

Division of Biostatistics, ISPM

Gaussian Kronecker product Markov random fields

Andrea Riebler

Joint work with Leonhard Held and Håvard Rue

Outline

Introduction

Applications

Extrapolation of time trends in registry data Modelling seasonal patterns in multiple longitudinal profiles

Summary and outlook

Introduction

- In biomedical or public health research, longitudinal or spatio-temporal health outcomes are commonplace.
- If multiple outcomes exist for one time-point and/or unit, standard GMRF priors do not account for a potential dependence between outcomes.
- Here, interaction models or Gaussian Kronecker product Markov random fields would be needed.

 \Rightarrow It is desirable to have Kronecker products in INLA

Introduction

- In biomedical or public health research, longitudinal or spatio-temporal health outcomes are commonplace.
- If multiple outcomes exist for one time-point and/or unit, standard GMRF priors do not account for a potential dependence between outcomes.
- Here, interaction models or Gaussian Kronecker product Markov random fields would be needed.

 \Rightarrow It is desirable to have Kronecker products in INLA

Introduction

- In biomedical or public health research, longitudinal or spatio-temporal health outcomes are commonplace.
- If multiple outcomes exist for one time-point and/or unit, standard GMRF priors do not account for a potential dependence between outcomes.
- Here, interaction models or Gaussian Kronecker product Markov random fields would be needed.

 \Rightarrow It is desirable to have Kronecker products in INLA

You all know what a GMRF is ...

Definition

A random vector $\mathbf{x} = (x_1, \ldots, x_n)^{\top}$

with zero-mean, say, "precision" matrix **Q** and

$$\pi(\mathbf{x}) \propto (|\mathbf{Q}|^{\star})^{1/2} \exp\left(-rac{1}{2}\mathbf{x}^{ op}\mathbf{Q}\mathbf{x}
ight)$$

where $Q_{ij} = 0 \longleftrightarrow x_i ot x_j | oldsymbol{x}_{-ij}$ is called a

Gaussian Markov random field.

(| · |* denotes the generalized determinant, i.e. the product of non-zero eigenvalues.)

You all know what a GMRF is ...

Definition

A random vector $\tilde{\mathbf{x}} = (x_{11}, \dots, x_{n1}, \dots, x_{1R}, \dots, x_{nR})^{\top}$ with zero-mean, say, "precision" matrix $\mathbf{Q} = \mathbf{Q}_1 \otimes \mathbf{Q}_2$ and

$$\pi(\tilde{\boldsymbol{x}}) \propto (|\boldsymbol{\mathsf{Q}}_1 \otimes \boldsymbol{\mathsf{Q}}_2|^*)^{1/2} \exp\left(-\frac{1}{2}\tilde{\boldsymbol{x}}^\top \{\boldsymbol{\mathsf{Q}}_1 \otimes \boldsymbol{\mathsf{Q}}_2\}\tilde{\boldsymbol{x}}\right)$$

where $Q_{ij} = 0 \longleftrightarrow x_i ot x_j | oldsymbol{x}_{-ij}$ is called a

Gaussian Kronecker product Markov random field.

(| · |* denotes the generalized determinant, i.e. the product of non-zero eigenvalues.)

You all know what a GMRF is ...

Definition

A random vector $\tilde{\mathbf{x}} = (x_{11}, \dots, x_{n1}, \dots, x_{1J}, \dots, x_{nJ})^{\top}$ with zero-mean, say, "precision" matrix $\mathbf{Q} = \mathbf{Q}_1 \otimes \mathbf{Q}_2$ and

$$\pi(\tilde{\boldsymbol{x}}) \propto (|\boldsymbol{\mathsf{Q}}_1 \otimes \boldsymbol{\mathsf{Q}}_2|^*)^{1/2} \exp\left(-\frac{1}{2}\tilde{\boldsymbol{x}}^\top \{\boldsymbol{\mathsf{Q}}_1 \otimes \boldsymbol{\mathsf{Q}}_2\}\tilde{\boldsymbol{x}}\right)$$

where $Q_{ij} = 0 \longleftrightarrow x_i ot x_j | oldsymbol{x}_{-ij}$ is called a

Gaussian Kronecker product Markov random field.

