dt2bK5UNPC5NIcnsgVhr7C4ocfftDvfvc72e12TZs2TatXr9bq1au1YcMGzZ492zGuIFhIkq+vr6zWqy9/cjYHAKBq9enTXz4+JkmSn1/R/vmYMeOvGuPj46PY2AFlnrNgvKtzFDdXgZJeX9I+yrtvd/H0/o2ETAEAnlWeNam0tbj0tdfH8fzo0eNKzQZXzlvW+kePHl/q8bg6viwquq736dNfvr6/ZS4/Pz+X5vBErjBsw2LTpk365z//qZEjRyomJkaLFi3SpUuXJEnZ2dk6fPiwS/OVNsedd96pTz/9VJKUnJysnTt3uvFIAADFadCgoaKiuspkMik6+i7HVRXh4RFq3vzaq8ZERXVRUFCDMs9ZMN7VOYqbKzw8otTXl7SP8u7bXTy9f6MgUwCA55VnTSptLS5t7e3WrZvj+RYtris1Gzhb40uqv0WLa0s9HlfHV9Y5vPL10dFdHY+jo7u6NIcncoWhbgmZMGGCAgICdPHiRbVq1UoLFizQbbfdpltuuUVz587VwIEDZTKZZDKZNH78eLVq1arMc48ePbrEOaZOnapnn31W69atU7NmzdSxY8dKPEoAQIE+ffrrxInjio0doMzMDMXFvey4uqK4Ma7OWd45rnzd4MHDtWzZYqfvvBS3j/Lu2108vX9PIVMAgPGUZ036bS0epmXLlpRpfX/ooYd0+PCRIlddlJQNipu3rPU7Ox5Xx5dFRefo06e/kpKOSlK5r/Koylxhshf91A2U09mz2Vd90mx5xcW9LH9/30r5DItHb23ktjmriw8Sz0mS1x37B4nnVLvJDYa8Z7SyGOV+TCOobuei4B5Wd/++VrfzUFmq+jz4+JgUHBxYZfuridyVKyojUxiZN+Ydo+cYI+eRmrxGGOXYK2v9d8Yox+8p1en4nWUKw94SAgAAAAAAai4aFgAAAAAAwHBoWAAAAAAAAMOhYQEAAAAAAAyHhgUAAAAAADAcGhYAAAAAAMBwaFgAAAAAAADDoWEBAAAAAAAMh4YFAAAAAAAwHBoWAAAAAADAcGhYAAAAAAAAw6FhAQAAAAAADIeGBQAAAAAAMBwaFgAAAAAAwHBoWAAAAAAAAMOhYQEAAAAAAAyHhgUAAAAAADAcGhYAAAAAAMBwaFgAAAAAAADDoWEBAAAAAAAMh4YFAAAAAAAwHBoWAAAAAADAcGhYAAAAAAAAw/HzdAG4WlRUV11zTR1PlwEAbhMV1dXTJQA1EpkCgCex/qOiaFgYUOfOXRQaWl9paVmeLgUA3KJz5y6eLgGokcgUADyJ9R8VxS0hAAAAAADAcGhYAAAAAPj/7N17gF3jvT/+90xuQkiEiMS92rp8KZpMVEO04xIiV5emVFBfRYhb21OX9JQSp8nRlrqcL0px6ta6JIigrnEnKNFTHFTikkQSkpAQyczs3x9+pg1JZJg9s5J5vf7aez9rP+vzPHtlz5P3rLUGoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHBaN3cBNJ0Z82tyxeR3m7uMJjdjfk2SrHJjnzG/Jps2dxEAUDCr2nqn6OsY6xGgnAQWLcRGG23S3CV8IW3atMrixbVfqo+1581NkqzWsVNjlNQsljYPm2bl/VwBoByW9nOxMdYSzenLrGOaYuybxnoEKB+BRQtx0EGHNHcJX0iXLmtm1qz3m7uMZmceAODzLW2905J/hrbksQOrBvewAAAAAApHYAEAAAAUjsACAAAAKByBBQAAACzkCRwAACAASURBVFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4rZu7gFVFZWXFStHnysg8fMw8fMw8/JO5+Jh5+FhTzoM5L7/GnuOW/pm15PG35LEnLXv8LXnsifGvLOP/vDorSqVSqYlqAQAAAFghLgkBAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgUTCvvfZahg4dmr59+2bo0KGZMmVKc5f0pVRXV2evvfbKoEGDMmjQoDz00ENJkmeffTYDBw5M3759c/jhh+edd96pf0852pramDFjUl1dnS222CL/+7//W//68j7fpm5rKsuai2UdG8mqeXzMmTMnP/rRj9K3b98MGDAgI0aMyLvvvlu2MRV1LpY3D1tssUUGDBhQf0y89NJL9e+77777stdee2WPPfbIiSeemA8//LCsbU3hmGOOycCBAzN48OAcdNBBeeGFF5K0zO8JymNV+Wxb0lqipa8fWvKaoaWvE1r6+sCaYDlKFMqwYcNK48aNK5VKpdK4ceNKw4YNa+aKvpzvfve7pZdeemmJ12pra0u77757adKkSaVSqVS66KKLSqecckrZ2prDpEmTStOmTfvM+Jf3+TZ1W1NZ1lws7dgolVbd42POnDmlxx9/vP756NGjS6eeemqTj7e552JZ81AqlUpf//rXS/Pnz//Me+bPn1/69re/XXrttddKpVKpdNppp5UuuOCCsrU1lffee6/+8d13310aPHhwqVRqmd8TlMeq8tm2pLVES18/tOQ1Q0tfJ7T09YE1wbIJLApk9uzZpR49epRqampKpVKpVFNTU+rRo0fpnXfeaebKvril/YB57rnnSvvss0/983feeae0/fbbl62tOf3r+Jf3+TZ1W3NY0cVHSzk+7rzzztKhhx7a5OMt2lx8Mg+l0rIXJBMmTCgdeeSR9c8nT55c6tevX9namsPYsWNLQ4YMafHfEzSeVemzbYlriZa+frBmsE5oyesDa4IltW7uMzz4p+nTp6dr165p1apVkqRVq1ZZb731Mn369HTu3LmZq/vifvrTn6ZUKqVHjx758Y9/nOnTp6d79+717Z07d05dXV3mzp1blrZOnTo1zUA/x/I+31Kp1KRtRTmePn1srLXWWi3i+Kirq8t1112X6urqJh9vkebiX+fhE8OGDUttbW369OmT4447Lm3btv1Mzd27d8/06dOTpCxtTWnkyJF55JFHUiqVctlll/meoNGsamuKlryW8L3wsZa0Zmjp64SWuj6wJlg697CgrK655prceuutuemmm1IqlXLmmWc2d0kUREs+Ns4666ysvvrqOfjgg5u7lGb16Xl44IEHcvPNN+eaa67JK6+8kosuuqiZKyy/s88+Ow888EBOOumk/Od//mdzlwOF1JJ/XvCxlnYMtPR1QktdH1gTLJ3AokC6deuWt99+O7W1tUmS2trazJw5M926dWvmyr64T2pv27ZtDjrooDzzzDPp1q1bpk2bVr/Nu+++m8rKynTq1KksbUWxvM+3qduKYGnHxievr8rHx5gxYzJ16tScd955qaysbPLxFmUuPj0PyT+PiQ4dOuSAAw5Y5jExbdq0+m3L0dYcBg8enCeeeCLrr7++7wkaxar02bb0tYT1Q8taM7T0dYL1gTXBpwksCmSdddbJVlttlfHjxydJxo8fn6222mqlPHUzST744IO8//77SZJSqZQJEyZkq622yjbbbJOFCxfmqaeeSpJcf/312WuvvZKkLG1FsbzPt6nbmtuyjo2kPMdAUY6P3/72t/nb3/6Wiy66KG3btv1Sda/Mc7G0eZg3b14WLlyYJKmpqcldd91Vf0zssssuef755+vvVH399ddn7733LltbU1iwYMESp5jed9996dixo+8JGs2q8tlaS1g/tKQ1Q0tfJ7TU9YE1wfJVlEqlUrNWwBJeffXVnHLKKXnvvfey1lprZcyYMfnKV77S3GV9IW+88UaOO+641NbWpq6uLptvvnl+/vOfZ7311sszzzyT008/PR999FE22GCDnHPOOVl33XWTpCxtTW3UqFH5y1/+ktmzZ2fttddOp06dcvvtty/3823qtuaci4svvniZx0ZSnmOguY+Pl19+Of3798+mm26a1VZbLUmy4YYb5qKLLmry8TbnXCxrHo444oj84he/SEVFRWpqarLDDjvktNNOyxprrJEkueeee3LOOeekrq4uW221VUaPHp3VV1+9bG3lNnv27BxzzDH58MMPU1lZmY4dO+bkk0/O//k//6dFfk9QHqvCZ9vS1hItff3QktcMLX2d0JLXB9YEyyewAAAAAArHJSEAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAJodhdffHFGjhyZJHnzzTezxRZbpKamJklyxBFHZOzYsc1ZHgCwkrCmgFWLP2sKFMqbb76Z3XbbLf/zP/+T1q1bN3c5AMBKypoCVn7OsABWyCe/nQAA+DKsKYAVJbCAFq66ujqXXHJJ+vXrl6qqqpx66qn56KOP8sQTT6RPnz659NJL07t375x66qmpq6vLpZdemt133z077rhjTjjhhMydOzfJx6dZXn311Uv0PXDgwPzlL39JkowaNSq77rprvvnNb2bffffNU089Vb/dBRdckJ/+9KdLrW/YsGG54YYbkiQ333xzDjzwwIwZMyZVVVWprq7OxIkT67d944038oMf/CA77LBDDjvssPzyl79cZr+fOPnkk/OHP/whSfL2229niy22yDXXXJMkef3119OrV6/U1dVl3rx5Oeqoo/Ktb30rVVVVOeqoozJjxowV3vezzz6b73//++nZs2cGDhyYJ554YvkfDACsZKwprCmgsQksgNx22225/PLLc/fdd+e1117Lf/3XfyVJZs+enXnz5uX+++/PWWedlT/+8Y+55557cvXVV+ehhx5Kx44dc+aZZyZJ+vfvn/Hjx9f3+corr2TatGn5zne+kyTZdtttM27cuDz55JPp379/TjjhhHz00UcNrnXy5MnZbLPN8vjjj+eII47IyJEj88mVbT/96U/zjW98I0888URGjBiRW2655XP7q6qqypNPPpkkefLJJ7PRRhtl0qRJ9c979OiRysrK1NXVZd99983999+f+++/P+3atasf++ft++23385RRx2V4cOH58knn8zJJ5+c448/Pu+++26Dxw8ARWZNYU0BjUlgAeQHP/hBunXrlk6dOmX48OG5/fbbkySVlZU5/vjj07Zt26y22mq5/vrrc9JJJ2X99ddP27ZtM2LEiNx1112pqanJ7rvvnhdffDFvvfVWko8XLHvssUfatm2bJBk0aFDWXnvttG7dOocffngWLVqU1157rcG1du/ePd/73vfSqlWrDBkyJLNmzcrs2bMzbdq0PP/88/X19uzZM9XV1Z/bX69evfL000+nrq4ukyZNyhFHHJFnnnkmSTJp0qT06tUrSbL22munb9++ad++fTp06JDhw4fXL0I+b9+33HJL+vTpk1133TWVlZXp3bt3ttlmmyV+kwMAqwJrCmsKaEzuPgOkW7du9Y+7d++emTNnJvn4B2q7du3q26ZNm5Zjjz02lZX/zDorKyvzzjvvpGvXrtl1111z++2358gjj8z48eMzatSo+u0uv/zy3HjjjZk5c2YqKioyf/78zJkzp8G1rrvuuvWP27dvnyT54IMPMmfOnHTs2LH+tU/GNX369OX2t/HGG6d9+/Z54YUX8vTTT+fYY4/NjTfemH/84x+ZNGlShg0bliT58MMP86tf/SoPPfRQ5s2blyRZsGBBamtrM3PmzOXue9q0abnzzjtz//3317fX1NRkxx13bPD4AaDIrCmsKaAxCSyAJX4AT5s2Leutt16SpKKiYont1l9//fzHf/xHevTosdR++vfvnwsvvDBVVVX56KOP6n94PvXUU7nsssty5ZVX5mtf+1oqKytTVVWVxvwjRV26dMm8efPy4Ycf1v+Q/7yFxSeqqqpy1113ZfHixenatWuqqqoybty4zJs3L1tttVWS5A9/+ENee+21/PnPf06XLl3ywgsvZPDgwSmVSp+7727dumXQoEFLLLYAYFVkTWFNAY3JJSFArr322syYMSNz587NxRdfnH79+i11uwMPPDDnnXde/Sma7777bu6555769l133TXTpk3L+eefn379+tX/1mTBggVp1apVOnfunJqamlx44YWZP39+o45hgw02yDbbbJMLLrggixYtyl//+tclfvuwPL169crVV1+dnj17Jkl23HHHXH311enRo0datWpVP4Z27dplrbXWyty5c3PhhReu8L4HDhyY+++/Pw899FBqa2vrb0D2rzfYAoBVgTWFNQU0JoEFkP79++fwww/P7rvvno033jjDhw9f6naHHHJIqqurc/jhh2eHHXbI9773vUyePLm+vW3bttljjz3y6KOPpn///vWv77zzztlll13St2/fVFdXp127dkucMtpYfv3rX+fZZ5/NjjvumPPOOy/9+vWrv951eaqqqrJgwYJUVVUlSXr06JGFCxfWLzaS5NBDD81HH32Ub33rWxk6dGh22WWXFd53t27d8l//9V+55JJLstNOO2XXXXfN5Zdfnrq6ukYcPQA0P2sKawpoTBWlxjx/CljpVFdXZ9SoUfn2t7/d3KU0uhNPPDFf+cpXcvzxx7eofQNAc7CmWPX2Dc3NGRbAKmPy5Ml5/fXXU1dXlwcffDD33ntvdt9991V+3wBA47KmgGJw001glTF79uwcd9xxmTt3btZff/2cccYZ2XrrrXPrrbfm9NNP/8z23bt3r/9za+XaNwCw8rGmgGJwSQgAAABQOC4JAQAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgtgmZ566qn07du3/nl1dXUeffTRJMnFF1+ckSNHNldpTeqII47I2LFjy7qPLbbYIlOnTm30fp944on06dOn0fsFAIBya93cBQBLV11dndmzZ6dVq1Zp3759+vTpk3//93/PGmus0WQ19OzZM3fddddS244++ugmq6O5XXbZZV/4vdXV1Rk1alS+/e1vN2JFAACw6nOGBRTYxRdfnL/+9a8ZO3Zs/va3v+X//b//95ltampqmqEyAACA8hJYwEqga9eu2WWXXfLyyy8n+fjygWuuuSZ77rln9txzzyTJ/fffn0GDBqVnz575/ve/nxdffDFJcumll+b4449for9Ro0Zl1KhRSZKbbrope++9d3bYYYfstttuuf766+u3W97lBBdccEF++tOfJknefPPNbLHFFhk7dmy+853vZMcdd1wiXFm4cGFOPvnkVFVVZe+9987vf//7ZfZ7/vnn56yzzkqSLF68ONtvv33GjBlT38+2226buXPnJkmOP/749O7dOz169MgPfvCD+vlJkjlz5uToo4/ON7/5zey3334599xzc+CBB9a3v/rqq/nhD3+YXr16pW/fvpkwYcIy53/YsGG54YYbkiQ333xzDjzwwIwZMyZVVVWprq7OxIkTl/nefzV16tQcfPDB6dGjR3bccceceOKJS93ugQceyODBg/PNb34zu+66ay644IL6thWZ61NOOSVVVVXp169fnn/++RWqDQAAikZgASuB6dOn58EHH8xWW21V/9o999yTP//5z5kwYUL+/ve/57TTTsuZZ56ZJ554IkOHDs0xxxyTRYsWZZ999snEiRMzf/78JEltbW3uvPPO9O/fP0myzjrr5JJLLskzzzyTX/3qV/nVr36V//mf//lCdT799NO58847c9VVV+Wiiy7Kq6++miS58MIL89Zbb+Wee+7JFVdckVtvvXWZfVRVVeXJJ59Mkjz//PNZd91189RTTyVJ/vrXv2azzTZLp06dkiR9+vTJXXfdlcceeyxbb711fYCSJGeeeWbat2+fRx55JGPGjMm4cePq2z744IMcfvjh6d+/fx599NGce+65+eUvf5lXXnllhcY5efLkbLbZZnn88cdzxBFHZOTIkSmVSp/7vt/97nfp3bt3Jk2alAcffDAHH3zwUrdr3759xowZk6eeeiqXXHJJrrvuutxzzz1LbLO8uX799ddz99135/LLL19i3AAAsDIRWECBHXvssenZs2cOOuigVFVVLXHfiCOPPDKdOnXKaqutlj/96U8ZOnRotttuu7Rq1SpDhgxJmzZt8uyzz2aDDTbI1ltvXf8f3scffzyrrbZatt9++yTJd77znWy88capqKhIr1690rt37/qAoKFGjBiR1VZbLVtuuWW23HLL+rM87rjjjhx11FHp2LFj1l9//RxyyCHL7GOHHXbIlClTMmfOnDz11FPZf//98/bbb2fBggWZNGlSevXqVb/t/vvvnw4dOqRt27Y57rjj8uKLL+b9999PbW1t/vKXv+S4445L+/bt89WvfjWDBw+uf98DDzyQDTbYIPvtt19at26drbfeOn379s2dd965QuPs3r17vve979XP9axZszJ79uzPfV/r1q0zbdq0zJw5M+3atUvPnj2Xut2OO+6YLbbYIpWVldlyyy2zzz771Ic4n1jeXB999NHp1KlTunXrlmHDhq3QmAAAoGjcdBMK7KKLLlrmzRq7detW/3jatGkZN25crr766vrXFi9enJkzZyZJ+vfvn/Hjx2fw4MEZP358/dkVSTJx4sRcdNFFmTJlSurq6rJw4cJ8/etf/0L1rrvuuvWP27dvnw8++CBJMnPmzCXqXX/99ZfZx2qrrZZtttkmkyZNyqRJk3L00UfnhRdeyDPPPJNJkybVn5VQW1ubc889N3feeWfefffdVFZ+nL/OmTMnCxcuTE1NzRL7/NfHb731ViZPnrxEYFBbW5uBAwd+oXEmqR/r8vzbv/1bfve732X//fdPx44d88Mf/jD777//Z7Z77rnn8utf/zovv/xyFi9enEWLFmWvvfZabg3Lmuvu3buv0JgAAKBoBBawkqqoqKh/3K1btxx99NEZPnz4Urfde++9M2bMmMyYMSN33313/vSnPyVJFi1alOOPPz5jxozJbrvtljZt2uSYY45ZocsbGqJLly6ZMWNGvvrVryZJZsyYsdzte/XqlccffzwvvPBCtt122/Tq1SsPP/xwJk+enKqqqiTJbbfdlnvvvTdXXHFFNtxww7z//vupqqpKqVRK586d07p168yYMSObbbZZko8vq/lEt27