
CPR E 458, Real-Time Systems
16 December 2021; Ames Iowa, United States

Real Time Scheduler on TI Robot
EDF & RMS Implementation on MSP432P401R REV D Micro Controller on TI-RSLK

MAX Robot Kit
Nicholas Krabbenhoft
CPR E 458 Section 1
Iowa State University

College of Electrical and Computer Engineering
Ames Iowa, United States

Abstract— The ability to run multiple jobs on a single Micro
Controller is vital to get the full utilization out of components.
However having many jobs running on a single controller creates
problems of when each job receives processor time and how each
job can be scheduled to ensure every job meets it’s deadline.
RMS (Rate-monotonic scheduling) and EDF (Earliest Deadline
First) scheduling is one method to insure this. This paper takes
an in depth look at an implementation method for these two
schedulers on the MSP432P401R REV D Micro Controller and
considers different practice trade offs that were made in the
design process. It will then work through the testing of the
schedulers to insure that they are working properly and can
handle high loads.

Keywords—Earliest Deadline First (EDF), Rate-monotonic
scheduling (RMS), Real Time, MSP432P401R

I. INTRODUCTION
Embedded systems are ubiquitous in the modern world and

run some of the most important systems on the planet. These
micro-controllers often have to do multiple tasks and they must
be relied on to do those tasks. In order to know how many tasks
a micro-controller is able to be assigned a schedule for the
tasks is needed. This schedule must be able to guarantee that
every task is completed on time. Two of the most common
algorithms for scheduling are EDF (Earliest Deadline First)
and RMS (Rate-monotonic scheduling).

In order to gain a deeper understanding of how these
algorithms work in real world applications, this project will go
through the process of implementing them and discuss the
design designs and testing that is involved in the process. All of
this will be done on the MSP432P401R REV D Micro
Controller on TI-RSLK MAX Robot Kit from TI (Texas
Instruments).

II. OBJECTIVE

For this project, I will be attempting to schedule multiple
arbitrary jobs on a single processor micro-controller. This will
give it the ability to appear to do many jobs in parallel rather
then being stuck doing a single job. It will also be able to
assign processor time to each task in a deterministic way to
insure that every task is completed before the given deadline.

A. System
This project uses the MSP432P401R REV D Micro

Controller on TI-RSLK MAX Robot Kit from TI to run the
scheduler on and a Linux desktop with the Arduino IDE to
program the micro-controller. Then the PuTTY program is
used to establish serial communications with the board for
debugging purposes. All scheduling takes place on the board
itself and ideally no general purpose computer is needed to
interact with the micro-controller once it is fully programmed.

A couple important notes about the micro controller we are
using from its data sheet in order to understand our hardware
constrant. It has a “Arm® 32-bit Cortex®-M4F CPU with
floating point unit and memory protection unit “ and
“frequency up to 48 MHz.” It also has “up to 256KB of flash
main memory,” “16KB of flash information memory” “up to
64KB of SRAM,” and “32KB of ROM with MSP432™
peripheral driver libraries.” [1]

B. Real world applications
Real world applications for real time schedulers is massive.

The number of micro-controllers in a single car is reaching the
dozens and each of those micro-controllers have multiple tasks
that must be scheduled to not interfere with one another. While
this robot and it’s relatively simple schedule is not on that scale
it gives a glimpse at how those real world schedulers work and
what considerations have to go into designing them.

C. Objectives and Scope
In order to constrain the project to a reasonable scope, let’s

first define the requirements that we are going to have for the
project.

 Schedule an arbitrary number of jobs

 Each Job should have an arbitrary number of
arguments (each job can have different number of
arguments)

 The scheduler must implement the EDF and RMS
scheduling algorithms

 Easily add more algorithms

 Scheduling failures should be non catastrophic and
predictable

CPR E 458, Real-Time Systems
16 December 2021; Ames Iowa, United States

 Minimal complex code should be used as this is both a
learning experience and should serve as a clear example
to the readers

III. DEVELOPMENT STEPS

A. On computer Development
To give an easy development process and portability (much

of the code was written on a laptop while traveling), this
project was first designed on and for a standard Linux desktop
environment. This allowed for significantly faster development
and testing. All of the design iterations and testing discussed in
the implementation section was done here and then the code
was ported to run on the micro controller.