(| · |* denotes the generalized determinant, i.e. the product of non-zero eigenvalues.)

- \mathbf{Q}_1 and \mathbf{Q}_2 are two lower-dimensional precision matrices.
- \mathbf{Q}_1 and \mathbf{Q}_2 can be both regular and singular.
- The Kronecker product is the interaction of Q₁ and Q₂.

Some Kronecker product models are there ...

In autumn 2009, we included the group-ing option in INLA, which allows

- grouping with an AR1, or
- uniform correlation matrix (exchangeable):

Let **C** be a $R \times R$ correlation matrix with $R > 1, \rho \neq 1$:

$$\mathbf{C} = \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho \\ \rho & \cdots & \rho & 1 \end{pmatrix}, \text{ then } \mathbf{C}^{-1} = \begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix}$$

with $a = -\frac{(R-2) \cdot \rho + 1}{(\rho-1)\{(R-1) \cdot \rho + 1\}}$
 $b = \frac{\rho}{(\rho-1)\{(R-1) \cdot \rho + 1\}}.$

The determinant is

$$|\mathbf{C}^{-1}| = |\mathbf{C}|^{-1} = [(1 + (R - 1)\rho)(1 - \rho)^{R-1}]^{-1}.$$

Some Kronecker product models are there ...

In autumn 2009, we included the group-ing option in INLA, which allows

- grouping with an AR1, or
- uniform correlation matrix (exchangeable):

Let **C** be a $R \times R$ correlation matrix with $R > 1, \rho \neq 1$:

$$\mathbf{C} = \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho \\ \rho & \cdots & \rho & 1 \end{pmatrix}, \text{ then } \mathbf{C}^{-1} = \begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix}$$

with $a = -\frac{(R-2) \cdot \rho + 1}{(\rho-1)\{(R-1) \cdot \rho + 1\}}$
 $b = \frac{\rho}{(\rho-1)\{(R-1) \cdot \rho + 1\}}.$

The determinant is

$$|\mathbf{C}^{-1}| = |\mathbf{C}|^{-1} = [(1 + (R - 1)\rho)(1 - \rho)^{R-1}]^{-1}$$

Some Kronecker product models are there ...

In autumn 2009, we included the group-ing option in INLA, which allows

- grouping with an AR1, or
- uniform correlation matrix (exchangeable):

Let **C** be a $R \times R$ correlation matrix with $R > 1, \rho \neq 1$:

$$\mathbf{C} = \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho \\ \rho & \cdots & \rho & 1 \end{pmatrix}, \text{ then } \mathbf{C}^{-1} = \begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix}$$

with $\mathbf{a} = -\frac{(R-2) \cdot \rho + 1}{(\rho-1)\{(R-1) \cdot \rho + 1\}}$
 $\mathbf{b} = \frac{\rho}{(\rho-1)\{(R-1) \cdot \rho + 1\}}.$

The determinant is

$$|\mathbf{C}^{-1}| = |\mathbf{C}|^{-1} = [(1 + (R - 1)\rho)(1 - \rho)^{R-1}]^{-1}.$$

Prior on correlation parameter

Reparameterize ρ using the general Fisher's z-transformation:

$$\rho = \frac{\exp(\rho^{\star}) - 1}{\exp(\rho^{\star}) + R - 1} \qquad \qquad \rho^{\star} = \log\left(\frac{1 + \rho \cdot (R - 1)}{1 - \rho}\right),$$

and assign a $\mathcal{N}(0, \tau^{-1})$ prior to ρ^{\star} .

(Fisher 1958, page 219)

- This prior automatically ensures that $\rho \in (-1/(R-1), 1)$, which is required to ensure positive definiteness of **C**, is fulfilled.

– In addition, $P(\rho > 0) = 0.5$, independent of *R*.

(see Riebler et al. (2012))

Prior on correlation parameter

Reparameterize ρ using the general Fisher's z-transformation:

$$\rho = \frac{\exp(\rho^{\star}) - 1}{\exp(\rho^{\star}) + R - 1} \qquad \qquad \rho^{\star} = \log\left(\frac{1 + \rho \cdot (R - 1)}{1 - \rho}\right),$$

and assign a $\mathcal{N}(0, \tau^{-1})$ prior to ρ^{\star} .