dUlVVlSuuuKJRx/l5unTpUn/vkKeeeio//OEPU1VVlU022WSJ7X7yk5/k4IMPzmWXXZZ27drl7LPPzpw5c1Z4H9OnT8/Xvva1JEuOGwAAViYuCYFVwAEHHJDrr78+zz33XEqlUj744IM88MAD9fet6Ny5c3r16pVTTz01G264YTbffPMkHwcWixYtqv8P/sSJE/PII480en177713LrnkksybNy9vv/32EmeCLE1VVVXGjRuXzTffPG3btk2vXr1yww03ZMMNN0znzp2TJAsWLEjbtm2z9tpr58MPP8xvf/vb+ve3atUqe+yxRy688MJ8+OGHefXVV3PLLbfUt3/nO9/JlClTMm7cuCxevDiLFy/O5MmT6+8DUS533HFHfVjTsWPHVFRU1J8Z8q8WLFiQjh07pl27dpk8eXLGjx+/wvvYe++9c+mll2bevHmZMWNG/vjHPzZa/QAA0JQEFrAK2HbbbXPWWWflzDPPTFVVVfbcc8/cfPPNS2zzyQ0m//VykA4dOuTnP/95TjzxxFRVVWX8+PGprq5u9PqOPfbYrL/++tltt91y2GGHpW/fvmnbtu0yt99hhx3y0Ucf1Z9N8dWvfvUz93wYPHhwunfvnl122SX77LNP/T05PvGLX/wi77//fnr37p2f/exn2Weffer32aFDh1x++eWZMGFCdtlll+y888759a9/nUWLFjX62P/V888/nwMOOCA77LBDhg8fnpEjR2ajjTb6zHann356zj///Oywww656KKLsvfee6/wPkaMGJHu3btnt912y+GHH55BgwY15hAAAKDJVJQa+9xvgM9x7bXXZsKECZ97pkVjOuecczJ79uz6P5EKAAAUmzMsgLKbOXNmnn766dTV1eUf//hHrrjiiuy+++5l3eerr76aF198MaVSKZMnT86NN96YPfbYo6z7BAAAGo+bbgJlt3jx4px++ul58803s+aaa2afffbJQQcdVNZ9LliwID/5yU8yc+bMrLPOOjn88MOz2267lXWfAABA43FJCAAAAFA4LgkBAAAACkdgAQAAABSOe1g0kjlzFqSurvGurllnnQ555535jdbfqsK8LJ15WTrzsnTmZenMy9ItbV4qKyuy9tprNFNFAEBLIbBoJHV1pUYNLD7pk88yL0tnXpbOvCydeVk687J05gUAaA4uCQEAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACic1s1dADSFa6/977zxxtTmLmOp5s2bmyTp2LHTF+6jTZtWWby4trFKWq6NNtokBx10SJPsCwAAaLkEFrQIb7wxNS+9/EparfbFQ4FyqV34cWAx672aZq7k831SKwAAQLkJLGgxWq3WKatvsltzl/EZH0y9N0kKWdunfVIrAABAubmHBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcFo3dwF81iOPPJi11mqfbbetau5SgFXYI488mCTp3btPM1cCAACfJbAooIcfnpg2bVoJLICyevjhiUkEFgAAFJNLQgAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOE0WWCxePHi/O53v0vfvn0zYMCADB48OKNHj87ixYsb1M+VV16Zd955p/75ddddlyuvvLL++amnnpp99tknJ554Yu69996MGTOmwbXefPPNOf744xv8PgC+vLlz52T06DMzb97csvfX2PtqjH4bq6ZyjQ0AoKk0WWBx6qmn5pVXXslNN92U2267LTfeeGM222yzLFq0aIXeX1dXl1KplP/+7/9eIrA48MADc9hhhyVJZs+enbvuuiu33XZbzjvvvOy22245+eSTyzEcAMrkttvG5uWXX8qtt95c9v4ae1+N0W9j1VSusQEANJXWTbGTKVOm5J577snEiRPToUOHj3fcunWGDh2aJLn00kvzl7/8JbW1tenatWvOOuusdOnSJRdccEFefvnlzJ8/P9OmTcugQYMyc+bMHH/88WnXrl1+85vf5I477sgHH3yQY489NoccckgWLlyYIUOGZMiQIVlrrbXywAMP5Pzzz0+SjB07Ntdee21qa2vToUOHnHHGGfnKV76SRYsWZdSoUXn88cez9tprZ6uttmqKaQHgU+bOnZOHH56YUqmUhx9+MAMH7puOHTuVpb9Pt/3wh4ekMX4sfpkxNNb4G3seAQCaQ5MEFn//+9+zySabpGPHjp9pu+WWW/LGG2/kz3/+cyorK3Pttddm9OjR+c1vfpMkmTx5cm6++eZ07tw5SXLDDTfk/PPPz9e//vUl+unQoUMuvfTS7LfffrnllluSfHxpxyeeeuqp3HHHHbnmmmvStm3bTJw4Maeddlquv/76/OlPf8qbb76Z22+/PTU1NfnBD36QDTfcsFzT8bnmzZub996blzFjzmq2GoqqTZtWWby4tsHve/31qamrbVWGilqWupqFef31qSvNsflFj5dV3Sfz8vrrU5f6vdycbrttbOrqSkk+PrPu1ltvzrBhh5elv0+3XX/99dl//4O/5Ai+3Bgaa/yNPY8AAM2h2W+6ed999+XRRx/NkCFDMmjQoFx77bV566236tv79OlTH1Z82f28+OKLOeCAAzJo0KD85je/yYwZM5IkTzzxRAYPHpw2bdqkffv2GThw4JfeHwAN99hjj6S2tiZJUltbk8cee6Rs/X267f777/9S+1qRfZbzveXoBwCgOTXJGRZbb711pk6dmnnz5n3mt3mlUinDhw/P/vvvv9T3rrHGGo1SQ6lUyn777ZcTTjihUforp44dO2XdddfJj398WnOXUjhduqyZWbPeb/D7xow5K6+8MbsMFbUsla1Xy8YbrZuTT/735i5lhXzR42VV98m8FPFMmZ126p0HH3wgtbU1adWqdXbaqXfZ+vt023e/+90vW/7n7rOc7y1HPwAAzalJzrDYdNNNU11dnV/84heZP39+kqS2tjY33HBDqqurc+2112bevHlJkkWLFuXFF19cZl9rrLFG3n+/4f8Bqa6uzi233FJ/VkVtbW3+9re/JUm+9a1v5ZZbbklNTU0WLlyY8ePHN7h/AL68AQOGpLKyIklSWVmZgQP3LVt/n277/ve//6X2tSL7LOd7y9EPAEBzarJLQkaPHp1NN900++23X/r3758BAwbkH//4R/bZZ58MZBRuGgAAH/VJREFUHDgwBx98cAYMGJB99903Tz/99DL7OeSQQ3Laaadl0KBBeeWVV1Z4/1VVVTnxxBMzfPjwDBw4MP3798+9996bJPne976X7t27p1+/fjn00EOz7bbbfunxAtBwnTqtnZ133jUVFRXZeec+X/pGkcvr79Nta6+99pct/3P3Wc73lqMfAIDm1CSXhCRJ27Ztc9JJJ+Wkk076TNthhx1W/6dJ/9Vxxx33mdcOOOCAHHDAAUvdZsMNN8wTTzxR/3zffffNvvv+87dKAwcOXOr9Kdq2bZuzzireqdEALdGAAUPy1ltvNtpZAcvrr7H31Rj9NlZN5RobAEBTabLAAgBWRKdOa+eUU37RJP019r4ao9/GqqlcYwMAaCrN/ldCAAAAAD5NYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCad3cBfBZO++8a9Zaq31zlwGs4nbeedfmLgEAAJZJYFFAvXv3SZcua2bWrPebuxRgFda7d5/mLgEAAJbJJSEAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwGhRYvPvuu1mwYEGSpLa2NjfddFPGjh2burq6shQHAAAAtEwNCiyOOuqoTJ06NUly7rnn5g9/+EOuvPLKjB49uizFAQAAAC1TgwKLKVOmZKuttkqS3Hrrrfn973+fq666KhMmTChLcQAAAEDL1LohG1dWVmbx4sV57bXXsuaaa6Z79+6pq6urv0wEAAAAoDE0KLDo06dPTjjhhMydOzf9+vVLkrzyyivp2rVrWYoDAAAAWqYGBRZnn312xo4dm9atW2fQoEFJkjlz5uS4444rS3EAAABAy9SgwKJt27YZOnToEq/tuOOOjVoQAAAAQIMCi3/7t39LRUXFUtv+8z//s1EKAgAAAGhQYLHJJpss8XzWrFm56667MmDAgEYtCgAAAGjZGhRYjBgx4jOv7b///rnooosarSAAAACAyi/bwVZbbZUnn3yyMWoBAAAASNLAMywee+yxJZ4vXLgwt99+e7761a82alEAAABAy9agwGLkyJFLPF999dWz5ZZb5je/+U2jFgUAAAC0bA0KLO67775y1QEAAABQr0H3sBg8ePBSX993330bpRgAAACApIGBxdSpUz/zWqlUyptvvtloBQEAAACs0CUhP/vZz5Ikixcvrn/8ibfeestNNwEAAIBGtUKBxcYbb7zUx0nyzW9+M3vttVfjVgUAAAC0aCsUWIwYMSJJst1222WXXXYpa0FQLrUL5+aDqfc2dxmfUbtwbpIUsrZP+7jWdZu7DAAAoAVo0F8J2WWXXbJo0aK89tprmTNnTkqlUn3bTjvt1OjFQWPZaKNNmruEZZo37+N/hh07dvrCfbRp0yqLF9c2VknLsW6h5xIAAFh1NCiweOqpp3LiiSdm0aJFmT9/fjp06JAFCxZk/fXXz733Fv+3w7RcBx10SHOXUFZduqyZWbPeb+4yAAAAGk2D/krIr371qxxxxBF58skns8Yaa+TJJ5/M8OHDc9BBB5WrPgAAAKAFalBgMWXKlBxyyJK/qT7yyCNz5ZVXNmZNAAAAQAvXoMBizTXXzPz585MkXbp0ySuvvJL33nsvH3zwQVmKAwAAAFqmBt3DYo899sjEiRMzYMCA7LfffjnkkEPSunXr9O3bt1z1AQAAAC1QgwKLkSNH1j/+v//3/2a77bbLggUL0qdPn0YvDAAAAGi5GnRJyKhRo5Z43rNnz+y66675j//4j0YtCgAAAGjZGhRY3HzzzUt9/dZbb22UYgAAAACSFbwk5MYbb0yS1NbW1j/+xBtvvJFOnTo1fmUAAABAi7VCgcUtt9ySJFm8eHH94ySpqKjIuuuumzFjxpSnOgAAAKBFWqHA4o9//GOS5Nxzz81JJ51U1oIAAAAAGnQPi0MPPTQLFixI8vHlITfddFPGjRuXurq6shQHAAAAtEwNCiyOOuqoTJ06NUny29/+Nn/4wx9yxRVXZPTo0WUpDgAAAGiZGhRYTJkyJVtttVWS5Lbbbsvvf//7XHXVVZkwYUJZigMAAABaphW6h8UnKisrs3jx4rz22mtZc801071799TV1dVfJgIAAADQGBoUWPTp0ycnnHBC5s6dm379+iVJXnnllXTt2rUsxQEAAAAtU4MCi7PPPjtjx45N69atM3jw4CTJnDlzctxxx5WlOAAAAKBlalBg0bZt2wwdOnSJ13bcccclng8YMCC33Xbbl68MAAAAaLEadNPNFfHmm282dpcAAABAC9PogUVFRUVjdwkAAAC0MI0eWAAAAAB8WQILAAAAoHAaPbAolUqN3SUAAADQwnyhwKKuri4zZ85catuZZ575pQoCAAAAaFBg8d577+UnP/lJvvGNb2TPPfdMktx7770599xz67cZMGBA41YIAAAAtDgNCixOP/30dOjQIffdd1/atGmTJNlhhx1yxx13lKU4AAAAoGVq3ZCNH3vssTz00ENp06ZN/Z8v7dy5c955552yFAcAAAC0TA0KLNZcc83MmTMn6623Xv1r06ZNS5cuXRq9MFqOa6/977zxxtQV2rZNm1ZZvLi2zBUVw7x5c5MkHTt2+txtV4Z52WijTXLQQYc0dxkAAMBKokGBxQEHHJDjjz8+J554Yurq6vLXv/41v/3tb/P973+/XPXRArzxxtRMeeXFrN/h8w/HhU1QT1HMmV+TJGn34ezP3bbo8zLj/x8LAADAimpQYPGjH/0o7dq1y5lnnpmampqcdtppGTp0aA499NBy1UcLsX6H1vnhNzo3dxmFcsXkd5NklZiXT8YCAACwohoUWFRUVOTQQw8VUAAAAABl1aC/EvL444/njTfeSJLMmjUrJ598ck499dTMmjWrLMUBAAAALVODAotf/vKXadWqVZJk9OjRqampSUVFRf793/+9LMUBAAAALVODLgl5++23071799TU1OThhx/OfffdlzZt2mSXXXYpV30AAABAC9SgwKJDhw6ZPXt2Xn755Wy++eZZY401smjRotTU+AsAAAAAQONpUGBx8MEHZ//998/ixYtz2mmnJUmeeeaZfOUrXylLcQAAAEDL1KDA4sgjj8wee+yRVq1aZeONN06SdO3aNaNGjSpLcQAAAEDL1KDAIkk222yz5T4HAAAA+LIaFFjMnz8/F1xwQSZNmpQ5c+akVCrVtz3wwAONXRsAAADQQjXoz5qeccYZ+fvf/55jjjkmc+fOzc9//vN069Ythx12WJnKAwAAAFqiBp1h8cgjj2TChAlZe+2106pVq+y+++7Zdtttc/TRRwstAAAAgEbToDMs6urqsuaaayZJVl999bz//vvp0qVLpk6dWpbiAAAAgJapQWdYbLnllpk0aVJ22mmn9OzZM2eccUbWWGONbLrppmUqDwAAAGiJGnSGxahRo7LhhhsmSUaOHJnVVlst77//fs4555yyFAcAAAC0TA0KLK666qrMmjUrSbLOOuvk7LPPzrBhw3L99deXpTgAAACgZWpQYDF+/Phss802S7y2zTbbZPz48Y1aFAAAANCyNSiwqKioSKlUWuK12tra1NXVNWpRAAAAQMvWoMCiZ8+eOe+88+oDirq6ulxwwQXp2bNnWYoDAAAAWqYG/ZWQkSNH5qijjsrOO++c7t27Z/r06enSpUsuvvjictUHAAAAtEANCizWX3/9jB07NpMnT8706dPTrVu3fOMb30hlZYNO1AAAAABYrgYFFklSWVmZ7bffPttvv3056gEAAABo2D0sAAAAAJqCwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4TT4r4RQfo888mDWWqt9tt22qrlLASAffy8nSe/efZq5EgCAlkNgUUAPPzwxbdq0ElgAFMTDD09MIrAAAGhKLgkBAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFU5jAorq6OnvttVcGDhyYPfbYI8OHD88zzzzzpfr83e9+lwkTJjT4faecckquvvrqL7VvAFZ9c+fOyejRZ2bevLnNXcoyrQw1AgAsTWECiyQ5//zzc+utt+buu+/OkCFDcuSRR+a55577wv2dcMIJ6devXyNWCAD/dNttY/Pyyy/l1ltvbu5SlmllqBEAYGlaN3cBy7Lnnntm8uTJufzyy/PrX/865557biZNmpRFixZliy22yBlnnJE11lgjp5xyStq2bZspU6ZkxowZ2X777TNmzJhUVFTklFNOyTbbbJODDz44ixYtWmYfb7/9dn72s59l1qxZ2WCDDVJZWagcB4ACmjt3Th5+eGJKpVIefvjBDBy4bzp27NTcZS1hZagRAGBZChtYJMl2222X++67L5dddlnWXHPN3HjjjUmSc845J5deemlOOumkJMnLL7+cK6+8MhUVFRkyZEgeffTR9O7de4m+ltfHqFGjUlVVlREjRuSNN97IwIEDs8suuzTtYP/FvHlz89578zJmzFnNVkNTev31qVk9dc1dBmU0f1FdZr4+tcmP6TZtWmXx4tom3efKwLws3fLm5fXXp6Zjx45LvHbbbWNTV1dKktTV1eXWW2/OsGGHl73OhlgZagQAWJZCBxal0seLrPvuuy/z58/PXXfdlSRZtGhRttxyy/rtdt9997Rr1y5JsvXWW+f111//TGCxvD6eeOKJ/PznP0+SbLTRRtlpp53KOzAAVnqPPfZIamtrkiS1tTV57LFHChcGrAw1AgAsS6EDi+effz5f+9rX8uabb+b0009fZpDwSViRJK1atUpt7Wd/Q1YqlZbbR5F07Ngp6667Tn7849Oau5QmMWbMWVk445XmLoMy6tC2Muuuv0lOPvnfm3S/XbqsmVmz3m/Sfa4MzMvSLW9elnZ20E479c6DDz6Q2tqatGrVOjvt1Hsp72xeK0ONAADLUtibNdxzzz257rrrcvjhh6e6ujpXXnllFi5cmCSZP39+Xn311Qb1t7w+vvWtb+Wmm25Kkrzxxht57LHHGnEkAKyKBgwYksrKiiRJZWVlBg7ct5kr+qyVoUYAgGUp1BkWxx9/fNq2bZsPP/wwm2++eS699NJst9122XrrrXPhhRdm//33T0VFRSoqKjJixIhsvvnmK9z3kUceucw+Ro4cmZ/97GcZP358Ntxww+y4445lHCUAq4JOndbOzjvvmgceuDc779ynkDezXBlqBABYlsIEFvfdd98y29q0aZOTTjqp/iab/2r06NHLfP6vj5fXR9euXXPVVVd9kbIBaMEGDBiSt956s9BnLqwMNQIALE1hAgsAWNl06rR2TjnlF81dxnKtDDUCACxNYe9hAQAAALRcAgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUTuvmLoDP2nnnXbPWWu2buwwA/n8777xrc5cAANDiCCwKqHfvPunSZc3MmvV+c5cCQD7+XgYAoGm5JAQAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDitm7sASJIZ82tyxeR3m7uMQpkxvyZJVol5mTG/Jps2dxEAAMBKRWBBs9too01WeNs2bVpl8eLaMlZTHGvPm5skWa1jp8/dtujzsmka9jkDAAAILGh2Bx10yApv26XLmpk16/0yVrNyMi8AAMCqxj0sAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACqd1cxewqqisrFgp+lwVmJelMy9LZ16