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Introduction

— In biomedical or public health research, longitudinal or spatio-temporal health
outcomes are commonplace.

— If multiple outcomes exist for one time-point and/or unit, standard GMRF
priors do not account for a potential dependence between outcomes.
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Introduction

— In biomedical or public health research, longitudinal or spatio-temporal health
outcomes are commonplace.

— If multiple outcomes exist for one time-point and/or unit, standard GMRF
priors do not account for a potential dependence between outcomes.

— Here, interaction models or Gaussian Kronecker product Markov random
fields would be needed.

= It is desirable to have Kronecker products in INLA
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You all know what a GMRF is ...

Definition
A random vector x = (xy,...,Xpn)

with zero-mean, say, “precision” matrix Q and
1
m(x) o (|Q]*)"/2 exp <f§xTQx>

where Q; = 0 +— x;Lx;|x_; is called a

Gaussian Markov random field.

(- |* denotes the generalized determinant, i.e. the product of non-zero eigenvalues.)
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You all know what a GMRF is ...

Definition
A random vector X = (x11,..., Xnts ooy X1dy -+ -y Xnd)

with zero-mean, say, “precision” matrix Q@ = Q; @ Q. and
- 1. -
7(3) o (101 = Caf*) /2 exp (~ 35710y 1 02)%)

where Q; = 0 +— x;Lx;|x_; is called a

Gaussian Kronecker product Markov random field.

(- |* denotes the generalized determinant, i.e. the product of non-zero eigenvalues.)

— Qq and Q; are two lower-dimensional precision matrices.
— Qq and Qz can be both regular and singular.

— The Kronecker product is the interaction of Q¢ and Q..
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Some Kronecker product models are there ...

In autumn 2009, we included the group-ing option in INLA, which allows
— grouping with an AR1, or
— uniform correlation matrix (exchangeable):
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Some Kronecker product models are there ...

In autumn 2009, we included the group-ing option in INLA, which allows
— grouping with an AR1, or
— uniform correlation matrix (exchangeable):

Let C be a R x R correlation matrix with R > 1, p # 1:

1 p - p a b --- b
c=|°” - - ,then €' = b

S ) S b
p e p 1 b - b a

. (R=2)-p+1

with a=—

(p=1D{(R=1)-p+1}
b= p

(p=D{R=1)-p+1}
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Some Kronecker product models are there ...

In autumn 2009, we included the group-ing option in INLA, which allows
— grouping with an AR1, or
— uniform correlation matrix (exchangeable):

Let C be a R x R correlation matrix with R > 1, p # 1:

1 p - p a b --- b
c=|°” - - ,then €' = b

S T PR
p e p 1 b - b a

. (R=2)-p+1

with a=—

(p=1D{(R=1)-p+1}
b= p

(p=D{R—-1)-p+1}
The determinant is

iCl=1cI7" =[(1+ (R=1)p)(1 = p)* '] 7.

University of Zurich, Division of Biostatistics 26/05/2011 Page 5



Prior on correlation parameter

Reparameterize p using the general Fisher’s z-transformation:

__exp(p*) —1
 exp(p*) + R—1

and assign a A/(0, 7~ ") prior to p*.

Precision = 0.2
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(Fisher 1958, page 219)
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Prior on correlation parameter

Reparameterize p using the general Fisher’s z-transformation:

exp(p*) — 1

" exp(pr) + R 1

p*zlog(wp-i("’*ﬂ)’
1—p

and assign a A/ (0, 71 ) prior to p*. (Fisher 1958, page 219)

Precision = 0.2

University of Zurich, Division of Biostatistics

— This prior automatically ensures that
pe(=1/(R=1),1),
which is required to ensure positive definiteness
of C, is fulfilled.
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Prior on correlation parameter

Reparameterize p using the general Fisher’s z-transformation:

exp(p*) — 1 . (1+p-(R*1))
=" =7/ =log( ———— |,
exp(p*)+ R—1 r g 1—p

and assign a A/ (0, 71 ) prior to p*. (Fisher 1958, page 219)

Precision = 0.2

— This prior automatically ensures that
pe(=1/(R=1),1),
which is required to ensure positive definiteness
of C, is fulfilled.

— In addition, P(p > 0) = 0.5, independent of R.

see Riebler et al. (2012,
-1.0 -0.5 0.0 0.5 1.0 ¢ ¢ N
p
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Outline

Applications
Extrapolation of time trends in registry data
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Multivariate age-period-cohort models

Applied to multiple mortality or morbidity tables:

Vir= Number of cases in age group / at calendar time j in region r
njr» Number of persons at risk in age group 7 at time j in region r

Yiir|nigr ~ Poisson(nj; Ajir)
nir =109(Njr) = pur +0i(.r) + @j(.r) + Vutiir) + Zir

with region-specific intercept, (region-specific) age, period and cohort effects and
overdispersion parameters.
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Multivariate age-period-cohort models

Applied to multiple mortality or morbidity tables:
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Multivariate age-period-cohort models

Applied to multiple mortality or morbidity tables:

Vir= Number of cases in age group / at calendar time j in region r
njr» Number of persons at risk in age group 7 at time j in region r

Yiir|nigr ~ Poisson(nj; Ajir)
nir =109(Njr) = pur +0i(.r) + @j(.r) + Vutiir) + Zir

with region-specific intercept, (region-specific) age, period and cohort effects and
overdispersion parameters.