B. Transferring code to MSP432P401R Micro Controller
Once the code was fully functional, it still needed to be

transferred to the micro-controller in order to run and that
micro-controller needed to be tested to insure that it was
working properly.

To insure that the micro-controller was working properly
the functionality test hosted by TI was used [7]. In order to
program the robot, I then used the Arduino IDE and the
additional libraries provided by TI [8]. The next step to ensure
that the micro-controller was working was running several of
the demo projects given by the code library. Once this was
completed, I used the dancing robots as a reference point to
begin transferring over the code implemented on the Linux
desktop environment[8].

Thankfully, there were only a few modifications that
needed to take palace in the code to move it from the desktop
environment to the micro-controller. First, the code was
restructured so that the all of the initialization code took place
in the setup function and then all of the repeating schedule
code was moved to the loop function. Next the printf and puts
calls were translated to sprintf and Serial.write calls. The
Arduino IDE also broke how my newly created libraries were
included, so that had to be re created. Other then that,
everything worked fine.

IV. IMPLEMENTATION

A. Overall Program Design
The program is broken into 3 major parts: Setup, Adding

Jobs, and Running Jobs. The program begins be initializing the
Job queue with the proper comparator function, setting up
serial communication with the controlling computer, and
insuring all configuration registers for the GPIO pins are set
properly. Finally, the program goes into an infinite loop
waiting for a button to be pressed to start executing the main
loop.

1) Main Loop

Main_Loop:
 int new_time = init_time
 int old_time
 while True :
 while queue_has_more:

old_time = new_time
new_time = time()
add_new_jobs(old_time, new_time)
job = queue_pop
if job.cost + time() > job.deadline
 error – missed job
 continue
call job.function(job.args)

The main loop consists of the 2 remaining parts and is
conceptually very simple. The scheduler will first assign a
variable old_time the value of the current time, which would be
0 on the first loop. Then it will iterate through every job seeing
if it has arrived for processing between old_time and the new
current time and adding them to the queue if true. This is done
in the add_new_jobs function in the pseudo code.

Once all jobs are checked, the old_time variable is updated
to the current time and the highest priority job is removed from
the queue, checked if it is still valid. If it is still valid, it is then
executed. This loop is then repeated forever adding and
removing jobs to the queue.

2) Initialization Options
a) Defined Options

A large number of configuration options must be done
before the code is compiled in the first part of the code where
many constants are defined for later use in the code. The
#define feature in the C compiler is used to do this to enable
quick changes to the code and avoid magical numbers in the
cade base itself. The current configuration options are the
number of Jobs defined in the numOfJobs variable and what
type of scheduling algorithm to use EDF or RMS.

b) Setup() function
The Arduino IDE sets up the program as follows rather

then using the standard main function. First it executes the
setup() function and then it runs the loop() function within an
infinite while loop. This means that any initialization for the
micro-controller must take place within the setup() function.

The setup() function in this project does some important
tasks. It first setups up the serial output for debugging
purposes. After that it initializes the GPIO pins and LED's to be
used as outputs to provided indications if the micro-controller
is working properly if the board isn’t connected by serial
console. It then waits for a button to be pressed before
beginning execution to make sure it isn’t accidentally started.
Once started it assigns the initial call time of all the tasks and
begins keeping track of time to add more jobs on the queue.
Once all of that is done it drops into the main loop.

Fig. 2.