WzrwsnXlZuk/Pi3kCAJpCRalUKjV3EQAAAAD/yiUhAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILArmtddey9ChQ9O3b98MHTo0U6ZMae6SGlV1dXX22muvDBo0KIMGDcpDDz2UJHn22WczcODA9O3bN4cffnjeeeed+veUo625jRkzJtXV1dliiy3yv//7v/WvL+/zb+q25rCseVnWcZOs+sfOnDlz8qMf/Sh9+/bNgAEDMmLEiLz77rufW+eqPi/J8udmiy22yIABA+qPmZdeeqn+fffdd1/22muv7LHHHjnxxBPz4YcflrWtqR1zzDEZOHBgBg8enIMOOigvvPBCEt8vAMBKqEShDBs2rDRu3LhSqVQqjRs3rjRs2LBmrqhxffe73y299NJLS7xWW1tb2n333UuTJk0qlUql0kUXXVQ65ZRTytZWBJMmTSpNmzbtM/OxvM+/qduaw7LmZWnHTanUMo6dOXPmlB5//PH656NHjy6deuqpTT72os1LqbTsuSmVSqWvf/3rpfnz53/mPfPnzy99+9vfLr322mulUqlUOu2000oXXHBB2dqaw3vvvVf/+O677y4NHjy4VCr5fgEAVj4CiwKZPXt2qUePHqWamppSqVQq1dTUlHr06FF65513mrmyxrO0/3g+99xzpX322af++TvvvFPafvvty9ZWJP86H8v7/Ju6rbmtaGDREo+dO++8s3TooYc2+diLPi+l0j/nplRadmAxYcKE0pFHHln/fPLkyaV+/fqVra25jR07tjRkyBDfLwDASql1c5/hwT9Nnz49Xbt2TatWrZIkrVq1ynrrrZfp06enc+fOzVxd4/npT3+aUqmUHj165Mc//nGmT5+e7t2717d37tw5dXV1mTt3blnaOnXq1DQDbaDlff6lUqlJ24p4vH36uFlrrbVa3LFTV1eX6667LtXV1U0+9iLPS7Lk3Hxi2LBhqa2tTZ8+fXLcccelbdu2nxlH9+7dM3369CQpS1tzGTlyZB555JGUSqVcdtllvl8AgJWSe1jQpK655prceuutuemmm1IqlXLmmWc2d0msBBw3HzvrrLOy+uqr5+CDD27uUgrn03PzwAMP5Oabb84111yTV175/9q7/5iq6j+O408O7iLlBMofXCxXtuZuURvBAcvwthvOYndoblnmrMZYjFTMzY3Mlv2gH2RrLMGhC9cWNVautKCFUbdia/FDclizLYuldhO6IbdEuHbv5ftH4/RlIWoD7hVej7/uPe/PPr/OZ3e7730+5xylsrIywj2cWM8//zyff/45mzZt4uWXX450d0RERET+EyUsoojdbqerq4tQKARAKBSiu7sbu90e4Z6NnaGx2Gw2HnjgAdrb27Hb7Xi9XqtMT08PhmGQmJg4LrFoNdr9n+hYtBlp3Qxdnyprp6ysjJ9//pny8nIMw5jwsUfrvMC/5wb+WTMzZszg3nvvPeea8Xq9VtnxiEXaihUraG5uJjk5Wb8vIiIicslRwiKKXHnllTgcDurq6gCoq6vD4XBMmu2zZ86c4c8//wRgcHCQjz76CIfDQWpqKgMDA7S1tQFQW1vLXXfdBTAusWg12v2f6Fg0Ode6gfFZH9G4dl599VW+/fZbKisrsdlswMSPPRrnBUaeG7/fz8DAAADBYJCGhgZrzWRnZ3P48GHrjRW1tbXcfffd4xabaH19fcOOo3z22WckJCTo90VEREQuSTGDg4ODke6E/OPHH3/k8ccf548//mDmzJmUlZWxYMGCSHdrTBw/fpwNGzYQCoUIh8Ncd911PPnkk8yZM4f29na2bdtGIBBg3rx5bN++nVmzZgGMSyzSSktLOXDgAD6fj6SkJBITE6mvrx/1/k90LBJGmpeqqqpzrhsYn/URTWvnhx9+wO12c8011zB9+nQArrrqKiorKyd87NE0L3DuuSkoKOCpp54iJiaGYDBIWloaTzzxBJdffjkAjY2NbN++nXA4jMPh4KWXXuKyyy4bt9hE8vl8PProo/T392MYBgkJCZSUlHDjjTdO+d8XERERufQoYSEiIiIiIiIiUUdHQkREREREREQk6ihhISIiIiIiIiJRRwkLEREREREREYk6SliIiIiIiIiISNRRwkJEREREREREoo4SFiIScVVVVWzduhWAEydOsHDhQoLBIAAFBQW8//77keyeiIiIiIhEgF5rKiJR5cSJE9x555189913TJs2LdLdERERERGRCNEOCxG5IEM7HkRERERERCaCEhYiU5zL5WLXrl3k5uZimiZbtmwhEAjQ3NzMkiVL2L17N4sXL2bLli2Ew2F2795NTk4OWVlZbNy4kd7eXuDvoxs1NTXD6s7Ly+PAgQMAlJaW4nQ6ueWWW1i5ciVtbW1WuR07drB58+YR+7d27VreffddAN577z1Wr15NWVkZpmnicrn44osvrLLHjx9nzZo1pKWl8fDDD/PMM8+cs94hJSUl7NmzB4Curi4WLlzIW2+9BcCxY8fIzMwkHA7j9/spLCxk0aJFmKZJYWEhJ0+evOC2Dx06xP33309GRgZ5eXk0NzePfmNERERERKY4JSxEhA8//JDq6mo++eQTOjs72blzJwA+nw+/34/H4+G5557jzTffpLGxkZqaGpqamkhISODZZ58FwO12U1dXZ9V59OhRvF4vd9xxBwA33XQT+/bto6WlBbfbzcaNGwkEAhfd146ODq699lq+/vprCgoK2Lp1K0Mn2zZv3szNN99Mc3Mz69evZ//+/eetzzRNWlpaAGhpaeHqq6+mtbXV+p6eno5hGITDYVauXInH48Hj8RAXF2eN/Xxtd3V1UVhYSFFRES0tLZSUlFBcXExPT89Fj19EREREZKpQwkJEWLNmDXa7ncTERIqKiqivrwfAMAyKi4ux2WxMnz6d2tpaNm3aRHJyMjabjfXr19PQ0EAwGCQnJ4fvv/+eX375Bfg7CbJ06VJsNhsAy5cvJykpiWnTppGfn8/Zs2fp7Oy86L6mpKSwatUqYmNjueeee/jtt9/w+Xx4vV4OHz5s9TcjIwOXy3Xe+jIzMzl48CDhcJjW1lYKCgpob28HoLW1lczMTACSkpJYtmwZ8fHxzJgxg6KiIiuxcb629+/fz5IlS3A6nRiGweLFi0lNTR22O0RERERERIbTE+1EBLvdbn1OSUmhu7sb+PtPelxcnBXzer2sW7cOw/gn12kYBr///jtz587F6XRSX1/PI488Ql1dHaWlpVa56upq9u7dS3d3NzExMZw+fZpTp05ddF9nzZplfY6PjwfgzJkznDp1ioSEBOva0Lh+/fXXUeubP38+8fHxHDlyhIMHD7Ju3Tr27t3LTz/9RGtrK2vXrgWgv7+fF198kaamJvx+PwB9fX2EQiG6u7tHbdvr9fLxxx/j8XiseDAYJCsr66LHLyIiIiIyVShhISLD/tR7vV7mzJkDQExMzLByycnJvPDCC6Snp49Yj9vtpqKiAtM0CQQC1h/ytrY2Xn/9dd544w2uv/56DMPANE3G8iVFs2fPxu/309/fbyUOzpesGGKaJg0NDfz111/MnTsX0zTZt28ffr8fh8MBwJ49e+js7OSdd95h9uzZHDlyhBUrVjA4OHjetu12O8uXLx+WwBERERERkdHpSIiI8Pbbb3Py5El6e3upqqoiNzd3xHKrV6+mvLzcOvbR09NDY2OjFXc6nXi9Xl577TVyc3OtnRh9fX3ExsZyxRVXEAwGqaio4PTp02M6hnnz5pGamsqOHTs4e/Ys33zzzbAdDaPJzMykpqaGjIwMALKysqipqSE9PZ3Y2FhrDHFxccycOZPe3l4qKiouuO28vDw8Hg9NTU2EQiHroab//9BOEREREREZTgkLEcHtdpOfn09OTg7z58+nqKhoxHIPPvggLpeL/Px80tLSWLVqFR0dHVbcZrOxdOlSvvrqK9xut3X99ttvJzs7m2XLluFyuYiLixt2DGWsvPLKKxw6dIisrCzKy8vJzc21nqExGtM06evrwzRNANLT0xkYGLASGAAPPfQQgUCARYsWcd9995GdnX3Bbdvtdnbu3MmuXbu49dZbcTqdVFdXEw6Hx3D0IiIiIiKTS8zgWO7JFpFLjsvlorS0lNtuuy3SXRlzjz32GAsWLKC4uHhKtS0iIiIiMhloh4WITBodHR0cO3aMcDjMl19+yaeffkpOTs6kb1tEREREZDLSQzdFZNLw+Xxs2LCB3t5ekpOTefrpp7nhhhv44IMP2LZt27/Kp6SkWK9wHa+2RURERETkv9GREBERERERERGJOjoSIiIiIiIiIiJRRwkLEREREREREYk6SliIiIiIiIiISNRRwkJEREREREREoo4SFiIiIiIiIiISdZSwEBEREREREZGo8z/WifadoGiUPwAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Denied applications in the northeast seem to have some of the lowest prevailing wages. The prevailing wages for the island region, on the other hand, appear generally higher than the rest, with certified cases having the greatest middle 50% among the regions. This is likely due to the higher cost of living on islands, as most goods must be imported."
],
"metadata": {
"id": "oqwzvPPsll7k"
},
"id": "oqwzvPPsll7k"
},
{
"cell_type": "markdown",
"id": "alleged-spirituality",
"metadata": {
"id": "alleged-spirituality"
},
"source": [
"## Data Preprocessing"
]
},
{
"cell_type": "markdown",
"source": [
"### Feature Engineering"
],
"metadata": {
"id": "D42w4a2XME_w"
},
"id": "D42w4a2XME_w"
},
{
"cell_type": "code",
"execution_count": null,
"id": "increasing-louisiana",
"metadata": {
"id": "increasing-louisiana"
},
"outputs": [],
"source": [
"visa['years_in_business']=2016-visa['yr_of_estab']\n",
"visa.drop('yr_of_estab',axis=1,inplace=True)"
]
},
{
"cell_type": "markdown",
"source": [
"Rather than recording the year businesses were established, we will instead consider the number of years in business."
],
"metadata": {
"id": "5jZn2oPQmVeI"
},
"id": "5jZn2oPQmVeI"
},
{
"cell_type": "markdown",
"source": [
"### Outlier detection and treatment"
],
"metadata": {
"id": "p0zlVioEL_Ur"
},
"id": "p0zlVioEL_Ur"
},
{
"cell_type": "code",
"source": [
"visa.loc[visa['no_of_employees']<1].shape"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OMci272TZbRL",
"outputId": "ceb4919f-3308-4146-c9b7-8b755d2dd3e5"
},
"id": "OMci272TZbRL",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(33, 12)"
]
},
"metadata": {},
"execution_count": 54
}
]
},
{
"cell_type": "markdown",
"source": [
"There are 33 records where the application lists a negative number of employees. These clearly constitute an error, and with no clear method to impute these values, our best recourse is to drop the rows."
],
"metadata": {
"id": "T1F5fZnSmg7T"
},
"id": "T1F5fZnSmg7T"
},
{
"cell_type": "code",
"source": [
"idx=visa.loc[visa['no_of_employees']<1].index\n",
"visa.drop(idx,axis=0,inplace=True)"
],
"metadata": {
"id": "wYh2e25MZ8gK"
},
"id": "wYh2e25MZ8gK",
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Data Prep"
],
"metadata": {
"id": "98y_YHTcsxfY"
},
"id": "98y_YHTcsxfY"
},
{
"cell_type": "code",
"source": [
"visa.drop('case_id',axis=1,inplace=True)"
],
"metadata": {
"id": "dMdzuF2Ss6Bx"
},
"id": "dMdzuF2Ss6Bx",
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"We drop ```case_id```, as the unique identifiers will not lend any predictive power to our model."
],
"metadata": {
"id": "-dH6OfgEm8lX"
},
"id": "-dH6OfgEm8lX"
},
{
"cell_type": "code",
"source": [
"# convert object dtype to category\n",
"for col in visa.select_dtypes('object').columns:\n",
" visa[col]=pd.Categorical(visa[col])"
],
"metadata": {
"id": "QwEcXShij5xt"
},
"id": "QwEcXShij5xt",
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"After making all object variables into category type, we encode them numerically."
],
"metadata": {
"id": "bIOODwvqnEqM"
},
"id": "bIOODwvqnEqM"
},
{
"cell_type": "code",
"source": [
"# define categorical ordering\n",
"order_struct={\n",
" 'education_of_employee':{'High School':1,\n",
" \"Bachelor's\":2,\n",
" \"Master's\":3,\n",
" 'Doctorate':4},\n",
" 'has_job_experience':{'Y':1,'N':0},\n",
" 'requires_job_training':{'Y':1,'N':0},\n",
" 'full_time_position':{'Y':1,'N':0},\n",
" 'case_status':{'Certified':1,'Denied':0}\n",
" }\n",
"no_order={'continent','region_of_employment','unit_of_wage'}"
],
"metadata": {
"id": "mNz4WKZokEJQ"
},
"id": "mNz4WKZokEJQ",
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# convert data to numeric\n",
"visa.replace(order_struct,inplace=True)\n",
"visa=pd.get_dummies(visa,columns=no_order)"
],
"metadata": {
"id": "qpng9JadkEG9"
},
"id": "qpng9JadkEG9",
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"We use one hot encoding for the categorical variables with no inherent order."
],
"metadata": {
"id": "BMrp-4oNnRWN"
},
"id": "BMrp-4oNnRWN"
},
{
"cell_type": "code",
"source": [
"X=visa.drop('case_status',axis=1)\n",
"y=visa['case_status']"
],
"metadata": {
"id": "27lzEJkwl3ks"
},
"id": "27lzEJkwl3ks",
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# split\n",
"X_train,X_test,y_train,y_test=train_test_split(X,y,\n",
" test_size=0.3,\n",
" stratify=y,\n",
" random_state=57)"
],
"metadata": {
"id": "SfnEoAyol8_C"
},
"id": "SfnEoAyol8_C",
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Now that we've split our data, it is ready for modeling."
