/* CRT-interlaced Copyright (C) 2010-2012 cgwg, Themaister and DOLLS This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. (cgwg gave their consent to have the original version of this shader distributed under the GPL in this message: http://board.byuu.org/viewtopic.php?p=26075#p26075 "Feel free to distribute my shaders under the GPL. After all, the barrel distortion code was taken from the Curvature shader, which is under the GPL." ) This shader variant is pre-configured with screen curvature */ #pragma parameter CRTgamma "CRTGeom Target Gamma" 2.4 0.1 5.0 0.1 #pragma parameter INV "Inverse Gamma/CRT-Geom Gamma out" 1.0 0.0 1.0 1.0 #pragma parameter monitorgamma "CRTGeom Monitor Gamma" 2.2 0.1 5.0 0.1 #pragma parameter d "CRTGeom Distance" 1.6 0.1 3.0 0.1 #pragma parameter CURVATURE "CRTGeom Curvature Toggle" 1.0 0.0 1.0 1.0 #pragma parameter R "CRTGeom Curvature Radius" 2.0 0.1 10.0 0.1 #pragma parameter cornersize "CRTGeom Corner Size" 0.03 0.001 1.0 0.005 #pragma parameter cornersmooth "CRTGeom Corner Smoothness" 1000.0 80.0 2000.0 100.0 #pragma parameter x_tilt "CRTGeom Horizontal Tilt" 0.0 -0.5 0.5 0.05 #pragma parameter y_tilt "CRTGeom Vertical Tilt" 0.0 -0.5 0.5 0.05 #pragma parameter overscan_x "CRTGeom Horiz. Overscan %" 100.0 -125.0 125.0 1.0 #pragma parameter overscan_y "CRTGeom Vert. Overscan %" 100.0 -125.0 125.0 1.0 #pragma parameter DOTMASK "CRTGeom Dot Mask Strength" 0.3 0.0 1.0 0.1 #pragma parameter SHARPER "CRTGeom Sharpness" 1.0 1.0 3.0 1.0 #pragma parameter scanline_weight "CRTGeom Scanline Weight" 0.3 0.1 0.5 0.05 #pragma parameter lum "CRTGeom Luminance" 0.0 0.0 1.0 0.01 #pragma parameter interlace_detect "CRTGeom Interlacing Simulation" 1.0 0.0 1.0 1.0 #pragma parameter SATURATION "CRTGeom Saturation" 1.0 0.0 2.0 0.05 #ifndef PARAMETER_UNIFORM #define CRTgamma 2.4 #define monitorgamma 2.2 #define d 1.6 #define CURVATURE 1.0 #define R 2.0 #define cornersize 0.03 #define cornersmooth 1000.0 #define x_tilt 0.0 #define y_tilt 0.0 #define overscan_x 100.0 #define overscan_y 100.0 #define DOTMASK 0.3 #define SHARPER 1.0 #define scanline_weight 0.3 #define lum 0.0 #define interlace_detect 1.0 #define SATURATION 1.0 #define INV 1.0 #endif #if defined(VERTEX) #if __VERSION__ >= 130 #define COMPAT_VARYING out #define COMPAT_ATTRIBUTE in #define COMPAT_TEXTURE texture #else #define COMPAT_VARYING varying #define COMPAT_ATTRIBUTE attribute #define COMPAT_TEXTURE texture2D #endif #ifdef GL_ES #define COMPAT_PRECISION mediump #else #define COMPAT_PRECISION #endif COMPAT_ATTRIBUTE vec4 VertexCoord; COMPAT_ATTRIBUTE vec4 COLOR; COMPAT_ATTRIBUTE vec4 TexCoord; COMPAT_VARYING vec4 COL0; COMPAT_VARYING vec4 TEX0; vec4 _oPosition1; uniform mat4 MVPMatrix; uniform COMPAT_PRECISION int FrameDirection; uniform COMPAT_PRECISION int FrameCount; uniform COMPAT_PRECISION vec2 OutputSize; uniform COMPAT_PRECISION vec2 TextureSize; uniform COMPAT_PRECISION vec2 InputSize; COMPAT_VARYING vec2 overscan; COMPAT_VARYING vec2 aspect; COMPAT_VARYING vec3 stretch; COMPAT_VARYING vec2 sinangle; COMPAT_VARYING vec2 cosangle; COMPAT_VARYING vec2 one; COMPAT_VARYING float mod_factor; COMPAT_VARYING vec2 ilfac; #ifdef PARAMETER_UNIFORM uniform COMPAT_PRECISION float CRTgamma; uniform COMPAT_PRECISION float monitorgamma; uniform COMPAT_PRECISION float d; uniform COMPAT_PRECISION float CURVATURE; uniform COMPAT_PRECISION float R; uniform COMPAT_PRECISION float cornersize; uniform COMPAT_PRECISION float cornersmooth; uniform COMPAT_PRECISION float x_tilt; uniform COMPAT_PRECISION float y_tilt; uniform COMPAT_PRECISION float overscan_x; uniform COMPAT_PRECISION float overscan_y; uniform COMPAT_PRECISION float DOTMASK; uniform COMPAT_PRECISION float SHARPER; uniform COMPAT_PRECISION float scanline_weight; uniform COMPAT_PRECISION float lum; uniform