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https://hoamle.github.io/articles/16/essence-machine-deep-learning/


Examples 
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 https://www.youtube.com/watch?v=BmkA1ZsG2
P4 

 http://www.r2d3.us/visual-intro-to-machine-
learning-part-1/ 
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Machine Learning is about … 

… a computer program (machine) learns to do a task 
(problem) from experience (data) 

• learning ≜ improved performance with more experience 
- Tom Mitchell  

⇑ 

predictive modelling with sample data 
⇑ 

"heurestics" & statistical modelling  
note 1: “heurestic” as in “intuitive, but not (yet!) rigorously proven by mathematical 

tools at some extend” 
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note 2: predictive modelling can also be in the form of rule-based systems, models in physics, etc 



BUILD  
A MACHINE LEARNING SOLUTION 

the Pipeline 
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Assessment 
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Đánh giá mô hình 

Xây dựng mô hình 

Đặt vấn đề 

What ML 
mostly 
about 

Thu thập dữ liệu 

(Task) 

(Experience) 

(Machine) 

(Performance) 
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Đánh giá mô hình 

Xây dựng mô hình 

Lấy mẫu  

Đặt vấn đề 

Giải thích/phân tích 
kết quả 

Thiết kế thử nghiệm 

What ML 
mostly 
about 

Tiền xử lý dữ liệu 



Question/ 

Hypothesis 

Experimental 
Design 

Data acquisition 

Data pre-process 
(ETL) 

Modelling 

Assessment 

Interpretation 

cat 
flower 
dog  
jet 
ground 
grass 
… 
 

Q.a. What are there in an abitrary photo? 
Q.b. What is there in an abitrary photo?  
Q.c. Is there any puppy an abitrary photo? 
 

Other questions: 
- Where are the puppies in a photo? 
- How confident can I assure that there is a cat a photo? 
- For what reasons can I know that there is a cat in a photo? 
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Đặt vấn đề 



Question/ 

Hypothesis 

Experimental 
Design 

(i.e. planning) 

Data acquisition 

Data pre-process 
(ETL) 

Modelling 

Assessment 

Interpretation 

Thiết kế thử nghiệm 
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Machine Learning  

i.e.  

Automatic data-driven 

predictive models 

 

Data? Acquisition?  

keywords: data sampling/survey 

 

Model? Assessment? 

keywords: training/testing sets, 

mean squared errors, precision, 

recall, … 
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Experimental 
Design 

(i.e. planning) 

Data sampling 
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Thiết kế thử nghiệm 

Machine Learning  

i.e.  

Automatic data-driven 

predictive models 

 

Data? Acquisition?  

keywords: data sampling/survey 

 

Model? Assessment? 

keywords: training/testing sets, 

evaluation metrics (e.g. mean 

squared errors, precision, recall) 

 



Question/ 

Hypothesis 

Experimental 
Design 

Data sampling 

Data pre-process 
(ETL) 

Modelling 

Assessment 

Interpretation 

Data Sampling 
Representative sample 

• How many photos, categories, 

photos in each category, …? 

• (If time-series data: eg videos) 

Sample at which time points? 

• Imbalance class? 

• Selection bias? 
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Lấy mẫu  

Avoid as many sampling biases as possible 
http://norvig.com/experiment-design.html 

http://norvig.com/experiment-design.html
http://norvig.com/experiment-design.html
http://norvig.com/experiment-design.html
http://norvig.com/experiment-design.html


Question/ 

Hypothesis 

Experimental 
Design 

Data sampling 

Data pre-process 
(ETL) 

Modelling 

Assessment 

Interpretation Model Assessment 
Evaluation metrics 

• Accuracy 

• Precision, Recall 

• Area Under Curve (AUC) 

• Mean squared errors (MSE) 

• … 

(If hypothesis testing problem) 

• t-statistic, z-statistic, 𝜒2-

statistic, … 

 

Đánh giá mô hình 

Which metrics to use depend on which problem 
http://scikit-learn.org/stable/modules/model_evaluation.html 
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cat 
flower 
dog  
jet 
ground 
grass 
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Question/ 