],
"metadata": {
"id": "TvDh5DZJzqbx"
},
"id": "TvDh5DZJzqbx"
},
{
"cell_type": "markdown",
"id": "difficult-union",
"metadata": {
"id": "difficult-union"
},
"source": [
"## Second EDA\n"
]
},
{
"cell_type": "markdown",
"source": [
"We only removed 33 records out of 25480. That's only 0.1% of the data. Accordingly, there is not enough change in our data to produce appreciably different visualizations. We only include plots for features that were directly altered/engineered. "
],
"metadata": {
"id": "7Vcxvad0iiBJ"
},
"id": "7Vcxvad0iiBJ"
},
{
"cell_type": "code",
"execution_count": null,
"id": "interested-talent",
"metadata": {
"id": "interested-talent",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 356
},
"outputId": "403235c3-abaa-4675-f829-a33baf55be9d"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAFTCAYAAAC06zwQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVxVdf7H8TergGTmgvuSNqJDIihqueSITppCNE6jjUWaGmbiMuaC2lDmkrhkpuSS1tg0mpqluYxjP9vU1DAzK00SE1xKcRdBWe75/cFwp5ssXxW5gq/n4+Hj4T3L9/s533sub77nXO51sSzLEgAAKJSrswsAAKA0IDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJkpEZGSkXnrpJaf0nZGRoaFDh6pFixby9/fX0aNHnVJHSQkNDdXixYudXcYta/HixQoNDbU/njNnjsLCwpxYEUoLArMMi4mJkb+/v/1f69atNXDgQCUlJTm7tCK9//77Cg4OLpa2Vq1apYSEBC1dulRbt25VjRo1HNZv27ZNAQEB+vrrrx2WX758WV26dNELL7xQLHUUhyNHjmjkyJF64IEHdO+996pdu3aKiorSvn377Nu899576t27txOrlHbu3Olw7uX9mzx5slPryk+/fv30z3/+09lloBRwd3YBuLnatGmjadOmSZJOnjypadOmKTo6Wv/+97+dXFnJSU5OVsOGDeXv75/v+rZt2+qxxx5TTEyMVq9eLW9vb0nSzJkzZVmWxowZU+w1ZWdny83NTS4uLsb7ZGVlqV+/fqpbt65effVVVatWTSdPntS2bdt0/vx5+3aVKlUq9nqv1/r163XnnXfaH+eN7a2kfPnyKl++vLPLQCnADLOM8/T0VNWqVVW1alUFBASob9++OnTokC5fvmzf5sCBA+rbt68CAwPVqlUrxcTE6OLFi5KkL7/8UgEBAdq5c6d9+3fffVfNmzfXkSNHJOVebo2NjdWkSZPUsmVLtWzZUnFxcbLZbAXWdf78eY0ZM0YtW7ZUYGCg+vbtqx9//FFS7uxk7NixSk9Pt89M5syZU2BbmzZtUnh4uO6991516NBB8+bNU94HWEVGRurtt99WQkKC/P39FRkZmW8bo0aNkiTNmDHDftzLli1TXFycvL299cYbb6hz584KDAxUeHi41qxZ47D/jBkz1KVLFwUGBio0NFTTpk3TlStX7OvzLvu9//776ty5s5o2bar09HQlJCSoZ8+eCg4OVosWLfToo48qMTEx3xoPHjyolJQUxcbGqnnz5qpVq5aCg4MVHR2t+++/377dby/J+vv7a/ny5Ro6dKiCgoLUqVOnq+o/ceKEnnvuObVu3VrNmjVTRESEduzYYV//8ccfq0ePHmratKlCQ0M1a9YsZWZmFvic5KlUqZL9/Ktatap8fX0lFf78S/lfYcibtZ45c8Zhm+3btyssLExBQUGKjIy0n5d53njjDbVt21bBwcEaPXq00tPTHdb/9pJsTEyMBg4cqCVLlqh9+/Zq2bKlxo4dq4yMDPs26enpGj16tIKDg9WmTRstWLBAAwcOVExMTJFjgtKLwLyNpKWlacOGDWrUqJG8vLwk5b7w+/fvLx8fH61cuVJz587V119/rXHjxkmSWrVqpf79+2v06NE6f/68kpKSNHXqVP39739XnTp17G2vXbtWlmXp3Xff1YQJE7RixQotWbKkwFpiYmL0zTff6PXXX9fKlSvl5eWlAQMG6PLlywoODta4cePk7e2trVu3auvWrerXr1++7Xz33XcaNmyY/vjHP2rt2rV67rnntHDhQr3zzjuScn8Y9ujRQ8HBwdq6dWuBwevl5aXp06dr+fLl2rx5s8aOHav+/fsrODhYr776qt577z3FxsZq/fr1ioqK0gsvvKBPP/3Uvr+3t7emTJmiDRs26IUXXtCGDRs0b948hz6OHj2qdevWafbs2VqzZo3KlSunZ599Vi1atNCaNWu0YsUK9enTR25ubvnWWKlSJbm6uuo///mPsrOzCxzb/MTHx9uDslu3bho/fryOHz8uKfcciIyM1LFjxxQfH6+1a9dq8ODB9n23bNmikSNH6vHHH9f69es1ZcoUbdy4UbNmzbqmGn6tsOf/WmRmZmrBggWaMmWK3n33XV28eFEvvviiff2GDRs0e/ZsDRkyRO+//77uvvtuvfXWW0W2u2vXLv3444/6xz/+oVmzZumjjz7S22+/bV8/depUJSQkaO7cuVqyZIl++OEH7dq165pqRylkocwaM2aM1aRJEysoKMgKCgqyGjVqZHXo0ME6cOCAfZvly5dbzZs3ty5evGhftmPHDqtRo0bW4cOHLcuyrMzMTKtHjx7W4MGDrUceecQaNmyYQz9PPPGE9eCDD1o2m82+LD4+3mrfvr3DNhMmTLAsy7J++uknq1GjRtaXX35pX3/hwgWrefPm1ooVKyzLsqxVq1ZZQUFBRR7jiBEjrMjISIdlr732mkPfEyZMsJ544oki27Isy3r11Vetxo0bWxEREVZmZqZ16dIlq2nTplZCQoLDdpMmTbIGDBhQYDtLly61Onfu7FDT73//eys1NdW+7OzZs1ajRo2snTt3GtVmWZb1zjvvWM2aNbOCgoKsxx9/3Jo1a5aVmJjosE3Hjh2tRYsW2R83atTImjFjhv1xVlaWFRgYaK1evdqyrNxzICgoyDp9+nS+ffbu3duaO3euw7KPPvrICgoKcnjOfy3vHMo79/L+HTt27Lqf/7w28+pctWqV1ahRIyspKcm+zZo1a6yAgAB7Xb169bLGjx/v0E6fPn2sjh072h+/9tprVvfu3e2Px4wZYz3wwANWdna2fdn48eOtPn36WJZlWWlpaVZAQIC1bt06+/pLly5ZISEh1pgxY/IdD5QN3MMs40JCQjRx4kRJuZfBli1bpn79+mnlypWqUaOGkpKS5O/vb79UJknBwcFydXXVwYMHVa9ePXl4eGjmzJkKCwtTpUqV8p05NmvWzOF+XHBwsGbPnq20tDSHtiUpKSlJrq6uCgoKsi+744471KhRIx08ePCaju/QoUPq0KGDw7IWLVpo7ty5+fZdlMGDB+v111/X008/LQ8PD+3fv19XrlzRgAEDHI4vKytLtWrVsj/euHGjlixZopSUFKWnpysnJ+eqS9LVqlVTlSpV7I8rVqyoHj16qH///rr//vt1//33q0uXLqpZs2aB9T3++OOKiIjQzp07tXfvXm3evFlvvPGGJk+erEceeaTA/X59/9bd3V2VKlWyX9rct2+f/P39C7z3+f3332vv3r1atGiRfZnNZtPly5eVmpoqPz+/AvtdsmSJwz1MPz8/ffbZZ8X2/Ht6eqpBgwYO7WdlZen8+fOqWLGikpKS9OijjzrsExQUpJSUlELbveeeexxm+n5+fvrmm28k5b7xKisrS4GBgfb1Pj4++t3vfndNtaP0ITDLOG9vb9WrV8/+OCAgQCEhIVq+fLmGDx9e6L6/Dog9e/bIZrPp4sWLOnPmjCpUqHBT6r2WN8HcDO7uuS+JvB+W1n/vhc6bN++qIMvbds+ePRoxYoQGDx6s9u3bq0KFCvr4448VFxfnsL2Pj89V/b388svq06ePPv/8c3388ceaNWuW4uPj1b59+wJr9PX1VadOndSpUycNHz5c/fv312uvvVZoYObVmsfFxaXQe8y/ZrPZFB0dra5du161rqg3GNWuXfua3oSU9/y7urraxz5Pfpeh8zuuvJpvRH7t/rYe3H64h3mbcXFxkYuLi/1eUcOGDZWYmKi0tDT7Nl9//bVsNpsaNmwoKfc36okTJyo2NlZt2rTRqFGjrvrh9c033zj8QNmzZ4/8/PzyneE1bNhQNptNe/bssS9LS0tTYmKivU8PDw/l5OQUeTwNGjTQ7t27HZZ99dVXql69+jXPLvPTsGFDeXp66vjx46pXr57Dv7wZ5u7du1WtWjUNHjxYgYGBql+/vv3+oInGjRsrKipK//znP9WqVSutXr3aeF8XFxc1aNBAly5duuZjy/P73/9eBw4csM8481t/6NChq46/Xr16VwWLCZPn/6677lJGRobDebl///7r6itvZpjnt4+vVZ06deTh4aFvv/3WviwjI8PhTUsomwjMMi4zM1OpqalKTU1VUlKSJk6cqPT0dHXs2FGSFB4eLi8vL40ZM0YHDhxQQkKCYmNj9eCDD6pevXrKycnR6NGj1bJlSz322GOaNGmSfv75Z82dO9ehn5MnT2ry5Mk6dOiQNm7cqMWLF6tv37751lS/fn116tRJsbGx2rVrlw4cOKCRI0fK19dX4eHhkqRatWrpypUr2rZtm86cOePwDsVf69evnxISEjRnzhz99NNP+vDDD/Xmm29qwIABxTJ+vr6+6tevn6ZNm6b33ntPycnJ2r9/v5YtW6bly5fbj+fEiRP68MMPdeTIES1dulTr1q0rsu0jR45oxowZ2r17t44dO6YdO3bowIED9tD4rf3792vQoEHauHGjDh48qOTkZK1cuVKrVq3SH//4x+s+xrCwMFWuXFnPPvusdu3apSNHjmjz5s32d8kOHjzY/malxMREJSUlaePGjfY/V7pWJs9/s2bN5OPjo5kzZyo5OVn/+c9/tHTp0mvu68knn9QHH3ygFStW6PDhw1qwYMENB2b58uXVo0cPzZgxQ9u3b9fBgwf1/PPPy2azOf0KCW4uLsmWcV988YXatWsnKfeF3qBBA82ePVutW7eWlHvJdvHixZoyZYr+8pe/qFy5curUqZPGjx8vSZo/f75SUlK0du1aSbm/+cfFxSkqKkrt2rVTSEiIpNzgtdls6tmzp1xcXPToo48WGJhS7qXIKVOmaNCgQbpy5YqaN2+uRYsW2d+927x5cz322GMaMWKEzp07p+joaA0ZMuSqdgICAjR79mzNmTNHCxYsUOXKlRUVFaUnnnii2MZw+PDhqlKlit588029+OKL8vX1VZMmTeyhHBoaqv79+2vKlCm6cuWK2rZtq6FDh2rChAmFtuvt7a3Dhw9r2LBhOnv2rKpUqaLw8HA9/fTT+W5frVo11alTR/Hx8Tp27Jgsy1KNGjXUr18/RUVFXffx+fj46J133tHUqVP1zDPPKCsrS3fffbfGjh0rSWrfvr0WLFig119/XW+++abc3NxUv3599ejR47r7LOr5r1ixoqZPn67p06dr1apVatmypYYNG6bRo0dfUz/dunXTkSNHNGvWLF2+fFmhoaF66qmn9MEHH1x37ZI0ZswYZWRkaNCgQfLx8VHfvn116tQpeXp63lC7uLW5WFyYxw2KjIzU7373O8XGxjq7FMApMjMz1bFjR/Xv37/AP4FC6ccMEwCu0b59+5SUlKTAwEBdunRJb7zxhi5duqRu3bo5uzTcRAQmAFyHt956Sz/99JPc3d3VuHFjvfPOO6pevbqzy8JNxCVZAAAM8C5ZAAAMEJgAABggMAEAMFDkm37Onr0km614bnNWruyr06fTit4QxYpxdw7G3TkYd+coK+Pu6uqiu+7K//tRiwxMm80qtsDMaw8lj3F3DsbdORh35yjr484lWQAADBCYAAAYIDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAAD7s4u4EYsXfq2jhxJvq59z58/J0m6886KxVlSsapTp556937S2WUAAFTKA/PIkWQd+PGg3LyuPfRyLucGZuqF7OIuq1jk1QcAuDWU6sCUJDevivKp1+ma90tP3ixJ17VvScirDwBwa+AeJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADBCYAAAYIDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADBCYAAAYIDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABhwL6mOtm37XBUqeKtp05Yl1SVuY9u2fS5Jatv2ASdXAqCsKLHA3Lr1M3l4uBGYKBFbt34micAEUHy4JAsAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADBCYAAAYIDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADBCYAAAYIDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAF3ZxcA3EwDB/ZVVlams8u45Xl6llNm5hVnl1Fi7ryzos6fP6eqVaspNfVEAVu5SLKKtd9atWrr2LGjatq0mf72tzGKjR2no0cPS5KqVPHTqVMn5ebmrpyc7ALb8PHxVXp6mu67r41OnTqjgwd/kLe3tzIyMuzH4+rqKpvNZm+rZ8+/qmvX8EJrS0k5rLi4iWrevJW2bftMQUEh2rNnlwICAvX993vVsOE9Sko6KG9vX2VkpF21/9q1a43H4fvv92rmzKmSpAce6Ki+fZ/WunVr9P77y6+qddSo4Tp9+qT8/Kpr6tRXJEnTp7+s/fu/lYeHh7KyslS7dl299NJU4/6vFzNMlGmEpZnbKSwl6fz5c5JUSFhKxR2WknTs2FFJ0rfffiNJ9rCUpFOnTkpSoWEpSenpuWG1Y8cXOnjwB0lSRkaGpP8dj81mc2hrxYplRda2cGG8MjIytG3bZ5KkPXt2ScoNN0lKSjr4376uDstrNW/eHPv/P//8E0nS++8vz7fW06dzx+XkyV/sy/bv/1aSlJWVJUk6ejTlhmsyQWCizDpwYL+zSwAK9MwzfUu0v40bC54BpqQc1vHjx26o/fDwwmeweb7/fq/S0y85LHvxxfEOj/NqHTVquMPymJgRmj795XzbjY2NMS31upXYJdnz58/pwoXzioubWGxtpqQky5bjVmzt3Ups2ZeVkpJcLOPl4eGmrKycYqiq9EhJSXZ2CUChMjNL9urHihXLCrwsu3BhfInV8evZZZ6UlJ8cHufVmje7zHPy5C8OM81fK4lZJjNMALjN3ejs8lr8dnZZmpTYDPPOOyuqSpXKGjFiXLG1GRc3UQePnCq29m4lru5eqlunisaM+fsNt1W16h1KTb1YDFWVHnFxE7kkCxiqWbNWiYWmj0/5UhuazDABwAk8PT1LtL+ePf9a4LqoqMElVsegQUOuWla37t0Oj/NqrVzZz2G5n191NWnSNN92a9euW0wVFozARJnl79/E2SUABZo//x8l2l9hf1ZSt2591axZ64baN/2zkoCAQPn4lHdY9uKLkx0e59U6ffqrDsunTn1Fo0aNzbdd/qwEuEEeHiX7W3xp5elZztkllKg776woSapatVohW7kUe7+1atWWJDVt2kySVLt2ffu6KlVyZ1NuboXfKfPx8ZUk3XdfG91zT2NJkre3t6T/HY+rq6tDW4XNLvNERQ2Wt7e32rbtIEkKCgqRlBtwktSw4T3/7cu3yLaK8utZ5gMPdJQk9ejRK99a82aZfn7V7cvyZpkeHh6SSmZ2KfHBBSjjFiz4h9P6vh3vHd8KStO4v/TSFGeXYFe3bn3Fxy+WJPXvP/Cm9hUQEKg331zqsCwsLEJhYRFXbfvbWaakAmeZNxszTAAADBCYAAAYIDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADBCYAAAYIDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADLiXVEft2nVQhQreJdUdbnPt2nVwdgkAypgSC8y2bR9Q1ap3KDX1Ykl1idtY27YPOLsEAGUMl2QBADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADBCYAAAYIDABADBAYAIAYIDABADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADBCYAAAYIDABADBAYAIAYIDABADAgLuzC7hROZfPKT1583XtJ+m69i0JufVVcXYZAID/KtWBWadOveve9/z53EO/886KxVVOMatyQ8cHAChepTowe/d+0tklAABuE9zDBADAAIEJAIABAhMAAAMEJgAABghMAAAMEJgAABggMAEAMEBgAgBggMAEAMAAgQkAgAECEwAAAwQmAAAGCEwAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADBCYAAAYIDABADBAYAIAYMC9qA1cXV2KtcPibg9mGHfnYNydg3F3jrIw7oUdg4tlWVYJ1gIAQKnEJVkAAAwQmAAAGCAwAQAwQGACAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADJRYYP7000/q1auXunTpol69eunw4cMl1fVtJTQ0VF27dlVERIQiIiK0ZcsWSdKePXv08MMPq0uXLurXr59Onz7t5EpLt7i4OIWGhsrf31+JiYn25YWd57wGblxB417QeS9x7heHs2fP6umnn1aXLl0UHh6u6OhonTlzRlLh41vmxt4qIZGRkdbq1asty7Ks1atXW5GRkSXV9W2lY8eO1oEDBxyW5eTkWJ07d7YSEhIsy7Ks+Ph4KyYmxhnllRkJCQnW8ePHrxrvws5zXgM3rqBxz++8tyzO/eJy9uxZa8eOHfbHU6dOtcaOHVvo+JbFsS+RGebp06e1b98+hYWFSZLCwsK0b98++28ouLm+++47lStXTiEhIZKkxx57TBs3bnRyVaVbSEiIatSo4bCssPOc10DxyG/cC8O5XzwqVqyo1q1b2x8HBQXp+PHjhY5vWRz7Ir+tpDj8/PPPqlatmtzc3CRJbm5u8vPz088//6xKlSqVRAm3lZEjR8qyLLVo0UIjRozQzz//rJo1a9rXV6pUSTabTefOnVPFihWdWGnZUth5blkWr4Gb7LfnfYUKFTj3bwKbzaZly5YpNDS00PEti2PPm37KmH/961/68MMPtWrVKlmWpZdeesnZJQE3Hed9yZk4caJ8fHz0xBNPOLuUElcigVmjRg2dOHFCOTk5kqScnBydPHnymi6twEzemHp6eqp3797avXu3atSooePHj9u3OXPmjFxdXUvtb3m3qsLOc14DN1d+533ecs794hMXF6fk5GS9+uqrcnV1LXR8y+LYl0hgVq5cWU2aNNG6deskSevWrVOTJk24FFXM0tPTdfHiRUmSZVnasGGDmjRponvvvVeXL1/Wrl27JEnvvvuuunbt6sxSy6TCznNeAzdPQee9JM79YvTKK6/ou+++U3x8vDw9PSUVPr5lcexL7Aukk5KSFBMTowsXLqhChQqKi4tTgwYNSqLr28aRI0c0ZMgQ5eTkyGazqWHDhnr++efl5+en3bt364UXXtCVK1dUq1YtTZ8+XVWqVHF2yaXWpEmTtGnTJp06dUp33XWXKlasqPXr1xd6nvMauHH5jfv8+fMLPO8lce4Xgx9//FFhYWGqX7++vLy8JEm1a9dWfHx8oeNb1sa+xAITAIDSjDf9AABggMAEAMAAgQkAgAECEwAAAwQmAAAGCEzgJpk/f77Gjx9/Q23MmTNHI0eOLKaK/qd79+7auXNnsbcLlGUl8lmywO3omWeecXYJBVq/fr2zSwBKHWaYQBGys7OdXQKAWwCBiVJt0aJFGjJkiMOySZMmadKkSbp48aLGjRundu3aqX379po1a5b9s1xTUlL05JNPqnXr1mrdurWee+45Xbhwwd5GaGioFi5cqPDwcAUFBSk7O1sLFy5U+/btFRwcrC5dumj79u2F1vbry6lHjx6Vv7+/PvjgA/3hD39Q69atNW/ePKNjzMzM1PDhwxUcHKw//elP+uGHH+zr/P39lZycbH8cExOjWbNmScr97M6BAwcqJCRErVq1Uu/evWWz2ezH98UXX9jrHDZsmEaPHq3g4GB1795d3377rb3NEydOaMiQIbrvvvsUGhqqt99+275u79696tGjh5o3b642bdro5ZdfliRduXJFI0eOVOvWrRUSEqI///nPOnXqlNHxArcqAhOl2sMPP6wtW7bYwy47O1vr16/XI488opiYGLm7u2vTpk1avXq1tm3bppUrV0rK/czRgQMHasuWLfr3v/+tX375RXPmzHFoe/369Vq4cKF27dqllJQU/etf/9J7772nr7/+WosXL1atWrWuud6vvvpKGzdu1JIlSxQfH6+kpKQi99m8ebO6du2qL7/8UmFhYXr22WeVlZVV5H5vvfWWqlWrpu3bt2vbtm0aMWKEXFxc8t32448/Vvfu3bVr1y6FhoZq4sSJknK/ymnQoEHy9/fX559/riVLlmjJkiXasmWLJI23DPEAAAUiSURBVGny5Ml68skntXv3bn300Ud66KGHJEkffPCB0tLS9Omnn2rnzp2aMGGC/SPVgNKKwESp5ufnp5CQEPsX027ZskV33XWXqlevrs8++0zjxo2Tj4+PKleurL59+9rv3dWrV09t27aVp6enKlWqpKeeekoJCQkObUdGRqpGjRry8vKSm5ubMjMzlZSUpKysLNWuXVt169a95nqjo6Pl5eWlxo0bq3Hjxg6zxYIEBASoa9eu8vDw0FNPPaXMzEx98803Re7n7u6u1NRUHT9+XB4eHgoJCSkwMFu0aKEOHTrIzc1NERER9rq+/fZbnTlzRtHR0fL09FSdOnXUs2dPbdiwwd5HSkqKzpw5o/LlyysoKMi+/Ny5c0pOTpabm5vuvfde+fr6mg4TcEviTT8o9f70pz9p2bJl6tmzpz788ENFRETo+PHjys7OVrt27ezb2Ww2+9dAnTp1SpMnT9auXbt06dIlWZalChUqOLT766/eqlevnsaNG6c5c+bo4MGDateunWJiYlStWrVrqvXXHzzt7e2t9PT0IvepXr26/f+urq6qVq2aTp48WeR+/fv319y5c9WvXz9JUq9evRQVFVVkXV5eXrpy5Yqys7N17NgxnTx5UiEhIfb1OTk59seTJ0/Wa6+9poceeki1a9dWdHS0OnbsqIiICP3yyy8aMWKELly4oIcfflh/+9vf5OHhUWTdwK2KwESp17lzZ7344otKTEzUp59+qlGjRsnd3V2enp7asWOH3N2vPs1feeUVubi4aO3atapYsaL+7//+76ovHf7tbCw8PFzh4eFKS0tTbGysZsyYoenTp9/UY5OkX375xf5/m82mEydO2L+Jw9vbWxkZGfb1qamp9hD39fVVTEyMYmJilJiYqD59+qhp06a6//77jfuuUaOGateurU2bNuW7vn79+nrllVdks9m0adMmDR06VDt37pSPj4+io6MVHR2to0ePKioqSnfffbf+8pe/XM8QALcELsmi1CtXrpy6dOmi5557Tk2bNlXNmjXl5+entm3baurUqUpLS5PNZlNKSoq+/PJLSdKlS5fk4+OjO+64QydOnNCiRYsK7ePQoUPavn27MjMz5enpqXLlysnVtWRePt9//702bdqk7OxsLVmyRJ6enmrWrJkkqXHjxlq3bp1ycnL0+eefO1xW/uSTT5ScnCzLsnTHHXfIzc2twEuyBQkMDFT58uW1cOFCXb58WTk5OUpMTNTevXslSWvWrLF/MXDeDN3V1VU7duzQgQMHlJOTI19fX7m7u5fYeAE3C2cwyoRHHnlEiYmJioiIsC+bNm2asrKy1K1bN7Vs2VJDhw5VamqqpNx7ifv27VNISIiioqL04IMPFtp+ZmamZs6cqdatW6tdu3Y6c+aMRowYcVOPKU+nTp20YcMGtWzZUmvWrNGcOXPslzbHjx+vTz75RCEhIVq7dq06d+5s3y85OVlPPfWUgoOD1atXL/31r3/Vfffdd019u7m5af78+frhhx/UqVMn3XfffXr++eeVlpYmKfeecffu3RUcHKzJkydr1qxZ8vLy0qlTpzR06FC1aNFC3bp1U6tWrRyeG6A04vswUSYcP35cDz30kLZt28abSwDcFMwwUerZbDa99dZb6tatG2EJ4KbhTT8o1dLT09W2bVvVrFmzyPuQN8OAAQP01VdfXbV84MCBxh+NVxxtALj5uCQLAIABLskCAGCAwAQAwACBCQCAAQITAAADBCYAAAYITAAADPw/7kHvrVMd9AkAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"* We find that most businesses in our records are less than 50 years old.\n",
"* There are a steady supply of businesses greater than 75 years old, about the same amount for each year. It only starts to trail off after around 175 years."
],
"metadata": {
"id": "_ceJO-gBCl1z"
},
"id": "_ceJO-gBCl1z"
},
{
"cell_type": "code",
"source": [
"plt.figure(figsize=(16,5))\n",
"plt.suptitle('Feature: no_of_employees',fontsize=18)\n",
"\n",
"plt.subplot(1,2,1)\n",
"plt.title('Boxplot (with fliers)',fontsize=14)\n",
"sns.boxplot(data=visa,x='no_of_employees')\n",
"\n",
"plt.subplot(1,2,2)\n",
"plt.title('Boxplot (fliers removed)',fontsize=14)\n",
"sns.boxplot(data=visa,x='no_of_employees',showfliers=False)\n",
"\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 375
},
"id": "q9XjYFQVigdt",
"outputId": "fc605a9c-0c5e-4feb-b32f-69cec4a74467"
},
"id": "q9XjYFQVigdt",
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAFmCAYAAADEVg8WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3zO9eP/8edmYxhmzuQQteVsDlPOG6E+NiSHMIlKipKfHOqTikpI5UNSOZRCYdYXySeRw9Aoh6I+xj6xMSEzrNlm2/v3h673Z9fe105s19ge99vN7eZ6H16n98Xrel7v9/t6uxiGYQgAAAAAgAxcC7sBAAAAAIBbD2ERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEABQry5cvV8+ePdWkSRP5+vrq1KlThd2kfBERESFfX1+tXbu2sJsCACgi3Aq7AQBQ2CIiIjRs2LAs13/55Zdq0aJFgdX/ySefqHz58nrooYcKrA5c98MPP2jatGnq2rWrnnjiCbm5ucnb27uwmwUAwC2JsAgAf+vVq5c6depkWV6nTp0CrXfZsmWqVasWYdEJdu/eLUl688035eXlVcitAQDg1kZYBIC/NWrUSL179y7sZuSra9euKT09XaVKlSrsptwSzp8/L0kERQAAcoF7FgEgDzZu3KhHHnlEfn5+at68ufr3769NmzY53O6pp55Sly5d1KRJE7Vt21ZPP/20/vOf/9ht5+vrq9OnT2vv3r3y9fU1/9juo/P19dXkyZMt5a9du1a+vr6KiIgwl82bN0++vr46duyYZsyYoU6dOqlZs2Y6ePCgJCklJUULFy7UP/7xDzVt2lStW7fWU089pV9//dVSfmxsrKKionTt2rUcx8TWlj179mjx4sXq1q2bmjRpoh49eigsLMzhPqtXr1bfvn3VrFkztWrVSiNGjNCPP/6YY11Z+e677zRo0CC1aNFCfn5+GjRokL777jtz/alTp+zu57ONc0hISJ7quXLlimbPnq37779fTZo00b333qvx48crJibGbruMYzJ//nwFBASoWbNm6t+/v3k89u7dq0ceeUQtWrRQhw4d9P7771vqCwwMVEhIiI4cOaJhw4bJz89P/v7+mjRpki5cuJCrNicmJmrOnDnmcWnfvr0mTpyo06dPm9v8+uuv8vX11bvvvuuwjCeffFItW7ZUYmKiuezcuXN65ZVXzPd4hw4d9PLLLztsV27HLTk5WfPmzVOPHj3UvHlztW7dWkFBQZo5c2au+goAyF+cWQSAv129elVxcXF2y0qWLClPT09J0rvvvquFCxeqY8eOeu655+Tq6qrNmzfrueee09SpUzVkyBBzv88//1xeXl4aMGCAqlSpoujoaK1atUqPPPKIwsLCVK9ePUnSrFmzNGPGDFWsWFFPPfWUuf/N3Ec3YcIEeXh4aMSIEZKkKlWq6Nq1axo5cqQOHDig3r17a8iQIUpISDDb9Pnnn6tp06ZmGZMmTdLevXu1ZcsW3XHHHbmq991331VSUpIGDhyokiVLauXKlZo8ebLq1KmjVq1amdvNnj1bixYtUrNmzTR+/HizHY8++qgWLFigzp0756m/y5cv17Rp01S/fn09/fTTkqSwsDA988wzmjZtmgYOHChvb2/NmjVLq1at0o8//qhZs2ZJkipXrpzreq5cuaJBgwYpNjZW/fr10913363z589rxYoV6t+/v0JDQ1WrVi27fd5++22lp6dr2LBhunbtmpYsWaIRI0Zo1qxZeumllzRgwAAFBQXpm2++0b/+9S/dcccdlrPbf/zxh4YPH67u3burR48e+vXXXxUaGqrDhw9rzZo1Kl26dJZtth33/fv3q0ePHnrsscd08uRJrVy5Urt27VJoaKiqV6+uRo0aqXHjxgoLC9Ozzz6rEiVKmGWcPXtW4eHh6tevn8qUKSPp+pcJAwcO1LVr1/Twww+rTp06ZrkREREKDQ1VuXLl8jxur732mkJDQ9WnTx/5+fkpLS1NJ06csPtSBADgRAYAFHM//PCD4ePj4/DPuHHjDMMwjMOHDxs+Pj7GnDlzLPuPHj3a8PPzM65cuWIu++uvvyzbHT9+3GjcuLHxyiuv2C0PCAgwhg4d6rBtPj4+xqRJkyzLQ0NDDR8fH+OHH34wl/3rX/8yfHx8jKFDhxrXrl2z237p0qWGj4+PsWPHDrvlV65cMTp37mypf+jQoYaPj48RExPjsF2O2tK7d28jOTnZXP7HH38YjRs3Np5//nlzWVRUlOHr62sMGjTIsm2rVq2MgIAAIzU1Ncc6beLj440WLVoY3bp1sxv/K1euGF27djVatGhhXLp0yVw+adIkw8fHJ9flZzR9+nSjadOmxm+//Wa3/NSpU4afn5/dcbKNSZ8+fez6+d133xk+Pj5Go0aNjJ9//tlcnpycbLRv394YMGCAXdkBAQGGj4+PsXTpUrvltuP54Ycfmsts7+PQ0FBz2Zdffmn4+PgYM2fOtNv/+++/N3x8fIwJEyaYy7744gvDx8fH2LZtm922CxYsMHx8fIxDhw6Zy5566inj3nvvNc6cOWO37c8//2w0bNjQ+Ne//nVD49amTRvj8ccfNwAAtwYuQwWAvw0cOFBLly61+zN69GhJ0vr16+Xi4qI+ffooLi7O7k9gYKD++usv8/JCSeYZGMMwlJCQoLi4OFWsWFF33nmnfv755wLtx6OPPio3N/sLR9atW6f69eurcePGdm1PSUlRu3bt9NNPPykpKcnc/rPPPtPRo0dzfVZRkgYPHqySJUuar6tVq6Y777xTJ06cMJdt2bJFhmHo8ccft2z70EMP6fTp0w4vi83Krl27lJiYqJCQEPMMsCR5enoqJCREiYmJ5o/a3AzDMLR+/Xq1adNGVatWtRvD0qVLq0WLFgoPD7fs98gjj9j1s3Xr1pKkZs2a2Z3JLVmypJo2bWo3Vhn7MnjwYLtlgwcPlqenpzZv3pxtuzdv3ixXV1eNGjXKbnmXLl3UsGFDbdmyRenp6ZKu/8BTmTJltGbNGrt+h4aGysfHR82aNZN0/Uzhtm3bFBgYqJIlS9qNRa1atVSnTh3t2rXrhsbN09NTx48fV2RkZLb9AgA4B5ehAsDf6tatq3bt2jlcFxUVJcMw9MADD2S5/59//mn+/ddff9XcuXO1d+9eu/u8JOUpgN0I2yWuGUVFRSkpKUn33XdflvtdvHhRNWrUuOF6a9eubVnm5eVld2+c7V7Mu+++27KtbVlMTIxdkMpObsu7WXFxcYqPj1d4eHiWY+jqav3+NfOYVKhQQZLj90CFChUUHx/vsIyMgVO6Hi5r166dY99OnTqlqlWrmvVmdNddd+m3337TxYsXValSJZUtW1a9evVSWFiY4uLi5O3trYiICMXExOjFF1809/v999+Vnp6uNWvW2AVLR/3O67i9+OKLmjhxooKCglS7dm21bdtWAQEBCgwMdDi+AICCRVgEgFwwDEMuLi76+OOP7e7nyuiuu+6SdP1+riFDhsjT01OjR49W/fr1Vbp0abm4uOjNN9+0hMcbkZaWluU6Dw8Ph+338fHRlClTstzvZp83WJQ/zBuGIUlq166dnnjiiVzvl9WYZPUeKmwDBgzQqlWr9NVXX2nEiBFas2aNSpYsaXcfpW0sgoOD1bdvX4fl2H59N6/j1q1bN23dulXbt2/Xvn37tHv3bq1Zs0atW7fW0qVLLaEZAFCwCIsAkAv16tXTzp07VbNmTTVo0CDbbTdv3qzExER98MEHuvfee+3WxcfH5+kDr5eXl8OzTXk9W1a3bl1dvHhR9957b6GGOtsZp2PHjlmeX3n8+HG7bfJaXuYzVzdSXla8vb1Vvnx5JSQkZHn2uaDExMQoJSXF7n2TkpKimJgY1a9fP9t9a9eurZ07d+ry5csqX7683bqoqCh5enqqYsWK5rKmTZuqUaNGWrNmjR5++GF9++236tatm92jRurUqSMXFxddu3Ytx7G4kXHz8vJS79691bt3bxmGobfffluLFi3Sli1bsj2zDwDIf0X3a2AAyEfBwcGSpHfeecfhWb2Ml6DazhrZzqrYrFq1ynzOX0Zly5Z1GAil6yH14MGDunr1qrns0qVL5iMgcqtPnz46f/68li5d6nB9xvZLeXt0Rl4EBgbKxcVFixcvtiv73LlzWrt2rWrVqqVGjRrlurz27durTJky+vzzz5WQkGAuT0hI0Oeff64yZcqoffv2N91uV1dXBQUF6eeff3b4qBRJuX6URV4lJCRoxYoVdstWrFihhIQEdevWLdt9u3XrpvT0dH300Ud2y7dv365ff/3V4eWd/fv3V1RUlKZPn67k5GT179/fbn3FihXVuXNnbd682e4+XRvDMMxfFc7LuKWlpeny5ct261xcXMz3w6VLl7LtKwAg/3FmEQByoVmzZho7dqzmzZunPn36qEePHqpWrZrOnTunI0eOaMeOHTp8+LAkqVOnTipdurQmTpyooUOHqnz58tq/f7927NihOnXqWMJm8+bNtWbNGr333ntq0KCBXF1dFRAQoDJlymjIkCF64YUX9Oijj6p37966fPmyVq9erZo1azoMnlkZNmyYdu/erVmzZumHH37QvffeK09PT8XGxuqHH35QyZIl9dlnn5nb38ijM3Kjfv36GjlypBYtWqShQ4fqgQce0F9//aVVq1YpMTFRb7/9dp4u0SxfvrwmTJigadOmacCAAeZlkWFhYTp58qSmTZtmPsLhZj3//PPav3+/xo0bpwceeEDNmzeXu7u7YmNjtWPHDjVu3FhvvfVWvtSVUZ06dfT+++/r2LFjaty4sY4cOaLQ0FDVr18/x+dE9u3bV2FhYfr44491+vRptW7dWtHR0VqxYoUqV66s8ePHW/YJDg7W7NmztW7dOt1xxx0O7zV89dVXNXjwYA0dOlS9e/dWo0aNlJ6erpiYGG3ZskV9+vTR2LFjJeV+3P766y916NBBgYGBatSokby9vXXq