We assume the usual sum-to-zero constraints.

Note:
— Differences of region-specific effects, e.g. A; =0, — 0;r,, 11 # r2 are
identifiable.
— Adjusted differences A, + A;, with A, = pr, — pr,, can be interpreted as
(average) log relative risk. Riebler and Held (2010)
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Incorporation of correlation

We propose:
— Correlated overdispersion parameters across regions.

— Correlated smoothing priors for region-specific age, period and/or cohort
effects.
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Incorporation of correlation

We propose:
— Correlated overdispersion parameters across regions.

— Correlated smoothing priors for region-specific age, period and/or cohort
effects.

Second-order random walks (RW2s) of region-specific period effects ¢4, ...,
¥R, Say, can be correlated using the stacked vector ¢ = (<p1T, ceey gaE)T:

- (- L ] -
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Incorporation of correlation

We propose:
— Correlated overdispersion parameters across regions.
— Correlated smoothing priors for region-specific age, period and/or cohort
effects.

Second-order random walks (RW2s) of region-specific period effects ¢4, ...,
¥R, Say, can be correlated using the stacked vector ¢ = (<p1T, ceey gaE)T:

- (- L . -
HPICy, 1) ox | C 1|2/ exp (75&{0; ® RRWZ}«:) .

Advantages:
— More precise relative risk estimates
— Imputation of missing data for one particular region may be improved.

Riebler et al. (2012)
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Graph for a correlated RW2

lllustration for R = 4:
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Graph for a correlated RW2

lllustration for R = 4:
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Graph for a correlated RW2

lllustration for R = 4:
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Motivation

In Switzerland, cancer is registered on a cantonal level, so that data collection
started at different times in the individual cantons.

— First Swiss cancer registration system in Geneva in 1970.
— Today, most cantons have cancer registers.

— Until 2013, the whole Swiss population should be captured by a cancer
registration system.

Correlated multivariate APC models can borrow strength from cantons with a
longer collection period, when projecting missing data for cantons with a younger
registration system.

We analyzed this ability in a cross-prediction study

(Details in Riebler et al. (2012))
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Female mortality in Scandinavia 1900-2000

Norway Denmark Sweden
2
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R = 3 regions, J = 20 five-year periods, | = 17 age groups.
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Cross-prediction study

— For either the first or second half of the 20th century all observations from one
particular country are treated as missing.

— Then, the omitted data are predicted.

— Comparison to a univariate APC model and an established demographic
forecasting model.

Results:
In five of six scenarios the correlated APC model was the best model regarding the
proper Dawid-Sebastiani scoring rule. (Gneiting and Raftery, 2007)
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INLA-call

> library (INLA)

# data specification, setting data to be predicted to NA
# ...

> prior.rw2 <- ¢(1,0.00005)
> prior.iid <- c(1,0.005)

> country <- rep(c(1,2,3), each=AGExPERIOD)

## model with correlated time effects and overdispersion
> model <- y~f(age, model="rw2", hyper=list(prec = list(param=prior.rw2)),
group=country, constr=TRUE, rankdef=2) +
f(period, model="rw2", hyper=list(prec = list(param=prior.rw2)),
group=country, constr=TRUE, rankdef=2) +
f(cohort, ...) +
f(overdis, model="iid", hyper=list(prec = list(param=prior.iid)),
group=country) + mul + mu2 + mu3 - 1

# with so many hyperparameters we have to increase the number of

# maximum function evaluations in the derivation of the posterior

# marginals for the hyperparameters

> results = inla(model, family="poisson", E=pop, data=data,
control.predictor=1list (compute=TRUE),
control.inla=list (numint.maxfeval=80000000))
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Projected rates for Norway 1900-1949 (80% CI)

Correlated multivariate APC (light blue shaded), univariate APC (dark blue), demographic model (orange).
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Outline

Applications

Modelling seasonal patterns in multiple longitudinal profiles
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Modelling seasonal variations

Time-series of infectious disease counts are marked by occasional outbreaks,
but additionally there are frequently seasonal variations.

Typically, a superposition of sine and cosine functions is used.

However, in some cases this might be too simple for handling sharp peaks.

— Circular random walks (CRWs) are similar to periodic splines and represent a
flexible alternative.

— To allow, for region-dependent disease onsets we use correlated CRWs in a
multivariate setting.
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Death from influenza and pneumonia in the USA

— 9 major regions
— 520 weeks (40/1996 to 39/2006) = Period p = 52

WestNorthCentral

Pacific

Mountain

WestSouthCentral

(Brownstein et al., 2006)
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Model details

yir: number of deaths inregionr, r=1,...,9 attime t,t =1,...,520.

n,: population size in region r (in the year 2000).

yir ~ Poisson(n:\y); log(Atr) = r + B(¢ mod 52)r
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Model details

Vir: number of deaths inregionr,r=1,...,9attime t,t=1,...,520.
ny: population size in region r (in the year 2000).