(Fisher 1958, page 219)

- This prior automatically ensures that $\rho \in (-1/(R-1), 1)$, which is required to ensure positive definiteness of **C**, is fulfilled.

– In addition,
$$P(\rho > 0) = 0.5$$
, independent of *R*.

(see Riebler et al. (2012))

Prior on correlation parameter

Reparameterize ρ using the general Fisher's z-transformation:

$$\rho = \frac{\exp(\rho^{\star}) - 1}{\exp(\rho^{\star}) + R - 1} \qquad \qquad \rho^{\star} = \log\left(\frac{1 + \rho \cdot (R - 1)}{1 - \rho}\right),$$

and assign a $\mathcal{N}(0, \tau^{-1})$ prior to ρ^{\star} .

(Fisher 1958, page 219)

- This prior automatically ensures that $\rho \in (-1/(R-1), 1)$, which is required to ensure positive definiteness of **C**, is fulfilled.
- In addition, $P(\rho > 0) = 0.5$, independent of *R*.

(see Riebler et al. (2012))

Outline

Introduction

Applications

Extrapolation of time trends in registry data

Modelling seasonal patterns in multiple longitudinal profiles

Summary and outlook

Applied to multiple mortality or morbidity tables:

- y_{ijr}: Number of cases in age group *i* at calendar time *j* in region *r*
- n_{ijr} : Number of persons at risk in age group *i* at time *j* in region *r*

$$y_{ijr}|\eta_{ijr} \sim \mathsf{Poisson}(n_{ijr}\lambda_{ijr})$$

$$\eta_{ijr} = \log(\lambda_{ijr}) = \mu_r + \theta_{i(,r)} + \varphi_{j(,r)} + \psi_{k(i,j)(,r)} + z_{ijr},$$

with region-specific intercept, (region-specific) age, period and cohort effects and overdispersion parameters.

We assume the usual sum-to-zero constraints.

- Differences of region-specific effects, e.g. $\Delta_i = \theta_{i,r_1} \theta_{i,r_2}$, $r_1 \neq r_2$ are identifiable.
- Adjusted differences $\Delta_{\mu} + \Delta_{i}$, with $\Delta_{\mu} = \mu_{r_{1}} \mu_{r_{2}}$, can be interpreted as (average) log relative risk.

Applied to multiple mortality or morbidity tables:

- y_{ijr}: Number of cases in age group *i* at calendar time *j* in region *r*
- n_{ijr} : Number of persons at risk in age group *i* at time *j* in region *r*

$$\begin{aligned} y_{ijr} |\eta_{ijr} &\sim \mathsf{Poisson}(n_{ijr}\lambda_{ijr}) \\ \eta_{ijr} &= \log(\lambda_{ijr}) = \mu_r + \theta_{i(,r)} + \varphi_{j(,r)} + \psi_{k(i,j)(,r)} + z_{ijr}, \end{aligned}$$

with region-specific intercept, (region-specific) age, period and cohort effects and overdispersion parameters.

We assume the usual sum-to-zero constraints.

- Differences of region-specific effects, e.g. $\Delta_i = \theta_{i,r_1} \theta_{i,r_2}$, $r_1 \neq r_2$ are identifiable.
- Adjusted differences $\Delta_{\mu} + \Delta_{i}$, with $\Delta_{\mu} = \mu_{r_{1}} \mu_{r_{2}}$, can be interpreted as (average) log relative risk.

Applied to multiple mortality or morbidity tables:

- y_{ijr}: Number of cases in age group *i* at calendar time *j* in region *r*
- n_{ijr} : Number of persons at risk in age group *i* at time *j* in region *r*

$$y_{ijr}|\eta_{ijr} \sim \mathsf{Poisson}(n_{ijr}\lambda_{ijr})$$

$$\eta_{ijr} = \log(\lambda_{ijr}) = \mu_r + \theta_{i(,r)} + \varphi_{j(,r)} + \psi_{k(i,j)(,r)} + z_{ijr},$$

with region-specific intercept, (region-specific) age, period and cohort effects and overdispersion parameters.