1CmtXLlSFSpUUEBAQP4MKAAg1wiLAJBLY8aMUZMmTfTZZ59p2bJlSkxMVKVKlXT33XfrpZdeMrerU6eOPv74Y73zzjtauHChSpQooZYtW+qzzz7T9OnT7X7wRbr+YfrSpUtasWKFLl++LMMwtGXLFpUpU0bBwcE6d+6cli9frhkzZqh27dp6+umn5erqqkOHDuW67e7u7vrwww+1YsUK/d///Z/mzZsnSapataqaNm2a5b1nBeGFF15Q3bp1tWLFCs2ZM0fu7u5q3ry55syZY/5aaF4MGTJEVatW1eLFi80H299zzz16//33czzzlhflypXTypUrtWTJEm3atElbtmxRiRIlVL16dbVq1cpyBi6/VK9eXe+9955mzpypr7/+Wu7u7goKCtKkSZPMX93Niru7uxYvXqwPPvhAGzdu1ObNm1WuXDn17NlT48aNc/iDRp6ennrggQcUGhqqhx56SC4uLpZtatSoodDQUH388cfaunWr1q1bp1KlSqlGjRoKCAiwu1w0t+Pm4eGhRx99VHv27NGePXv0119/qWrVqgoMDNSoUaNUrVq1mxxJAEBeuRiZr5MCAAC3hMDAQNWqVcvurK8zvPrqq1q1apW2bt2q6tWrO7VuAMCtg3sWAQCA6cqVK1q3bp06depEUASAYo7LUAEAt5z4+Pgcf1zHw8Pjpu9HTEpK0pUrV3LcrkqVKjdVz+0gMjJSv/76q7766islJiZq1KhRhd0kAEAhIywCAG45Y8eO1d69e7Pdpm/fvjf9gzIbN27M9tmTNkePHr2pem4H//73vzV//nxVq1ZNr7zyivz8/Aq7SQCAQsY9iwCAW87hw4ctj1HIrGrVqrrrrrtuqp5z586Zz2PMjrOfrQgAwK2AsIjbXkhIiO6++25NnTq1QMqfMmWKatWqpTFjxuR534iICA0bNkx79uyRt7d3ltsFBgZqyJAhGjlyZJ7K//LLL/XBBx/ojz/+0DPPPKNatWpp+vTpOnDggCRp7dq1dq8LyrPPPqsWLVpoxIgRBVoPAMA5nD23Xr16VZMmTdKuXbuUkJCgLVu2aMqUKXZtKOg2FXeLFy/W8uXLtXXrVknSzJkzlZKSopdffrmQW4bCxA/c4IZMnjxZvr6+5p+2bdtq1KhRioqKKuym5Wjt2rW5vrzq6NGj+u677zR8+PAbqsvPz0/h4eGqWLFinuvOyaVLlzRt2jSNHDlSO3bscBjUHnzwQX333Xf5Ul92nnnmGS1cuDBX934BABwrznNraGio9u3bpxUrVig8PNzhY13mzZvn8NmgKBhPPPGEwsLCFBMTU9hNQSEiLOKGtWvXTuHh4QoPD9eSJUuUlJR0Q2ffbmWff/65unfvLk9Pzxvav2TJkqpSpYrD55TdrNjYWKWmpqpLly6qWrWqypYta9nGw8NDlSpVuql6UlJSctzG19dXd9xxh9atW3dTdQFAcVdc59aTJ0+qQYMG8vX1VZUqVVSiRAnLfl5eXjc8H9vk9MNZuZGbebEo8Pb2VocOHbRixYrCbgoKEWERN8wWhKpUqaLGjRtr+PDh+u9//6ukpCRzm6NHj2r48OFq1qyZ/P39NXnyZPPs0969e9W4cWNFRESY23/xxRdq2bKl+S1WSEiIpk6dqtdff11t2rRRmzZtNHPmTKWnp2fZrkuXLmnSpElq06aNmjVrpuHDh+vYsWOSrl8WOmXKFCUmJprf3NoeTp5ZWlqavvnmGwUEBJjLVq5cqZ49e5qvd+/eLV9fX3300UfmsgkTJpgPaI+IiJCvr6/i4uJyrDs5OVlTp05Vy5Yt1alTJy1atCjLPq5du1Z9+vSRJHXr1k2+vr46deqUw+0yf9O7detWPfTQQ2ratKkCAwP17rvv2k18gYGBmjdvnqZMmaLWrVtrwoQJkqT58+crICBATZo0Ufv27TVx4kS7cgMDA7Vhw4Ys2wwAyFlxnFtDQkK0bNky7du3T76+vgoJCXG4b0hIiKZNm2a+TklJ0ezZs9WpUyc1b95c/fr1086dO831tjl4+/btevjhh9WkSROFh4frzJkzGj16tPz9/dW8eXP17NlTX3/9dZZ9nzx5skaNGqWPPvpInTp1UufOnSVJZ8+e1fPPP2+O4ZNPPqkTJ06Y+82bN0+9evVSWFiYAgMD1aJFC02ZMkUpKSlavny5OnfurLZt22rGjBl2Y5/dWCckJKhZs2bmpaI24eHhaty4sS5cuJCrtknSxx9/rPbt28vPz08TJ05UYmKipe+BgYHZjg2KPsIi8kVCQoI2btwoHx8feXh4SJISExM1cuRIlSlTRqtXr9b8+fN14MABvfjii5Ikf39/jRw5UhMnTtSlS5cUFRWlt956Sy+//LJq165tlr1+/XoZhqEvvvhCr732mlatWqVPP/00y7ZMnjxZhw4d0oIFC7R69Wp5eHjo8ccfV1JSkvz8/PTiiy+qdOnS5je3Wd1nd/ToUV25ckVNmzY1l/n7++v333/X+fPnJV2fiCpWrGg3Ke/bt0/+/v6W8nKq+9NPP5WPj4/CwsL0xBNPaPbs2Vnea/jggw+aYXL16tVZXrKT2c6dOzVhwgQNGTJEX3/9td58801t2rRJ7777rt12S5cuVf369RUaGqrx48fr3//+t5YsWaJXXnlF3377rRYuXKhmzZrZ7dOsWTP98ssvdh9oAAA3rrjMrfPmzdNDDz1k3rqRVdDMbMqUKdq3b5/mzJmjDRs2qG/fvho9erT+85//2G339ttva9y4cfrmm2/UvHlzvfbaa0pKStKyZcu0YcMGvfjiizk+hmfv3r06evSoFi1apE8++URXr17VsGHDVKpUKX322Wf64osvVKVKFT322GO6evWqud/p06e1ZcsWLVy4UPPmzdOmTZs0evRoHT58WEuWLNHrr7+uzz//XJs3b87VWHt6eiogIEDr16+3a9/69evVrl07VapUKVdt27hxo+bOnauxY8dq7dq1uvPOO7V06VJLv5s2baqzZ88qOjo6V8cERQ+PzsAN27lzp3nWKjExUTVq1LA7w7ZhwwZdvXpVs2bNMi8bmTZtmoYNG6aTJ0+qbt26Gjt2rHbt2qWXXnpJp0+fVpcuXdS3b1+7eqpWrap//vOfcnFxUYMGDXTixAktXbpUjz32mKVNJ06c0NatW/X555+rTZs2kqTZs2erS5cuWr9+vfr3769y5crJxcUlx+emxcbGWrZr0KCBqlSpooiICPXq1Ut79+7ViBEj9MEHHyg1NVWnT5/WH3/8obZt21rKK1myZLZ1t2/fXkOHDpV0/dvTzz77THv27HF4D4iHh4e8vLwkXb9MJLfPgFu4cKFGjhypfv36SZLq1KmjF154QS+88IImTpxoXi7r7++vJ554wtzv+++/V5UqVdS+fXu5u7urZs2adhO9dP04Xbt2TefOnVOdOnVy1R4AgL3iOLd6eXmpdOnScnd3z/V8Fh0dra+//lpbt25VzZo1JUlDhw7V7t279cUXX+jVV181tx0zZow6dOhgvj59+rR69Oihe+65R5LsQnRWSpUqpRkzZqhkyZKSpDVr1sgwDM2YMcOcO6dNm6Z27drp+++/14MPPijp+pnUGTNmqFy5cvLx8VHHjh21d+9effDBBypZsqQaNGigli1bKiIiQj169MjVWAcHB2v8+PFKSEiQp6enkpKStHnzZr322muSpK+//jrHti1btkx9+vTRoEGDJEmjR49WRESEJRRWq1bNHDPm9uKJsIgb1rp1a02fPl3S9UsmVq5cqREjRmj16tWqUaOGoqKi5Ovra3d/gZ+fn1xdXXX8+HHVrVtX7u7umjNnjnr16iVvb2+H32o2b97c7p4/Pz8/zZ071/xPMqOoqCi5urqqRYsW5jLbf9C5+Xn8jJKSkuTm5iZXV/sT8G3atNHevXvVtWtX/fLLL5o3b56++OIL/fLLLzp+/Ljq1Kmj6tWr56ku6fp9fxlVrVpVcXFxeS4nO0eOHNHPP/9sd4lrenq6kpKSdP78eVWtWlWS1KRJE7v9evbsqWXLlqlr167q0KGDOnbsqK5du5qTpiTzW2/OLALAjSuuc2teHTlyRIZh6B//+Ifd8pSUFN177712yzLPacOGDdOrr76qnTt36t5779X9999v2Sazu+++227OO3LkiE6dOqWWLVvabXf16lW7H4SpUaOG3VnLSpUqqV69enZlVapUybx8NDdj3alTJ3l4eOi7775Tnz59tHXrVhmGoW7duuW6bVFRUXr44Yft1rdo0cISFkuVKiWJub04IyzihpUuXVp169Y1Xzdu3FitW7fWl19+qXHjxmW7b8YJ6uDBg0pPT9eVK1cUFxen8uXLF0h78/ojMxUrVtS1a9d09epVlS5d2lzu7++vTz75RAcOHFDdunVVuXJl+fv7KyIiQsePH3d4CWpuuLnZ/3N0cXHJ9v6RG5Genq4xY8bY3Xdpk/HRHhn7K12f7DZt2qQ9e/Zo9+7dmjlzpt5//32tWrVKZcqUkXT9Q03mcgAAeVNc59a8MgxDLi4uWrNmjWX+tH15aZO5nv79+6tjx47avn27du/erUGDBmnUqFEaO3ZslvXZ5jqb9PR03XPPPZbbOCSpQoUK5t/d3d3t1rm4uDhclpv53jbW7u7ueuCBB7R+/Xr16dNH69at0/3332/2M7dtyw3mdnDPIvKNi4uLXFxczG+fGjRooMjISCUkJJjbHDhwQOnp6WrQoIEkKSYmRtOnT9fUqVPVrl07vfDCC0pNTbUr99ChQ8r4ONCDBw+qatWqDn8RrUGDBkpPT9fBgwfNZQkJCYqMjDTrdHd3V1paWo79adiwoSRZvjX19/fXiRMntH79ejMY2sJiVvcr2uS27oLSqFEj/fe//1XdunUtfzJPtpmVKlVKXbp00Ysvvqg1a9bo2LFj2r9/v7k+MjJS1apVU+XKlQu6GwBQbBSXuTWvGjZsKMMwdP78ect8Zrt0MjvVq1fXwIEDNXfuXD377LP68ssv81R/48aNFR0drYoVK1rqt90mciNyM9aSFBwcrD179uj48eMKDw9XcHBwntrWoEEDHTp0yK7uzK8l6dixY3J3d5ePj88N9wm3N8IiblhKSorOnz+v8+fPKyoqStOnT1diYqL5C2dBQUHy8PDQpEmTdPToUe3bt09Tp05V9+7dVbduXaWlpWnixIlq06aNBg0apNdff11nzpzR/Pnz7eo5d+6c3njjDf33v//Vpk2btHjx4iyfe1ivXj117dpVU6dO1Y8//qijR49qwoQJ8vT0VFBQkCSpVq1aSk5O1q5duxQXF2d3I3pG3t7eaty4sX766Se75bb7FtetW2fem+jv76+9e/dmeb+iTW7rLijPPPOMNmzYoLlz5yoyMlJRUVHatGmTZs2ale1+a9eu1erVq3X06FHFxMRo7dq1cnd3t/v2+6effrK7JwQAkHfFdW7NqzvvvFNBQUGaMmWKNm3apJiYGP3yyy9avHixvv3222z3ff3117Vjxw7FxMTot99+086dO3XXXXflqf6goCBVqlRJTz/9tPbu3auYmBjt27dPb731luVXR/MiN2MtSS1btlTNmjX1//7f/5OXl5fuu+++PLVt2LBhCgsL06pVq3TixAl9+OGHDsPijz/+qFatWt3UWWDc3rgMFTds9+7dZjgoW7as6tevr7lz55phqXTp0lq8eLHefPNN9e/fX6VKlVLXrl3Nx0osXLhQ0dHR5i96VaxYUTNnztSTTz6pDh06qHXr1pKu/6eXnp6uAQMGyMXFRQ8//HCWE5okzZgxQ2+++aZGjx6t5ORktWzZUosWLTIvS2nZsqUGDRqk8ePHKz4+XmPGjMny0pMBAwZo9erVlvratGmjb775xjyLeMcdd6hatWoqUaJEtvcr5qXugtCxY0d9+OGHWrBggZYsWaISJUqoXr16euihh7Ldr3z58vr44481c+ZMpaamqkGDBpo3b575owDJycnavHmzFi9e7IxuAECRVZzn1ryaMWOGFi5cqNmzZ+vs2bOqUKGCmjZtmu2XttL1S1htIbps2bK67777NHny5DzVXbp0aS1fvlxz5szRc889pytXrqhq1apq27btTV/ym9NY2wQFBWnBggUaPkqS5+cAACAASURBVHy43XMpc9O2Bx98UDExMXr33XeVlJSkwMBAPfbYYwoLC7OrY8OGDXr22Wdvqj+4vbkYGa9BAG4xISEhuvvuuzV16tRCqT85OVkPPPCAZs2aZU6wsFq+fLm2bNmiJUuWFHZTAAA5YG5Fbmzbtk2zZs3SunXrcrxVBUUXl6EC2ShVqpRmzpyp+Pj4wm7KLc3NzU3//Oc/C7sZAIDbAHPr7SExMVEzZswgKBZzHH0gB7bnHCFrAwcOLOwmAABuI8yttz7bsyJRvHEZKgAAAADAgstQAQAAAAAWhEUAAAAAgAVhEQAAAABgkeMP3Fy8+JfS02/+tsZKlTx14ULCTZdzO6HPxUNx7LNUPPtNn2+Oq6uLKlYsmy9lFXf5MTcXpfdzUeqLVLT6Q19uXUWpP0WpL5Jz+5PT3JxjWExPN/IlLNrKKm7oc/FQHPssFc9+02fcCvJrbi5Kx7Yo9UUqWv2hL7euotSfotQX6dbpD5ehAgAAAAAsCIsAAAAAAAvCIgAAAADAgrAIAAAAALAgLAIAAAAALAiLAAAAAAALwiIAAAAAwIKwCAAAAACwICwCAAAAACwIiwAAAAAAC8IiAAAAAMCCsAgAAAAAsCAsAgAAAAAsCIsAAAAAAAvCIgAAAADAgrAIAAAAALAgLAIAAAAALAiLAAAAAAALwiIAAAAAwIKwCAAAAACwICwCAAAAACwIiwAAAAAAC8IiAAAAAMDCzRmVrFixTL/99ovS0tLVpElzDR48zBnVAgCAYmLFimWKiTlZ2M3IF+7uJXTtWpr5+tKleElShQpehdWkG5a5LwWldu26fL4ECoBTwmJMzEmdPh0r6fb8jw4AANzaYmJO6uix4yrhUfQ+Z6QlXQ+L5y+nFnJLbk228QGQ/5wSFiVJrs6rCgAAFD8lPLxUpm7Xwm5Gvks8uUWSimTf8oNtfADkP+5ZBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACAhVPC4qVL8ZKRbr7etWuHdu3a4YyqAQCAA1u3bmUuBoDblLPylJPC4iW7sBgevl3h4dudUTUAAHBg8+bNzMUAcJtyVp7iMlQAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgIVbYVR69OhvkqQRIwYXRvVFgqenpxISEuTq6qr09HS7dUFBwdqwYb2GDh2h1auXy8urouLjL2rKlFdkGIZmzpyuRx99XJ9+ukiTJ09V7dp1JUnR0Sc0c+Z0c1l8/EUtXDhPo0c/qwoVvCRJ8fEXNX/+u3JxkUJCRmjZsiVKSUnWn3+e15Qpr6hKlSZmO2z7Dx78qJYtW6zk5CT9+ed5Va9eQ489NkorVnyqwYOHadmyJXJxkcaMGW/Wk7GM+fPfVVpamkqUKKFhw0ZqxYpPNXr0szIMQ++9N1vnzv2hZ54ZrxUrPtGZM7GqXr2GhgwZrgUL3tPkyVNVrlz5v9sxTCtWLFNQUB8tWDDXru8Z22sr29HfM49DamqqSpcupaeees7S9tyMZ+Z6HfU/Y9sztifjsgoVvMw2SdLYsePtlqWmpsrd3U1jxozXpUvxdu3KzFGdGcuyHasqVcplWWdu+pnV+yursXDUxuz6nt/i4y9qzpw39Pjjz+RYfm77kZs686OcjGUNHvyo+W/IUZk3c1wAAEDRUuLVV199NbsNrl5NkWHcXCUbN65Tamqq5OKqypW8deHCnzdXIJSSkiJJMhwcnMjIo5Kkn38+qNTUVCUkJCg1NVWRkf/RTz/t08WLcTpwYL9SUlIUGfkfBQZ2lyTNnv2GLl6MM5etXr1S+/fvU3Jyspo395MkrV69UgcO/GhuFx19UpcvXzbLDwrqpcTEFHPb/fv3KTLyN0VHn9SVK5eVlpamS5fiFRn5H508ecIs4+LFOKWk/K8eG1t9ly7Fm3WePHlCycnJioz8jw4d2q/U1FQdOrRfFy/GSZISEhJ06NABXb2aqMjI/+jChT//bsf1fQ8e/N86W98zttdWtqO/Zx6HS5fideHCBYdtz814Zq7XUf8ztj1jezIua97cz+7Y2NqTefxSUpL17bcb7dqVmaM6HZV/33336tNPP3FYZ276mdX7K6uxcNTG7Pqe31avXql9+/bm2DZH7buZOvOjnIxlRUb+Zndcc6qzbNlS+vTTT/KlHS4uLipTpuTNdAN/y4+5ec+enUpPN9ShQ+f8aVQhKlu2lL79drPiLifK3at+YTcn31279LskFcm+5Ydrl36Xd4UyBf5eLlu2lPkZpygoSv0pSn2RctefXbt2SNJNv+9zmpudfhmq7awinMH+k0Rs7GnFxp6WJKWlpZrLYmJOKjr6hLkuNva0jhz5ReHh22UYhsLDd+jSpXjFx1/Uzp3b7MrLXP7vv1+f0OLjL5r7Z97Otm3mdeHh23XpUrz5OnN9GfcLD9+u7du/N5cnJv5lt53tdWzsae3cuc2syzAMu3UxMSct7Q0P327us3Pndu3c6WgcttvVl7ntuRlPa707LP3POIaZ2/O/sdih6OiTdm3auXO7ZZkk7djxvV27bP3Prs7r5Z+wOxbh4dv1+++/O6jzRK766Wi77MYiqzZm1fes9r1RuW1bXrfNrzrzUlbG45q5TEd1xsXF5Vs7AADA7cW5l6Ea6TlvA6f78MP5lmUffPAvpadfD5vp6elat26tJCk1NS3bst5++229+upbWr8+zNw/t1JTU7Vu3VqFhIyQJK1fH5ZlfampqQ7Pqma1bVY+/HC+Xn99tl17r5f9v31dXK7/PeM42MJ2Vm3/6KP37dY7Gs+QkBF29WZcbut/5jHM2B6b9PR0ffTRfLs2paamWpZdb7f9eNr6b+Oozuvlv293LFJTU/X22287qPP9XPXT0XbX/+54LDKylmXte1b73qjsjtPNbJtfdealLBtHZTqq08PDPd/agVtLfHy8LlyI08yZ0wu7KTfN3b2EoqNPKj2tRGE3BYUgPTVJ0dEnC/y97O5eQteuZf856HZSlPpTlPoi5a4/0dEnVaFChQJvCz9wA7szjjaJiX+ZH8DT0lK1Z88u7dmzS5nPVmYWHR0tSdqzZ5clqOTEMIy/65BZRlb15TYo5sTW74ztvV62rXzDrCvjOGSuP3PbczOemevNuDzzugw1WepOS0s1zxZl3M66LOv+Z1enrfyMx8IwDEVHRzusMzf9dLRddmORVRuz6ntW+96o3LYtr9vmV