Yir ~ Poisson(n;Ay); log(Air) = 1r + Byt mod 52)r

— Region specific intercepts pr.
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Model details

Vir: number of deaths inregionr,r=1,...,9attime t,t=1,...,520.
n,: population size in region r (in the year 2000).

Yir ~ Poisson(nyAy); log(Atr) = pr + Bt mod 52)r

— Region specific intercepts pr.

— Seasonal effects Bt mod 52)r With period 52, modelled using a correlated CRW
of second order (cCCRW2).
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Model details

Vir: number of deaths inregionr,r=1,...,9attime t,t=1,...,520.
n,: population size in region r (in the year 2000).

Yir ~ Poisson(n;Ay); log(Air) = pr + Bt mod 52)r + ir

— Region specific intercepts pr.

— Seasonal effects Bt mod 52)r With period 52, modelled using a correlated CRW
of second order (cCCRW2).

— Time effects at modelled using a correlated autoregressive process of first
order (CAR1).
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The circular random walk of second order

Let R = 1, the circular random walk of second order for 8 = (f1, ..., ,852)T is
given by
#(8|r) o KD/ exp (_%BTRCRWZB)

with precision matrix

6 —4 1 0 0 1 —4
—4 6 —4 1 0 0 1
1 —4 6 —4 1 0 0
RCRW2 _ 0
: . . . . . . 0
0o ... 0 1 —4 6 —4 1
1 [ 0 1 —4 6 —4
—4 1 [ 0 1 —4 6
i.e. a circulant matrix with base d = « - (6, —4,1,0,...,0,1,—4)T and unknown
precision parameter «. (Rue and Held, 2005, Sec. 2.6.1)
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Correlated circular random walk of second order

The individual CRW2s 34, ..., Bg can be correlated using the
stacked vector 8 = (8 ,..., B84 )"

H(BIC, k) ox [C 1622/ 2 exp (—%éT{c '® RCRWQ}ﬁ) :

where C = (1 — p)l + pd denotes a 9 x 9 uniform correlation matrix with unknown
correlation p. (Riebler et al. (2012))
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Hyperpriors

We need to assign hyperpriors to 5 hyperparameters:

— 1 autoregressive parameter:
N(0,0.2=1) for Fisher’s z-transformed parameter.

— 2 precisions:
Gamma(1, 0.00005) for kccrwz and Gamma(0.1,0.001) for kR -

— 2 correlations:
N(0,0.271) for general Fisher's z-transformed parameters

= C is positive definite without any constraints.
(Fisher, 1958, page 219).
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INLA-call

> library (INLA)

# data specification (f1uUSA)
# ...

> model <- count ~ offset(log(population)) + ml + ... + m9 - 1 +
f(week, model="rw2", hyper=list (prec=list(param=c(1, 0.00005))),
cyclic=TRUE, group=region, constr=TRUE) +
f(time, model="arl",
hyper=1list (prec=list(param=c(0.1,0.001)),
rho=1list (param=c(0,0.2))), group=region)

> results <- inla(model, data = fluUSA, family = "poisson",
control.compute=list (dic=TRUE))
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Estimated seasonal effects
Correlation between seasonal patterns is 0.999 (95% CI:[0.998, 1]).

NewEngland (NE)
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EastNorthCentral - NE
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Model choice

Using DIC we compare the results of the proposed model to:

— a model assuming a common CRW?2 for all regions.

— a model assuming independent CRW2s for each region.

common CRW2 independent CRW2  correlated CRW2
DIC 36707 36716 36704
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This is work in progress:
— Include dummies for known events, e.g. Christmas.
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Model choice

Using DIC we compare the results of the proposed model to:

— a model assuming a common CRW?2 for all regions.

— a model assuming independent CRW2s for each region.

common CRW2 independent CRW2  correlated CRW2
DIC 36707 36716 36704

This is work in progress:
— Include dummies for known events, e.g. Christmas.

— Would like to account for spatial correlation, e.g. based on the degree of
neighbourhood (?).

— Compare the results to those of models with a (co)sine function.
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Summary

Experiences:

— Due to the increasing number of hyperparamters (?), | often had to increase
numint.maxfeval in control.inla to avoid warnings.

— “Long” running times.
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Summary

Experiences:

— Due to the increasing number of hyperparamters (?), | often had to increase
numint.maxfeval in control.inla to avoid warnings.

— “Long” running times.

Summary and outlook:
— It works well.

— There are much more applications, e.g. invariant smoothing of multinomial
data, ....

— A more general/flexible framework is desirable

— toinclude, for example, spatial correlation depending on the distance between
units/degree of neighbourhood.

— to couple more than two models?

— to let the correlation between units depend on associated covariate information of
the units?
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Thank you for your attention!
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