Hypothesis 

Experimental 
Design 

Data sampling 

Data pre-process 
(ETL) 

Modelling 

Assessment 

Interpretation Model Assessment 
Evaluation setup 

Evaluation (i.e.report results) on 

unseen data 

• Training/testing set split: 

follows data sampling 

principles 

• Repeat experiment: gives 

measurable confidence to the 

reported results 

 

 

Đánh giá mô hình 
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cat 
flower 
dog  
jet 
ground 
grass 

If training/testing set split is well designed with sufficient 
examples, we might not need to repeat many experiments. 



Question/ 

Hypothesis 

Experimental 
Design 

Data acquisition 

Data pre-process 
(ETL) 

Modelling 

Assessment 

Interpretation 
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Xây dựng mô hình 

Model Building 
 

Model = a simplification of reality  

(e.g. map of Hanoi) 

Keywords: Linear models, Graphical models, Neural networks, 

SVM, Gaussian Process, Random forest …  

 

Modelling tip: building model goes from the most 

simplified forms to the more complex to describe 

reality more precisely 

(e.g. building from Linear models to Latent variable models / 

Deep neural networks) 

 

“All models are wrong, but some are useful.” 
 - Box and Drape, 1987 

What ML 
mostly 
about 
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Experimental 
Design 

Data acquisition 

Data pre-process Modelling 

Assessment 

Interpretation 

14 

-0.34 -0.46 -0.87 
 1.47 -0.24  2.21 
-1.05  0.02 -1.74 
 0.09 -0.58  1.02 
 1.63 -0.53  0.06 
 1.11 -0.63 -0.93 
-0.34 -0.46 -0.87 
 1.47 -0.24  2.21 
-1.05  0.02 -1.74 
 0.09 -0.58  1.02 
 1.63 -0.53  0.06 
 1.11 -0.63 -0.93 
 0.09 -0.58  1.02 
 1.63 -0.53  0.06 
 1.11 -0.63 -0.93 
 ....  ....  .... 

Raw data Post-processed data 
• Data ETL: extract, 

transform, load 
• Data standardisation / 

normalisation 
• Data imputation  

(if missing values) 
 

Feature extraction 
 

Tiền xử lý dữ liệu 
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Hypothesis 

Experimental 
Design 

Data sampling 

Data pre-process Modelling 

Assessment 

Interpretation 
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Đánh giá mô hình 

Xây dựng mô hình 

Thiết kế thử nghiệm 

What ML 
mostly 
about 

Đặt vấn đề 

Tiền xử lý dữ liệu 

Lấy mẫu  
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Đánh giá mô hình 

Xây dựng mô hình 

Thiết kế thử nghiệm 

What ML 
mostly 
about 

Vấn đề, câu hỏi mới 

Tiền xử lý dữ liệu 

Giải thích/phân tích 
kết quả 

Lấy mẫu  



PRINCIPLES OF MODELLING 

Statistical reasoning (*) 
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(*) A machine learning algorithm does not necessarily have a probabilistic interpretation, or 
developed from a statistical framework. Nevertheless, statistical reasoning provides a rigorous 
mathematical tool for estimation and inference to make optimal decision (e.g. prediction, 
action) under uncertainty, which is one of the ultimate objectives in ML. 



Question/ 

Hypothesis 

Experimental 
Design 

Data 
acquisition 

Data pre-
process 

Modelling 

Assessment 

Interpretation 
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Đánh giá mô hình 

Xây dựng mô hình 

Đặt vấn đề 
Contents 

Tiền xử lý dữ liệu 



Is there any cat in an abitrary photo? 
Experience: dataset of {image, label} pairs 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1

𝑁  
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Image 
𝑥𝑛 

ℕ400×600×3 
 

Question 

Cat? 
Not cat? 

