Essence of Machine Learning (and Deep Learning)

Hoa M. Le Data Science Lab, HUST hoamle.github.io

Examples

- <u>https://www.youtube.com/watch?v=BmkA1ZsG2</u>
 <u>P4</u>
- http://www.r2d3.us/visual-intro-to-machinelearning-part-1/

Machine Learning is about ...

... a computer program (machine) *learns* to do a task (problem) from experience (data)

• *learning* \triangleq improved *performance* with more experience

- Tom Mitchell

predictive modelling with **sample data** ↑

"heurestics" & statistical modelling

note 1: "heurestic" as in "intuitive, but not (yet!) rigorously proven by mathematical tools at some extend"

note 2: predictive modelling can also be in the form of rule-based systems, models in physics, etc

BUILD A MACHINE LEARNING SOLUTION

the Pipeline

Đặt vấn đề

Question/ Hypothesis

Q.a. What are there in an abitrary photo?Q.b. What is there in an abitrary photo?Q.c. Is there any puppy an abitrary photo?

cat flower dog jet ground grass

Other questions:

- Where are the puppies in a photo?
- How confident can I assure that there is a cat a photo?
- For what reasons can I know that there is a cat in a photo?

Question/

Hypothesis

Thiết kế thử nghiệm

Machine Learning *i.e.* Automatic data-driven predictive models

Data? Acquisition? keywords: data sampling/survey

Model? Assessment? keywords: training/testing sets, mean squared errors, precision, recall, ... Experimental Design (i.e. planning)

essi

Question/

Hypothesis

Thiết kế thử nghiệm

Machine Learning *i.e.* Automatic data-driven predictive models

Data? Acquisition? keywords: data sampling/survey

Assessment

Model? Assessment? keywords: training/testing sets, evaluation metrics (e.g. mean squared errors, precision, recall)

Modelling

Design (i.e. planning)

Experimental

Data sampling

Avoid as many sampling biases as possible <u>http://norvig.com/experiment-design.html</u>

Question/

Hypothesis

Experimental Design

Data Sampling

Representative sample

- How many photos, categories, photos in each category, ...?
- (If time-series data: eg videos) Sample at which time points?

Assessment

- Imbalance class?
- Selection bias?

Data sampling

Which metrics to use depend on which problem http://scikit-learn.org/stable/modules/model_evaluation.html

Model Assessment **Evaluation metrics** Accuracy Precision, Recall Area Under Curve (AUC) Đánh giá mô hình Mean squared errors (MSE) **Data sampling** (If hypothesis testing problem) t-statistic, z-statistic, χ^2 statistic, ... cat flower dog jet Modelling ground grass

If training/testing set split is well designed with sufficient examples, we might not need to repeat many experiments.

Question/

"All models are wrong, but some are useful." - Box and Drape, 1987

Question/

Hypothesis

Model Building

Experimental Design

Model = a simplification of **reality**

(e.g. map of Hanoi) Keywords: Linear models, Graphical models, Neural networks, SVM, Gaussian Process, Random forest ...

Raw data

Assessment

→ Post-processed data

- Data ETL: extract, transform, load
- Data standardisation / normalisation
- Data imputation (if missing values)

Tiền xử lý dữ liệu

Modelling

Data pre-process

Vấn đề, câu hỏi mới

PRINCIPLES OF MODELLING

Statistical reasoning (*)

(*) A machine learning algorithm does not necessarily have a probabilistic interpretation, or developed from a statistical framework. Nevertheless, statistical reasoning provides a rigorous mathematical tool for estimation and inference to make optimal decision (e.g. prediction, action) under **uncertainty**, which is one of the ultimate objectives in ML.

ML problem: Classification

ML problem: Classification

ML problem: Regression

Example models/algorithms: Linear regression (linear model) Neural Net with linear output (nonlinear model) Curve fitting algorithm

ML problem: Clustering

Note: "topic" = group/cluster in this context, and is <u>not</u> pre-defined We will meet the term "topic" again when visiting Topic models Example models/algorithms: k-means algorithm Generative models: Mixture models, Topic models A ML problem can also be:

- both supervised and unsupervised (semi-supervised)
- combination of regression and classification subproblems *e.g. image localisation*

Classification: C classes Input: Image Output: Class label Evaluation metric: Accuracy

Localization:

Input: Image Output: Box in the image (x, y, w, h) Evaluation metric: Intersection over Union

→ (x, y, w, h)

Classification + Localization

CAT

PRINCIPLES OF MODELLING

- 1. Model structure constructs relationships (*stochastic and/or deterministic*) between model elements: data, parameters, and hyper-parameters.
 - Keywords: graphical model
- 2. Learning principle defines a framework to estimate unknown parameters (and unobserved i.e. hidden/latent variables) Keywords: Maximum Likelihood criterion, Bayesian inference, ++ others

3. Regularisation

Keywords: over-fitting, Bayesian inference, ++ others Relevant keywords: L2-regularisation (Ridge), L1-regularisation (LASSO)

\Rightarrow ALGORITHM - implements 1 + 2 + 3 to train the model

Keywords: (stochastic) gradient descent, Expectation-Maximisation (EM), Variational Inference (VI), sampling-based inference methods

4. Model selection

Keywords: cross-validation

Before we get going...

"Mathematics is the art of giving the same name to different things ." -Henri Poincaré.

"The purpose of computation is insight, not numbers." -Richard Hamming

$$p(\mathbf{w} | \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \int \left(\prod_{i=1}^{k} \theta_{i}^{\alpha_{i}-1}\right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\theta_{i} \beta_{ij})^{w_{n}^{j}}\right) d\theta,$$
$$p(D | \boldsymbol{\alpha}, \boldsymbol{\beta}) = \prod_{d=1}^{M} \int p(\theta_{d} | \boldsymbol{\alpha}) \left(\prod_{n=1}^{N} \sum_{z_{dn}} p(z_{dn} | \theta_{d}) p(w_{dn} | z_{dn}, \boldsymbol{\beta})\right) d\theta_{d}$$