CPR E 458, Real-Time Systems
16 December 2021; Ames Iowa, United States

3) Including Jobs in the Program
The current implementation has 8 jobs included, however a

theoretically unbounded number of jobs can be included in the
program. Each job needs the actual code to run the job, a set of
arguments that currently can not change, and a series of
parameters to determine when to run the jobs and how often
they need to be ran.

a) Function Arguments
Each job needs to take an char * array[] for the arguments.

Due to the fact that every pointer can be cast to an char* in c
this allows a theoretically infinite number of arguments. For
example, to access an integer held pointed to by the first
pointer you would use the following: (*(int *)args[0]). These
arguments are held in an char ** array[] which is a global
variable in the scheduler file. To initialize, each argument
should be declared individually, then their pointers should be
cast to a char * and placed in a char * jobXargs[], where X is
the job number. Each of these jobXargs[] should then be placed
into the overall job args array to be called later.

b) Job Function
Each possible job to be run must be included in the code as

a function that can be referenced as a function pointer in the
scheduler.c file. This function must take in only a char* [] as
arguments as discussed above and return an int.

However, the most important thing for each function is that
it has a known upper bound and will not cause a crash. The
scheduler code has no way to recover from a faulty job or
interrupt a job that runs over it’s max time. This means that any
faulty job can not be isolated and has a large probability of
causing other jobs to fail or bringing down the entire controller.

The upside of this fragility is that each job can assume that
it is the only job running on the system and can have complete
access to all of the system resources. This removes any
concerns with deadlocks or conflicts over shared resources. In
future implementations it would be ideal to implement these
protections while maintaining the advantages of a single job
running at a time.

c) Job Meta Data
The final information needed for each job is the meta data

concerning how long they take to run and when they needed to
be run. It is assumed that all of the jobs need to be executed in
a periodic fashion. Therefor, to know when every job needs to
be run and how to schedule it the program stores several
variables per job in an array called tasks.

The first variable it stores is the amount of time in seconds
it takes to run the program. Second item in the array is the
period it needs to be completed by. For example, a task with a
period of 10 would need to be completed once every 10
seconds. The next variable is when the job needs to be called
next. This is adjusted throughout the run time of the program,
but setting it to a non zero number allows you to delay the
starting of a program. For example, setting it to 100 would
mean that the job wouldn’t be added to the schedule until 100
seconds after initialization. Finally, the array stores the

deadline of each task which is the number of seconds after its
call time that it needs to be finished by.

4) Jobs and the Queue
The queue of jobs is based on a heap which is implemented

on top of an array. To understand this, let’s work from the top
down and start with an ordered heap then look at how the jobs
are stored queue.

a) Job Heap
A max heap is a data structure where each node can have 2

children and the children must have a lower value then their
parent node. This means that Job A must be the largest value in
the heap, however Job G could have a greater value then Job B
in the given example. In this implementation the space on the
heap would be filled from top to bottom and left to right. So if
there was one less job G’s spot would not be filled.

This data structure was chosen because it has several
extremely useful properties. First and foremost, it’s ability to
function as an ordered queue is the most important. We can
always know that the highest priority task will be on the top of
the heap and that’s the one that should be executed next. It also
allows for relatively easy additions and removals from the heap
which is needed in order to add and remove jobs.

b) Heap on Array
The heap implemented in this project uses in based on an

array. The array is initialized with the maximum number of
jobs that will ever be on the heap. It then creates an heap where
index 0 is the top of the heap and the left child of the top node
is at index 1 and the right child is at index 2. Continuing this
puts the left and right children of Job B at 3 and 4 respectively.
Continuing this gives us the following equations for node at
index n:

Fig. 1.

