""" FEniCS tutorial demo program: Incompressible Navier-Stokes equations for flow around a cylinder using the Incremental Pressure Correction Scheme (IPCS). u' + u . nabla(u)) - div(sigma(u, p)) = f div(u) = 0 """ from __future__ import print_function from fenics import * from mshr import * import numpy as np T = 5.0 # final time num_steps = 5000 # number of time steps dt = T / num_steps # time step size mu = 0.001 # dynamic viscosity rho = 1 # density # Create mesh channel = Rectangle(Point(0, 0), Point(2.2, 0.41)) cylinder = Circle(Point(0.2, 0.2), 0.05) domain = channel - cylinder mesh = generate_mesh(domain, 64) # Define function spaces V = VectorFunctionSpace(mesh, 'P', 2) Q = FunctionSpace(mesh, 'P', 1) # Define boundaries inflow = 'near(x[0], 0)' outflow = 'near(x[0], 2.2)' walls = 'near(x[1], 0) || near(x[1], 0.41)' cylinder = 'on_boundary && x[0]>0.1 && x[0]<0.3 && x[1]>0.1 && x[1]<0.3' # Define inflow profile inflow_profile = ('4.0*1.5*x[1]*(0.41 - x[1]) / pow(0.41, 2)', '0') # Define boundary conditions bcu_inflow = DirichletBC(V, Expression(inflow_profile, degree=2), inflow) bcu_walls = DirichletBC(V, Constant((0, 0)), walls) bcu_cylinder = DirichletBC(V, Constant((0, 0)), cylinder) bcp_outflow = DirichletBC(Q, Constant(0), outflow) bcu = [bcu_inflow, bcu_walls, bcu_cylinder] bcp = [bcp_outflow] # Define trial and test functions u = TrialFunction(V) v = TestFunction(V) p = TrialFunction(Q) q = TestFunction(Q) # Define functions for solutions at previous and current time steps u_n = Function(V) u_ = Function(V) p_n = Function(Q) p_ = Function(Q) # Define expressions used in variational forms U = 0.5*(u_n + u) n = FacetNormal(mesh) f = Constant((0, 0)) k = Constant(dt) mu = Constant(mu) rho = Constant(rho) # Define symmetric gradient def epsilon(u): return sym(nabla_grad(u)) # Define stress tensor def sigma(u, p): return 2*mu*epsilon(u) - p*Identity(len(u)) # Define variational problem for step 1 F1 = rho*dot((u - u_n) / k, v)*dx \ + rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \ + inner(sigma(U, p_n), epsilon(v))*dx \ + dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \ - dot(f, v)*dx a1 = lhs(F1) L1 = rhs(F1) # Define variational problem for step 2 a2 = dot(nabla_grad(p), nabla_grad(q))*dx L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx # Define variational problem for step 3 a3 = dot(u, v)*dx L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx # Assemble matrices A1 = assemble(a1) A2 = assemble(a2) A3 = assemble(a3) # Apply boundary conditions to matrices [bc.apply(A1) for bc in bcu] [bc.apply(A2) for bc in bcp] # Create XDMF files for visualization output xdmffile_u = XDMFFile('navier_stokes_cylinder/velocity.xdmf') xdmffile_p = XDMFFile('navier_stokes_cylinder/pressure.xdmf') # Create time series (for use in reaction_system.py) timeseries_u = TimeSeries('navier_stokes_cylinder/velocity_series') timeseries_p = TimeSeries('navier_stokes_cylinder/pressure_series') # Save mesh to file (for use in reaction_system.py) File('navier_stokes_cylinder/cylinder.xml.gz') << mesh # Create progress bar progress = Progress('Time-stepping') set_log_level(PROGRESS) # Time-stepping t = 0 for n in range(num_steps): # Update current time t += dt # Step 1: Tentative velocity step b1 = assemble(L1) [bc.apply(b1) for bc in bcu] solve(A1, u_.vector(), b1, 'bicgstab', 'hypre_amg') # Step 2: Pressure correction step b2 = assemble(L2) [bc.apply(b2) for bc in bcp] solve(A2, p_.vector(), b2, 'bicgstab', 'hypre_amg') # Step 3: Velocity correction step b3 = assemble(L3) solve(A3, u_.vector(), b3, 'cg', 'sor') # Plot solution plot(u_, title='Velocity') plot(p_, title='Pressure') # Save solution to file (XDMF/HDF5) xdmffile_u.write(u_, t) xdmffile_p.write(p_, t) # Save nodal values to file timeseries_u.store(u_.vector(), t) timeseries_p.store(p_.vector(), t) # Update previous solution u_n.assign(u_) p_n.assign(p_) # Update progress bar progress.update(t / T) print('u max:', u_.vector().array().max()) # Hold plot interactive()