We assume the usual sum-to-zero constraints.

- Differences of region-specific effects, e.g. $\Delta_i = \theta_{i,r_1} \theta_{i,r_2}$, $r_1 \neq r_2$ are identifiable.
- Adjusted differences $\Delta_{\mu} + \Delta_{i}$, with $\Delta_{\mu} = \mu_{r_{1}} \mu_{r_{2}}$, can be interpreted as (average) log relative risk.

Applied to multiple mortality or morbidity tables:

- y_{ijr}: Number of cases in age group *i* at calendar time *j* in region *r*
- n_{ijr} : Number of persons at risk in age group *i* at time *j* in region *r*

$$\begin{aligned} y_{ijr} |\eta_{ijr} &\sim \mathsf{Poisson}(n_{ijr}\lambda_{ijr}) \\ \eta_{ijr} &= \mathsf{log}(\lambda_{ijr}) = \mu_r + \theta_{i(,r)} + \varphi_{j(,r)} + \psi_{k(i,j)(,r)} + \mathsf{Z}_{ijr}, \end{aligned}$$

with region-specific intercept, (region-specific) age, period and cohort effects and overdispersion parameters.

We assume the usual sum-to-zero constraints.

- Differences of region-specific effects, e.g. $\Delta_i = \theta_{i,r_1} \theta_{i,r_2}$, $r_1 \neq r_2$ are identifiable.
- Adjusted differences $\Delta_{\mu} + \Delta_{i}$, with $\Delta_{\mu} = \mu_{r_{1}} \mu_{r_{2}}$, can be interpreted as (average) log relative risk.

Applied to multiple mortality or morbidity tables:

y_{iir}: Number of cases in age group *i* at calendar time *j* in region *r*

 n_{ijr} : Number of persons at risk in age group *i* at time *j* in region *r*

$$\begin{aligned} y_{ijr} |\eta_{ijr} &\sim \mathsf{Poisson}(n_{ijr}\lambda_{ijr}) \\ \eta_{ijr} &= \mathsf{log}(\lambda_{ijr}) = \mu_r + \theta_{i(,r)} + \varphi_{j(,r)} + \psi_{k(i,j)(,r)} + z_{ijr}, \end{aligned}$$

with region-specific intercept, (region-specific) age, period and cohort effects and overdispersion parameters.

We assume the usual sum-to-zero constraints.

- Differences of region-specific effects, e.g. $\Delta_i = \theta_{i,r_1} \theta_{i,r_2}$, $r_1 \neq r_2$ are identifiable.
- Adjusted differences $\Delta_{\mu} + \Delta_{i}$, with $\Delta_{\mu} = \mu_{r_{1}} \mu_{r_{2}}$, can be interpreted as (average) log relative risk.

We propose:

- Correlated overdispersion parameters across regions.
- Correlated smoothing priors for region-specific age, period and/or cohort effects.

Second-order random walks (RW2s) of region-specific period effects $\varphi_1, \ldots, \varphi_R$, say, can be correlated using the stacked vector $\tilde{\varphi} = (\varphi_1^\top, \ldots, \varphi_R^\top)^\top$:

$$f(\tilde{\varphi}|\mathbf{C}_{\varphi},\kappa_{\varphi}) \propto |\kappa_{\varphi}\mathbf{C}_{\varphi}^{-1}|^{(J-2)/2} \exp\left(-\frac{1}{2}\tilde{\varphi}^{\top}\left\{\mathbf{C}_{\varphi}^{-1}\otimes\mathbf{R}^{RW2}\right\}\tilde{\varphi}\right).$$

Advantages:

- More precise relative risk estimates
- Imputation of missing data for one particular region may be improved.

We propose:

- Correlated overdispersion parameters across regions.
- Correlated smoothing priors for region-specific age, period and/or cohort effects.

Second-order random walks (RW2s) of region-specific period effects $\varphi_1, \ldots, \varphi_R$, say, can be correlated using the stacked vector $\tilde{\varphi} = (\varphi_1^\top, \ldots, \varphi_R^\top)^\top$:

$$f(\tilde{\varphi}|\mathbf{C}_{\varphi},\kappa_{\varphi}) \propto |\kappa_{\varphi}\mathbf{C}_{\varphi}^{-1}|^{(J-2)/2} \exp\left(-\frac{1}{2}\tilde{\varphi}^{\top}\left\{\mathbf{C}_{\varphi}^{-1}\otimes\mathbf{R}^{RW2}\right\}\tilde{\varphi}\right).$$

Advantages:

- More precise relative risk estimates
- Imputation of missing data for one particular region may be improved.