CPR E 458, Real-Time Systems
16 December 2021; Ames Iowa, United States

 left_child = 2 * n + 1

2 right_child = 2 * n + 2

Now we that we have an understanding of how the queue is
implementation on the heap, let’s examine how to add and
remove jobs from the queue.

c) Adding Jobs to the Queue

Insertion Algorithm(new_job):
 loc = first_open_spot++
 array[loc] = new_job
 While array[loc].size > array[parent(loc)].size:
 swap(array[loc], array[parent(loc)])

To add jobs to the Queue we begin by adding the new job
to the smallest unfilled index in the array to maintain the top to
bottom left to right method of filling the heap and allow us to
keep track of the next available spot on the heap. Once the job
is in the heap, we have to insure that it is in the correct position
on the heap. Recall, that a child can not have a higher priority
then the parent. We can also assume that only the node we
added is in the incorrect location because the heap is correct
before we added the new job.

This means that to repair the heap we only have to worry
about the new job. This is done in the implementation by
iteratively checking if the parent of the inserted node is less
then it. If the parent is less then the inserted node, the two
nodes are swapped and the process is repeated. Either the new
node has the highest priority in the heap and it becomes the
new top node or it stops before then because one of it’s parents
has a larger priority then it does.

d) Removing Jobs from the Queue

Removal Algorithm:
 toReturn = array[0]
 loc = --first_open_spot
 swap(array[0], array[loc])
 loc = 0

 While true:

 if array[loc].left < array[loc].right:
left_less = True

 else:
left_less = false

 if array[loc] < array[loc].left && !left_less
 swap(array[loc], array[loc].left)
 elif array[loc] < array[loc].right && left_less

swap(array[loc], array[loc].left)
 else

return toReturn

Removing jobs from the queue is similar to adding jobs to
the queue however the fact there is 2 children as apposed to 1
parent introduces additional checks. In order to remove a job
from the queue in this implementation, the function first copies
over the top job to the variable passed in. It then swaps the last
and first element so that the first element can be considered to
be empty.

Now the heap needs to be repaired because the current top
node will probably not be the highest priority job on the heap.
To do this, we will iteratively check to see which child is the
largest and check if the largest child has a higher priority then
then it’s newly moved parent. If it is, the two are swapped and
the process continues. Once neither child has a larger priority
then the new parent we know that the heap has been repaired.

e) Job Structure
Each Job is stored in the queue inside of a C struct which is

stored in the heap. Before execution, the information is copied
into a local variable stored in the stack frame of the main loop.
The job struct contains 2 types of information, what is needed
to schedule the job and what is needed to run the job.

The job information contains a pointer to the jobs function
and the char * array[] talked about before to be used as the
functions arguments. In order to use this information, the
scheduling book keeping information is the worst case
computation time for the job, it’s deadline, and, if RMS is
being used, the period of the job. All of these variables are
stored as int currently besides the function pointer and args.

B. Included Libraries
This project includes several external libraries that we will

go through from most to least common.

 stdio.h – The final project sketch only uses one
function from the stdio.h library, sprintf. This function
is used to create one string out of a format string that
can then be sent for the serial connection.

 string.h – This program uses several of string.h’s
functions to manipulate memory. In particular memset
and memcpy are both used to move the data around
within the heap.

 SimpleRSLK.h [8] – Probably the most important
library used in this project is the SimpleRSLK.h library
provided by TI. This library provides a relatively simple
API to interface with the micro-controller and the robot
it sits on top of. The current implement ion only uses it
to set up the serial communication ports and access the
time on the system, however any more complex jobs
using this platform would have to make heavy use of
the library or need to re implement the drivers needed to
interact with the low level hardware of the micro-
controller.

CPR E 458, Real-Time Systems
16 December 2021; Ames Iowa, United States

C. Pros and Cons of Implementation
There are several significant trade offs being made in this

implementation of the job queue. One of the most significant
ones is the requirement to copy bit by bit each job every time a
job is swapped. This is due to the fact that the heap is based on
an array and it is not possible to reorder objects in an array
without copying them over. While an pointer based
implementation of the heap would fix this problem it would
introduce significant design complexity and require
programming needed to keep the tree balanced to insure
optimal adding and removing speed.

