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Introduction

– In biomedical or public health research, longitudinal or spatio-temporal health
outcomes are commonplace.

– If multiple outcomes exist for one time-point and/or unit, standard GMRF
priors do not account for a potential dependence between outcomes.

– Here, interaction models or Gaussian Kronecker product Markov random
fields would be needed.

⇒ It is desirable to have Kronecker products in INLA
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You all know what a GMRF is ...

Definition

A random vector x = (x1, . . . , xn)>

with zero-mean, say, “precision” matrix Q and

π(x) ∝ (|Q|?)1/2 exp
(
−

1

2
x>Qx

)
where Qij = 0←→ xi⊥xj |x−ij is called a

Gaussian Markov random field.

(| · |? denotes the generalized determinant, i.e. the product of non-zero eigenvalues.)
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You all know what a GMRF is ...

Definition

A random vector x̃ = (x11, . . . , xn1, . . . , x1R , . . . , xnR)>

with zero-mean, say, “precision” matrix Q = Q1 ⊗ Q2 and
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You all know what a GMRF is ...

Definition

A random vector x̃ = (x11, . . . , xn1, . . . , x1J , . . . , xnJ )>

with zero-mean, say, “precision” matrix Q = Q1 ⊗ Q2 and

π(x̃) ∝ (|Q1 ⊗ Q2|?)1/2 exp
(
−

1

2
x̃>{Q1 ⊗ Q2}x̃

)
where Qij = 0←→ xi⊥xj |x−ij is called a

Gaussian Kronecker product Markov random field.

(| · |? denotes the generalized determinant, i.e. the product of non-zero eigenvalues.)

– Q1 and Q2 are two lower-dimensional precision matrices.

– Q1 and Q2 can be both regular and singular.

– The Kronecker product is the interaction of Q1 and Q2.
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Some Kronecker product models are there ...

In autumn 2009, we included the group-ing option in INLA, which allows

– grouping with an AR1, or

– uniform correlation matrix (exchangeable):

Let C be a R × R correlation matrix with R > 1, ρ 6= 1:

C =


1 ρ · · · ρ

ρ
. . .

. . .
...

...
. . .

. . . ρ
ρ · · · ρ 1

 , then C−1 =


a b · · · b

b
. . .

. . .
...

...
. . .

. . . b
b · · · b a


with a = −

(R − 2) · ρ+ 1

(ρ− 1){(R − 1) · ρ+ 1}

b =
ρ

(ρ− 1){(R − 1) · ρ+ 1}
.

The determinant is

|C−1| = |C|−1 = [(1 + (R − 1)ρ)(1− ρ)R−1]−1.
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Prior on correlation parameter

Reparameterize ρ using the general Fisher’s z-transformation:

ρ =
exp(ρ?)− 1

exp(ρ?) + R − 1
ρ? = log

(
1 + ρ · (R − 1)

1− ρ

)
,

and assign a N (0, τ−1) prior to ρ?. (Fisher 1958, page 219)

−1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ρρ

Precision = 0.2

– This prior automatically ensures that
ρ ∈ (−1/(R − 1), 1),
which is required to ensure positive definiteness
of C, is fulfilled.

– In addition, P(ρ > 0) = 0.5, independent of R.

(see Riebler et al. (2012))
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Multivariate age-period-cohort models

Applied to multiple mortality or morbidity tables:

yijr : Number of cases in age group i at calendar time j in region r
nijr : Number of persons at risk in age group i at time j in region r

yijr |ηijr ∼ Poisson(nijrλijr )

ηijr = log(λijr ) = µr + θi(,r) + ϕj(,r) + ψk(i,j)(,r) + zijr ,

with region-specific intercept, (region-specific) age, period and cohort effects and
overdispersion parameters.

We assume the usual sum-to-zero constraints.

Note:

– Differences of region-specific effects, e.g. ∆i = θi,r1 − θi,r2 , r1 6= r2 are
identifiable.

