
CS 534 Group 1: Utilizing Genetic Algorithms to Develop an
Efficient Traffic Light Autonomous Agent

Keith Chester *, Bob DeMont †, Jonathan Landay ‡, Jesse Morzel §

July 21, 2022

Abstract

We propose a novel agent for controlling a collection
of traffic lights across a complex city grid of intersect-
ing streets. This agent will be fed approximate traffic
counts of vehicles at each light and their directions as in-
put. From this the agent must coordinate light timings.
We shall be utilizing an evolutionary algorithm to train an
agent against a fitness function that minimizes the delayed
time of vehicles moving to their destination. An efficient
agent should maintain a low total waiting time for vehicles
trying to move through the city.

Keywords

traffic light control, neural network, evolutionary algo-
rithm

1 Introduction

1.1 Motivational Background

We have chosen this domain as it has a high reach and
impact upon the lives of people, ourselves included. The
average American drives 25 miles, or one hour behind the
wheel, each day. In 2019 the average American had 99
hours of time spent in traffic a year (Burfeind (2020)).
While traffic lights are not the sole contributor to con-
gestion, they can be wielded in a precise manner to com-
bat congestion - or bluntly and add to this congestion (see
Figure 1). Research into the root cause of congestion in
urban areas has found that delays caused by intersections
can make up between 12-55 % of total travel time (Jones
(2021)). A reduction in time spent in traffic will result in
increased productivity across an entire city, reduced pol-
lution, reduced fuel consumption and allow us some much
needed spare time for far more relaxing enterprises.

*e-mail: kchester@wpi.edu
†e-mail: rldemont@wpi.edu
‡e-mail: jrlanday@wpi.edu
§e-mail: jemorzel@wpi.edu

Traffic lights are generally controlled via cycle time and
phase duration. Cycle time is the time to complete a com-
plete cycle from, for example, start of green on an east-
west road through all changes to the start of green east-
west. Each of the light changes is a phase. Phase duration
can vary as we’ve noted, by schedule or by actuation, and
a State constitutes the current condition of the light in each
direction.

Currently many traffic light controlled intersections are
controlled with a static schedule of timed durations based
on the time of day and a database of expected traffic den-
sities, or traffic actuated based on induction coil inputs or
a combination of these two methods. Generally any coor-
dination among lights is accomplished based on a master
clock concept rather than communication among devices.
Because of the uncertainty of traffic arrivals, it is difficult
to optimize either scheduled or actuated signals. The US
Department of Transportation (DOT) publishes guidelines
for traffic light phase (green, yellow, and red) as a function
of total cycle length and traffic flow based on an 85th to
95th percentile probability of queue clearance. For exam-
ple, for a traffic light with a total cycle time of 60 seconds
and traffic flow of 100 vehicles per hour per lane, the US
DOT guidelines recommend a maximum green phase of
15 seconds (USDOT (2021)). However, this approach is
based on average traffic data collected nationwide and by
design will only clear the queue at a traffic light 85-95%
of the time. For improved performance, more intelligent
techniques are required which can learn and react to real-
time traffic conditions.

Figure 1: Network of Traffic Lights

1

Immediate benefits of a successful outcome to this pa-
per could be improved traffic flow, reduced emissions,
reduced waiting time, and lower personal frustration for
drivers in traffic light controlled environments around the
world.

1.2 State of the Art
Much recent research is exploring coordination through
IOT technologies for optimum efficiencies. In most
implementations, the two implementations of choice
have been genetic algorithms, as seen in Turky & Yu-
soff (2009), Gora (2011), Nwiabu & Udoudom (2018),
Sofronova & Khamadiyarov (2019), Semet (2019), Mao
(2021), Tan (2018), and Fujdiak (2015), as well as ant
colony optimization (ACO) algorithms , as seen in Rida
(2020), Lu (2017), and Nguyen (2020).

The genetic algorithms provide simple-to-implement
solutions that are easy to understand, however this ap-
proach suffers in complicated domains where many fac-
tors are accounted for with space and time complexity.
The genetic algorithms also suffer from early convergence
in situations, leading to sub-optimal solutions. The ACO
implementations are fairly novel solutions to the prob-
lem, however it has not yet been established as converging
quickly to an optimal solution, and much more occupies
the space of a valid solution, but with room to be improved
in both understandability, convergence speed, as well as in
some cases the solution cost as well.