The next trade off to be considered when working on this
project is the use of recursive or iterative method for solving
problems. In particular the insertion and removal of jobs from
the queue and the need to peculate a job up or down the heap is
a perfect example of this. A recursive strategy would work
perfectly in this case, but I decided to use the iterative method.
Iterative methods are normally more cumbersome to work with
for the programmer, however they normally result in more
efficient code due to not needing to create large number of
stack frames. This choice was due to the limited memory
capacity of the micro-controller and the need to for high
performance in the scheduler design.

V. TESTING

A. Placeholder Jobs
9 different jobs were created for the testing of this program.

Each job simply prints out a single character then sleeps for a
second x number of times where x is the id of the job. This
means that I can give a job the variables a and 5 and it will
print the character a and then wait 1 second before repeating. It
will repeat 5 times resulting in 5 a’s to be printed in roughly 5
sounds using printf on the Linux machine and over the serial
connection when ran on the micro controller.

B. Testing methodology
In order to test the scheduler, I used an known good output

for several sets of jobs. I would create an RMS or EDF
schedule from hand and then run the same set of jobs on the
scheduler. The debugging output would give which job, if any,
was worked on for every second. This was done for both of the
scheduler types.

A couple of important notes about the test cases and what
was included. The most obvious tests that I started with was a
small number of tasks that only utilized part of the micro-
controllers processing power. However, the system must be
able to function under heavy loads and fail in a predictable
manner. Therefor, the majority of the testing was focused on
near failure states and overload conditions to insure that the
system was able to continue functioning predictably in those
conditions.

C. Results
Although several of the tests failed at the beginning of

development, this was primarily due to an buggy heap

implementation. Once the bugs with the heap were fixed tests
completed correctly.

One other note is that very long term test will probably
result in some errors due to the rounding errors on the actual
time it takes to execute the jobs and the scheduling in between
the jobs. The scheduler assumes that no overhead is taken up
by the scheduler and the computation time allocated to the
functions is only enough for the sleep call. Not the Serial
communication and logic surrounding it. However, these errors
are so small that they did not appear in the relatively short (1
hour max) testing I conducted.

VI. CONTINUING WORK

A. Code separation and improvement
The code base for the project clearly shows that it was

developed by a single person and needed to be reformatted
multiple times to get it to function in multiple IDEs. This
makes the readability of the code relatively poor and has
almost certainly introduced fragility to the code base. Before
future development, the jobs should be re separated out into a
separate header file at least. It would also be beneficial to pass
a 2nd variable to the jobs containing the number of arguments
being passed to it similar to how the main function works in C
programming. Finally, increasing the precision of the
scheduling from 1 second down to micro or mili seconds
would greatly increase real world applications of this
scheduler.

B. Comparison of pointer based heap to array based heap
It is unclear if using a heap based on structs which point to

their parent and 2 children rather then an array would be a
better method. It would significantly reduce the number of
memcpy calls required in the heap implementation. However, it
would require constantly allocating and removing space on the
program’s memory heap. Implementing this and comparing it
to the array based implementation would probably be
worthwhile.

C. Interruption based scheduling
The MSP432P401R REV D micro controller does support

timer based interrupts so allowing an interrupt driven
scheduling would be a massive improvement to the scheduler.
While basic timer based interrupts would not allow a task to be
interrupted in the middle, it would protect the micro-controller
from falling into an infinite loop. It should be possible to kill a
task that takes longer then it’s worst case scenario.

D. Additional Scheduling
Additional scheduling algorithms can be implemented

relatively easily by creating an additional comparator methods
and passed to the queue at initialization. A relatively easy
example would be the least latency first (LLF) algorithm as the
deadline and computation time is already within the job
structure. Other algorithms may require additional book

CPR E 458, Real-Time Systems
16 December 2021; Ames Iowa, United States

keeping data to be held in the job structure, but the code should
easily handle that.