We propose:

- Correlated overdispersion parameters across regions.
- Correlated smoothing priors for region-specific age, period and/or cohort effects.

Second-order random walks (RW2s) of region-specific period effects $\varphi_1, \ldots, \varphi_R$, say, can be correlated using the stacked vector $\tilde{\varphi} = (\varphi_1^\top, \ldots, \varphi_R^\top)^\top$:

$$f(\tilde{\varphi}|\mathbf{C}_{\varphi},\kappa_{\varphi}) \propto |\kappa_{\varphi}\mathbf{C}_{\varphi}^{-1}|^{(J-2)/2} \exp\left(-\frac{1}{2}\tilde{\varphi}^{\top}\left\{\mathbf{C}_{\varphi}^{-1}\otimes\mathbf{R}^{RW2}\right\}\tilde{\varphi}\right).$$

Advantages:

- More precise relative risk estimates
- Imputation of missing data for one particular region may be improved.

We propose:

- Correlated overdispersion parameters across regions.
- Correlated smoothing priors for region-specific age, period and/or cohort effects.

Second-order random walks (RW2s) of region-specific period effects $\varphi_1, \ldots, \varphi_R$, say, can be correlated using the stacked vector $\tilde{\varphi} = (\varphi_1^\top, \ldots, \varphi_R^\top)^\top$:

$$f(\tilde{\varphi}|\mathbf{C}_{\varphi},\kappa_{\varphi}) \propto |\kappa_{\varphi}\mathbf{C}_{\varphi}^{-1}|^{(J-2)/2} \exp\left(-\frac{1}{2}\tilde{\varphi}^{\top}\left\{\mathbf{C}_{\varphi}^{-1}\otimes\mathbf{R}^{RW2}\right\}\tilde{\varphi}\right).$$

Advantages:

- More precise relative risk estimates
- Imputation of missing data for one particular region may be improved.

Motivation

In Switzerland, cancer is registered on a cantonal level, so that data collection started at different times in the individual cantons.

- First Swiss cancer registration system in Geneva in 1970.
- Today, most cantons have cancer registers.
- Until 2013, the whole Swiss population should be captured by a cancer registration system.

Correlated multivariate APC models can borrow strength from cantons with a longer collection period, when projecting missing data for cantons with a younger registration system.

We analyzed this ability in a cross-prediction study

(Details in Riebler et al. (2012))

Female mortality in Scandinavia 1900–2000

R = 3 regions, J = 20 five-year periods, I = 17 age groups.

26/05/2011

Cross-prediction study

- For either the first or second half of the 20th century all observations from one particular country are treated as missing.
- Then, the omitted data are predicted.
- Comparison to a univariate APC model and an established demographic forecasting model.

Results:

In five of six scenarios the correlated APC model was the best model regarding the proper Dawid-Sebastiani scoring rule. (Greiting and Rattery, 2007)

INLA-call

```
> librarv(INLA)
# data specification, setting data to be predicted to NA
# ...
> prior.rw2 < - c(1,0,00005)
> prior.iid <- c(1,0.005)</pre>
> country <- rep(c(1,2,3), each=AGE*PERIOD)
## model with correlated time effects and overdispersion
> model <- v~f(age, model="rw2", hvper=list(prec = list(param=prior.rw2)),</pre>
        group=country, constr=TRUE, rankdef=2) +
  f(period, model="rw2", hyper=list(prec = list(param=prior.rw2)),
        group=country, constr=TRUE, rankdef=2) +
  f(cohort, ...) +
  f(overdis, model="iid", hyper=list(prec = list(param=prior.iid)),
        group=country) + mu1 + mu2 + mu3 - 1
# with so many hyperparameters we have to increase the number of
# maximum function evaluations in the derivation of the posterior
# marginals for the hyperparameters
> results = inla(model, family="poisson", E=pop, data=data,
                control.predictor=list(compute=TRUE),
                control.inla=list(numint.maxfeval=80000000))
```

Projected rates for Norway 1900-1949 (80% CI)

Correlated multivariate APC (light blue shaded), univariate APC (dark blue), demographic model (orange).