1.3 Novel Approach
Our novel approach is to consider an evolutionary algo-
rithm to create a singular agent that can control a group-
ing of traffic lights. This single agent will be fed the cars
within a given range at each traffic light and their direc-
tions as inputs. This would be accomplished in practice
via car detecting cameras and additional sensors at each
light. The agent will then calculate appropriate timings to
maintain different light patterns, and maintain this as the
traffic flows throughout the city. We suspect that a singu-
lar agent attempting to coordinate multiple lights across a
large area instead of a series of individual agents should
result in net less time spent in traffic for the greater pop-
ulation, as compared to a set of individual traffic light
agents acting independently. We also expect a decrease
in traffic time versus human set schedules, which do not
react to dynamic changes in traffic patterns.

We will build a simulation of a city grid with multiple
traffic lights and traffic in order to train and evaluate our
agent. Our vehicles will be modeled as simplistic agents
that will follow traffic rules and move between set des-
tinations. We will record the time each vehicle takes to
reach its destination and compare it to the estimated time

it would take if it did not encounter any traffic (i.e. an
unrealistic ideal travel time). This difference will act as
our fitness function for the agent. Through training and
evolutionary mating, mutation, and culling we shall cre-
ate an agent that minimizes this metric. For comparison of
results, we will also have a random agent - setting traffic
times to random intervals - and a preset schedule agent,
that will have a static schedule for all traffic light times.

1.4 Outline

We review related research into applications of AI to traf-
fic light control in section 2. In section 3, we detail the
methodology of our genetic algorithm agent as applied to
traffic light control, including details about the simulation
environment, algorithm design and implementation, and
agent training. Experimental results are discussed in sec-
tion 4 and preliminary conclusions are discussed in sec-
tion 5. Section 6 details suggestions for future work and
section 7 provides a link to the github repository contain-
ing the source code for the project. Finally, we conclude
with a list of references cited in this work.

2 Related Work

Recent related research generally utilizes algorithms
which fall into 2 categories, genetic algorithms and ant
colony optimization algorithms. The first group of meth-
ods primarily utilize genetic algorithms in order to induce
the learning to optimize the traffic systems. These algo-
rithms can be found utilized in Turky & Yusoff (2009),
Gora (2011), Nwiabu & Udoudom (2018), Sofronova &
Khamadiyarov (2019), Semet (2019), Mao (2021), Tan
(2018), and Fujdiak (2015). These algorithms work by
generating a set of chromosomes attributed to the inde-
pendent variables of the problem, such as the number of
vehicles per unit time to pass through the direction of
the intersection, with which the dependent variable can
be simulated. In these situations, the different chromo-
somes are mutated and reproduce based off an evaluation
of fitness, which guides mutation to find an optimal chro-
mosome solution. However, there are limitations to this
algorithm. One of which is that a significant increase in
number of chromosomes has a very significant impact on
the speed and space complexity of the algorithm, lead-
ing to much worse performance with many chromosomes.
Another limitation is that there are many parameters, such
as mutation rate, population size, and crossover rate that
need fine tuning to get results that converge quickly and
consistently, which can cause problems with implementa-
tion. Lastly, there is an issue where if an early candidate
is significantly more fit than all the others, it can cause the
algorithm to converge early to a local maximum instead,

2

leading to a less desirable solution to the problem.
The other group of methods primarily utilize ant colony

optimization (ACO) algorithms to optimize the traffic
lights. These algorithms can be found utilized in Rida
(2020), Lu (2017), and Nguyen (2020). These algo-
rithms function by simulating ants, which are agents,
and allowing them to traverse the environment randomly
at first. These ants leave pheromone trails, with larger
amounts of pheromones being left behind to correspond
with more optimal solutions. At each node, ants choose
where to travel randomly, while being more likely to fol-
low pheromone trails based on the amount of pheromone
there. Over time, these pheromone trails decay, and only
the more optimal solutions are left from more and more
ants following the pheromone trails. Finally, only one so-
lution remains. The biggest limitation to ACO is conver-
gence speed, as the algorithms can take a very long time
in complicated systems to converge to an optimal solution,
which is problematic if one needs many solutions such as
a traffic light system with very dynamic changes based on
time of day, and other such factors.

