--- title: The Monty Hall Problem created: 2025-11-17T09:43:40 modified: 2025-11-19T21:00:06 --- The **Monty Hall Problem (= Car-Goat Problem = 三門問題)** is a famous probability puzzle based on a game show scenario. [^1] A contestant is presented with **three doors**: behind one door is a valuable prize (like a car), and behind the other two are goats. After the contestant selects a door, the host—who **knows what’s behind each door**—opens one of the remaining doors, always revealing a goat. The contestant is then given the choice to **stick with their original door or switch (換?還是不換?)** to the other unopened door. Counterintuitively, the best strategy is to **always switch**, as it gives a **2/3 chance of winning** compared to a **1/3 chance if staying**. The problem illustrates how human intuition about probability can be misleading and highlights the importance of conditional probability in decision-making. --- # 為何換門更好  * 第一次選擇:你選擇到汽車的機率是 1/3;選到山羊的機率是 2/3。 * 主持人介入:主持人永遠會打開一扇有山羊的門,這個行動是基於你的第一次選擇。 * 如果你第一次選擇到的是汽車(機率為 1/3),主持人會隨機打開另一扇有山羊的門。這時,換門一定會讓你輸掉汽車。 * 如果你第一次選擇到的是山羊(機率為 2/3),主持人就只能打開另一扇有山羊的門。這時,剩下未被打開的門後面一定是汽車,換門一定會讓你贏得汽車。 * 結論:由於你第一次選擇到山羊的機率是 2/3,因此換門贏得汽車的機率是 2/3,而堅持原選擇的機率是 1/3。 [^1]: 是一個源自美國電視節目《Let’s Make a Deal》的機率謎題。