Outline

Introduction

Applications Extrapolation of time trends in registry data Modelling seasonal patterns in multiple longitudinal profiles

Summary and outlook

Modelling seasonal variations

- Time-series of infectious disease counts are marked by occasional outbreaks, but additionally there are frequently seasonal variations.
- Typically, a superposition of sine and cosine functions is used.
- However, in some cases this might be too simple for handling sharp peaks.
- Circular random walks (CRWs) are similar to periodic splines and represent a flexible alternative.
- To allow, for region-dependent disease onsets we use correlated CRWs in a multivariate setting.

Death from influenza and pneumonia in the USA

- 9 major regions
- 520 weeks (40/1996 to 39/2006) \Rightarrow Period p = 52

(Brownstein et al., 2006)

Weekly number of deaths from 40/1996 to 39/2006

 y_{tr} : number of deaths in region r, r = 1, ..., 9 at time t, t = 1, ..., 520. n_r : population size in region r (in the year 2000).

- Region specific intercepts μ_r .
- Seasonal effects $\beta_{(t \mod 52)r}$ with period 52, modelled using a correlated CRW of second order (cCRW2).
- Time effects α_{tr} modelled using a correlated autoregressive process of first order (cAR1).

 y_{tr} : number of deaths in region r, r = 1, ..., 9 at time t, t = 1, ..., 520. n_r : population size in region r (in the year 2000).

- Region specific intercepts μ_r .
- Seasonal effects β_{(t mod 52)r} with period 52, modelled using a correlated CRW of second order (cCRW2).
- Time effects α_{tr} modelled using a correlated autoregressive process of first order (cAR1).

 y_{tr} : number of deaths in region r, r = 1, ..., 9 at time t, t = 1, ..., 520. n_r : population size in region r (in the year 2000).

- Region specific intercepts μ_r .
- Seasonal effects β_(t mod 52), with period 52, modelled using a correlated CRW of second order (cCRW2).
- Time effects α_{tr} modelled using a correlated autoregressive process of first order (cAR1).

 y_{tr} : number of deaths in region r, r = 1, ..., 9 at time t, t = 1, ..., 520. n_r : population size in region r (in the year 2000).

- Region specific intercepts μ_r .
- Seasonal effects β_(t mod 52), with period 52, modelled using a correlated CRW of second order (cCRW2).
- Time effects α_{tr} modelled using a correlated autoregressive process of first order (cAR1).

The circular random walk of second order

Let R = 1, the circular random walk of second order for $\beta = (\beta_1, \dots, \beta_{52})^\top$ is given by

$$f(oldsymbol{eta}|\kappa) \propto \kappa^{(52-2)/2} \exp\left(-rac{1}{2}oldsymbol{eta}^{ op \mathsf{R}^{CRW2}}oldsymbol{eta}
ight)$$

with precision matrix

i.e. a circulant matrix with base $\mathbf{d} = \kappa \cdot (6, -4, 1, 0, \dots, 0, 1, -4)^{\top}$ and unknown precision parameter κ .

Correlated circular random walk of second order

The individual CRW2s β_1, \ldots, β_9 can be correlated using the stacked vector $\tilde{\beta} = (\beta_1^\top, \ldots, \beta_9^\top)^\top$:

$$f(\tilde{\boldsymbol{\beta}}|\mathbf{C},\kappa) \propto |\kappa\mathbf{C}^{-1}|^{(52-2)/2} \exp\left(-\frac{1}{2}\tilde{\boldsymbol{\beta}}^{\top}\left\{\mathbf{C}^{-1}\otimes\mathbf{R}^{CRW2}\right\}\tilde{\boldsymbol{\beta}}
ight).$$

where $C = (1 - \rho)I + \rho J$ denotes a 9 × 9 uniform correlation matrix with unknown correlation ρ . (Riebler et al. (2012))

Hyperpriors

We need to assign hyperpriors to 5 hyperparameters:

- 1 autoregressive parameter: $\mathcal{N}(0, 0.2^{-1})$ for Fisher's z-transformed parameter.
- 2 precisions: Gamma(1, 0.00005) for κ_{cCRW2} and Gamma(0.1, 0.001) for κ_{cAR1} .
- 2 correlations: $\mathcal{N}(0, 0.2^{-1})$ for general Fisher's z-transformed parameters \Rightarrow **C** is positive definite without any constraints.