3 Methodology

3.1 Definitions
To improve the clarity of the subsequent discussion of
methodology, the following terms are defined

• Traffic: for this project we are only considering car-
like vehicles as traffic, not larger vehicles like buses
nor pedestrians

• Traffic Light: the collection of lighted signals at
an intersection which collectively govern traffic flow
through the intersection

• Phase: the type of traffic flow permitted by the traf-
fic light at a given time, e.g. a ”straight phase”
(which would be Green in that direction) or ”orthog-
onal straight phase” (which would be Red in the first
direction)

• Duration: the length of time that a light is a given
color

• State: the conditions of lights at an intersection

3.2 Genetic Algorithm Implementation
In order to intelligently and optimally control traffic flow
through a simulated city grid, we propose implementing a
traffic light control agent that controls the duration of light
phases. At the conclusion of each simulation run, SUMO
is configured to generate a set of statistics about route and

vehicle performance. From these statistics we are most
notably interested in total vehicle travel time - if the routes
of vehicles are consistent, a successfully managed traffic
network would have a lower total vehicle travel time than
a poorly managed one. As such, we are decided that this
would be our primary fitness score for a genetic algorithm.
(see Figure 2). Further detail on the implementation and
training of the traffic control neural networks is presented
in section 3.5.

Figure 2: Genetic Algorithm Overview

The genetic algorithm is initialized using the baseline
traffic light timings generated by the SUMO traffic simu-
lation. This baseline timing is akin to a simple static timed
traffic light control scheme which does not consider real-
time traffic flow. Using this baseline timing scheme as
a starting point, a population size of n neural networks
(NN) is trained via the methodology outlined in section
3.5.

For the selection step in the genetic algorithm, we de-
veloped a fitness function to compare different neural net-
works. Currently, the fitness function simply returns the
total vehicle travel time from a simulation executed us-
ing the given neural network traffic control timings. This
is a valid comparison as long as traffic flow is consis-
tent amongst all simulations being compared, which was
the case between all neural networks. For a given simu-
lated traffic flow demand, an optimal traffic control timing
scheme would cause total vehicle travel time to converge
to a nonzero value corresponding to the case where all
vehicles traverse the grid without stopping nor slowing
down. In practice, this hypothetical minimum would not
be possible if traffic flow is high enough such that two
vehicles attempt to cross an intersection from different
directions simultaneously. Thus, the optimal (i.e. min-
imum) total vehicle travel time is a function of both city
grid layout and traffic flow. In the last step of the selection
process, the neural networks are sorted from best to worst
according to the total travel time fitness function.

Next, the crossover step in the genetic algorithm is per-
formed by randomly combining the hidden weights of two
parent neural networks. Iterating through all weights in
the NN, the given weight for the child NN is selected to be

3

equivalent to the corresponding weight for parent A with
a probability of 50%, and similarly the weight is selected
to be equivalent to the corresponding weight for parent B
with a probability of 50%.

The mutation step in the genetic algorithm occurs con-
currently with the crossover step. The given weight for
the child NN is set at random with a probability equiva-
lent to the mutation rate (currently set to 7%) instead of
assigning this weight to be equivalent to a corresponding
parent NN weight.

Finally, the genetic algorithm is repeated for k gener-
ations. However, for all generations after the initial one
(i.e. for all k > 1), the initialization step using the base-
line traffic light timings is skipped and instead the initial
population for generation i is equivalent to the population
resulting from the final mutation step of generation i− 1.
After the k-th generation of the genetic algorithm, the top
performing NN is found using the total travel time fitness
function and returned as the final traffic light NN.

3.3 Traffic Light Neural Network

Figure 3: Traffic Light Neural Network

A traffic agent in our code is defined as a module that,
upon each step of the simulation (which represents one
second of simulation time) the agent is notified of the
step and allowed to query and modify the simulation. Our
trained agent is an agent that queries and tracks the phase
duration of each light junction. When a phase is over,
and switches to the next state in its pattern, a neural net-
work within the agent is queried. The network takes in
from each induction loop on the map two variables: the
speed in meters per second (ms) of vehicles that passed
over the induction loop since the last simulation step, and
the occupancy percentage of the induction loop since the
last simulation step. These are fed through an adjustable

hidden layer(default 100 neurons) via a reLU function

ReLU(x) = (x > 0) ∗ x (1)

in a fully connected network layer that is equivalent to the
number of junctions on the map (9 for our Chicago ex-
ample),see Figure 3 and finally output through a sigmoid
function (limiting the output values to (0, 1))

S(x) =
1

1 + e−x
(2)

This value is mapped to the range of a minimum and
maximum allowed time for the transition - currently be-
tween 3 and 25 seconds. Each output neuron is mapped to
a specific light junction, so this output is assigned to the
junction that needs its next timing assignment.