515KcvGUZmO6ty2bVu+tQMAANxenHtm0cVVMopO6i8qatasJck+OJQpU1bJyclKS0tViRJuuu++9pKk77/fouwCY506dSRJ993XXjt2bHMQdrLm4uJi1mMrI6v6XFxc8iUw2vqesb3Xy9bf9brIxeV6OMo4Dtu2bbGrP3Pba9aslavxzFhvxuWZ12XoudkemxIl3FStWjWdORObYbmLatasmWlZ1v3Prk5b+bGxsbIdCxcXF9WuXVsxMTGWOs+ePZtjP6tVq+Zwu6zGIqs2ZtX3rPa9Udkdp5vZNr/qzEtZNo7KdFSnh4e7vv12c760A7cWLy8vlS1bTpMmvVzYTblpVaqU04QJE3U8ht9EKI5c3TxUp3blAn8vV6lSTufPXynQOpypKPWnKPVFyl1/nHVVCGcWoVGjxujJJ5+xWzZ69LNydb1+vaOrq6uCgx9SUFBfubllf4nPhAkTJElBQX3N/XPLzc1NwcEPma+zq8/NzU2urrm73MjNLevvREaNGmPWZWuvm5ubWa+bm5tKlLi+f8ZxsC3Lqu25Gc/M9WZcnnldxnoy1+3q6qonnxxjt9zNzc2yTJJKlLAfM1v/s6vzevnP2B0LNzc3TZgwwUGdz+Sqn462y24ssmpjVn3Pat8bldu25XXb/KozL2XZOCrTUZ2DBg3Kt3YAAIDbi9PDoq9vQ2dXWYzZfzisWbOWeSbJ9uG6Zs1aql27rurUqWeuq1mzlho3bqoOHTrLxcVFHTp0UoUKXvLyqqiOHbvYlZe5/DvvvFOS5OVV0dw/83a2bTOv69Chs93P8meuL+N+HTp0VufOAebyMmXK2m1ne12zZi117NjFrOv6Lz79b53t0REZ29uhQ2dzn44dO6tjR0fjYP/LU5nbnpvxtNbbydL/jGOYuT3/G4tOqlOnrl2bOnbsbFkmSZ06Bdi1K/OjMxzVeb38enbHokOHzrrzzjsd1FkvV/10tF12Y5FVG7Pqe34/3iG3bcvrtvlVZ17KynhcM5fpqE5vb+98awcAALi98OiM25Snp6dSUlLk6upqucwwKChYx45FKiRkhCIjf1PlylWUmpqqceMmqlWrNoqI2K0RI0bpyJFfNG7cC+aHv7vu8lFExG5zWd269fT771EaOnS4PDw8JEl169bTsWOR8vb21ogRoxQdfVJly5ZVSkqKxo2bqBo1qpo/9Wvbf/jwJxUdfVJlypRRSkqy7rijth5//GnFxp7S8OFPKDr6pLy9vRUSMsKsx8ZWX/nyFVSpUmWNGPGUYmNPaejQ4fLxuUe//farkpOT9PTTz+vEiSglJFxR9eo1NGLEKB08+JPGjXtBTZu2+LsdTyg29rSGDHnUXJfxg2/G/vr43OPw75nHoVy58qpevZqGDHnM0vbcjGfmeh31P2PbM7Yn4zIPDw+zTRUremvYsBF2y8qVK6/KlSsrJGSEmjRpZteuzBzVmbEs27Hy9q6gypVrOqwzN/3M6v2V1Vg4amN2fc9vdevW06lTJ/TII4/mWH5u+5GbOvOjnIxlDR/+pPlvyFGZmessW7aUKleumS/t4NEZ+YdHZ9jj0RnFG4/OuDFFqT9FqS/SrfXoDBcjhxu/LlxIyPOvWmb2zDOP6+rVq5Krm3zvvstcXhTuk8hOUbt+Ojfoc/FRHPtNn2+Oq6uLKlXyzJeyirv8mJvfeedNXbuWViTm4oz3LJap27Wwm5PvEk9ukaQi2bf8kHhyi+7insU8K0r9KUp9kfJ2z+LNvu9zmpu5ZxEAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYOHmjEoqVKigq0nJ5usOHTo7o1oAAJCF+++/X5cvXy3sZgAAboCz8pSTwqKX/jj3p/m6fftOzqgWAABkITAwUOfPXynsZgAAboCz8hSXoQIAAAAALAiLAAAAAAALwiIAAAAAwIKwCAAAAACwICwCAAAAACwIiwAAAAAAC8IiAAAAAMCCsAgAAAAAsCAsAgAAAAAsCIsAAAAAAAvCIgAAAADAgrAIAAAAALAgLAIAAAAALAiLAAAAAAALwiIAAAAAwIKwCAAAAACwICwCAAAAACwIiwAAAAAAC8IiAAAAAMCCsAgAAAAAsCAsAgAAAAAsCIsAAAAAAAvCIgAAAADAgrAIAAAAALAgLAIAAAAALAiLAAAAAAALwiIAAAAAwIKwCAAAAACwICwCAAAAACwIiwAAAAAAC8IiAAAAAMCCsAgAAAAAsCAsAgAAAAAsCIsAAAAAAAvCIgAAAADAgrAIAAAAALAgLAIAAAAALAiLAAAAAAALwiIAAAAAwIKwCAAAAACwICwCAAAAACwIiwAAAAAAC8IiAAAAAMCCsAgAAAAAsCAsAgAAAAAsCIsAAAAAAAvCIgAAAADAgrAIAAAAALAgLAIAAAAALAiLAAAAAAALwiIAAAAAwMLNaTWlpzqtKgAAUPykJcUr8eSWwm5GvktLipekItm3/HB9fCoXdjOAIskpYbF27bpKSListLR01a5d1xlVAgCAYqQofb5wdy+ha9fSzNeXLl3/uFahgldhNemGZe5LwahcpI4/cCtxSlgcPHiYqlQpp/PnrzijOgAAUMwMHjyssJuQb4rSZ6ai1BegOOKeRQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABaERQAAAACABWERAAAAAGBBWAQAAAAAWBAWAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABZuOW3g6uqSb5XlZ1m3C/pcPBTHPkvFs9/0ufDLAcfEkaLUF6lo9Ye+3LqKUn+KUl8k5/Unp3pcDMMwnNISAAAAAMBtg8tQAQAAAAAWhEUAAAAAgAVhEQAAAABgQVgEAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBYBAAAAABYFHhZ///13DRw4UD169NDAgQN14sSJgq7yhs2cOVOBgYHy9fVVZGSkuTy7Pjh7XX67ePGinnjiCfXo0UNBQUEaM2aM4uLiJEkHDx5UcHCwevTooREjRujChQvmfs5el9+efvppBQcHq0+fPho8eLB+++03SUX7WNvMnz/f7j1elI+zJAUGBqpnz57q3bu3evfurZ07dxb5ficnJ+uVV15R9+7dFRQUpJdffllS8Xh/I2e3w3Fx5nxc0Jw9zxY0Z86fzuKMedEZnDnfFTRnzmMF6dSpU+bx6N27twIDA+Xv73979cUoYCEhIcZXX31lGIZhfPXVV0ZISEhBV3nD9u3bZ8TGxhoBAQHG0aNHzeXZ9cHZ6/LbxYsXjR9++MF8/dZbbxlTpkwx0tLSjG7duhn79u0zDMMw3n//fWPy5MmGYRhOX1cQLl++bP598+bNRp8+fQzDKNrH2jAM4/Dhw8bIkSPN93hRP86GYVj+PRdG35zd7+nTpxtvvPGGkZ6ebhiGYZw/f94wjKL//kbu3A7HxZnzcUFz5jzrDM6cP53BGfOiszhrvnMGZ85jzvT6668br732Wo5tupX6UqBh8c8//zRatWplpKamGoZhGKmpqUarVq2MCxcuFGS1Ny3jP7bs+uDsdc6wadMm49FHHzUOHTpk/OMf/zCXX7hwwWjRooVhGIbT1xW0sLAwo2/fvkX+WCcnJxsDBgwwYmJizPd4cTjOjibPotzvhIQEo1WrVkZCQoLd8qL+/kbu3G7HpaDn48JQkPOssxXk/OkMzpoXncVZ811Bc+Y85kzJyclG27ZtjcOHD99WfXEryLOWZ86cUbVq1VSiRAlJUokSJVS1alWdOXNG3t7eBVl1vsmuD4ZhOHVdQY9Zenq6Vq5cqcDAQJ05c0Y1a9Y013l7eys9PV3x8fFOX+fl5VUg/X3ppZe0a9cuGYahRYsWFfljPXfuXAUHB+uOO+4wlxWH4yxJEyZMkGEYatWqlcaPH1+k+x0TEyMvLy/Nnz9fERERKlu2rJ577jl5eHgU6fc3cud2npcL4v9oZ/e5oOfZgvx/NCNnzJ/OODbOmheddVwk58x3Bd0fZ85jzvw/YOvWrapWrZoaN26sw4cP3zZ94QduYJo+fbrKlCmjoUOHFnZTnOKNN97Qtm3b9Pzzz2vWrFmF3ZwCdeDAAR0+fFiDBw8u7KY43fLly7Vu3TqFhobKMAxNmzatsJtUoNLS0hQTE6NGjRpp7dq1mjBhgsaOHavExMTCbhpQ7BWVebYozJ9FcV4sKvNdUZ3HQkND1a9fv8JuRp4VaFisUaOGzp49q7S0NEnXD/65c+dUo0aNgqw2X2XXB2evK0gzZ87UyZMn9d5778nV1VU1atRQbGysuT4uLk6urq7y8vJy+rqC1qdPH0VERKh69epF9ljv27dPUVFR6tq1qwIDA/XHH39o5MiROnnyZJE/zrbxLFmypAYPHqz9+/cX6fd3jRo15Obmpl69ekmSmjdvrooVK8rDw6PIvr+Re7fzcbnd34vOmGedrSDnz4LmzHnRWZw13zmjH86ax5zl7Nmz2rdvn4KCgsw+3i59KdCwWKlSJTVs2FAbNmyQJG3YsEENGza85S91ySi7Pjh7XUF55513dPjwYb3//vsqWbKkJKlJkyZKSkrSjz/+KEn64osv1LNnz0JZl9/++usvnTlzxny9detWVahQoUgf6yeffFLh4eHaunWrtm7dqurVq2vx4sV6/PHHi+xxlqTExERduXJFkmQYhjZu3KiGDRsW6fe3t7e32rZtq127dkm6/qtpFy5cUL169Yrs+xu5dzsfl9v5veisebagOXP+LGjOnBedwZnzXUFz5jzmLGFhYercubMqVqwo6Tb7/6zA7ob82/Hjx42HH37Y6N69u/Hwww8bUVFRBV3lDZs+fbrRsWNHo2HDhka7du2MBx980DCM7Pvg7HX5LTIy0vDx8TG6d+9uBAcHG8HBwcbTTz9tGIZh/PTTT0avXr2M+++/3xg+fLj5S1SFsS4/nT9/3ujfv7/Rq1cvIzg42AgJCTEOHz5sGEbRPtYZZbwJvqgeZ8MwjOjoaKN3795Gr169jAcffNAYO3ascfbs2WLR76FDhxq9evUy+vTpY2zbts0wjOLz/kb2bofj4sz5uKA5e54tSM6eP52poOfFgubs+c4Z/XHWPOYM3bt3N7Zv32637Hbpi4thGEbBRVEAAAAAwO2IH7gBAAAAAFgQFgEAAAAAFoRFAAAAAIAFYREAAAAAYEFYBAAAAABYEBZRLPz5558aMmSI/Pz89NZbbxV2cyRJISEhWr16dWE3AwCAQsHcDNz63Aq7AYAzfPnll6pYsaL2798vFxeXwm4OAADFHnMzcOvjzCKKhdjYWDVo0IDJCACAWwRzM3DrIyyi0AQGBmrx4sUKCgpSq1atNG7cOCUnJ0uSVq1apfvvv1/+/v566qmndPbs2RzL279/v/r166dWrVqpX79+2r9/vyRp8uTJ+uqrr7R48WL5+flp9+7dWZaRnp6ujz76SN26dVPbtm313HPPKT4+XpJ06tQp+fr6KjQ0VJ07d1abNm20cuVK/fzzzwoKClLr1q01bdo0s6y1a9dq0KBBmjZtmlq1aqWePXtqz549Wda7YMECBQQE6L777tPEiRN15coVSdKTTz6pzz77zG77oKAgbd68WZIUFRWlxx57TP7+/urRo4c2btxobpeSkqKZM2eqS5cuateunaZOnaqkpCRJUlxcnEaNGqXWrVvL399fgwcPVnp6eo7jDAAoupib7etlbkaxZwCFJCAgwOjXr5/xxx9/GBcvXjR69uxprFixwti9e7fh7+9vHP7/7dxbSNRZHAfw706jZlp4qca0kHooyhLMScbQtBJCGexiJoZl2GUKlVC6WDAQReKDaEmFL2H10EXLrGmsIFDwKSoK2RIqYcwcmylnpFKbS/72YZf/bjvWZuxiq9/P05zzP//zP2cG5ss5c5hffxWXyyVHjx6VzZs3f7Mvp9MpWq1Wrl+/Lh6PR0wmk2i1WnE4HCIicvDgQamqqvrHMZ07d06ys7Olt7dXXC6XGI1GKSkpERGR7u5umT9/vhiNRvn06ZO0tbXJ4sWLZc+ePfLu3Tt58+aN6HQ6uX//voiIXLt2TRYuXCh1dXXidrvFbDbL0qVLxel0iohIXl6e1NfXi4hIQ0ODpKWlyatXr+Tjx49SWFgo+/btExERs9ksGzduVMbY0dEhCQkJ4nK5ZGBgQFasWCFXr14Vj8cjbjROOQAABUVJREFUT58+lYSEBHnx4oWIiBw/flwMBoM4nU758OGDGAwGqaysFBGRyspKMRqN4na7xe12y4MHD2R4ePi7Pz8iIhp/mM3MZqK/4i+LNKa2bNkCjUaDkJAQrFy5Eh0dHTCZTMjKykJMTAz8/f1RWlqKJ0+e4PXr11/tp7W1FdHR0Vi3bh3UajX0ej3mzZuHlpaWUY3n8uXLKCkpQUREBPz9/VFUVIS7d+/C6/UqbQoLCxEQEICkpCRMmTIFer0e4eHh0Gg00Gq1ePbsmdI2LCwM+fn58PPzQ0ZGBubOnYvW1laf55pMJmzbtg1z5sxBUFAQSktL0dzcDK/Xi9WrV8NiscBisQAAbty4gfT0dPj7+6O1tRVRUVHIysqCWq3GokWLsGbNGty5cwcigvr6ehw+fBghISEIDg6GwWCA2WwGAKjVarx9+xZWqxV+fn7QarU8CkRERMzmPzCbifgHNzTGZsyYobwODAyE3W5Hf38/YmJilPqgoCCEhITAZrNh9uzZI/Zjt9sRGRn5RV1kZOR3HZH5K6vVisLCQqhUf+6jqFQq9PX1KeXw8HDldUBAgE95cHBQKWs0mi++5CMjI2G320ccf1RUlFKOioqC1+tFX18fNBoN0tPTcfPmTRQVFeHWrVuoqakBAPT09KC9vR1arVa59/Pnz8jMzITD4cDQ0BA2bNigXBMR5TjL9u3bcerUKRQUFAAAcnJysGvXrlG8W0RENB4xm/8cP7OZJjouFumnM3PmTPT09CjlwcFB9Pf3Q6PRfPMeq9X6RV1vby+Sk5NH9eyIiAiUl5cjPj7e59q3dk+/xmazQUSUUOrt7cWqVat82v19zlarFWq1Wgm79evX48CBA4iPj0dgYCDi4uIAALNmzcKyZctQV1fn0+fw8DAmT54Ms9k84nsXHByMsrIylJWV4fnz58jPz8eSJUuQmJg46nkSEdH4xmxmNtPExGOo9NPR6/VobGxER0cH3G43qqqqEBsb+9WdSwBISUmBxWKByWSC1+tFc3MzXr58idTU1FE9Ozc3FydOnFDCweFw4N69ez88F4fDgQsXLsDj8eD27dvo7OxESkqKTzu9Xo/z58+ju7sbAwMDqK6uRnp6OtTq3/dz4uLioFKpUFFRgczMTOW+1NRUWCwWNDU1wePxwOPxoL29HZ2dnVCpVMjOzkZ5ebmy+2qz2dDW1gYAaGlpQVdXF0QEU6dOxaRJk3jUhYiIRsRsZjbTxMRfFumns3z5cuzduxfFxcV4//494uLiUF1d/c17QkNDUVtbi/Lychw5cgTR0dGora1FWFjYqJ69detWiAgKCgpgt9sRHh6OjIwMpKWl/dBcYmNj0dXVBZ1Oh+nTp6OmpgahoaE+7bKysmCz2ZCXlweXy4WkpCQYjcYv2qxduxYnT57EmTNnlLrg4GCcPXsWFRUVqKiogIhgwYIFOHToEABg//79OH36NDZt2gSn0wmNRoPc3FwkJyejq6sLx44dg8PhwLRp05CbmwudTvdD8yQiovGN2cxsponpFxGRsR4E0XjU2NiIhoYGXLp06V/pr6mpCVeuXPnX+iMiIppomM1Eo8NjqET/A0NDQ7h48SJycnLGeihEREQEZjNNDDyGSv8bDx8+xM6dO0e89vjx4+/uZ8eOHXj06JFPvcFgwO7du394fP+VtrY2FBcXIzExEXq9fqyHQ0REpGA2M5tpfOMxVCIiIiIiIvLBY6hERERERETkg4tFIiIiIiIi8sHFIhEREREREfngYpGIiIiIiIh8cLFIREREREREPrhYJCIiIiIiIh+/AWDNvr2TgCF8AAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"With so few records removed, there is little difference in the plots for number of employees. Put another way, the comments on this feature from the first EDA are still applicable. The middle 50% of observations is between about 1000 and 3500. There are also tiny companies, with not more than several employees, and massive companies, with over half a million employees, in our data set."
],
"metadata": {
"id": "QwZR8EcYDvtv"
},
"id": "QwZR8EcYDvtv"
},
{
"cell_type": "markdown",
"id": "domestic-iceland",
"metadata": {
"id": "domestic-iceland"
},
"source": [
"## Building bagging and boosting models"
]
},
{
"cell_type": "markdown",
"source": [
"When scoring our models, we must find a good balance between false positives and false negatives.\n",
"* A false positive is a certified visa that should have been denied. We want to reduce false positives because these workers may be ineffective and not benefit the company.\n",
"* On the other hand, a false negative constitutes a denied visa that should have been certified. This deprives the workforce of an asset, someone who could benefit US companies.\n",
"\n",
"With this in mind, we will score our models on F1, as it balances recall and precision, reducing both false positives and false negatives."