(Fisher, 1958, page 219).

INLA-call

Estimated seasonal effects

Correlation between seasonal patterns is 0.999 (95% CI:[0.998, 1]).

Using DIC we compare the results of the proposed model to:

- a model assuming a common CRW2 for all regions.
- a model assuming independent CRW2s for each region.

	common CRW2	independent CRW2	correlated CRW2
DIC	36707	36716	36704

- Include dummies for known events, e.g. Christmas.
- Would like to account for spatial correlation, e.g. based on the degree of neighbourhood (?).
- Compare the results to those of models with a (co)sine function.

Using DIC we compare the results of the proposed model to:

- a model assuming a common CRW2 for all regions.
- a model assuming independent CRW2s for each region.

	common CRW2	independent CRW2	correlated CRW2
DIC	36707	36716	36704

- Include dummies for known events, e.g. Christmas.
- Would like to account for spatial correlation, e.g. based on the degree of neighbourhood (?).
- Compare the results to those of models with a (co)sine function.

Using DIC we compare the results of the proposed model to:

- a model assuming a common CRW2 for all regions.
- a model assuming independent CRW2s for each region.

	common CRW2	independent CRW2	correlated CRW2
DIC	36707	36716	36704

- Include dummies for known events, e.g. Christmas.
- Would like to account for spatial correlation, e.g. based on the degree of neighbourhood (?).
- Compare the results to those of models with a (co)sine function.

Using DIC we compare the results of the proposed model to:

- a model assuming a common CRW2 for all regions.
- a model assuming independent CRW2s for each region.

	common CRW2	independent CRW2	correlated CRW2
DIC	36707	36716	36704

- Include dummies for known events, e.g. Christmas.
- Would like to account for spatial correlation, e.g. based on the degree of neighbourhood (?).
- Compare the results to those of models with a (co)sine function.

Summary

Experiences:

- Due to the increasing number of hyperparamters (?), I often had to increase numint.maxfeval in control.inla to avoid warnings.
- "Long" running times.

Summary and outlook:

- It works well.
- There are much more applications, e.g. invariant smoothing of multinomial data,
- A more general/flexible framework is desirable
 - to include, for example, spatial correlation depending on the distance between units/degree of neighbourhood.
 - to couple more than two models?
 - to let the correlation between units depend on associated covariate information of the units?

Summary

Experiences:

- Due to the increasing number of hyperparamters (?), I often had to increase numint.maxfeval in control.inla to avoid warnings.
- "Long" running times.

Summary and outlook:

- It works well.
- There are much more applications, e.g. invariant smoothing of multinomial data,
- A more general/flexible framework is desirable
 - to include, for example, spatial correlation depending on the distance between units/degree of neighbourhood.
 - to couple more than two models?
 - to let the correlation between units depend on associated covariate information of the units?

Thank you for your attention!

- Brownstein, J.S., Wolfe, C.J. and Mandl, K.D. (2006). Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. *PLoS Medicine*, 3, e401. [Influenza data]
- Fisher, R.A. (1958). Statistical Methods for Research Workers. 13th (rev.) edn, Oliver & Boyd, Edinburgh. [general Fisher's z-transformation]
- Gneiting, T. and Raftery, A. (2007). Strictly proper scoring rules, prediction and estimation. JASA, 102, 359–378. [Scoring rules]
- Riebler, A. and Held, L. (2010). The analysis of heterogeneous time trends in multivariate age-period-cohort models. *Biostatistics*, 11, 57–69. [MAPC]
- Riebler, A., Held, L. and Rue, H. (2012). Estimation and extrapolation of time trends in registry data–Borrowing strength from related populations. *Annals of Applied Statistics*, 6, 304–333. [correlated MAPC]