This methodology is applied within an agent we refer
to as the ”Neural Network Agent”. We explored other
approaches as well while we tried to find improved per-
formance.

3.4 Additional Neural Network Agents

We attempted to increase the available data handed to the
neural network at inference time. To this end, we created
two new agents, the ”Average Network Agent” and the
”History Network Agent”. The Average Network agent
would take the last N observations of data from our sen-
sors and average them, so that the agents were working on
data over a longer time period vs just reacting to a singular
point in time when the duration changes. The History Net-
work agent does not average this data, but instead feeds all
data over the last N steps to the network without averag-
ing, allow the network itself to decide how to handle data
from older time steps. For the purposes of this paper we
often utilized N to be either 5 or 10.

These agents performed generation mating, mutation,
and training exactly the same as their originator the Neural
Network Agent.

3.5 Schedule Agent

When we did not reach the desired results, we also created
a ”Schedule Agent”. This agent did not utilize a neural
network within, but instead had a preset static schedule
for the duration of each phase for ecah traffic light junc-
tion. When a light phase changed within the simulation, a
duration was referenced within this agent and applied.

The agent would perform similar mating, mutation,
and generational changes similar to the neural network
agent. Instead of swapping neurons, however, the sched-
ules would swap specific times for specific lights. A trig-
gered mutation would generate a new random time.

4

4 Experimental Results &
Discussion

4.1 Simulation Environment
For testing traffic light control algorithms, we opted to
use an industry standard, open source traffic simulation
environment named SUMO (Simulation of Urban MObil-
ity). SUMO is widely used for research into traffic man-
agement and congestion, and provides practically all the
tools necessary for analysis. SUMO provides the capa-
bility to design and test custom street networks, inter-
section configurations including various types of traffic
lights, and create simulated traffic flow. Through custom
Python scripts, control can be exhibited over many of the
simulation elements including traffic light parameters.

Figure 4: SUMO Traffic Simulation Environment

SUMO also provides a ready-built tool called
OSMWebWizard which allows a user to create a SUMO
traffic simulation using real world map data. We utilized
OSMWebWizard to create a SUMO traffic scenario com-
prised of a network of 9 traffic lights arranged in a 3 x 3
grid from the city of Chicago (see Figure 4). A subset of
the Chicago city grid was chosen because it is designed in
a relatively even rectilinear manner aligned approximately
North-South and East-West, well suited for a proof of con-
cept environment for this paper.

At each traffic light intersection we added simulated in-
duction loop detectors to each lane incoming to the inter-
section for the purpose of detecting traffic flow local to
a given intersection. The intent is to use these induction
loop detectors as a generic means for detecting traffic flow
which can then be used as an input for training the traffic
light neural network. A fielded application of this project
could use actual induction loop detectors or could use a
different means for detecting traffic, such as visible spec-
trum cameras implementing computer vision algorithms
to detect the presence and location of vehicles.

The SUMO environment also includes TraCI - (TRAf-
fic Control Interface) - a python package for communi-
cating with and controlling SUMO’s simulation engine.
With this we built our own control interface to streamline
control of the simulator with our genetic trainer and traffic
light control agents.

Sumo gives the ability to include realistic compound-
ing elements like pedestrians, crosswalks, bicycles, bike
lanes, tram lines, and railroad crossings. We have omit-
ted these elements at this stage in order to focus of the
effects of light control. Other vehicle types are also avail-
able in SUMO such as trucks, delivery vans, busses, EVs
and trams. For a similar reason we have chosen at this
time not to include these.

4.2 Metrics
The following metrics were the primary means by which
we compared one agent to another:

• Total Travel Time: the total travel time of all vehicles
traversing the simulation

• Total Depart Delay: the total time vehicles had to
wait before starting their journeys

• Average Vehicle Speed: The average trip speed of a
vehicle through the simulation

Both Total Travel Time and Average Vehicle Speed
were evaluated for usage as the fitness function for our
genetic algorithm, see section 4.11 for further discussion.

4.3 Comparisons
SUMO default traffic lights are set for 90 second cycles
evenly split by direction. Here, we will use this as a proxy
for scheduled lights which are common in cities and as
a baseline for comparison for our other models. We also
plan to compare a randomly generated schedule of phases
and durations.