],
"metadata": {
"id": "dfMMD01bMkKI"
},
"id": "dfMMD01bMkKI"
},
{
"cell_type": "markdown",
"source": [
"### Functions"
],
"metadata": {
"id": "9V9RR10TmfdZ"
},
"id": "9V9RR10TmfdZ"
},
{
"cell_type": "code",
"source": [
"def scores(model):\n",
" '''Print training and testing\n",
" metrics for the specified model.'''\n",
"\n",
" score_idx=['Accuracy','Precision','Recall','F1']\n",
" X_train_pred=model.predict(X_train)\n",
" score_list_train=[metrics.accuracy_score(y_train,X_train_pred),\n",
" metrics.precision_score(y_train,X_train_pred),\n",
" metrics.recall_score(y_train,X_train_pred),\n",
" metrics.f1_score(y_train,X_train_pred)]\n",
"\n",
" X_test_pred=model.predict(X_test)\n",
" score_list_test=[metrics.accuracy_score(y_test,X_test_pred),\n",
" metrics.precision_score(y_test,X_test_pred),\n",
" metrics.recall_score(y_test,X_test_pred),\n",
" metrics.f1_score(y_test,X_test_pred)]\n",
"\n",
" df=pd.DataFrame(index=score_idx)\n",
" df['Train']=score_list_train\n",
" df['Test']=score_list_test\n",
" return df"
],
"metadata": {
"id": "H92Kf99dmey8"
},
"id": "H92Kf99dmey8",
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"This function gets the scores of a model on training data and testing data."
],
"metadata": {
"id": "5E894mMhyiGz"
},
"id": "5E894mMhyiGz"
},
{
"cell_type": "code",
"source": [
"model_comp_table=pd.DataFrame(columns=['Train Acc','Test Acc','Train F1','Test F1','Status'])\n",
"y_train_test_lens=[y_train.shape[0],y_test.shape[0]]\n",
"\n",
"def tabulate(model,name):\n",
" '''Compute train/test accuracy and\n",
" F1 for a given model. Add to table.'''\n",
"\n",
" # run predictions with model\n",
" X_train_pred=model.predict(X_train)\n",
" X_test_pred=model.predict(X_test)\n",
"\n",
" # run overfitting test\n",
" train_acc_count=np.logical_not(np.logical_xor(y_train,X_train_pred)).sum()\n",
" test_acc_count=np.logical_not(np.logical_xor(y_test,X_test_pred)).sum()\n",
" t,p_val=proportions_ztest([train_acc_count,test_acc_count],y_train_test_lens)\n",
" \n",
" # assign rating based on p-value\n",
" rating=str()\n",
" if p_val<0.05:\n",
" rating='Overfit'\n",
" else:\n",
" rating='General'\n",
"\n",
" # collect data for new table row\n",
" model_comp_table.loc[name]=[metrics.accuracy_score(y_train,X_train_pred),\n",
" metrics.accuracy_score(y_test,X_test_pred),\n",
" metrics.f1_score(y_train,X_train_pred),\n",
" metrics.f1_score(y_test,X_test_pred),\n",
" rating]\n",
"\n",
" return model_comp_table"
],
"metadata": {
"id": "w1AaK_l2MpHa"
},
"id": "w1AaK_l2MpHa",
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"This function adds accuracy and F1 scores to a DataFrame that we can use to compare models. It also runs a two proportion z-test to determine whether the training accuracy and testing accuracy are different enough for the model to be considered overfit. We assume a level of significance of 5% in the interpretation of the p-value. All conditions are necessarily met to justify the test."
],
"metadata": {
"id": "z-SFO41TyoAE"
},
"id": "z-SFO41TyoAE"
},
{
"cell_type": "code",
"source": [
"def confusion_heatmap(model,show_scores=False):\n",
" '''Heatmap of confusion matrix of\n",
" model predictions on test data.'''\n",
"\n",
" actual=y_test\n",
" predicted=model.predict(X_test)\n",
" # generate confusion matrix\n",
" cm=metrics.confusion_matrix(actual,predicted)\n",
" cm=np.flip(cm).T\n",
"\n",
" # heatmap labels\n",
" labels=['TP','FP','FN','TN']\n",
" cm_labels=np.array(cm).flatten()\n",
" cm_percents=np.round((cm_labels/np.sum(cm))*100,3)\n",
" annot_labels=[]\n",
" for i in range(4):\n",
" annot_labels.append(str(labels[i])+'\\nCount:'+str(cm_labels[i])+'\\n'+str(cm_percents[i])+'%')\n",
" annot_labels=np.array(annot_labels).reshape(2,2)\n",
"\n",
" # print figure\n",
" plt.figure(figsize=(8,5))\n",
" plt.title('Confusion Matrix',fontsize=20)\n",
" sns.heatmap(data=cm,\n",
" annot=annot_labels,\n",
" annot_kws={'fontsize':'x-large'},\n",
" xticklabels=[1,0],\n",
" yticklabels=[1,0],\n",
" cmap='Greens',\n",
" fmt='s')\n",
" plt.xlabel('Actual',fontsize=14)\n",
" plt.ylabel('Predicted',fontsize=14)\n",
" plt.tight_layout();\n",
" return"
],
"metadata": {
"id": "2EmydL_wKjLV"
},
"id": "2EmydL_wKjLV",
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"The function prints a heatmap with the confusion matrix for a given model."
],
"metadata": {
"id": "NyHKiMj7yuEU"
},
"id": "NyHKiMj7yuEU"
},
{
"cell_type": "markdown",
"source": [
"### Bagging"
],
"metadata": {
"id": "rq-dyuyXmnsG"
},
"id": "rq-dyuyXmnsG"
},
{
"cell_type": "markdown",
"source": [
"#### Baseline: Decision Tree"
],
"metadata": {
"id": "ZxNLV1DPMKB6"
},
"id": "ZxNLV1DPMKB6"
},
{
"cell_type": "code",
"source": [
"dtree=tree.DecisionTreeClassifier(random_state=1)\n",
"dtree.fit(X_train,y_train)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 75
},
"id": "GRaA0HEoMO31",
"outputId": "a2028ded-ecac-4181-f7a9-e94003b8825e"
},
"id": "GRaA0HEoMO31",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"DecisionTreeClassifier(random_state=1)"
],
"text/html": [
"
DecisionTreeClassifier(random_state=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
\n",
" "
]
},
"metadata": {},
"execution_count": 70
}
]
},
{
"cell_type": "markdown",
"source": [
"We add this model to a DataFrame that we will use to compare the different models."
],
"metadata": {
"id": "RFRVW1HapqYG"
},
"id": "RFRVW1HapqYG"
},
{
"cell_type": "markdown",
"source": [
"#### Bagging Classifier"
],
"metadata": {
"id": "7kEKiBjBmzTl"
},
"id": "7kEKiBjBmzTl"
},
{
"cell_type": "code",
"execution_count": null,
"id": "unknown-institution",
"metadata": {
"id": "unknown-institution",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 75
},
"outputId": "0d948351-e024-49ca-bdee-7e2c75807cec"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"BaggingClassifier(random_state=1)"
],
"text/html": [
"
BaggingClassifier(random_state=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
BaggingClassifier(random_state=1)
"
]
},
"metadata": {},
"execution_count": 71
}
],
"source": [
"bag=BaggingClassifier(random_state=1)\n",
"bag.fit(X_train,y_train)"
]
},
{
"cell_type": "markdown",
"source": [
"The default estimator on a bagging classifier is a decision tree classifier, so this model consists of many parallel decision trees trained on samples taken with replacement (bootstrap samples)."
],
"metadata": {
"id": "AJyhm9Nmp8x3"
},
"id": "AJyhm9Nmp8x3"
},
{
"cell_type": "code",
"source": [
"scores(bag)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "z9-gRQ_gm-Fd",
"outputId": "cb265cfb-5771-4cf5-ac77-e8a5b67d0d20"
},
"id": "z9-gRQ_gm-Fd",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Train Test\n",
"Accuracy 0.984168 0.698232\n",
"Precision 0.990625 0.770660\n",
"Recall 0.985630 0.780631\n",
"F1 0.988121 0.775614"
],
"text/html": [
"\n",
"
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
"
]
},
"metadata": {},
"execution_count": 87
}
]
},
{
"cell_type": "code",
"source": [
"go.best_params_"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "nwa8W4TNH-Im",
"outputId": "2aa1119a-6fcf-499d-a047-5b94eaa3a322"
},
"id": "nwa8W4TNH-Im",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"{'class_weight': None,\n",
" 'max_depth': 7,\n",
" 'max_features': None,\n",
" 'max_leaf_nodes': 20,\n",
" 'min_impurity_decrease': 0.0,\n",
" 'min_samples_leaf': 5}"
]
},
"metadata": {},
"execution_count": 88
}
]
},
{
"cell_type": "markdown",
"source": [
"Grid Search Findings\n",
"* Our response variable is not so unbalanced that a rebalancing of class weights is required.\n",
"* A maximum tree depth of 7 seems to be ideal, with 20 as the upper bound for leaf nodes.\n",
"* The model requires at least 5 samples for each leaf. Along with limiting the depth and maximum number of leaves, this reduces overfitting.\n",
"* We get best performance when considering all features to determine the best split."
],
"metadata": {
"id": "JsZXlrv32-c8"
},
"id": "JsZXlrv32-c8"
},
{
"cell_type": "code",
"source": [
"dtree_tuned=go.best_estimator_\n",
"\n",
"dtree_tuned.fit(X_train,y_train)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 92
},
"id": "7PBKlY9g0baz",
"outputId": "81437f1e-157b-45b4-ea76-599ec7b46217"
},
"id": "7PBKlY9g0baz",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"DecisionTreeClassifier(max_depth=7, max_leaf_nodes=20, min_samples_leaf=5,\n",
" random_state=1)"
],
"text/html": [
"
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
"
]
},
"metadata": {},
"execution_count": 89
}
]
},
{
"cell_type": "markdown",
"source": [
"We refit the best estimator on the full training set. (In the grid search, we employ cross validation, so there is a holdout set used to test each model. The upside is a more reliable search, but the cost is that we have yet to train the best estimator on the full training set.)"
],
"metadata": {
"id": "-t8REJ-elCjQ"
},
"id": "-t8REJ-elCjQ"
},
{
"cell_type": "code",
"source": [
"scores(dtree_tuned)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "SAYQ5m16II0W",
"outputId": "a2b59de8-892a-48ca-bebc-f775c6a313f6"
},
"id": "SAYQ5m16II0W",
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Train Test\n",
"Accuracy 0.749382 0.750098\n",
"Precision 0.777421 0.779646\n",
"Recall 0.875546 0.872574\n",
"F1 0.823571 0.823497"
],
"text/html": [
"\n",
"
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.