– Adjusted differences ∆µ + ∆i , with ∆µ = µr1 − µr2 , can be interpreted as
(average) log relative risk. Riebler and Held (2010)
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Incorporation of correlation

We propose:

– Correlated overdispersion parameters across regions.

– Correlated smoothing priors for region-specific age, period and/or cohort
effects.

Second-order random walks (RW2s) of region-specific period effects ϕ1, . . . ,
ϕR , say, can be correlated using the stacked vector ϕ̃ = (ϕ>1 , . . . ,ϕ

>
R )>:

f (ϕ̃|Cϕ, κϕ) ∝ |κϕC−1
ϕ |(J−2)/2 exp

(
−

1

2
ϕ̃>
{

C−1
ϕ ⊗ RRW2

}
ϕ̃

)
.

Advantages:

– More precise relative risk estimates

– Imputation of missing data for one particular region may be improved.

Riebler et al. (2012)
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Graph for a correlated RW2

Illustration for R = 4:
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Motivation

In Switzerland, cancer is registered on a cantonal level, so that data collection
started at different times in the individual cantons.

– First Swiss cancer registration system in Geneva in 1970.

– Today, most cantons have cancer registers.

– Until 2013, the whole Swiss population should be captured by a cancer
registration system.

Correlated multivariate APC models can borrow strength from cantons with a
longer collection period, when projecting missing data for cantons with a younger
registration system.

We analyzed this ability in a cross-prediction study

(Details in Riebler et al. (2012))
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Female mortality in Scandinavia 1900–2000
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R = 3 regions, J = 20 five-year periods, I = 17 age groups.
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Cross-prediction study

– For either the first or second half of the 20th century all observations from one
particular country are treated as missing.

– Then, the omitted data are predicted.

– Comparison to a univariate APC model and an established demographic
forecasting model.

Results:
In five of six scenarios the correlated APC model was the best model regarding the
proper Dawid-Sebastiani scoring rule. (Gneiting and Raftery, 2007)
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INLA-call

> library(INLA)

# data specification, setting data to be predicted to NA
# ...

> prior.rw2 <- c(1,0.00005)
> prior.iid <- c(1,0.005)

> country <- rep(c(1,2,3), each=AGE*PERIOD)

## model with correlated time effects and overdispersion
> model <- y~f(age, model="rw2", hyper=list(prec = list(param=prior.rw2)),

group=country, constr=TRUE, rankdef=2) +
f(period, model="rw2", hyper=list(prec = list(param=prior.rw2)),

group=country, constr=TRUE, rankdef=2) +
f(cohort, ...) +
f(overdis, model="iid", hyper=list(prec = list(param=prior.iid)),

group=country) + mu1 + mu2 + mu3 - 1

# with so many hyperparameters we have to increase the number of
# maximum function evaluations in the derivation of the posterior
# marginals for the hyperparameters
> results = inla(model, family="poisson", E=pop, data=data,

control.predictor=list(compute=TRUE),
control.inla=list(numint.maxfeval=80000000))
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Projected rates for Norway 1900-1949 (80% CI)
Correlated multivariate APC (light blue shaded), univariate APC (dark blue), demographic model (orange).
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Modelling seasonal variations

– Time-series of infectious disease counts are marked by occasional outbreaks,
but additionally there are frequently seasonal variations.

– Typically, a superposition of sine and cosine functions is used.

– However, in some cases this might be too simple for handling sharp peaks.

– Circular random walks (CRWs) are similar to periodic splines and represent a
flexible alternative.

– To allow, for region-dependent disease onsets we use correlated CRWs in a
multivariate setting.
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Death from influenza and pneumonia in the USA

– 9 major regions

– 520 weeks (40/1996 to 39/2006)⇒ Period p = 52

EastNorthCentral

EastSouthCentral

MidAtlantic

Mountain

NewEngland
Pacific

SouthAtlantic

WestNorthCentral

WestSouthCentral

(Brownstein et al., 2006)
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Weekly number of deaths from 40/1996 to 39/2006
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Model details

ytr : number of deaths in region r , r = 1, . . . , 9 at time t , t = 1, . . . , 520.

nr : population size in region r (in the year 2000).

ytr ∼ Poisson(nrλtr ); log(λtr ) = µr + β(t mod 52)r + αtr

– Region specific intercepts µr .