COMPAT_PRECISION float interlace_detect; uniform COMPAT_PRECISION float SATURATION; #endif #define FIX(c) max(abs(c), 1e-5); float intersect(vec2 xy) { float A = dot(xy,xy)+d*d; float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d); float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy) { float c = intersect(xy); vec2 point = vec2(c)*xy; point -= vec2(-R)*sinangle; point /= vec2(R); vec2 tang = sinangle/cosangle; vec2 poc = point/cosangle; float A = dot(tang,tang)+1.0; float B = -2.0*dot(poc,tang); float C = dot(poc,poc)-1.0; float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); vec2 uv = (point-a*sinangle)/cosangle; float r = R*acos(a); return uv*r/sin(r/R); } vec2 fwtrans(vec2 uv) { float r = FIX(sqrt(dot(uv,uv))); uv *= sin(r/R)/r; float x = 1.0-cos(r/R); float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle); return d*(uv*cosangle-x*sinangle)/D; } vec3 maxscale() { vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y)); vec2 a = vec2(0.5,0.5)*aspect; vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x, fwtrans(vec2(c.x,-a.y)).y)/aspect; vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x, fwtrans(vec2(c.x,+a.y)).y)/aspect; return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y)); } void main() { // START of parameters // gamma of simulated CRT // CRTgamma = 1.8; // gamma of display monitor (typically 2.2 is correct) // monitorgamma = 2.2; // overscan (e.g. 1.02 for 2% overscan) overscan = vec2(1.00,1.00); // aspect ratio aspect = vec2(1.0, 0.75); // lengths are measured in units of (approximately) the width // of the monitor simulated distance from viewer to monitor // d = 2.0; // radius of curvature // R = 1.5; // tilt angle in radians // (behavior might be a bit wrong if both components are // nonzero) const vec2 angle = vec2(0.0,0.0); // size of curved corners // cornersize = 0.03; // border smoothness parameter // decrease if borders are too aliased // cornersmooth = 1000.0; // END of parameters vec4 _oColor; vec2 _otexCoord; gl_Position = VertexCoord.x * MVPMatrix[0] + VertexCoord.y * MVPMatrix[1] + VertexCoord.z * MVPMatrix[2] + VertexCoord.w * MVPMatrix[3]; _oPosition1 = gl_Position; _oColor = COLOR; _otexCoord = TexCoord.xy*1.0001; COL0 = COLOR; TEX0.xy = TexCoord.xy*1.0001; // Precalculate a bunch of useful values we'll need in the fragment // shader. sinangle = sin(vec2(x_tilt, y_tilt)) + vec2(0.001);//sin(vec2(max(abs(x_tilt), 1e-3), max(abs(y_tilt), 1e-3))); cosangle = cos(vec2(x_tilt, y_tilt)) + vec2(0.001);//cos(vec2(max(abs(x_tilt), 1e-3), max(abs(y_tilt), 1e-3))); stretch = maxscale(); ilfac = vec2(1.0,clamp(floor(InputSize.y/200.0), 1.0, 2.0)); // The size of one texel, in texture-coordinates. vec2 sharpTextureSize = vec2(SHARPER * TextureSize.x, TextureSize.y); one = ilfac / sharpTextureSize; // Resulting X pixel-coordinate of the pixel we're drawing. mod_factor = TexCoord.x * TextureSize.x * OutputSize.x / InputSize.x; } #elif defined(FRAGMENT) #if __VERSION__ >= 130 #define COMPAT_VARYING in #define COMPAT_TEXTURE texture out vec4 FragColor; #else #define COMPAT_VARYING varying #define FragColor gl_FragColor #define COMPAT_TEXTURE texture2D #endif #ifdef GL_ES #ifdef GL_FRAGMENT_PRECISION_HIGH precision highp float; #else precision mediump float; #endif #define COMPAT_PRECISION mediump #else #define COMPAT_PRECISION #endif struct output_dummy { vec4 _color; }; uniform COMPAT_PRECISION int FrameDirection; uniform COMPAT_PRECISION int FrameCount; uniform COMPAT_PRECISION vec2 OutputSize; uniform COMPAT_PRECISION vec2 TextureSize; uniform COMPAT_PRECISION vec2 InputSize; uniform sampler2D Texture; COMPAT_VARYING vec4 TEX0; // Comment the next line to disable interpolation in linear gamma (and // gain speed). #define LINEAR_PROCESSING // Enable screen curvature. // #define