By default, the SUMO simulation generated from
Chicago city data uses a simple timing schedule defined
in Table 1 regardless of real-time traffic flow. At the con-
clusion of the last phase (P3 or P5 depending on traffic
light), the cycle resets to P0.

4.4 Null Agent
The null agent was the baseline for comparison for all
other agents. This agent utilizes the SUMO default traf-
fic light phase timings described in Table 1. Most likely
the SUMO default traffic light timings are set by similar
heuristics as set forth in (USDOT (2021)), wherein the
traffic light phase durations are set to clear the queue of

5

vehicles waiting at the light for a given cycle with a high
degree of confidence.

Traffic Light P0 P1 P2 P3 P4 P5
J00 39 6 39 6 - -
J01 39 6 39 6 - -
J02 33 6 6 6 33 6
J03 39 6 39 6 - -
J04 39 6 39 6 - -
J05 33 6 6 6 33 6
J06 39 6 39 6 - -
J07 39 6 39 6 - -
J08 33 6 6 6 33 6

Table 1: Null Agent Phase Durations (sec)

Summary results for the null agent are presented in Ta-
ble 2. The null agent was ultimately found to have the
lowest demonstrated total travel time and total departure
delay, and highest average vehicle speed.

Metric Value Units
Total Travel Time 209,994 sec
Total Depart Delay 1616 sec

Average Vehicle Speed 9.18 m/s

Table 2: Null Agent Performance

4.5 Random Agent

The random agent will, upon expiration of a light phase’s
duration, then select a random time duration (between 3
and 20 seconds) for the next phase. This agent was cre-
ated to demonstrate a baseline environmental response to
terrible management planning.

Metric Value Units
Total Travel Time 520,882 sec
Total Depart Delay 7158 sec

Average Vehicle Speed 4.96 m/s

Table 3: Random Agent Performance

4.6 Neural Network Agent

The neural network agent, our first attempt at an agent,
controlled lights by generating a new light duration for
each junction as it switched its phase. The network would
dynamically change these scheduled times as the simula-
tion ran.

Metric Value Units
Total Travel Time 389,471 sec
Total Depart Delay 5193 sec

Average Vehicle Speed 7.61 m/s

Table 4: Neural Network Agent Performance

4.7 Average Network Agent

The Average Network Agent would take N of the past
time steps (in this case, 5), and average data from this to
input into the neural network. This was done to provide a
more robust look into traffic performance as the network
inferred possible timing durations.

Metric Value Units
Total Travel Time 402,713 sec
Total Depart Delay 5827 sec

Average Vehicle Speed 6.67 m/s

Table 5: Average Network Agent Performance

4.8 History Network Agent

The History Network Agent would feed the last N steps
(5 in this case) of data into the network, allowing the net-
work to decide what data was relevant to it. It did perform
slightly better than the Average Network Agent.

Metric Value Units
Total Travel Time 398,615 sec
Total Depart Delay 5578 sec

Average Vehicle Speed 6.82 m/s

Table 6: History Network Agent Performance

4.9 Schedule Agent

The schedule agent had a static duration schedule for each
phase of each light junction. This schedule was generated
as a part of the agent itself and evolved over time. This
approach was a departure of other designed agents within
this paper, provided as more of a baseline test to see if
static schedules, especially ones that were designed by an-
other agent, were inherently better than dynamic schedul-
ing agents.

Metric Value Units
Total Travel Time 402,572 sec
Total Depart Delay 6181 sec

Average Vehicle Speed 5.92 m/s

Table 7: Schedule Agent Performance

6

4.10 Incremental Agent

The incremental agent used the same structure and logic
as the neural network agent, except for the key difference
in what specific output the agent had control over. The
output of the neural network agent was the phase dura-
tion for all traffic lights; in contrast, the output of the
incremental agent was the decision of whether to incre-
ment the traffic light phase for any or all of the traffic
lights. The rationale of this modification is that increment-
ing traffic light phase is a more immediate, direct form of
control compared with adjusting the duration of the sub-
sequent traffic light phase. Importantly, the incremental
agent also enforced a minimum phase duration of 3 sec-
onds. It was thought that any phase durations less than 3
seconds would be unrealistically quick for a human driver
to react to.