– Seasonal effects β(t mod 52)r with period 52, modelled using a correlated CRW
of second order (cCRW2).

– Time effects αtr modelled using a correlated autoregressive process of first
order (cAR1).
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The circular random walk of second order

Let R = 1, the circular random walk of second order for β = (β1, . . . , β52)> is
given by

f (β|κ) ∝ κ(52−2)/2 exp
(
−

1

2
β>RCRW2β

)
with precision matrix

RCRW2 = κ



6 −4 1 0 · · · 0 1 −4
−4 6 −4 1 0 · · · 0 1

1 −4 6 −4 1 0 · · · 0

0
.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
.
.
.

.
.
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.
.

.
.
.

.
.
.

.
.
. 0

0 · · · 0 1 −4 6 −4 1
1 0 · · · 0 1 −4 6 −4
−4 1 0 · · · 0 1 −4 6


,

i.e. a circulant matrix with base d = κ · (6,−4, 1, 0, . . . , 0, 1,−4)> and unknown
precision parameter κ. (Rue and Held, 2005, Sec. 2.6.1)
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Correlated circular random walk of second order

The individual CRW2s β1, . . . , β9 can be correlated using the

stacked vector β̃ = (β>1 , . . . ,β
>
9 )>:

f (β̃|C, κ) ∝ |κC−1|(52−2)/2 exp
(
−

1

2
β̃>
{

C−1 ⊗ RCRW2
}
β̃

)
.

where C = (1− ρ)I + ρJ denotes a 9× 9 uniform correlation matrix with unknown
correlation ρ. (Riebler et al. (2012))
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Hyperpriors

We need to assign hyperpriors to 5 hyperparameters:

– 1 autoregressive parameter:
N (0, 0.2−1) for Fisher’s z-transformed parameter.

– 2 precisions:
Gamma(1, 0.00005) for κcCRW2 and Gamma(0.1, 0.001) for κcAR1.

– 2 correlations:
N (0, 0.2−1) for general Fisher’s z-transformed parameters
⇒ C is positive definite without any constraints.

(Fisher, 1958, page 219).
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INLA-call

> library(INLA)

# data specification (fluUSA)
# ...

> model <- count ~ offset(log(population)) + m1 + ... + m9 - 1 +
f(week, model="rw2", hyper=list(prec=list(param=c(1, 0.00005))),

cyclic=TRUE, group=region, constr=TRUE) +
f(time, model="ar1",

hyper=list(prec=list(param=c(0.1,0.001)),
rho=list(param=c(0,0.2))), group=region)

> results <- inla(model, data = fluUSA, family = "poisson",
control.compute=list(dic=TRUE))
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Estimated seasonal effects
Correlation between seasonal patterns is 0.999 (95% CI:[0.998, 1]).
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Model choice

Using DIC we compare the results of the proposed model to:

– a model assuming a common CRW2 for all regions.

– a model assuming independent CRW2s for each region.

common CRW2 independent CRW2 correlated CRW2

DIC 36707 36716 36704

This is work in progress:

– Include dummies for known events, e.g. Christmas.

– Would like to account for spatial correlation, e.g. based on the degree of
neighbourhood (?).

– Compare the results to those of models with a (co)sine function.
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Summary

Experiences:

– Due to the increasing number of hyperparamters (?), I often had to increase
numint.maxfeval in control.inla to avoid warnings.

– “Long” running times.

Summary and outlook:

– It works well.

– There are much more applications, e.g. invariant smoothing of multinomial
data, . . . .

– A more general/flexible framework is desirable

– to include, for example, spatial correlation depending on the distance between
units/degree of neighbourhood.

– to couple more than two models?

– to let the correlation between units depend on associated covariate information of
the units?
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Thank you for your attention!
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