CURVATURE // Enable 3x oversampling of the beam profile #define OVERSAMPLE // Use the older, purely gaussian beam profile //#define USEGAUSSIAN // Macros. #define FIX(c) max(abs(c), 1e-5); #define PI 3.141592653589 #ifdef LINEAR_PROCESSING # define TEX2D(c) pow(COMPAT_TEXTURE(Texture, (c)), vec4(CRTgamma)) #else # define TEX2D(c) COMPAT_TEXTURE(Texture, (c)) #endif COMPAT_VARYING vec2 one; COMPAT_VARYING float mod_factor; COMPAT_VARYING vec2 ilfac; COMPAT_VARYING vec2 overscan; COMPAT_VARYING vec2 aspect; COMPAT_VARYING vec3 stretch; COMPAT_VARYING vec2 sinangle; COMPAT_VARYING vec2 cosangle; #ifdef PARAMETER_UNIFORM uniform COMPAT_PRECISION float CRTgamma; uniform COMPAT_PRECISION float monitorgamma; uniform COMPAT_PRECISION float d; uniform COMPAT_PRECISION float CURVATURE; uniform COMPAT_PRECISION float R; uniform COMPAT_PRECISION float cornersize; uniform COMPAT_PRECISION float cornersmooth; uniform COMPAT_PRECISION float x_tilt; uniform COMPAT_PRECISION float y_tilt; uniform COMPAT_PRECISION float overscan_x; uniform COMPAT_PRECISION float overscan_y; uniform COMPAT_PRECISION float DOTMASK; uniform COMPAT_PRECISION float SHARPER; uniform COMPAT_PRECISION float scanline_weight; uniform COMPAT_PRECISION float lum; uniform COMPAT_PRECISION float interlace_detect; uniform COMPAT_PRECISION float SATURATION; uniform COMPAT_PRECISION float INV; #endif float intersect(vec2 xy) { float A = dot(xy,xy)+d*d; float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d); float C = d*d + 2.0*R*d*cosangle.x*cosangle.y; return (-B-sqrt(B*B-4.0*A*C))/(2.0*A); } vec2 bkwtrans(vec2 xy) { float c = intersect(xy); vec2 point = vec2(c)*xy; point -= vec2(-R)*sinangle; point /= vec2(R); vec2 tang = sinangle/cosangle; vec2 poc = point/cosangle; float A = dot(tang,tang)+1.0; float B = -2.0*dot(poc,tang); float C = dot(poc,poc)-1.0; float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A); vec2 uv = (point-a*sinangle)/cosangle; float r = FIX(R*acos(a)); return uv*r/sin(r/R); } vec2 transform(vec2 coord) { coord *= TextureSize / InputSize; coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy; return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * InputSize / TextureSize; } float corner(vec2 coord) { coord *= TextureSize / InputSize; coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5); coord = min(coord, vec2(1.0)-coord) * aspect; vec2 cdist = vec2(cornersize); coord = (cdist - min(coord,cdist)); float dist = sqrt(dot(coord,coord)); return clamp((cdist.x-dist)*cornersmooth,0.0, 1.0)*1.0001; } // Calculate the influence of a scanline on the current pixel. // // 'distance' is the distance in texture coordinates from the current // pixel to the scanline in question. // 'color' is the colour of the scanline at the horizontal location of // the current pixel. vec4 scanlineWeights(float distance, vec4 color) { // "wid" controls the width of the scanline beam, for each RGB // channel The "weights" lines basically specify the formula // that gives you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. #ifdef USEGAUSSIAN vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0)); vec4 weights = vec4(distance / wid); return (lum + 0.4) * exp(-weights * weights) / wid; #else vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0)); vec4 weights = vec4(distance / scanline_weight); return (lum + 1.4) * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid); #endif } vec3 saturation (vec3 textureColor) { float lum=length(textureColor)*0.5775; vec3 luminanceWeighting = vec3(0.3,0.6,0.1); if (lum<0.5) luminanceWeighting.rgb=(luminanceWeighting.rgb*luminanceWeighting.rgb)+(luminanceWeighting.rgb*luminanceWeighting.rgb); float luminance = dot(textureColor, luminanceWeighting); vec3 greyScaleColor = vec3(luminance); vec3 res = vec3(mix(greyScaleColor, textureColor, SATURATION)); return res; } #define pwr vec3(1.0/((-0.7*(1.0-scanline_weight)+1.0)*(-0.5*DOTMASK+1.0))-1.25) // Returns gamma corrected output, compensated for scanline+mask embedded gamma vec3 inv_gamma(vec3 col, vec3 power) { vec3 cir = col-1.0; cir *= cir; col = mix(sqrt(col),sqrt(1.0-cir),power); return col; } void main() { // Here's a helpful diagram to keep in mind while trying to // understand the code: // // | | | | | // ------------------------------- // | | | | | // | 01 | 11 | 21 | 31 | <-- current scanline // | | @ | | | // ------------------------------- // | | | | | // | 02 | 12 | 22 | 32 | <-- next scanline // | | | | | // ------------------------------- // | | | | | // // Each character-cell represents a pixel on the output // surface, "@" represents the current pixel (always somewhere // in the bottom half of the current scan-line, or the top-half // of the next scanline). The grid of lines represents the // edges of the texels of the underlying texture. // Texture coordinates of the texel containing the active pixel. vec2 xy = (CURVATURE > 0.5) ? transform(TEX0.xy) : TEX0.xy; float cval = corner(xy); // Of all the pixels that are mapped onto the texel we are // currently rendering, which pixel are we currently rendering? vec2 ilvec = vec2(0.0,ilfac.y * interlace_detect > 1.5 ? mod(float(FrameCount),2.0) : 0.0); vec2 ratio_scale = (xy * TextureSize - vec2(0.5) + ilvec)/ilfac; #ifdef OVERSAMPLE float filter_ = InputSize.y/OutputSize.y;//fwidth(ratio_scale.y); #endif vec2 uv_ratio = fract(ratio_scale); // Snap to the center of the underlying texel. xy = (floor(ratio_scale)*ilfac + vec2(0.5) - ilvec) / TextureSize; // Calculate Lanczos scaling coefficients describing the effect // of various neighbour texels in a scanline on the current // pixel. vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); // Prevent division by zero. coeffs = FIX(coeffs); // Lanczos2 kernel. coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); // Normalize. coeffs /= dot(coeffs, vec4(1.0)); // Calculate the effective colour of the current and next // scanlines at the horizontal location of the current pixel, // using the Lanczos coefficients above. vec4 col = clamp(mat4( TEX2D(xy + vec2(-one.x, 0.0)), TEX2D(xy), TEX2D(xy + vec2(one.x, 0.0)), TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs, 0.0, 1.0); vec4 col2 = clamp(mat4( TEX2D(xy + vec2(-one.x, one.y)), TEX2D(xy + vec2(0.0, one.y)), TEX2D(xy + one), TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs, 0.0, 1.0); #ifndef LINEAR_PROCESSING col = pow(col , vec4(CRTgamma)); col2 = pow(col2, vec4(CRTgamma)); #endif // Calculate the influence of the current and next scanlines on // the current pixel. vec4 weights = scanlineWeights(uv_ratio.y, col); vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); #ifdef OVERSAMPLE uv_ratio.y =uv_ratio.y+1.0/3.0*filter_; weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0; weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0; uv_ratio.y =uv_ratio.y-2.0/3.0*filter_; weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0; weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0; #endif vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval); // dot-mask emulation: // Output pixels are alternately tinted green and magenta. vec3 dotMaskWeights = mix( vec3(1.0, 1.0 - DOTMASK, 1.0), vec3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK), floor(mod(mod_factor, 2.0)) ); mul_res *= dotMaskWeights; // Convert the image gamma for display on our output device. if (INV == 1.0){ mul_res = inv_gamma(mul_res,pwr);} else mul_res = pow(mul_res, vec3(1.0/monitorgamma)); mul_res = saturation(mul_res); // Color the texel. output_dummy _OUT; _OUT._color = vec4(mul_res, 1.0); FragColor = _OUT._color; return; } #endif