{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Supersampling\n", "\n", "The photometric datapoints we're dealing with are always integrations over time. If the exposure time is long, such as with *Kepler* long cadence data, the light curve features are smeared, and we need to include the effect from the long exposure time into the light curve model. This can be done easily by supersampling the model (that is, calculating the model for several time samples inside each exposure and averaging the results). \n", "\n", "*PyTransit* implements a basic supersampler in `pytransit.supersampler.SuperSampler` to facilitate transit model supersampling. You don't generally need to initialize or call the supersampler manually, since the transit model uses it automatically, but knowing how to use it may come handy in some more advanced situations.\n", "\n", "`SuperSampler` is initialized as `SuperSampler(nsamples, exptime)`, where `nsamples` is the number of subsamples to create per exposure, and `exptime` is the exposure duration." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline\n", "from pytransit.supersampler import SuperSampler" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sampler = SuperSampler(nsamples=5, exptime=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The subsample positions are calculated as\n", "$$s_i = t + \\mathbf{s} \\times t_e$$\n", "where $\\mathbf{s}$ are the subsample positions normalized to [-0.5, 0.5], and can be accessed from the sampler" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-0.4, -0.2, 0. , 0.2, 0.4])" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sampler.sample_positions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After the initialization, the `SuperSampler` offers two methods \n", "\n", " - `sample(times[npt])` $\\rightarrow$ `array[nsamples*npt]`\n", " - `average(flux[nsamples*npt])` $\\rightarrow$ `array[npt]`\n", " \n", "Sample is used to create a set of supersampled time stamps where `times` is an 1D array storing the exposure center times and `expdur` is the exposure duration. After the model has been evaluated for the supersampled time stamps, `average` is used to compute the per-exposure averaged model." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true }, "outputs": [], "source": [ "time_o = arange(0,3).astype('d')\n", "time_s = sampler.sample(time_o)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEFRJREFUeJzt3X+s3XV9x/Hny7ZERJMye0Us1bLZqR1RwZva6TBkP6R0\nyzBmWWCZGKZrXHDTbTFBl4zsjyU4N6MkBNZJA2QO4yYgMVXU6QZLBngLFYqA6xBta7fWISCBDWne\n++N8dde7e+85t5zbe7/9PB/JyT3f7+dzPuf94ZO+7vd+z/d8SVUhSWrH85a6AEnSsWXwS1JjDH5J\naozBL0mNMfglqTEGvyQ1ZmjwJ9mR5FCSPXO0J8kVSfYmuTfJWd3+5ye5K8nXk9yf5M/GXbwkaeFG\nOeK/FtgyT/t5wIbusQ24qtv/P8AvVtXrgNcDW5JsPvpSJUnjMDT4q+o24NF5upwPXF8DdwCrk5za\nbT/Z9VnVPfy2mCQtsZVjGGMtsG/a9v5u38EkK4BdwCuBK6vqzrkGSbKNwV8MnHTSSW949atfPYbS\nJKkNu3bt+l5VTYzSdxzBP6eqOgK8Pslq4KYkZ1TVrJ8VVNV2YDvA5ORkTU1NLWZpknRcSfLtUfuO\n46qeA8C6adundft+rKoeA77K/J8VSJKOgXEE/y3ARd3VPZuBx6vqYJKJ7kifJCcCvwI8OIb3kyQ9\nB0NP9SS5ATgHWJNkP3AZgw9qqaqrgZ3AVmAv8BRwcffSU4HruvP8zwM+XVWfG/cEJEkLMzT4q+rC\nIe0FXDLL/nuBM4++NEnSYvCbu5LUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS\n1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mN\nMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiD\nX5IaY/BLUmOGBn+SHUkOJdkzR3uSXJFkb5J7k5zV7V+X5KtJvpHk/iTvG3fxkqSFG+WI/1pgyzzt\n5wEbusc24Kpu/7PAH1fVRmAzcEmSjUdfqiRpHIYGf1XdBjw6T5fzgetr4A5gdZJTq+pgVd3djfED\n4AFg7TiKliQdvXGc418L7Ju2vZ8ZAZ9kPXAmcOdcgyTZlmQqydThw4fHUJYkaTaL/uFukhcCnwHe\nX1VPzNWvqrZX1WRVTU5MTCx2WZLUrHEE/wFg3bTt07p9JFnFIPQ/WVU3juG9JEnP0TiC/xbgou7q\nns3A41V1MEmAa4AHquqjY3gfSdIYrBzWIckNwDnAmiT7gcuAVQBVdTWwE9gK7AWeAi7uXvpm4B3A\nfUl2d/s+VFU7xzkBSdLCDA3+qrpwSHsBl8yy/1+AHH1pkqTF4Dd3JakxBr8kNcbgl6TGGPyS1BiD\nX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfgl\nqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia\nY/BLUmMMfklqjMEvSY0x+CWpMQa/JDVmaPAn2ZHkUJI9c7QnyRVJ9ia5N8lZo75WknTsjXLEfy2w\nZZ7284AN3WMbcNUCXjte++6C2/9q8HO5j9unWhdr3D7V2rdx+1Rr38btU61zWDmsQ1XdlmT9PF3O\nB66vqgLuSLI6yalVdXCE147Pvrvgul+HI8/AihPgnbfAuk3Lc9w+1bpY4/ap1r6N26da+zZun2qd\nxzjO8a8F9k3b3t/tW5Ak25JMJZk6fPjwwqt45PbBf7Q6Mvj5yO0LH+NYjdunWhdr3D7V2rdx+1Rr\n38btU63zWDYf7lbV9qqarKrJiYmJhQ+w/uzBb8qsGPxcf/Z4CluMcftU62KN26da+zZun2rt27h9\