Figure 5: Training Results for Incremental Agent

Other than the method by which the agent attempted
to control the traffic lights, the incremental agent was im-
plemented identically to the neural network agent, includ-
ing the same genetic algorithm for selection, crossover,
and mutation of the best individuals of a given genera-
tion. Figure 5 presents a graph of best, worst, and average
fitness (aka total travel time) as a function of generation
number for the incremental agent. This graph shows that
there was no improvement or any significant change in
measured fitness over the course of 10 generations.

A similar result was found for the schedule agent and
neural network agent, namely no discernible change over
a relatively small number of generations. See Section 5
for a detailed discussion of the possible reasons why our
genetic algorithm did not produce a significant improve-
ment in fitness over our training period.

Summary performance metrics for the best individual
incremental agent after 10 generations of evolution are
shown in Table 8. The incremental agent demonstrated
slightly higher total travel time and total departure delay

and lower average vehicle speed compared with the null
agent, though it outperformed the neural network, sched-
ule, and random agents.

Metric Value Units
Total Travel Time 238,269 sec
Total Depart Delay 1797 sec

Average Vehicle Speed 8.46 m/s

Table 8: Incremental Agent Performance

4.11 Exploring Different Fitness function

To explore sensitivity to number of vehicles in the net-
work, we examined altering the fitness function from total
travel time to average speed. We found results did not
converge quickly and did not exceed the performance of
our baseline.

Metric Value Units
Total Travel Time 432,102 sec

Route Length 632.11 m
Average Vehicle Speed 5.26 m/s

Table 9: Speed Fitness Performance

The performance of the neural network agent using av-
erage vehicle speed as the fitness function (instead of to-
tal travel time) is shown in Table 9. The performance of
the neural network agent did not noticeably improve using
this different fitness function.

4.12 Summary Agent Comparison

See Figure 6 for a comparison of the best individual of
each agent type as determined by minimum fitness func-
tion (total travel time).

Figure 6: Agents Compared by Best Fitness

7

Overall we found that the null agent demonstrated the
lowest total travel time (our principle metric of compari-
son) in addition to lowest total departure delay and fastest
average vehicle speed. The incremental agent with a min-
imum phase time of 3 seconds was somewhat worse at
about 240,000 seconds, while the neural network agent
and schedule agent each had a total travel time of approx-
imately 400,000 seconds.

The worst agent was the random agent, with total travel
time over 500,000 seconds

5 Conclusions
We attempted to modify multiple aspects of our genetic
algorithm in order to minimize total travel time in our
simulation. In addition to defining our fitness function as
equivalent to total vehicle travel time, we also ran some
simulations using average vehicle speed as our fitness
function. We tested two different sizes of a city grid, both
3x3 and 3x6. Lastly as outlined earlier in the presentation,
we tested different agent implementations.

Despite our best efforts we were ultimately unable to
demonstrate a significant improvement in measured fit-
ness over the course of 10-20 generations. One possi-
ble reason is that our genetic algorithm only attempted
to update agent weights once per generation, and given
the complexity of the problem perhaps this is far too few
generations. The input layer to our neural network was a
vector of 108 elements, the hidden layers had hundreds of
neurons, and the output layer attempted to set 9 different
traffic light phases so its possible 10-20 total updates of
weights is far too few.

However, we were also severely constrained in the
number of generations we could simulate due to time
constraints. Running only 10 generations with a popu-
lation size of 10 per generation would take approximately
10 hours of real computing time, making it infeasible to
test larger numbers of generations in the limited time and
computing power allotted for the project.

Finally, it’s possible that the input data we were feed-
ing the neural network was inadequate. We used induc-
tion loop occupancy and speed data on each traffic light
input lane as input data, where the neural network did not
have any predetermined knowledge of the mapping be-
tween which induction loops corresponded to which in-
tersections.

As a result of these limitations, none of our agents were
able to outperform the default null agent.

6 Future Work
As future work, we would attempt to train over many more
generations (possibly in the range of 100s of generations)

versus the 10-20 we were able to test in this project. This
would require much more time or access to faster comput-
ing power.

We would also explore making a structural update to
the algorithm to attempt to update neural network weights
much more often than once per generation. This would
help alleviate the simulation bottleneck by allowing the
network to learn more quickly.

Lastly, improved vehicle data fed into the neural net-
work would likely improve its ability to learn.

7 Source Code
The source code for this project can be found at the
following git repository: https://github.com/
hlfshell/cs534-project

References
Burfeind, M. (2020). Congestion costs each amer-

ican nearly 100 hours, $1,400 a year. Retrieved
from https://inrix.com/press-releases/
2019-traffic-scorecard-us/

Fujdiak, e. a., Radek. (2015). Verification of genetic algo-
rithm in dynamic traffic light management. 2015 38th
International Conference on Telecommunications and
Signal Processing (TSP), IEEE, 2015.

Gora, P. (2011). A genetic algorithm approach to opti-
mization of vehicular traffic in cities by means of con-
figuring traffic lights. Emerging Intelligent Technolo-
gies in Industry, Springer, Berlin, Heidelberg, 2011. 1-
10..

Jones, S. (2021). Optimizing traffic signals to reduce
wait times at intersections. Retrieved from https://
engineering.tamu.edu/news/2021/01/
optimizing-traffic-signals-to-reduce
-wait-times-at-intersections.html

Lu, e. a., Dang-Nhac. (2017). A novel traffic routing
method using hybrid ant colony system based on ge-
netic algorithm. 2017 International Conference on In-
formation Networking (ICOIN), IEEE, 2017.

Mao, e. a., Tuo. (2021). Boosted genetic algorithm us-
ing machine learning for traffic control optimization.
IEEE Transactions on Intelligent Transportation Sys-
tems, 2021.

Nguyen, e. a., Thi-Hau. (2020). A hybrid method based
on genetic algorithm and ant colony system for traffic
routing optimization. VNU Journal of Science: Com-
puter Science and Communication Engineering, 36.1,
2020.

8

https://github.com/hlfshell/cs534-project
https://github.com/hlfshell/cs534-project
https://inrix.com/press-releases/2019-traffic-scorecard-us/
https://inrix.com/press-releases/2019-traffic-scorecard-us/
https://engineering.tamu.edu/news/2021/01/optimizing-traffic-signals-to-reduce-wait-times-at-intersections.html
https://engineering.tamu.edu/news/2021/01/optimizing-traffic-signals-to-reduce-wait-times-at-intersections.html
https://engineering.tamu.edu/news/2021/01/optimizing-traffic-signals-to-reduce-wait-times-at-intersections.html
https://engineering.tamu.edu/news/2021/01/optimizing-traffic-signals-to-reduce-wait-times-at-intersections.html

Nwiabu, N. D., & Udoudom, E. E. (2018). Traffic light
control system using genetic algorithm. International
Journal of Computer Application, 975: 8887.

Rida, O. M. . H. A., N. (2020). Ant colony
optimization for real time traffic lights control on
a single intersection. International Association of
Online Engineering, Retrieved June 4, 2022 from
https://www.learntechlib.org/p/216584/ .

Semet, e. a., Yann. (2019). Expert competitive traffic light
optimization with evolutionary algorithms. VEHITS,
2019.

Sofronova, A. A. B., E. A., & Khamadiyarov, D. B.
(2019). Optimal control for traffic flows in the urban
road networks and its solution by variational genetic
algorithm. Procedia Computer Science, 150 (2019):
302-308.

Tan, e. a., Min Keng. (2018). Hierarchical multi-agent
system in traffic network signalization with improved
genetic algorithm. 2018 IEEE International Confer-
ence on Artificial Intelligence in Engineering and Tech-
nology (IICAIET), IEEE, 2018.

Turky, M. S. A., Ayad Mashaan, & Yusoff, M. Z. M.
(2009). The use of genetic algorithm for traffic light
and pedestrian crossing control. International Journal
of Computer Science and Network Security, 9.2 (2009):
88-96.

USDOT. (2021). Traffic signal timing manual. Re-
trieved from https://ops.fhwa.dot.gov/
publications/fhwahop08024/chapter5
.htm#5.2

9

https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter5.htm#5.2
https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter5.htm#5.2
https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter5.htm#5.2

	Introduction
	Motivational Background
	State of the Art
	Novel Approach
	Outline

	Related Work
	Methodology
	Definitions
	Genetic Algorithm Implementation
	Traffic Light Neural Network
	Additional Neural Network Agents
	Schedule Agent

	Experimental Results & Discussion
	Simulation Environment
	Metrics
	Comparisons
	Null Agent
	Random Agent
	Neural Network Agent
	Average Network Agent
	History Network Agent
	Schedule Agent
	Incremental Agent
	Exploring Different Fitness function
	Summary Agent Comparison

	Conclusions
	Future Work
	Source Code