VII. CONCLUSION
Overall this project was a great success and I was able to

meet all of my objectives. I was able to create a fully
functioning EDF & RMS scheduler on the MSP432P401R
REV D micro-controller. I am particularly proud of the
schedulers ability to take in an arbitrarily large number of
functions and each of those functions having an arbitrarily
large number of argument. The project has certainly solidified
my understanding of EDF and RMS scheduling and how
scheduling algorithms are created.

Project learning
objectives

Status
(Not/Partially/
Mostly/Fully
Completed)

Pointers in
the

document

Self-contained
description of the

project goal, scope,
and relevant
requirements

Fully
Completed

Section II
Page 1

Self-contained
description of the

solutions
(algorithms/protocol

/applications/etc.)

Fully
Completed

Section
IV, page 2

Adequate
description of the
implementation

details (data
structures, pseudo

code segments,
libraries used, etc.)

Fully
Completed

Section
III, IV
Page 2

Testing and
evaluation – test

cases, metrics, test
results, any relevant
performance results

Fully
Completed

Section V.
Page 5

Overall Project
Success assessment

Fully
Complete

REFERENCES

 [1] Texas Instruments, “MSP432P401R Data sheet,

Product Information and Support,” https://www.ti.com/

product/MSP432P401R, Aug. 11, 2021. https://web.

archive.org/web/20210811001055/https://www.ti.com/product/

MSP432P401R (accessed Dec. 13, 2021).

 [2] Texas Instruments, “MSP432P4xx SimpleLinkTM

Microcontrollers    Technical Reference Manual,” www.ti.com,

2020. https://web.archive.org/web/20200402132746/

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf.

 [3] Texas Instruments, “MSP432P401R,” Ti.com, 2019.

https://www.ti.com/product/MSP432P401R.

 [4] Texas Instruments, “TI-RSLK MAX,”

university.ti.com, 2019. https://university.ti.com/programs/

RSLK/ (accessed Dec. 13, 2021).

 [5] Texas Instruments, “Texas Instruments Robotics

System Learning Kit User Guide,” www.ti.com, 2019.

https://www.ti.com/lit/ml/sekp166/sekp166.pdf?

ts=1635177457837 (accessed Dec. 13, 2021).

 [6] Texas Instruments, “TI-RSLK Base Pin Map,”

www.ti.com, 2019. https://www.ti.com/lit/ml/sekp

171/sekp171.pdf?ts=1635177460390 (accessed Dec. 13, 2021).

 [7] Texas Instruments, “TI RSLK MAX Debug,”

dev.ti.com, 2019. https://dev.ti.com/gallery/view/1766484

/RSLK_Debug/ver/2.0.1/ (accessed Dec. 13, 2021).

[8] Texas Instruments, “RSLK-Robot-Library,”

Amazonaws.com, 2021. https://hacksterio.s3.

amazonaws.com/uploads/attachments/1217431/RSLK-Robot-

Library.zip (accessed Dec. 13, 2021).

	I. Introduction
	II. Objective
	A. System
	B. Real world applications
	C. Objectives and Scope

	III. Development Steps
	A. On computer Development
	B. Transferring code to MSP432P401R Micro Controller

	IV. Implementation
	A. Overall Program Design
	1) Main Loop
	2) Initialization Options
	a) Defined Options
	b) Setup() function

	3) Including Jobs in the Program
	a) Function Arguments
	b) Job Function
	c) Job Meta Data

	4) Jobs and the Queue
	a) Job Heap
	b) Heap on Array
	c) Adding Jobs to the Queue
	d) Removing Jobs from the Queue
	e) Job Structure

	B. Included Libraries
	C. Pros and Cons of Implementation

	V. Testing
	A. Placeholder Jobs
	B. Testing methodology
	C. Results

	VI. Continuing Work
	A. Code separation and improvement
	B. Comparison of pointer based heap to array based heap
	C. Interruption based scheduling
	D. Additional Scheduling

	VII. Conclusion
	References