 

Modelling 

  
supervised
learning

 

Prediction 
𝑦 𝑛 

True, False  binary
classification

problem
 

predict 𝑦 𝑛 – cat existence – given arbitrary 𝑥𝑛 

(single-class) 

Assessment Accuracy = 
1

𝑁
 𝕀 𝑦 𝑛 = 𝑦𝑛𝑛  

Precision, Recall, F1-score 

Area Under Curve (AUC) 

…  

ML problem: Classification 
 

Example models:  
Logistic regression (linear model) 
Neural Net with sigmoid output (nonlinear model) 



What is there in an abitrary photo? 
Experience: dataset of {image, label} pairs 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1

𝑁  
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Image 
𝑥𝑛 

ℕ400×600×3 
 

cat 
flower 

dog  
jet 

ground 
grass 

Modelling 

Prediction 
𝑦 𝑛 

1,2,3,4,5,6  

predict 𝑦 𝑛 – object identity – given arbitrary 𝑥𝑛 

Assessment Accuracy = 
1

𝑁
 𝕀 𝑦 𝑛 = 𝑦𝑛𝑛  

Precision, Recall, F1-score 

Area Under Curve (AUC) 

…  

categorical 
classification

problem
 

(multi-class) 

  
supervised
learning

 

Question 

ML problem: Classification 
 

Example models:  
Softmax classification (linear model) 
Neural Net with softmax output (nonlinear model) 
 



ML problem: Regression 
 

How much is the price of a house given … 
Experience: dataset of {(area, location, #rooms), price} pairs 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1

𝑁  
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Modelling 

regression
problem

 

predict 𝑦 𝑛 – house price – given arbitrary 𝑥𝑛 

Area 100m2 

Location 24.70N 
183.00E 

#Rooms 3 

$150,000 

Features/Predictors 
𝑥𝑛 

ℝ × ℝ2 × ℕ 

Prediction 
𝑦 𝑛 
ℝ 

Assessment squared_errors = 
1

𝑁
 𝑦 𝑛 − 𝑦𝑛

2
𝑛  

  
supervised
learning

 

Question 

Example models/algorithms:  
Linear regression (linear model) 
Neural Net with linear output (nonlinear model) 
Curve fitting algorithm 
 



What is the “topic” that a news article is talking about? 
Experience: dataset of article content only 𝒟 = 𝑥𝑛 𝑛=1

𝑁  
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Modelling predict 𝑧𝑛  – “topic” (cluster) identity – given arbitrary 𝑥𝑛 

Article (text) 
𝑥𝑛 

ℕ1500 

Prediction 
𝑧𝑛 

1,2, … , 10  

Assessment mean_distance_to_clusters =
1

𝑁
 𝑥𝑛 − 𝜇𝑧𝑛

2
𝑛  

Question 

 𝑥𝑛 
  𝑧𝑛 = green 
 

x 

Note: “topic” = group/cluster in this context, and is not pre-defined 
We will meet the term “topic” again when visiting Topic models 

Example models/algorithms: 
k-means algorithm 
Generative models: Mixture models, Topic models 

ML problem: Clustering 
 

  
𝐮𝐧supervised

learning
 



A ML problem can also be: 

 both supervised and unsupervised (semi-supervised) 

 combination of regression and classification sub-
problems e.g. image localisation 
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PRINCIPLES OF  
MODELLING 

1. Model structure - constructs relationships (stochastic and/or 
deterministic) between model elements: data, parameters, and hyper-
parameters. 

Keywords: graphical model 

2. Learning principle - defines a framework to estimate unknown 
parameters (and unobserved i.e. hidden/latent variables) 

Keywords: Maximum Likelihood criterion, Bayesian inference, ++ others 

3. Regularisation 
Keywords: over-fitting, Bayesian inference, ++ others 
Relevant keywords: L2-regularisation (Ridge), L1-regularisation (LASSO) 

 ⇒ ALGORITHM - implements 1 + 2 + 3 to train the model 
Keywords: (stochastic) gradient descent, Expectation-Maximisation (EM), Variational Inference (VI), 
sampling-based inference methods 

4. Model selection 
Keywords: cross-validation 
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Modelling 



Before we get going… 
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