nqnUeGZyhGdJpcLrmc1V1xixtfw38U1Xd0G0/BJxTVQeHvXYuk5OTNTU1NWr3/7PvrsFvyvVnj/fP\npMUYt0+1Lta4faq1b+P2qda+jbtMa02yq6omR+o7huD/VeC9wFbgjcAVVbVplNfO5aiDX5IatZDg\nH/rhbpIbgHOANUn2A5cBqwCq6mpgJ4PQ3ws8BVw832ur6pqFTEaSNF6jXNVz4ZD2Ai45mtdKko69\nZfPhriTp2DD4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jek\nxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqM\nwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDVmaPAn2ZHk\nUJI9c7QnyRVJ9ia5N8lZ09q2JHmoa7t0nIVLko7OKEf81wJb5mk/D9jQPbYBVwEkWQFc2bVvBC5M\nsvG5FCtJeu6GBn9V3QY8Ok+X84Hra+AOYHWSU4FNwN6qeriqngE+1fWVJC2hcZzjXwvsm7a9v9s3\n1/5ZJdmWZCrJ1OHDh8dQliRpNsvmw92q2l5Vk1U1OTExsdTlSNJxa+UYxjgArJu2fVq3b9Uc+yVJ\nS2gcR/y3ABd1V/dsBh6vqoPA14ANSU5PcgJwQddXkrSEhh7xJ7kBOAdYk2Q/cBmDo3mq6mpgJ7AV\n2As8BVzctT2b5L3ArcAKYEdV3b8Ic5AkLcDQ4K+qC4e0F3DJHG07GfxikCQtE8vmw11J0rFh8EtS\nYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG\n4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+\nSWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmNWjtIpyRbg48AK4BNVdfmM9pOBHcDP\nAP8N/E5V7ena3gf8LhDgb6rqY+Mrv59uvucAH7n1Ib772NO8bPWJfODcV/G2M9cudVmah2vWP67Z\n3IYe8SdZAVwJnAdsBC5MsnFGtw8Bu6vqtcBFDH5JkOQMBqG/CXgd8GtJXjm+8vvn5nsO8MEb7+PA\nY09TwIHHnuaDN97HzfccWOrSNAfXrH9cs/mNcqpnE7C3qh6uqmeATwHnz+izEfgKQFU9CKxPcgrw\nGuDOqnqqqp4F/hl4+9iq76GP3PoQT//wyE/se/qHR/jIrQ8tUUUaxjXrH9dsfqME/1pg37Tt/d2+\n6b5OF+hJNgGvAE4D9gBnJ3lxkhcAW4F1s71Jkm1JppJMHT58eGGz6JHvPvb0gvZr6blm/eOazW9c\nH+5eDqxOshv4feAe4EhVPQB8GPgi8AVgN3BktgGqantVTVbV5MTExJjKWn5etvrEBe3X0nPN+sc1\nm98owX+AnzxKP63b92NV9URVXVxVr2dwjn8CeLhru6aq3lBVbwG+D3xzLJX31AfOfRUnrlrxE/tO\nXLWCD5z7qiWqSMO4Zv3jms1vlKt6vgZsSHI6g8C/APit6R2SrAae6j4DeDdwW1U90bW9pKoOJXk5\ng9NBm8c5gb750VUFXm3QH65Z/7hm80tVDe+UbAU+xuByzh1V9edJ3gNQVVcn+XngOqCA+4F3VdX3\nu9feDrwY+CHwR1X1j8Peb3Jysqampo5ySpLUniS7qmpylL4jXcdfVTuBnTP2XT3t+b8CPzvHa88e\n5T0kSceG39yVpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5Ia\nY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEG\nvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaM1Lw\nJ9mS5KEke5NcOkv7yUluSnJvkruSnDGt7Q+T3J9kT5Ibkjx/nBOQJC3M0OBPsgK4EjgP2AhcmGTj\njG4fAnZX1WuBi4CPd69dC/wBMFlVZwArgAvGV74kaaFGOeLfBOytqoer6hngU8D5M/psBL4CUFUP\nAuuTnNK1rQROTLISeAHw3bFULkk6KitH6LMW2Ddtez/wxhl9vg68Hbg9ySbgFcBpVbUryV8C3wGe\nBr5YVV+c7U2SbAO2dZtPJnloWvMa4Hsj1No3x+u84Pidm/Pqn+N1bjPn9YpRXzhK8I/icuDjSXYD\n9wH3AEeSnMzgr4PTgceAv0/y21X1tzMHqKrtwPbZBk8yVVWTY6p12The5wXH79ycV/8cr3N7LvMa\nJfgPAOumbZ/W7fuxqnoCuLgrJsC3gIeBc4FvVdXhru1G4E3A/wt+SdKxMco5/q8BG5KcnuQEBh/O\n3jK9Q5LVXRvAu4Hbul8G3wE2J3lB9wvhl4AHxle+JGmhhh7xV9WzSd4L3MrgqpwdVXV/kvd07VcD\nrwGuS1LA/cC7urY7k/wDcDfwLINTQLOezhniaF7TB8frvOD4nZvz6p/jdW5HPa9U1TgLkSQtc35z\nV5IaY/BLUmOWZfAn+akkX0ryb93Pk+fo90iS+5LsTjJ1rOsc1Qi3vEiSK7r2e5OctRR1LtQI8zon\nyePd+uxO8qdLUedCJdmR5FCSPXO093W9hs2rr+u1LslXk3yjuz3M+2bp09c1G2VuC1+3qlp2D+Av\ngEu755cCH56j3yPAmqWud8hcVgD/Dvw0cAKDL7ttnNFnK/B5IMBm4M6lrntM8zoH+NxS13oUc3sL\ncBawZ4723q3XiPPq63qdCpzVPX8R8M3j4d/YAua24HVblkf8DL70dV33/DrgbUtYy3M1yi0vzgeu\nr4E7gNVJTj3WhS7QKPPqpaq6DXh0ni59XK9R5tVLVXWwqu7unv+AwSXja2d06+uajTK3BVuuwX9K\nVR3snv8HcMoc/Qr4cpJd3S0flqPZbnkxc+FG6bPcjFrzm7o/rT+f5OeOTWmLro/rNaper1eS9cCZ\nwJ0zmnq/ZvPMDRa4buO6ZcOCJfky8NJZmv5k+kZVVff9gNn8QlUdSPIS4EtJHuyOarQ83A28vKqe\nTLIVuBnYsMQ1aW69Xq8kLwQ+A7y/Bl8gPW4MmduC123Jjvir6per6oxZHp8F/vNHf4Z1Pw/NMcaB\n7uch4CYGpx+Wm6G3vBixz3Iz0q08qurJ7vlOYFWSNceuxEXTx/Uaqs/rlWQVg2D8ZFXdOEuX3q7Z\nsLkdzbot11M9twDv7J6/E/jszA5JTkryoh89B94KzHq1whIbesuLbvui7sqDzcDj0051LVej3Mrj\npd2tOsjgrq3PA/7rmFc6fn1cr6H6ul5dzdcAD1TVR+fo1ss1G2VuR7NuS3aqZ4jLgU8neRfwbeA3\nAZK8DPhEVW1lcN7/pm6+K4G/q6ovLFG9c6rRbnmxk8FVB3uBp+hueLecjTiv3wB+L8mzDG7LfUF1\nlyEsZ0luYHClxJok+4HLgFXQ3/WCkebVy/UC3gy8A7gvgzsEw+B/DvVy6PeaMdrcFrxu3rJBkhqz\nXE/1SJIWicEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGvO/pB2aubqqW1QAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot(time_o, full_like(time_o, 0.99), 'o')\n", "plot(time_s, full_like(time_s, 1.01), '.')\n", "ylim(0.98,1.03);" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEkpJREFUeJzt3X9s3Hd9x/HXy/ZFIjNe2WIKTcPcWYElAzO6W6g2unXa\ngLhIhE3WVKChQ0hW8DKxCk0EprE/0H4wlAVVLXSZV9GljAqZ0mYoJgNpjEqsNA60TtMszBcCScpW\nAyPYuFLOzXt/3JVdXNv3tf09392nz4dk3X2/348+3/fn+4lf+vh7dzlHhAAAaelodgEAgPwR7gCQ\nIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AEdTXrxJs2bYq+vr5mnR4A2tLx48e/HxG9\n9do1Ldz7+vo0MTHRrNMDQFuy/Z0s7bgtAwAJItwBIEGEOwAkiHAH0JZKpZJGRkbU09Ojjo4O9fT0\naGRkRKVSqdmltQTCHUDbGR8f18DAgEZHRzUzM6OI0MzMjEZHRzUwMKDx8fFml9h0dcPd9j22n7b9\nxBLHbfsO21O2J21fn3+ZAFBRKpU0NDSkubk5lcvlK46Vy2XNzc1paGjoBb+Cz7Jy/5SkncscH5S0\ntfozLOmTay8LSMy5R6WH91ce6XdN/e7fv/95ob5QuVzWgQMHVn0OSS19DbJwlq/Zs90n6QsR8epF\njv29pK9ExGeq26cl3RQR31uuz2KxGLzPHS8I5x6V7n2r9OwlqXODdNthacsO+l1lvz09PZqZmcnU\n7uLFi6uptKWvge3jEVGs1y6Pe+6bJZ2r2T5f3bdYUcO2J2xPTE9P53BqoA2cfbjyyxzPVh7PPky/\na+h3dnY213aLavFrkMW6vqAaEQcjohgRxd7eup+eBdLQd2NllebOymPfjfS7hn67u7tzbbeoFr8G\nWeTx3w9ckLSlZvva6j4AUuXP7tsOV1ZpfTfm8+f9C7jfW2+9VaOjo8vedy8UCtq9e/dqK235a5BF\nHvfc3yJpr6SbJb1e0h0RUbdi7rkDWI1SqaSBgQHNzc0t2Wbjxo2anJxUf3//Ola2PnK75277M5L+\nQ9KrbJ+3/R7be2zvqTY5IumMpClJ/yBpZA11A8Cy+vv7NTY2po0bN6pQKFxxrFAoaOPGjRobG0sy\n2Fci08q9EVi5A1iLUqmkAwcO6NChQ5qdnVV3d7d2796t22+/Pelgz7pyJ9wBoI2s51shAQAthnAH\ngAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AEEe4AkCDCHQASRLgDQIIIdwBI\nEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAQR\n7gCQIMIdABJEuANAgjKFu+2dtk/bnrK9b5HjP2v7X2w/bvuk7XfnXyoAIKu64W67U9JdkgYlbZf0\ndtvbFzT7I0lPRsRrJd0kab/tDTnXCgDIKMvKfYekqYg4ExGXJN0vadeCNiHpxbYtqVvSDyXN51op\nACCzLOG+WdK5mu3z1X217pS0TdJTkk5Iel9EXM6lQgDAiuX1guqbJT0m6RpJvyLpTts9CxvZHrY9\nYXtieno6p1MDABbKEu4XJG2p2b62uq/WuyU9EBVTkr4t6ZcWdhQRByOiGBHF3t7e1dYMAKgjS7gf\nk7TV9nXVF0lvkXR4QZvvSvodSbJ9taRXSTqTZ6EAgOy66jWIiHnbeyUdldQp6Z6IOGl7T/X43ZI+\nIulTtk9IsqQPRMT3G1g3AGAZdcNdkiLiiKQjC/bdXfP8KUlvyrc0AMBq8QlVAEgQ4Q4ACSLcASBB\nhDsAJIhwB4AEEe4AkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4\nA0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsA\nJIhwB4AEEe4AkCDCHQASlCncbe+0fdr2lO19S7S5yfZjtk/a/vd8ywQArERXvQa2OyXdJemNks5L\nOmb7cEQ8WdPmKkmfkLQzIr5r+6WNKhgAUF+WlfsOSVMRcSYiLkm6X9KuBW3eIemBiPiuJEXE0/mW\nCQBYiSzhvlnSuZrt89V9tV4p6SW2v2L7uO13LdaR7WHbE7YnpqenV1cxAKCuvF5Q7ZL0q5LeIunN\nkv7c9isXNoqIgxFRjIhib29vTqcGACxU9567pAuSttRsX1vdV+u8pB9ExE8k/cT2VyW9VtK3cqkS\nALAiWVbuxyRttX2d7Q2SbpF0eEGbhyS9wXaX7Y2SXi/pVL6lAgCyqrtyj4h523slHZXUKemeiDhp\ne0/1+N0Rccr2FyVNSrosaTQinmhk4QCApTkimnLiYrEYExMTTTk3ALQr28cjolivHZ9QBYAEEe4A\nkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJ\nItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AEEe4AkCDC\nHQASRLgDQIIIdwBIEOEOVJVKJY2MjKinp0cdHR3q6enRyMiISqVSs0sDVixTuNveafu07Snb+5Zp\n92u2520P5Vci0Hjj4+MaGBjQ6OioZmZmFBGamZnR6OioBgYGND4+3uwSgRWpG+62OyXdJWlQ0nZJ\nb7e9fYl2H5X0r3kXCTRSqVTS0NCQ5ubmVC6XrzhWLpc1NzenoaEhVvBoK1lW7jskTUXEmYi4JOl+\nSbsWaffHkj4n6ekc6wMabv/+/c8L9YXK5bIOHDiwThUBa5cl3DdLOlezfb6676dsb5b0e5I+mV9p\nwPq47777MoX7oUOH1qkiYO3yekH145I+EBGXl2tke9j2hO2J6enpnE4NrM3s7Gyu7YBWkCXcL0ja\nUrN9bXVfraKk+22flTQk6RO237awo4g4GBHFiCj29vausmQgX93d3bm2A1pBlnA/Jmmr7etsb5B0\ni6TDtQ0i4rqI6IuIPkljkkYi4sHcqwUa4NZbb1WhUFi2TaFQ0O7du9epImDt6oZ7RMxL2ivpqKRT\nkj4bESdt77G9p9EFAo32/ve/P1O433777etUEbB2XVkaRcQRSUcW7Lt7ibZ/uPaygPXT39+vsbEx\nDQ0NqVwuX/HiaqFQUKFQ0NjYmPr7+5tYJbAyfEIVkDQ4OKjJyUkNDw9f8QnV4eFhTU5OanBwsNkl\nAiviiGjKiYvFYkxMTDTl3ADQrmwfj4hivXas3AEgQYQ7ACSIcAeABBHuAJAgwh0AEkS4A0CCCHcA\nSBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3AEgQ4Q4ACSLcASBBhDsAJIhwB4AE\nEe4AkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeABBHuAJAgwh0AEpQp3G3vtH3a9pTt\nfYscf6ftSdsnbH/N9mvzLxUAkFXdcLfdKekuSYOStkt6u+3tC5p9W9JvRcRrJH1E0sG8CwUAZJdl\n5b5D0lREnImIS5Lul7SrtkFEfC0i/re6+Yika/MtEwCwElnCfbOkczXb56v7lvIeSeOLHbA9bHvC\n9sT09HT2KgEAK5LrC6q2f1uVcP/AYscj4mBEFCOi2Nvbm+epAQA1ujK0uSBpS832tdV9V7A9IGlU\n0mBE/CCf8gAAq5Fl5X5M0lbb19neIOkWSYdrG9h+haQHJO2OiG/lXyYAYCXqrtwjYt72XklHJXVK\nuiciTtreUz1+t6QPS/p5SZ+wLUnzEVFsXNkAgOU4Ippy4mKxGBMTE005NwC0K9vHsyye+YQqACSI\ncAeABBHuAJAgwh0AEkS4A0CCCHcASBDhDgAJItwBIEGEOwAkiHAHgAQR7gCQIMIdABJEuANAggh3\nAEgQ4Q4ACSLcASBBhDsAJIhwB4AEEe4AkCDCHQASRLgDQIIIdwBIEOEOAAki3AEgQYQ7ACSIcAeA\nBBHuAJAgwh0AEkS4A0CCCPcGKZVKGhkZUU9Pjzo6OtTT06ORkRGVSqVmlwbgBSBTuNveafu07Snb\n+xY5btt3VI9P2r4+/1Lbx/j4uAYGBjQ6OqqZmRlFhGZmZjQ6OqqBgQGNj483u0QAieuq18B2p6S7\nJL1R0nlJx2wfjogna5oNStpa/Xm9pE9WH19wSqWShoaGNDc397xj5XJZ5XJZQ0NDmpycVH9/fxMq\nxHIe/OYFfezoaT31o2d0zVUv0p+++VV62+s2N7ssYMWyrNx3SJqKiDMRcUnS/ZJ2LWizS9I/RcUj\nkq6y/fKca60496j08P7KYwv2u3//fpXL5WXblMtlHThwYE3nach1aPFr2+h+H/zmBX3wgRO6+uLj\nem/nQ7r64uP64AMn9OA3L+TSP7Ce6q7cJW2WdK5m+7yevypfrM1mSd9bU3ULnXtUuvet0rOXpM4N\n0m2HpS07Wqrf++67L1O4Hzp0SHfeeeeqztGQ69AG17bR/X7s6Gltmz+lT2/4KxU0r7K69M5LH9LH\njm5g9Y62s64vqNoetj1he2J6enrlHZx9uPLLHM9WHs8+nE9hOfY7Ozuba7tFNeI6tMG1bXS/T/3o\nGd3QcUoFzavLl1XQvG7oOKWnfvRMDgUD6ytLuF+QtKVm+9rqvpW2UUQcjIhiRBR7e3tXWqvUd2Nl\nlebOymPfjSvvo8H9dnd359puUY24Dm1wbRvd7zVXvUiPXN6msro0Hx0qq0uPXN6ma656UQ4FA+vL\nEbF8A7tL0rck/Y4qgX1M0jsi4mRNm7dI2ivpZlVu2dwREcv+jVwsFmNiYmLlFZ97tLJK67sxnz/v\nc+53ZGREo6Ojy96aKRQKGh4eXv1tGakx16HFr22j+33unvu2+VO6oeOUHrm8Tae6tumvf/813JZB\ny7B9PCKKddvVC/dqZzdL+rikTkn3RMRf2t4jSRFxt21LulPSTklzkt4dEcsm96rDvcWVSiUNDAws\n+m6Z52zcuJF3y7Qo3i2DVpdruDdCquEuVd7nPjQ09NO3Pj6nUCioUChobGxMg4ODTawQQLvKGu58\nQrUBBgcHNTk5qeHh4Ss+oTo8PKzJyUmCHUDDsXIHgDbCyh0AXsAIdwBIEOEOAAlq2j1329OSvrNg\n9yZJ329COY3GuNpPqmNjXO1n4dh+ISLqfgq0aeG+GNsTWV4oaDeMq/2kOjbG1X5WOzZuywBAggh3\nAEhQq4X7wWYX0CCMq/2kOjbG1X5WNbaWuucOAMhHq63cAQA5aFq42/4521+y/V/Vx5cs0e6s7RO2\nH7Pd0v9fQapfJJ5hXDfZvlido8dsf7gZda6U7XtsP237iSWOt+t81RtXu87XFtv/ZvtJ2ydtv2+R\nNm03ZxnHtfI5i4im/Ej6W0n7qs/3SfroEu3OStrUrDpXMJ5OSSVJvyhpg6THJW1f0OZmSeOSLOkG\nSV9vdt05jesmSV9odq2rGNtvSrpe0hNLHG+7+co4rnadr5dLur76/MWqfM9ECr9jWca14jlr5m2Z\nXZLurT6/V9LbmlhLHlrri8Tzk2VcbSkivirph8s0acf5yjKuthQR34uIb1Sfz0g6pcp3NddquznL\nOK4Va2a4Xx0Rz32B9n9LunqJdiHpy7aP2x5en9JWZakvCV9pm1aTteZfr/4ZPG77l9entIZrx/nK\nqq3ny3afpNdJ+vqCQ209Z8uMS1rhnHXlXNsVbH9Z0ssWOfRntRsREbaXetvOGyLigu2XSvqS7f+s\nrkzQOr4h6RURMVv91q4HJW1tck1YWlvPl+1uSZ+T9CcR8eNm15OXOuNa8Zw1dOUeEb8bEa9e5Och\nSf/z3J9L1cenl+jjQvXxaUmfV+U2QSvK7YvEW0zdmiPixxExW31+RFLB9qb1K7Fh2nG+6mrn+bJd\nUCUAPx0RDyzSpC3nrN64VjNnzbwtc1jSbdXnt0l6aGED2z9j+8XPPZf0JkmLvgOgBRyTtNX2dbY3\nSLpFlTHWOizpXdVX9G+QdLHm1lSrqjsu2y+z7erzHar8u/rBuleav3acr7radb6qNf+jpFMR8XdL\nNGu7OcsyrtXMWUNvy9TxN5I+a/s9qvzvkH8gSbavkTQaETerch/+89UxdUn654j4YpPqXVZEzNve\nK+mo/v+LxE+65ovEJR1R5dX8KVW/SLxZ9WaVcVxDkt5re17SM5JuiepL/K3M9mdUeRfCJtvnJf2F\npILUvvMlZRpXW86XpN+QtFvSCduPVfd9SNIrpLaesyzjWvGc8QlVAEgQn1AFgAQR7gCQIMIdABJE\nuANAggh3AEgQ4Q4ACSLcASBBhDsAJOj/ALCQyTXAGW3iAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def lcfun(time):\n", " return (time > 1.1).astype('d')\n", "\n", "plot(time_o, lcfun(time_o), 'o')\n", "plot(time_s, lcfun(time_s), '.')\n", "plot(time_o, sampler.average(lcfun(time_s)), 'ko', ms=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "
© 2017 Hannu Parviainen
" ] } ], "metadata": { "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }