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Preface

Organizational Stuff
• Questions, comments, suggestions are welcome.

• You can contact me (at any time) in the lecture or via

– phone (+49 221 973199-523),

– e-mail (Stephan.Huber@hs-fresenius.de), or

– in office (4b OG-1 Bü01).

• Material such as slides and lecture notes can be found on ILIAS.

• Workload: 62.5 h = 28 h (in-class) + 14 h (guided private study hours) - 27.5 h (private
self-study).

• Credit Points: 5 (together with Financial Mathematics).

• Assessment: written exam of 45 minutes (we will see what COVID allows us to do...).

• Requirements for the Award of ECTS Points: A pass in this module is achieved when the overall
grade is greater than or equal to 4.0.

• The students who have successfully completed the module are able to:

– use methods of calculus and linear algebra to mathematical as well as economic problems,

– describe the differentiation, integration and evaluation of common (low-dimensional) analyti-
cal functions and the solution of linear equation systems and eigenvalue problems employing
matrix algebra techniques, and

– execute analytical optimization techniques with and without constraints.

• Module Content

– Numbers and Equations

– Series, Power Series, Limits, Convergence

– Functions

– Differentiation and Integration

– Vectors and Matrices

– Linear Equation Systems

– Optimization with Constraints: Lagrange Multipliers

• This lecture cannot cover all aspects of Calculus and Linear Algebra. However, it is a selection of
important and fundamental concepts to understand how mathematics is applied to problems in
the economics, in business world and in our private lifes’. For a deeper understanding and more
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exercises, I recommend Stitz and Zeager (2013); Sydsæter et al. (2012); Chiang and Wainwright
(2005); Openstax (2020); Simon and Blume (1994); Gonick (2011, 2015)

– Stitz, C. and Zeager, J. (2013). Precalculus Version π = 3, Corrected Edition. available at
https://www.stitz-zeager.com/szprecalculus07042013.pdf,

– Sydsæter, K., Hammond, P. J., and Strøm, A. (2012). Essential Mathematics for Economic
Analysis. Pearson Education, 4 edition,

– Chiang, A. C. and Wainwright, K. (2005). Fundamental Methods of Mathematical Economics.
McGraw-Hill/Irwin,

– Openstax (2020). Calculus: Volume 1. Rice University. available on https://openstax.org/details/books/calculus-
volume-1, and/or

– Simon, C. P. and Blume, L. (1994). Mathematics for Economists, volume 7. Norton New
York.

I also recommend the comic introductions to algebra and calculus by

– Gonick, L. (2011). The Cartoon Guide to Calculus. William Morrow Paperbacks

– Gonick, L. (2015). The Cartoon Guide to Algebra. William Morrow Paperbacks.

• My teaching principle is KISS which stands for keep it simple and straightforward.

The KISS principle states that most systems work best if they are kept simple rather than
complicated; therefore, simplicity should be a key goal in design, and unnecessary complexity
should be avoided.

However, KISS does not mean that the course is easy! If you are not able to think logically
or if you are not willing to work hard, you may have problems passing the course

Given your talent and mental capacities, I try to maximize your ability and self-confidence to
solve future problems (in private and professional life).
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How to prepare for the exam

Richard P. Feynman:
“I don’t know what’s the matter with people: they don’t learn
by understanding; they learn by some other way by rote, or
something. Their knowledge is so fragil!”

Stephan Huber:
I agree with Feynman: The key to learning is understanding.
However, I believe that there is no understanding without doing
mathematics, that is, solving a problem yourself with a pencil and
a blank sheet of paper without knowing the solution in advance.

• Study the lecture notes, i.e., try to understand the exercises and solve them yourself.
• Study the exercises, i.e., try to understand the rules of algebra and solve the problems

yourself.
• Test yourself with past exams that you will find on ILIAS. The structure of the exam is

more or less the same every semester.
• If you have the opportunity to form a group of students to study and prepare for the

exam, make use of it. It is great to help each other, and it is very motivating to see that
everyone has problems sometimes.

• If you have difficulties with some exercises and the solutions shown do not solve your
problem, ask a classmate or contact me. I will do my best to help.

9



Chapter 1

Introduction

Why Mathematics and Statistics in IBM?

First semester: MAS-1

1. Calculus and Linear Algebra In many areas such as marketing, accounting and finance, you
need a great deal of quantitative understanding. Knowledge of Calculus (Analysis) and Linear
Algebra is essential for this.

2. Descriptive Statistics You will sometimes work empirically both in your studies and future
work. Thus, you should be skilled in Descriptive Statistics to analyze and visualize one- and
two-dimensional data sets and to know and understand the most common techniques for this
purpose.

Second semester: MAS-2

1. Financial Mathematics and

2. Inferential Statistics

1.1 Motivation

Math helps to distinguish logic from emotion

Emotions vs. Logic

For example, think of an investment case. Your gut feeling tells you that it is a brilliant idea to invest,
but your analysis tells you that the probability of losing a lot of money is high. A good marketing
strategy combines emotions with some logical aspects, such as ‘This jacket is cheap and makes you
feel good.’ fakenews also usually try to convince you by appealing to your emotions based on a logical
fallacy. Once feelings are involved, people tend to fall for logical fallacies quickly. They look for evidence
that justifies and reinforces their feelings. Facts are only perceived selectively. This is sometimes the
reason why it is very difficult to fight fakenews. The beauty of mathematics is that it is a science in
which emotions play no role and therefore it is very unlikely to make mistakes or be blind in one eye.

10



Math is the language of logic

Unfortunately, logic and mathematics are less ap-
pealing to people than emotions. I understand that
completely. Logic and math can be very trouble-
some and difficult. That is perhaps why many
people tend to rely more on their gut feelings than
on arguments based on logical thinking.

• Two necessary conditions for your success:
1. Believe that you can learn math.
2. Believe that being able to do math can

make a difference for your future life.
• Maybe this helps to make the two conditions

can hold for you: v Math is the hid-
den secret to understanding the world | Roger
Antonsen https://youtu.be/ZQElzjCsl9o

Carl Friedrich Gauss (1777-1855)

Maybe you have heard about story when that Gauss’s teacher in primary school forced little Fritz and
the whole class to calculate

1 + 2 + 3 + · · ·+ 100 =?

after the C.F. Gauss misbehaved. He produced the correct answer within seconds as he was able to find
a pattern. He realized that pairwise addition of terms from opposite ends of the list yielded identical
intermediate sums:

1 + 100 = 101,

2 + 99 = 101,

3 + 98 = 101,

and so on, for a total sum of
50 · 101 = 5050.

Exercise 1.1 — Do it like Gauss (Solution → p. 12)

Calculate

2− 4 + 6− 8 + 10− 12 + 14− ...− 200 + 202− 204 + 206− 208 + 210 =?

The solution is easy!
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When I say “it is easy”, I don’t mean it is trivial

People who think math is hard and don’t believe they can master the logical steps in math often feel
slightly offended when someone starts explaining math by saying, "This is easy" or something similar.
Usually a teacher wants to encourage by saying, "This is easy." But students often just feel stupid.

I assure you, whenever I say ‘It’s easy” I mean, "You can understand it, even though it may take
some time. You can do it!" When I say it’s easy, I don’t mean it’s trivial and should be understood
immediately. Understanding math can involve tedious algebra and a bunch of arithmetic rules that
take time to understand. But once you know how to do math, it will become clear and hopefully easy.

Some paraphrased and funny examples on mathematical wording can be found here: � Siegfried
(1970)1. Also read � Eldridge (2014)2

So please excuse me if you feel offended by my words from time to time. It is not my intention to make
you feel stupid, the opposite is true. I want to keep it simple, stupid (KISS) and that sometimes makes
me say that is simple or easy (instead of you can understand...). Please note that I don’t want you to
feel stupid. So whenever you feel stupid, let me know! Ask questions to get rid of that feeling! Even
though the question may sound silly to the other students in the class who have already figured out
the trick. Asking these kinds of supposedly stupid questions is the smartest way to get better at math
than those who are laughing at you! Anyway, if you are too embarrassed to ask in class: approach me,
email me, call me, or just stop by my office (4c OG1 Room 1). I will try to explain everything to you
face to face.

Solution to Exercise 1.1 — Do it like Gauss (Exercise → p. 11)

Solution 1 We have 53 positive numbers:

2 + 6 + 10 + 14 + 18 + ...+ 202 + 206 + 210

we can build pairs
2 + 206 = 208
6 + 202 = 208

...

Thus, we have 26 pairs and we can easily sum up all positive numbers:

26 · 208 + 210 = 5618

Analogously, we can do that for the 52 negative numbers:

4 + 8 + 12 + 16 + 20 + ..+ 200 + 204 + 208

and the 26 pairs:
26 · 212 = 5512.

Now, we just need to calculate
5618− 5512 = 106

to come to a solution.
Solution 2 There is a much nicer pattern:

0 + 2︸ ︷︷ ︸
+2

−4 + 6︸ ︷︷ ︸
+2

−8 + 10︸ ︷︷ ︸
+2

−...−208 + 210︸ ︷︷ ︸
+2

That means, we just need to calculate

53 · 2 = 106

to come to a solution.

1Can be downloaded here: https://www.uibk.ac.at/econometrics/lit/siegfried_jpe_70.pdf
2Can be downloaded here: https://doi.org/10.1111/ecin.12041
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Exercise 1.2 — Single-Elimination Tournament (Solution → p. 13)

In a single-elimination tournament 100 tennis player play for the cup. How many games must
be played to know the winner of the tournament?

Solution to Exercise 1.2 — Single-Elimination Tournament (Exercise → p. 13)

In the tournament the loser of each match-up is immediately eliminated from the tournament.
Thus, we will see 99 games as 99 players have to loose once. It is easy like that.

Exercise 1.3 — How Old is Grandpa? (Solution → p. 13)

Grandpa says: “My son Alpha is 24 years younger than me. Alpha is 25 years older than my
grandson Beta. Taken together, Beta and I have lived 73 years.”
How old is grandpa?

Solution to Exercise 1.3 — How Old is Grandpa? (Exercise → p. 13)

Let g, a, and b denote the age of grandpa, Adam, and Beta. Then, we can write the given
information down like this:

g + b = 73 (1.1)
a = b+ 25 (1.2)
a = g − 24 (1.3)

Thus, we have a system of three equation with three unknowns. As we have not more unknowns
than equations, the system of simultaneous equations can be solved. The strategy is to reduce
this to two equations and two unknowns and then to one equation with one unknown.
For example, let us eliminate b. We will first eliminate it from equations (1) and (2) simply by
adding them. We obtain:

(g + b) + (a− b) = 73 + 25 (1.4)
⇔ a = 98− g (1.5)
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Plugging that into Eq. (3), we get

98− g = g − 24 (1.6)
⇔ 2g = 122 (1.7)
⇔ g = 61 (1.8)

Solution: Grandpa is 61 years old. (Alpha is 37 years, Beta is 12 years)

1.2 Helpful Stuff First

1.2.1 German — English

2 mal 4 ist 8 2 times 4 is 8
Bruch fraction
gekürzter Bruch reduced fraction
Zähler numerator
Nenner denominator
123
45 123 over 45
Dezimalzahl decimal (number)
Klammer bracket or paranthesis
Klammern brackets or parentheses
eckige Klammer square(d) bracket
geschweifte Klammer curly bracket

quadrieren to square
Wurzelziehen to extract a root
n-te Wurzel n-th root
Potenz power
potenzieren to raise to higher power
mit 2 potenzieren to raise to the power of 2
logarithmieren to take the logarithm of
Fakultät factorial
Steigung slope
Achsenabschnitt intercept

Also see:
® www.germanveryeasy.com/mathematics-in-german and
® http://rkleiner.net/Vocab_Math_e-d.pdf and
® http://www.zipcon.net/~swhite/docs/language/German/math.html

1.2.2 Greek Alphabet

α A alpha
β B beta
γ Γ gamma
δ ∆ delta
ε E epsilon
ζ Z zeta
η E eta
θ Θ theta
ι I iota
κ K kappa
λ Λ lambda
µ M mu

ν N nu
ξ Ξ xi
o O omicron
π Π pi
ρ R rho
σ Σ sigma
τ T tau
υ Υ upsilon
φ Φ phi
χ X chi
ψ Ψ psi
ω Ω omega
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1.2.3 Mathematical Symbols

1.3 Numbers
In math you can express things very differently. It depends pretty much on how precise you want
and/or need to be.

One way:

• Natural numbers N are also known as counting numbers: 1, 2, 3, 4, 5, . . .

• Whole numbers N0 are all natural numbers and the zero

• Integers Z are all whole numbers and the negative natural numbers

• Rational numbers (Fractions) Q are all numbers that can be expressed as the result of an integer
divided by a natural number

• Irrational numbers are all real numbers that are not fractions

• Real numbers R are all rational and irrational numbers

Here is an alternative way to say basically the same:

1. The Empty Set: ∅ = {} = {x |x 6= x}. This is the set with no elements.3 Like the number ‘0,’
it plays a vital role in mathematics.

2. The Natural Numbers: N = {1, 2, 3, . . .} The periods of ellipsis here indicate that the natural
numbers contain 1, 2, 3, ‘and so forth’.

3. The Integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

4. The Rational Numbers: Q =
{
a
b | a ∈ Z and b ∈ Z

}
. Rational numbers are the ratios of integers

(provided the denominator is not zero!) It turns out that another way to describe the rational
3Here we use the so-called set-builder notation. For example, {x |x is a letter in the word “pronghorns”.} can be read

like this: ‘The set of elements x such that x is a letter in the word “pronghorns.”’ In each of the above cases, we may use
the familiar equals sign ‘=’ and write S = {p, r, o, n, g, h, s} or S = {x |x is a letter in the word “pronghorns”.}. Clearly
r is in S and q is not in S. We express these sentiments mathematically by writing r ∈ S and q /∈ S.
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numbers is:

Q = {x |x possesses a repeating or terminating decimal representation.}

5. The Real Numbers: R = {x |x possesses a decimal representation.}

6. The Irrational Numbers: Real numbers that are not rational are called irrational. As a set,
we have {x ∈ R |x /∈ Q}. (There is no standard symbol for this set.) Every irrational number
has a decimal expansion which neither repeats nor terminates.

7. The Complex Numbers: C = {a+ bi | a,b ∈ R and i =
√
−1} (We will not deal with complex

numbers in this course.)

Homework: Download and check out Stitz and Zeager (2013)’s book. Especially if you feel like
you need some math tutoring.

Irrational Numbers

v Watch https://youtu.be/CtRtXoT_2Ps What are Irrational Numbers? by Don’t Memorise and

v https://youtu.be/sbGjr_awePE Making sense of irrational numbers by Ganesh Pai.
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Chapter 2

Equations

2.1 Introduction to Equations
Most quantitative disciplines, such as science, economics, and areas of psychology and sociology,
describe real-world situations in terms of equations.

An equation is a mathematical expression which states that one thing is equal to another. The meaning
of a function is further explained in Openstax (2020, ch. 1.1).

Definition 1

A function f consists of a set of inputs, a set of outputs, and a rule for assigning each input to
exactly one output. The set of inputs is called the domain of the function. The set of outputs is
called the range of the function.

So,
2 + 3 = 5

is an equation, and so is
E = mc2,

or
x− 7 = 25.

Each of these examples is subtly different:

• The first is an identity—it is always true.

• E = mc2 is a relationship, defining E in terms of m and c, while

• x− 7 = 25 is an equation which is only true for certain values of x. In most algebraic contexts,
at least one side of the equation will involve unknown elements, often denoted by x, y or z.

Please notice: while there are conventions in notation, there are no general rules how symbols should
be assigned to denote specific elements or variables. For example, it is a standard naming convention
in economics to denote the the profit of a firm with the Greek letter π because the word Profit begins
with P. In macroeconomics, however, the rate of inflation is usually represented by π, too. This can
be confusing, especially to students who are not familiar to the specific conventions. In school, the
letter π is usually denoted to the number π (dt.: Kreiszahl) which is approximately equal to 3.14159.
Actually, π—like all other letters and symbols—can be a placeholder for anything (unknown).
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2.2 Terms Used for Equations
Many algebraic techniques are concerned with manipulating and solving equations to find these
unknowns. The values of the unknown elements that satisfy the equality are called solutions of the
equation.

An equation is written as two expressions connected by an equals sign (=). The expressions on the
two sides of the equals sign are called the left-hand side and the right-hand side of the equation. Each
side of an equation will contain one or more terms. For example, the equation

y = a · x2 + b · x+ c

has left-hand side (often abbreviated with LHS) y, consisting of just one term, and right-hand side
(RHS) a · x2 + b · x+ c, which has three terms. The unknown elements are x and y, called variables,
while a, b and c are parameters. If, additionally, one writes

y(x) = a · x2 + b · x+ c

then x is called the independent variable and y the dependent variable or the variable dependent on x.

2.3 Manipulation of Simple Equations
An equation can also be seen as a scale in which both sides are in balance. When a quantity is added or
removed from one tray, the same quantity must be added or removed from the other tray to maintain
the balance.

Likewise, a mathematical equation has to be preserved by performing the same operations (addition,
subtraction, multiplication, division, power, logarithm, etc.) simultaneously on both sides of the
equation.

Equations with one unknown Two equations that have exactly the same solution are equivalent
equations. To get equivalent equations, do the following to both sides of the equality sign:

• add (or subtract) the same number,

• multiply (or divide) by the same number (different from 0!).

Exercise 2.1 — Equalize Me (Solution → p. 18)

Solve:

6p− 1
2(2p− 3) = 3(1− p)− 7

6(p+ 2)

Solution to Exercise 2.1 — Equalize Me (Exercise → p. 18)

p = − 1
11
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Chapter 3

Functions

(a) (b) (c) (d)

Figure 3.1: Function?

3.1 Introduction

Definition — Function: A relation in which each x-coordinate is matched with only one
y-coordinate is said to describe y as a function of x.

Functions represent relationships between mathematical variables. They take an input, manipulate it
in some way, and produce an output. For example, the function

f(x) = x+ 2

takes an input of a real number x and produces an output f(x) of two more than x.

In general, a real function f is a certain rule

f : D → R, x 7→ y = f(x)

which maps any input x of a subset D of the real numbers called the function’s domain onto an output
y = f(x) in another subset R of the real numbers called the range. If there is a value x with f(x) = 0,
then x is called a zero of f .

In that form the function we mentioned above is

f : R→ R, x 7→ y = f(x) = x+ 2

and has the zero x = −2.

Exercise 3.1 — Is it a function? (Solution → p. 68)

In Figure 3.1, four graphs are plotted. State which of these relations describes y as a function of
x.
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Note — (Inverse) Functions and Notation

Notation can confusing, there are various ways the disciplines of social sciences write things
down. Very often they deny to be 100% correct in a strict mathematical sense. For example,
instead of

f : R→ R, x 7→ y = f(x)

we just write in the following script
y = f(x).

The inverse function can be written like that

x = f−1(y)

3.2 Constant Functions
The simplest real functions are the constant functions, which assign a certain real constant c to each
real number x

f : R→ R, x 7→ y = f(x) = c

The graph of a constant function is a parallel to the x-axis. For example, with c = 0, we get the x-axis
itself and with c = 3 and c = −2 the graphs

y

x

3.3 Linear Functions
A linear function is a function f of the form

f : R→ R, x 7→ y = f(x) = a · x+ b

where a 6= 0 and b are real constants. It has exactly one zero in x = −b
a . The graph of a linear function

is a straight line with slope a and y-intercept b. For example, with a = 2, b = −1 or with a = −1, b = 3
y

x
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3.4 Linear Functions in Economics
Relationship between price and demand If the price p increases, normally the demand x
decreases. In economics, this relationship is often assumed to be linear. Thus, the demand function
has the form

x = x(p) = −a · p+ b with positive a and b

and only makes sense for positive quantities x and prices p. For example

x = x(p) = −0.5 · p+ 50

This describes a function x depending on p. Since we seek for the reverse dependence p = p(x) we can
resolve this equation by p and get the (inverse) demand function

p = p(x) = −2 · x+ 100

Relationship between supply and demand If the price p of a good rises, a producer will increase
the supply quantity in linear dependence. The supply function therefore has the form

x = xS(p) = a · p− b with positive a and b

and only makes sense for positive quantities x and prices p. For example:

xS(p) = 0.4 · p− 4.

This describes a function x depending on p. Since we seek for the reverse dependence p = p(x), we can
resolve this equation by p and get the (inverse) supply function

p = pS(x) = 2.5 · x+ 10

0 10 20 30 40 50 600
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p,pS

x

pS(x) = 2.5 + 10

p(x) = −2 + 100

(20,60)

To calculate the equilibrium, i.e., the intersection of
supply and demand, we need to set both functions
equal and do some algebra:

2.5x+ 10 = −2x+ 100
⇔ x = 20

Once we know that 20 units will be traded on the
market in equilibrium, we can calculate the corre-
sponding price:

p(20) = −2 · 20 + 100 = 60 or
pS(20) = 2.5 · 20 + 10 = 60

For the quantity x∗ = 20 and the price p∗ = 60
supply equals demand. At point (x∗, p∗) supply
equals demand. That means the market is balanced
or it is in equilibrium where no market participant
wants to change (or can change).

Exercise 3.2 — Demand and Supply (Solution → p. 68)

Given the demand function
x(p) = −3

4p+ 300
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and the supply function
xS(p) = 5

4p− 100

Determine the equilibrium market price and quantity both graphically and algebraically.

3.5 Quadratic Functions
A quadratic function is a function of the form

f(x) = ax2 + bx+ c,

where a, b and c are real numbers with a 6= 0. The domain of a quadratic function is (−∞,∞).

The most basic quadratic function is f(x) = x2, whose graph is given in Figure 3.2. Its shape should
look familiar from high school – it is called a parabola. The point (0, 0) is called the vertex of the
parabola.

(−2, 4)

(−1, 1)

(0, 0)

(1, 1)

(2, 4)

x

y

−2 −1 1 2

1

2

3

4

Figure 3.2: The graph of the basic quadratic function f(x) = x2

3.5.1 Standard and general form of quadratic functions

Suppose f is a quadratic function.

• The general form of the quadratic function f is f(x) = ax2 + bx+ c, where a, b and c are real
numbers with a 6= 0.

• The standard form of the quadratic function f is f(x) = a(x− h)2 + k, where a, h and k are
real numbers with a 6= 0.

One of the advantages of the standard form is that we can immediately read off the location of the
vertex:

Note — Vertex Formula for Quadratics in Standard Form

For the quadratic function f(x) = a(x− h)2 + k, where a, h and k are real numbers with a 6= 0,
the vertex of the graph of y = f(x) is (h, k).

Note — Completing the Square Method

To convert the general form into the standard form you can go on like this:
Step 1 Divide all terms by a, i.e., the coefficient of x2.
Step 2 Complete the square (use ( b2)2)!) and balance it by adding the same value to the right

side of the equation.
Here is a video entitled How do you convert from standard form to vertex form of a quadratic
v https://youtu.be/pwITxyUghV0
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Exercise 3.3 — Give Me The Standard Form (Solution → p. 68)

Convert the functions below from general form to standard form and assign the two graphs
below to the two functions.

1. f(x) = x2 − 4x+ 3.
2. g(x) = 6− x− x2

(0, 3)

(1, 0)

(2,−1)

(3, 0)

x = 2

x

y

−1 1 2 3 4 5

−1

2

3

4

5

6

7

8

Figure 3.3

(0, 6)

(2, 0)

(
− 1

2 ,
25
4

)

(−3, 0)
x = 1

2

x

y

−3 −2 −1 1 2

2

3

4

5

6

Figure 3.4

3.5.2 General Way to Come to the General Form

With Example 3.3 fresh in our minds, we are now in a position to show that every quadratic function
can be written in standard form. We begin with f(x) = ax2 + bx+ c, assume a 6= 0, and complete the
square in complete generality.

f(x) = ax2 + bx+ c

= a

(
x2 + b

a
x

)
+ c (Factor out coefficient of x2 from x2 and x.)

= a

(
x2 + b

a
x+ b2

4a2 −
b2

4a2

)
+ c

(
( ba ·

1
2)2 = b2

4a2

)

= a

(
x2 + b

a
x+ b2

4a2

)
− a

(
b2

4a2

)
+ c (Group the perfect square trinomial.)

= a

(
x+ b

2a

)2
+ 4ac− b2

4a (Factor and get a common denominator.)

Comparing this last expression with the standard form, we identify (x − h) with
(
x+ b

2a

)
so that

h = − b
2a . Instead of memorizing the value k = 4ac−b2

4a , we see that f
(
− b

2a

)
= 4ac−b2

4a .

Note — Vertex Formulas for Quadratic Functions

Suppose a, b, c, h and k are real numbers with a 6= 0.
• If f(x) = a(x− h)2 + k, the vertex of the graph of y = f(x) is the point (h, k).
• If f(x) = ax2 + bx+ c, the vertex of the graph of y = f(x) is the point

(
− b

2a, f
(
− b

2a

))
.

There are two more results which can be gleaned from the completed-square form of the general form
of a quadratic function,

f(x) = ax2 + bx+ c = a

(
x+ b

2a

)2
+ 4ac− b2

4a
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3.5.3 The Quadratic Formula

If a, b and c are real numbers with a 6= 0, then the solutions to ax2 + bx+ c = 0 are

x = −b±
√
b2 − 4ac

2a .

Exercise 3.4 — Derive the Quadratic Formula (Solution → p. 69)

Show that the statement above is correct.

Discriminant Trichotomy

The square root of a negative number does not exist among the set of Real Numbers. Given that√
b2 − 4ac is part of the Quadratic Formula, we will need to pay special attention to the radicand

b2 − 4ac. It turns out that the quantity b2 − 4ac plays a critical role in determining the nature of the
solutions to a quadratic equation. It is given a special name.

Discriminant If a, b and c are real numbers with a 6= 0, then the discriminant of the quadratic
equation ax2 + bx+ c = 0 is the quantity b2 − 4ac.

The discriminant ‘discriminates’ between the kinds of solutions we get from a quadratic equation. Let
a, b and c be real numbers with a 6= 0, these cases, and their relation to the discriminant, are as follows:

• If b2 − 4ac < 0, the equation ax2 + bx+ c = 0 has no real solutions.

• If b2 − 4ac = 0, the equation ax2 + bx+ c = 0 has exactly one real solution.

• If b2 − 4ac > 0, the equation ax2 + bx+ c = 0 has exactly two real solutions.

Exercise 3.5 — Its All About Profits (1) (Solution → p. 70)

The profit of selling a product x is defined by Profit = Revenue−Cost, or P (x) = R(x)−C(x).
The inverse demand function is

p(x) = −1.5x+ 250.

The cost, in dollars, to produce x goods is given as

C(x) = 80x+ 150 ∀ x ≥ 0.

1. Determine the functions for demand and revenue and discuss what these functions can tell
you.

2. Determine the weekly profit function P (x).
3. Graph y = P (x). Include the x- and y-intercepts as well as the vertex and axis of symmetry.
4. Interpret the zeros of P .
5. Interpret the vertex of the graph of y = P (x).
6. What should the price per unit be in order to maximize profit?

Exercise 3.6 — Its All About Profits (2) (Solution → p. 72)

Given the demand function
x(p) = −3 · p+ 600

and the cost function of a monopolist

C(x) = 180 · x+ 108

Determine
a) the fixed cost,
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b) the variable cost,
c) the revenue function,
d) the profit function,
e) the quantity x for which the profit is maximal,
f) the maximal profit,
g) the factorization of the profit function, and
h) the quantities x for which the profit is positive.

3.6 System of Linear Equations with Two Unknowns
Find the values of x and y that satisfy both equations:

2x+ 3y = 18 (∗)
3x− 4y = −7 (∗∗)

Use one of the following methods:

Method 1 Solve one of the equations for one of the variables in terms of the other; then substitute
the result into the other equation.

Method 2 Eliminate one of the variables by adding or subtracting a multiple of one equation from
the other.

Method 3 Solve both equations for the same variable and put this variable on the left hand side;
then set the right hand sides of the two resulting equations equal.

Method 4 Use software.

3.6.1 Solutions — Method 1:

Solve one of the equations for one of the variables in terms of the other; then substitute the result into
the other equation.

From (*)

3y = 18− 2x

y = 6− 2
3x

inserting in (**) gives

3x− 4
(

6− 2
3x
)

= −7

3x− 24 + 8
3x = −7

17
3 x = 17
1
3x = 1

x = 3

using x = 3 in (*) gives

2 · 3 + 3y = 18
3y = 12
y = 4

3.6.2 Solutions — Method 2:

Eliminate one of the variables by adding or subtracting a multiple of one equation from the other.
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Multiply (*) by 4 and (**) by 3. This gives

8x+ 12y = 72
9x− 12y = −21

Then add both equations. This gives

17x = 51
x = 3

Inserting this result in (*) gives

2 · 3 + 3y = 18
3y = 12
y = 4

3.6.3 Solutions — Method 3:

Solve both equations for the same variable and put this variable on the left hand side; then set the
right hand sides of the two resulting equations equal.

2x+ 3y = 18

y = 6− 2
3x (∗′)

3x− 4y = −7

y = 3
4x+ 7

4 (∗∗′)

Set (*’) equal with (**’), we get

6− 2
3x = 1

4x+ 7
4

6− 7
4 = 2

3x+ 3
4×

41
4 = 1 5

12×
17
4 = 17

12×
17
4 ·

12
17 = x

x = 3

and hence
y = 4

3.6.4 Solutions — Method 4:

There are some nice software packages available that allow to do analytical algebra with variables. The
major players on the commercial market are Maple, Matlab, Mathematica. However, there are also
open-source alternatives available such as SageMath. If you want learn one of these, I would go for
SageMath. Not only because it is free of costs but also because it is based on the popular programming
language Python. That means, if you use Sage in a mathematics, statistics, physics, or data-science
class, you will learn Python along the way.

In the course, I will show you some free and easy to use tools that are available online. For a more
complete list of software in general, I refer to
® https://en.wikipedia.org/wiki/List_of_computer_algebra_systems

Go to ® https://www.wolframalpha.com/, type in plot 2x+3y=18 plot 3x-4y=-7 and click Enter.

Also visit
® https://www.wolframalpha.com/calculators/system-equation-calculator

and
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® https://www.mathpapa.com/algebra-calculator.html

and try to use this tool to solve the system of equations.

SageMath is a free open-source mathematics software system licensed under the GPL. It builds
on top of many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP,
FLINT, R and many more. Access their combined power through a common, Python-based
language or directly via interfaces or wrappers. A good way to start learning SageMath is the
homepage of Gregory V. Bard who offers plenty of good ressources about SageMath, see: ®
http://www.gregory-bard.com/Sage.html I also recommend the freely available book Computational
Mathematics with SageMath from Zimmermann et al. (2018) which can be downloaded here:
® http://sagebook.gforge.inria.fr/english.html

v Here is a video that demonstrates you how SageMath works: https://youtu.be/g8DI9eRgnBw

Maple is commercial PC program. In particular, it is a symbolic and numeric computing
environment as well as a multi-paradigm programming language. It covers several areas
of technical computing, such as symbolic mathematics, numerical analysis, data processing,
visualization, and others. A toolbox, MapleSim, adds functionality for multidomain physical
modeling and code generation. Maple’s capacity for symbolic computing include those of
a general-purpose computer algebra system. For instance, it can manipulate mathematical
expressions and find symbolic solutions to certain problems, such as those arising from ordinary
and partial differential equations.

MATLAB (an abbreviation of matrix laboratory) is a proprietary multi-paradigm programming
language and numeric computing environment developed by MathWorks. MATLAB allows
matrix manipulations, plotting of functions and data, implementation of algorithms, creation of
user interfaces, and interfacing with programs written in other languages.

Wolfram Mathematica is a software system with built-in libraries for several areas of technical
computing that allow symbolic computation, manipulating matrices, plotting functions and
various types of data, implementation of algorithms, creation of user interfaces, and interfacing
with programs written in other programming languages.
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3.7 Derivatives (Slopes of Curves)

3.7.1 The first derivate

• For the graph representing the function y = ax+ b the slope was given by the number a.

• Consider some arbitrary function f . The slope of the corresponding graph at some point x0 is
the slope of the tangent to the graph at x0.

• In the figure above, point P has the coordinates (x0, f(x0)).

• The straight line T is the tangent line to the graph at point P . It just touches the curve at point
P .

• The slope of the graph at x0 is the slope of T . This slope is 1
2 .

Definition: The slope of the tangent line at point (x, f(x)) is called the derivative of f at point
x. This number is denoted by f ′(x).

• Read f ′(x) as “f prime x”.

• We call f ′(x) the derivative of f(x).

• In the figure the point x = x0 was considered.

• The derivative of f at point x0 was
f ′(x0) = 1

2

In the figure, P and Q are points on the curve (graph).

• The entire straight line through P and Q is called a secant.

• Keep P fixed, but move Q along the curve towards P . Then the secant rotates around P towards
the limiting straight line T .

• T is the tangent (line) to the curve at P .

• In place of f ′(x) often y′ or the differential notation of Leibniz is used:

dy
dx, dy/dx, df(x)

dx , df(x)/dx, d
dxf(x)

• The derivative f ′(x) can be used to define the notion of increasing and decreasing functions.

– f ′(x) ≥ 0 for all x in Df ⇐⇒ f is increasing in Df

– f ′(x) > 0 for all x in Df ⇐⇒ f is strictly increasing in Df

– f ′(x) ≤ 0 for all x in Df ⇐⇒ f is decreasing in Df

– f ′(x) < 0 for all x in Df ⇐⇒ f is strictly decreasing in Df
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3.7.2 The second order derivative

• The derivate f ′ of a function y = f(x) is called the first derivate of f .

• If f ′ is also differentiable, then we can differentiate f ′ in turn.

• The result is called the second order derivative and it is written as f ′′ or y′′.

Definition: f ′′(x) is the second order derivative of f evaluated at the particular point x.

• f ′′ or y′′ can be written in the differential notation as

d

dx

[
d

dx
f(x)

]
or more simply as

d2f(x)
dx2 or d2y

dx2

• The second order derivative f ′′(x) is the derivative of f ′(x). Therefore

– f ′′(x) ≥ 0 on I ⇐⇒ f ′ is increasing on I (function is convex)

– f ′′(x) ≤ 0 on I ⇐⇒ f ′ is decreasing on I (function is concave)

• The consequences are illustrated in the following figure.

Example: The first derivative of

f(x) = 2x5 − 3x3 + 2x

is
f ′(x) = 10x4 − 9x2 + 2

Therefore, the second order derivative is

f ′′(x) = 40x3 − 18x
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3.8 Logarithmic and Exponential Function

• What is a logarithmic function?
• What is an exponential function?
• What is both good for?

3.8.1 Logarithmic Function

Maybe you have heard about the logarithm and I am quite sure you know the ‘log’ button on your
calculator. However, do you really have an idea what it actually is?

Consider the following equations and then explain me what the logarithm is:

2 · 2 · 2 · 2 = 16
24 = 16
xn = y

2 = 16
1
4

x = y
1
n

log2 16 = 4
logx y = n

xn = y

log xn = log y
n · log x = log y

n = log y
log x

4 = log 16
log 2

logx n = y

log10 16 = 1.20411998265592
log10 2 = 0.301029995663981
log 16 = 1.20411998265592
log 2 = 0.301029995663981

Exercise 3.7 — Calculate a logarithmic function without a calculator (Solution → p. 72)

Hint: The result is an integer.
• log2 16 =?
• log3 243 =?
• log5 125 =?
• log3 81 =?
• log2

(
1
8

)

3.8.2 Exponential Function

Let us consider the function f(x) = 2x.
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x f(x) (x, f(x))

−3 2−3 = 1
8

(
−3, 1

8

)
−2 2−2 = 1

4

(
−2, 1

4

)
−1 2−1 = 1

2

(
−1, 1

2

)
0 20 = 1 (0, 1)

1 21 = 2 (1, 2)

2 22 = 4 (2, 4)

3 23 = 8 (3, 8)

x

y

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

Definition A function of the form f(x) = bx where b is a fixed real number, b > 0, b 6= 1 is
called base b exponential function

• Therefore, b is the factor by which f(x) increases or decreases when x increases by one
unit.

• For b > 1 the function f(x) is strictly increasing.
• For 0 < b < 1 the function f(x) is strictly decreasing.

The Number e

The most important base for exponential functions is the irrational number

e ≈ 2.71828182845904523536028747135266249775724709369995

It is sometimes called Euler’s number, after the Swiss mathematician Leonhard Euler (1707-1783). It
actually is this:

e =
∞∑
n=0

1
n! = 1 + 1

1 + 1
1 · 2 + 1

1 · 2 · 3 + · · ·

or as a Taylor series

ex = 1 + x

1! + x2

2! + x3

3! + · · · =
∞∑
n=0

xn

n!

or as this
ek = lim

n→∞

(
1 + k

n

)n
v Watch https://youtu.be/_-x90wGBD8U
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v Watch https://youtu.be/m2MIpDrF7Es

3.8.3 Logarithm and Growth Rates

Exercise 3.8 — Rule of 70 (Solution → p. 72)

The Rule of 70 is often used to approximate the time required for a growing series to double. To
understand this rule calculate how many periods it takes to double your money when it growth
at a constant rate of 1% each period.

3.8.4 Difference of Logarithmic Functions and Growth Rates

Most data are recorded for discrete periods of time (e.g., quarters, years). Consequently, it is often
useful to model economic dynamics in discrete periods of time. A good linear approximation to a
growth rate from time t = 0 to t = 1 in x is ln x0 − ln x1:

x1 − x0
x0

≈ ln x1 − ln x0

Let us proof that with some numbers of per capita real GDP for the US and Japan in 1950 and 1989:
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1950 1950 1989

US 8611 18317
Japan 1563 15101

What are the annual average growth rates over this period for the US and Japan? Here is one way to
answer this question:

Y1989 = (1 + g)39 · Y1950

Consequently,g can be calculated

(1 + g) =
(
Y1989
Y1950

) 1
39

Yielding g = 0.0195 for the US and g = 0.0597 for Japan. The US grew at an average growth rate of
about 2% annually over the period while Japan grew at about 6% annually.

Log Growth Rates: The following method gives a close approximation to the answer above, and
will be useful in other contexts. A useful approximation is that for any small number x:

ln(1 + x) ≈ x

Now, we can take the natural log of both sides of

Y1989
Y1950

= (1 + g)39

to get

ln(Y1989)− ln(Y1950) = 39 · ln(1 + g)

which rearranges to

ln(1 + g) = ln(Y1989)− ln(Y1950)
39

and using our approximation

g ≈ ln(Y1989)− ln(Y1950)
39

In other words, log growth rates are good approximations for percentage growth rates. Calculating
log growth rates for the data above, we get g ≈ 0.0194 for the U.S. and g ≈ 0.0582 for Japan. The
approximation is close for both.

3.8.5 Log Plots

Recall that, with a constant growth rate g and starting from time 0, output in time t is

Yt = (1 + g)t · Y0

Taking natural logs of both sides,

lnYt = lnY0 + t · ln (1 + g)

we see that log output is linear in time. Thus, if the growth rate is constant, a plot of log output
against timewill yield a straight line. Consequently, plotting log output against time is a quick way to
eyeball whether growth rates have changed over time
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Here you see a semi-logarithmic plot that
has one axis on a logarithmic scale, the
other on a linear scale. It is useful for data
with exponential relationships, where one
variable covers a large range of values, or
to zoom in and visualize that - what seems
to be a straight line in the beginning - is
in fact the slow start of a logarithmic
curve that is about to spike and changes
are much bigger than thought initially.

Exercise 3.9 — COVID and how to plot it (Solution → p. ??)

I downloaded the complete Our World in Data COVID-19 dataset from https://ourworldindata.

org/coronavirus/country/germany. I created some graphs which I show you below. Can you discuss
the scalling and how to interpret it. What is your opinion on these graphs. Are some of them a
bit misleading (at least if you don’t look twice)?
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Exercise 3.10 — Investments over time (Solution → p. 73)

Describe the formulas to describe the growth process of an investment over time when time is
discrete and when time is continuous.
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Chapter 4

Series

4.1 Sequences
Sequences are very important mathematical objects, for example in financial mathematics as they can
represent a stream of cash flows that occur at regular intervals.

A sequence is an ordered collection of (generally defined) objects with index in N:

a1, a2, a3, . . . , an, an+1, . . .

Some sequences have useful characteristics that we will exploit here, in particular sequences that can
be specified by recursion. A sequence is so specified when we can write

an = f(an−1)

In other words, this recursive specification explains how one element in the sequence is obtained given
the previous element(s). Specified in such a form, a sequence requires seeds, i.e., the first value(s).
Notice that our goal will often be to find the pattern between the consecutive elements of the sequence.
Two types of sequences are of special interest for us. They are described below, after the mention of a
famous sequence.

The Fibonacci Sequence

As an famous illustration of a sequence defined recursively, we introduce the Fibonacci sequence (or
Fibonacci numbers). These are the following.
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The formal sequence is

F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2 ∀ n ≥ 2

When taking any two successive Fibonacci Numbers (2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...), their ratio
tends to converge to a number that is known as the Golden Ratio which is symbolized with the Greek
letter phi, φ,Φ.

A B B
A

2 3 1.5
3 5 1.666666666...
5 8 1.6
8 13 1.625

13 21 1.615384615...
... ... ...

144 233 1.618055556...
233 377 1.618025751...
... ... ...

The Golden Ratio

This particular number is an irrational number, is called the Golden Ratio, φ and can be defined by

φ := a+ b

a
= a

b
.

You can find the value of φ through simplifying the fraction and substituting in b
a = 1

φ :

a+ b

a
= a

a
+ b

a
= 1 + b

a
= 1 + 1

φ
.

Therefore,

1 + 1
φ

= φ

Watch v https://youtu.be/2tv6Ej6JVho What is the Fibonacci Sequence & the Golden Ratio? Simple
Explanation and Examples in Everyday Life

Solve
φ = 1 + 1

φ

and calculate an approximation for φ.

x = 1 + 1
x

x2 = x+ 1

x2 − x− 1 = 0(
x− 1

2

)2
− 1

4 − 1 = 0

(
x− 1

2

)2
= 5

4
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x− 1
2 =

(5
4

) 1
2

x− 1
2 = ±

√
5

2

x = 1
2 ±
√

5
2

x1 ≈ 1.618033988749
x2 ≈ −0.618033989

Watch v https://youtu.be/sj8Sg8qnjOg The Golden Ratio (why it is so irrational) - Numberphile

4.2 Finite Geometric Series
The sum of the first N elements of a sequence

sN = a+ ak + ak2 + ak3 + . . .+ akN−2 + akN−1

is called a finite geometric series with quotient k To find the sum sN of any series, multiply both sides
of the above expression by k to obtain

ksN = ak + ak2 + ak3 + . . .+ akN−1 + akN

Then subtract this expression by the definition above

ksN − sN =ak + ak2 + ak3 + . . .+ akN−1 + akN

−a−ak − ak2 − ak3 − . . .− akN−1

= akN − a

For k 6= 1, this implies

sN = a
kN − 1
k − 1 = a

1− kN

1− k

Example: The geometric series for

2 + 4 + 8 + 16 + 32 + ...+ 4096

is a sequence with a = 2 and q = 2:
n∑
i=0

aqi−1 =
n∑
i=0

2 · 2i−1 = 2 · 20 + 2 · 21 + 2 · 22 + ...+ 2 · 2n−1

To find n algebraically, we can use the last element, an:

2 · 2n−1 = 4096
2n−1 = 2048

(n− 1) ln 2 = ln 2048

n = ln 2048
ln 2 + 1 = 12.

Thus, the series has 12 elements:
12∑
i=1

aqi−1 =
n∑
i=1

2 · 2i−1 = 2 · 20 + 2 · 21 + 2 · 22 + ...+ 2 · 211

To find the sum of the series, sN , we can apply the formula derived above:

sN = a
1− kN

1− k = 21− 212

1− 2 = 2 · (212 − 1) = 8190
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4.3 Infinite Geometric Series
A natural question arises, what happens when N becomes extremely large, i.e., when it tends to
infinity? Notice that, as a first impression, it is not trivial to think of the sum of infinitely many
elements. Using the formula above, the question here becomes

lim
N→∞

sN = a
1− kN

1− k

This expression depends mainly on the behavior of kN . If k > 1 or k ≤ −1, then kN does not tend to
any limit and we say that the infinite series diverges. If |k| < 1, then kN converges to 0. Thus, the
sum also converges to the limit a

1−k and we can note that

If |k| < 1, the infinite geometric series formula is,

∞∑
n=1

akn−1 = a+ ak + ak2 + ak3 + . . . = a

1− k

When a = 1, this can be simplified to

1 + 1k + 1k2 + 1k3 + . . . = 1
1− k

Exercise 4.1 — Proof: 0.9999... is equal to 1 (Solution → p. 74)

Show that 0.9̄ = 1 by applying an infinite geometric series.

Exercise 4.2 — Exponential Growth (Solution → p. 74)

Sketch a timeline for each of the following series:
• at = at−1 + g
• ln(at)
• bt = bt−1 · (1 + g)
• ln bt
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Chapter 5

Constrained Optimization

5.1 Linear Programming
Linear Programming is a common technique for decision making under certainty. It allows to express a
desired benefit (such as profit) as a mathematical function of several variables. The solution is the set
of values for the independent variables (decision variables) that serves to maximize the benefit or to
minimize the negative outcome under consideration of certain limits, a.k.a. constraints. The method
usually follows a four step procedure:

1. state the problem;

2. state the decision variables;

3. set up an objective function;

4. clarify the constraints.

Exercise 5.1 — Production Under Constraints and Fixed Prices (Solution → p. 74)

Consider a factory producing two products, product X and product Y. The problem is this: If
you can realize $10.00 profit per unit of product X and $14.00 per unit of product Y, what is
the production level of x units of product X and y units of product Y that maximizes the profit
P each day? Your production, and therefore your profit, is subject to resource limitations, or
constraints. Assume in this example that you employ five workers—three machinists and two
assemblers—and that each works only 40 hours a week.

• Product X requires three hours of machining and one hour of assembly per unit.
• Product Y requires two hours of machining and two hours of assembly per unit.

5.2 Lagrange Multiplier Method
The method is a strategy for finding the local maxima and minima of a function subject to constraints.1

1For a detailed mathematical explanation, feel free to watch Aviv Censor’s video ® https://youtu.be/AxEVJoxv-Z8.
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Joseph-Louis Lagrange
(1736-1813)

The red curve shows the constraint g(x, y) = c. The blue curves are contours of f(x, y). The point
where the red constraint tangentially touches a blue contour is the maximum of f(x, y) along the
constraint, since d1 > d2.

v https://youtu.be/8mjcnxGMwFo

Lagrange Multipliers | Geometric Meaning & Full Example

Figure 5.1: Lagrange Multiplier graphically explained
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Step 1: The problem to be solved The problem that we want to solve can be written in
the following way,

maxx,y F (x, y)
s.t. g(x, y) = 0

where F (x, y) is the function to be maximized and g(x, y) = 0 is the constraint to be respected.
Notice that maxx,y means that we must solve (maximize) with respect to x and y.
Step 2: Define the Lagrangian Multiplier Define a new function, the Lagrangian L, by
combining the two functions of the problem and adding the new variable λ. The λ is called the
Lagrange Multiplier.

L(x, y, λ) = F (x, y) + λg(x, y)

Step 3: Find the first order conditions Differentiate L w.r.t. x, y, and λ and equate the
partial derivatives to 0:

∂L(x, y, λ)
∂x

= 0⇔ ∂F (x, y)
∂x

+ λ
∂g(x, y)
∂x

= 0

∂L(x, y, λ)
∂y

= 0⇔ ∂F (x, y)
∂y

+ λ
∂g(x, y)
∂y

= 0

∂L(x, y, λ)
∂λ

= 0⇔ g(x, y) = 0

Step 4: Solve the system of equations The solution to the system of three equations
above gives the required optimal quantities.

Exercise 5.2 — Burgers and Drinks (Solution → p. 76)

Suppose you are in a fast food restaurant and you want to buy burgers and some drinks. You
have e12 to spend, a burger costs e3 and a drink costs e2.
a) Assume that you want to spend all your money and that you can only buy complete units of

each products. What are the possible choices of consumption?
b) Given your utility function U(x, y) = B0.6D0.4 calculate for each possible consumption point

your overall utility. How will you decide?
c) Assume that you want to spend all your money and that both products can be bought on a

metric scale where one burger weights 200 grams and a drink is 200 ml. How much of both
goods would you consume now? Hint: Use the Lagrangian multiplier method.a

aAlso see: http://www.sfu.ca/~wainwrig/5701/notes-lagrange.pdf

Exercise 5.3 — Consumption Choice (Solution → p. 77)

Suppose you want to spend your complete budget of e30,

I = 30,

on the consumption of two goods, A and B. Further assume good A costs e6,

pA = 6,

and good B costs e4,
pB = 4

and that you want to maximize your utility that stems from consuming the two goods. Calculate
how much of both goods to buy and consume, respectively, when your utility function is given as

U(A,B) = A0.8B0.2
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Exercise 5.4 — Cost-Minimizing Combination of Factors (Solution → p. 78)

Using two input factors r1 and r2, a firm wants to produces a fixed quantity of a product, that
is x = 20. Given the production function

x = 5
4r

1
2
1 r

1
2
2

and the factor prices
pr1 = 1 and pr2 = 4.

calculate the cost-minimizing combination of factors (r1, r2).

Exercise 5.5 — Derivation of Demand Function (Solution → p. 78)

A representative consumer has on average the following utility function: U = xy, and faces a
budget constraint of B = Pxx+ Pyy, where B,Px and Py are the budget and prices, which are
given. Solve the following choice problem:
Maximize U = xy s.t. B = Pxx+ Pyy.

Exercise 5.6 — Cobb-Douglas and Demand (Solution → p. 78)

A consumer who has a Cobb-Douglas utility function u(x, y) = Axαyβ faces the budget constraint
px+ qy = I, where A,α, β, p, and q are positive constants. Solve the consumer’s problem:

maxAxαyβ subject to px+ qy = I

Exercise 5.7 — Lagrange with n-constraints (Solution → p. 79)

Write down the Lagrangian multiplier for the following minimization problem:
Minimize f(x) subject to:

g1(x) = 0
g2(x) = 0

...
gn(x) = 0,

where n denotes the number of constraints.
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Chapter 6

Integration

• Differentiation is used to describe the run of a curve of a function.

• Integration is used to calculate areas that are enclosed by curves of functions.

• The area A of a region which lies under a function y = g(x) and above the function y = f(x)
(so for f(x) = 0 above the x-axis) enclosed between the limits x = a and x = b

The Antiderivative (Primitive)

The area A can be calculated using the abbreviation h(x) = g(x)− f(x) by the integral

A =
∫ b

a
h(x)dx = H(b)−H(a)

where H(x) is a primitive of the function h(x) that is

H ′(x) = h(x)

Examples

Primitive H(x) Function h(x) Derivative h′(x)
1

a+1 · x
a+1 xa(a 6= −1 real! ) a · xa−1

ln(x) x−1 = 1
x −1/x2

ex ex ex

x · ln(x)− x ln(x) 1/x

45



Calculation Steps

The area A can be calculated by the steps
1. Sketch the area
2. Determine the boundaries a and b if necessary
3. Set up the integral
4. Find the primitive F (x) for f(x)
5. Evaluate F (b)− F (a)

Exercise 6.1 — Integral I (Solution → p. 79)

Calculate the area in the first quadrant bounded by

y = 4x− x2

and the x-axis.

Exercise 6.2 — Integral II (Solution → p. 80)

Calculate the area in the first quadrant bounded by the following three curves

y = x2 − 4
y = 0
x = 4.

Exercise 6.3 — Integral III (Solution → p. 80)

Calculate the area in the first quadrant of the region enclosed by

y = ex,

y = x− 1,
x = 2

Exercise 6.4 — Consumer and Producer Surplus (Solution → p. 81)

Suppose that for 0 6 x 6 80 the demand for a good is given by function

p(x) = −0.01x2 − 0.2x+ 80

and the supply by the function

pS(x) = 0.03x2 + 0.6x+ 20.

Determine the consumer and producer surplus. Sketch both functions and mark the consumer
and producer surplus.
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Chapter 7

Matrices and Vectors

7.1 Introduction
• A matrix allows the representation of information that is usually displayed in a table in equations.

• Hence, operations like addition or multiplication can be applied to a set of variables at once.

• This can simplify the solution methods in case of simultaneous linear equations.

• Moreover, it can help a lot to ease the notation and keep the overview and simplify data
management.

• Suppose a firm produces three types of goods that are sold to two customers. The monthly sales
are given in the following table:

Monthly sales
Sold to costumer G1 G2 G3

C1 7 3 4
C2 1 5 6

• If we know from context what the numbers represent we may ignore table headings and write
the content in matrix form:

A =
[

7 3 4
1 5 6

]

• This is a matrix of order 2× 3 (2 rows, 3 columns). The element in the first row, second column
is denoted by a12.

• A (general) matrix D of order 3× 2 would be written:

D =

 d11 d12
d21 d22
d31 d32


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• A matrix consisting of one row is a row vector.

• A matrix consisting of one column is a column vector.

• A matrix consisting of one row and one column is a scalar.

7.2 Basic Operations

7.2.1 Transposition

• In the first example, the different goods were represented in columns, whereas the different
customers were listed in the two rows. A transposed matrix contains the same information but
in a rearranged form. We put then the goods in the rows and the customers in the columns.

• Let’s take the original matrix A

A =
[

7 3 4
1 5 6

]

• We can now get the transposed matrix AT and denote it by B

B =

 7 1
3 5
4 6

 = AT

• Obviously, AT = B is equivalent to BT = A

• Moreover, if the order of A is m× n, then the order of the transposed AT is n×m

7.2.2 Matrix Addition

If we add matrices, we have to calculate the sum of elements in the same position. Consequently,
addition is only possible if the matrices are of equal order.

Two matrices
A =

(
a b
c d

)
and B =

(
e f
g h

)
are added together component by component

A+B =
(
a+ e b+ f
c+ g d+ h

)

From the definition we can see that A + B = B + A.

Economic Example

• Assume the monthly sales in January given by A and in February given by B.

B =
[

6 2 1
0 4 4

]

• Find the sales in the first two months C.

C =
[

7 + 6 3 + 2 4 + 1
1 + 0 5 + 4 6 + 4

]
=
[

13 5 5
1 9 10

]
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Example (
3 −5
0 12

)
+
(
−2 7

8 −6

)
=
(

1 2
8 6

)

7.2.3 Scalar Multiplication

A matrix
A =

(
a b
c d

)
is multiplied by a scalar, that is a real number, say s, we have to multiply each element of the
matrix with the scalar:

s ·A = s ·
(
a b
c d

)
=
(
s · a s · b
s · c s · d

)

Example

(−2) ·
(

3 −5
0 12

)
=
(
−6 10

0 −24

)

Economic Example Assume the monthly sales are always the same. Then, the sales per year can
be calculated by multiplying A with 12.

B = 12 ·A =
[

12 · 7 12 · 3 12 · 4
12 · 1 12 · 5 12 · 6

]
=
[

84 36 48
12 60 72

]

The usual properties of multiplication operations are applicable, that implies:

k · (A + B) = k ·A + k ·B
k · (l ·A) = (k · l) ·A

7.2.4 Matrix Multiplication

Multiply two matrices

A =
(
a b
c d

)
and B =

(
e f
g h

)
using the rule “every row with every column”

A ·B =
(
a · e+ b · g a · f + b · h
c · e+ d · g c · f + d · h

)

Note A matrix multiplication A ·B is only possible if the number of columns of A is equal to the
number of rows of B, that is,
A is an (m× n) -matrix and
B is an (n× l) -matrix.
The matrix product A ·B then yields a (m× l) -matrix.

Example 1:

A ·B =
(
−1 2

3 −4

)
·
(

5 4
3 2

)
=
(

1 0
3 4

)
6= B ·A =

(
5 4
3 2

)
·
(
−1 2

3 −4

)
=
(

7 −6
3 −2

)
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Example 2: The (3× 2) -matrix A times the (2× 4) -matrix B results in

B =
(

4 −1 2 0
−2 3 1 −3

)
︸ ︷︷ ︸

(2x4)

, A =

 0 3
2 1
1 0


︸ ︷︷ ︸

(3x2)

A ·B =

 0 3
2 1
1 0


︸ ︷︷ ︸

(3x2)

·
(

4 −1 2 0
−2 3 1 −3

)
︸ ︷︷ ︸

(2x4)

=

 −6 9 3 −9
6 1 5 −3
4 −1 2 0


︸ ︷︷ ︸

(3x4)

So A ·B is a (3× 4) -matrix, but B ·A is not possible!

7.2.5 Matrix-Vector Product

A matrix A with n columns can always be multiplied by a vector ~x, which has n rows.

Example
With the matrix

A =
(

7 1 −3
2 −1 5

)
and the vector

~x =

 x1
x2
x3


one gets the matrix-vector product

A · ~x =
(

7x1 + x2 − 3x3
2x1 − x2 + 5x3

)

Exercise 7.1 — Matrices (Solution → p. 82)

Calculate with the matrices

A =
(

1 −2 4
−3 0 −1

)
, B =

 0 3
2 1
1 0

 , C =

 5 −1 0
−4 6 7
−3 2 −2


if possible the following products:

1. A ·B
2. B ·A
3. A · C
4. C ·A
5. A2

6. B · C
7. C2

8. (A ·B)2

9. A · C ·B

® Check out https://www.symbolab.com/solver/matrix-vector-calculator
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Chapter 8

Rules of Algebra

Let a, b, c, and d be any real numbers.

8.1 Basic Arithmetic
a) a+ b = b+ a

b) (a+ b) + c = a+ (b+ c)

c) a+ 0 = a

d) a+ (−a) = 0

e) ab = ba

f) (ab)c = a(bc)

g) 1 · a = a

h) aa−1 = 1, for a 6= 0

i) (−a)b = a(−b) = −ab

j) (−a)(−b) = ab

k) a(b+ c) = ab+ ac

l) (a+ b)c = ac+ bc

m) (a+ b)2 = a2 + 2ab+ b2

n) (a− b)2 = a2 − 2ab+ b2

o) (a+ b)(a− b) = a2 − b2

8.2 Rules for Fractions
a) a

b + a
d = ad+bc

bd

b) a
b ·

c
d = ac

bd

c) a
b : cd =

a
b
c
d

= a
b ·

d
c = ad

bc

d) a
b ·

c
c = ac

bc

8.3 Rules for Powers
a) x0 = 1

b) xa · xb = xa+b

c) xa

xb = xa−b

d) xa · ya = (x · y)a

e)
(
x
y

)a
= xa

ya

f) (xa)b = xa·b

g) xa · yb = zc ⇔ x
a
c · y

b
c = z

Exercise 8.1 — Apply Basic Rules (Solution → p. 52)

Rearrange/simplify:
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a)
x

y
− y

x
=?

b)
x2 + 1
x− 1 ·

1
x
1
x

=?

c)
1(
1
x

) =?

d)
x

1− x ·
1
x

=?

e)
λ2y + (λx) · (λy) =?

f)
x · x2 · x5 =?

g)
(1− x)2

(1− x)4 =?

h)
xa+1

xb+1 =?

i)
1
x3 + 1

x2 =?

j) (
x− y
x

)2
·
(

y

x− y

)2
=?

k)
(−x3)2 =?

l)
(x−1)−1 =?

m)
(−x2)3 =?

Solution to Exercise 8.1 — Apply Basic Rules (Exercise → p. 51)

a) x
y −

y
x = x2−y2

x·y

b) x2+1
x−1 ·

1
x
1
x

= x+ 1
x

1− 1
x

c) 1
( 1

x ) = 1 · x1 = x

d) x
1−x ·

1
x = x·1

x·(1−x) = 1
1−x

e) λ2y + (λx) · (λy) = λ2y + λ2xy = λ2(y + xy)

f) x · x2 · x5 = x1+2+5 = x8

g) (1−x)2

(1−x)4 = (1− x)2−4 = (1− x)−2 = 1
(1−x)2

h) xa+1

xb+1 = xa+1−b−1 = xa−b = xa

xb

i) 1
x3 + 1

x2 = x2+x3

x3·x2 = x2(x)
x5 = 1+x

x3

j)
(
x−y
x

)2
·
(

y
x−y

)2
=
[

(x−y)·y
x·(x−y)

]2
=
( y
x

)2 = y2

x2

k) (−x3)2 = [(−1) · x3]2 = (−1)2 · x6 = x6

l) (x−1)−1 = x(−1)·(−1) = x1 = x

m) (−x2)3 = [(−1)·x2]−3 = (−1)3 ·x−6 = 1
(−1)3·x6 =

− 1
x6

8.4 Rules for Roots
a) a

1
2 =
√
a

b) n
√
a = a

1
n (valid if a ≥ 0)

c) a
m
n = n

√
am

d) 1
n√am = a−

m
n
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e)
√
ab =

√
a
√
b

f)
√
a+ b 6=

√
a+
√
b

g)
√

a
b =

√
a√
b

Exercise 8.2 — Apply Rules for Roots (Solution → p. 53)

a) x
√
x =?

b) x√
x

=?

c)
√√

x =?

d)
√
x
√
x =?

e)
√

1
x4 =?

f) 1
x ·
√
y ·
√

x
y =?

Solution to Exercise 8.2 — Apply Rules for Roots (Exercise → p. 53)

a) x
√
x = x1 · x

1
2 = x

3
2 =
√
x3

b) x√
x

= x1 · x−
1
2 = x

1
2 =
√
x

c)
√√

x =
(
x

1
2
) 1

2 = x
1
4 = 4
√
x

d)
√
x
√
x =

√
x
√
x =

(
x1 · x

1
2
) 1

2 =
(
x

3
2
) 1

2 = x
3
4 = 4√

x3

e)
√

1
x4 = x−

4
2 = x−2 = 1

x2

f) 1
x ·
√
y ·
√

x
y = x−1 · y

1
2 · x

1
2 · y−

1
2 = x−

1
2 · y0 = 1√

x

8.5 Rules for Quadratic Function
• The roots of a quadratic function, i.e. ax2 + bx+ c = 0, are defined by the formula

x1,2 = −b±
√
b2 − 4ac

2a
if b2 − 4ac ≥ 0.

• Factorization of a quadratic function also gives us the roots:

ax2 + bx+ c = a(x− x1)(x− x2)
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Example:
G(x) = −3x2 + 90x− 375 = −3(x− 5)(x− 25)

Exercise 8.3 — Quadratic Functions (Solution → p. 54)

Caculate:
a) (a+ b)2

b) (a− b)2

c) (a+ b) · (a− b)

d) (x−
√

2)(x+
√

2)

e) (a− b
2)2

f) (a+ b)2 · (a− b)2

Solution to Exercise 8.3 — Quadratic Functions (Exercise → p. 54)

a) (a+ b)2 = a2 + 2ab+ b2

b) (a− b)2 = a2 − 2a+ b2

c) (a+ b) · (a− b) = a2 − b2

d) (x−
√

2)(x+
√

2) = x2 −
(√

2
)2

= x2 − 2

e) (a− b
2)2 = a2 − 2a b2 + b2

4 = a2 − ab+ b2

4

f) (a+ b)2 · (a− b)2 = [(a+ b) · (a− b)]2 =
[
a2 − b2]2 = a4 − 2a2b2 + b4

8.6 Rules of Differentiation

Rule 1: f(x) = A

⇒ f ′(x) = 0
Rule 2: f(x) = A+ g(x)

⇒ f ′(x) = g′(x)
Rule 3: f(x) = Ag(x)

⇒ f ′(x) = Ag′(x)
Rule 4 (power): f(x) = xa

⇒ f ′(x) = axa−1

with a being an arbitrary constant.
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If both f and g are differentiable at x, then the sum f+g and the difference f−g are both differentiable
at x, and

Rule 5 (sums): h(x) = f(x)± g(x)
⇒ h′(x) = f ′(x)± g′(x)

If both f and g are differentiable at x, then so is h = f · g, and

Rule 6 (products): h(x) = f(x) · g(x)
⇒ h′(x) = f ′(x) · g(x) + f(x) · g′(x)

Example: The function
h(x) =

(
x3 − x

) (
5x4 + x2

)
can be written as

h(x) = f(x) · g(x)

with
f(x) =

(
x3 − x

)
g(x) =

(
5x4 + x2)

Therefore

h′(x) = f ′(x) · g(x) + f(x) · g′(x)

=
(
3x2 − 1

) (
5x4 + x2

)
+
(
x3 − x

) (
20x3 + 2x

)
= 35x6 − 20x4 − 3x2

If both f and g are differentiable at x and g(x) 6= 0, then h = f/g is differentiable at x, and

Rule 7 (quotient): h(x) = f(x)
g(x)

⇒ h′(x) = f ′(x) · g(x)− f(x) · g′(x)
(g(x))2

Example: The derivative of the function

h(x) = 3x− 5
x− 2 = f(x)

g(x)

is

h′(x) = f ′(x) · g(x)− f(x) · g′(x)
(g(x))2

= 3 · (x− 2)− (3x− 5) · 1
(x− 2)2

= −1
(x− 2)2

Note that h(x) is strictly decreasing at all x 6= 2.

If g is differentiable at x and f is differentiable at u = g(x), then the composite function h(x) = f(g(x))
is differentiable at x, and

Rule 8 (sums): h′(x) = f ′(u) · g′(x) = f ′(g(x)) · g′(x)
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In words: First differentiate the exterior function with respect to the interior function (kernel), then
multiply by the derivative of the interior function.

Example: Let f(u) = u3 and g(x) = 2− x2. The derivative of

h(x) = f(g(x)) =
(
2− x2

)3

is

h′(x) = f ′(g(x)) · g′(x)

= 3
(
2− x2

)2
· (−2x)

= −6x
(
4− 4x2 + x4

)
= −6x5 + 24x3 − 24x

Exercise 8.4 — First Derivates (Solution → p. 56)

f(x) = 5⇒ f ′(x) =?
f(x) = 5 + 2x⇒ f ′(x) =?
f(x) = 5 · 2x⇒ f ′(x) =?
f(x) = x3 ⇒ f ′(x) =?
f(x) = 3x8 ⇒ f ′(x) =?
h(x) = x3 − 5x−2 ⇒ h′(x) =?

Solution to Exercise 8.4 — First Derivates (Exercise → p. 56)

f(x) = 5⇒ f ′(x) = 0
f(x) = 5 + 2x⇒ f ′(x) = 2
f(x) = 5 · 2x⇒ f ′(x) = 5 · 2 = 10
f(x) = x3 ⇒ f ′(x) = 3x2

f(x) = 3x8 ⇒ f ′(x) = 3 · 8x7 = 24x7

h(x) = x3 − 5x−2 ⇒ h′(x) = 3x2 −
(
−2 · 5x−3

)
= 3x2 + 10x−3

8.7 Rules for Summation
The summation sign,

∑
, allows for a compact formulation of lengthy expressions.
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Examples

N1 +N2 +N3 +N4 +N5 +N6 = N1 +N2 + . . .+N6 =
6∑
i=1

Ni

a1 (1− a1) + a2 (1− a2) + a3 (1− a3) + a4 (1− a4) + a5 (1− a5) =
5∑
i=1

ai (1− ai)

(b)3 + (2b)4 + (3b)5 + (4b)6 + (5b)7 + (6b)8 =
6∑
i=1

(ib)2+i

12 + 22 + 32 + 42 + 52 =
5∑
i=1

i2

(5 · 3− 3) + (5 · 4− 3) + (5 · 5− 3) =
5∑

k=3
(5k − 3)

(x3j − x̄j)2 + (x4j − x̄j)2 + . . .+ (xnj − x̄j)2 =
n∑
i=3

(xij − x̄j)2

Rule (Additivity Property)
n∑
i=1

(ai + bi) =
n∑
i=1

ai +
n∑
i=1

bi

Rule (Homogeneity Property)
n∑
i=1

cai = c
n∑
i=1

ai

and if ai = 1 for all i then
n∑
i=1

cai = c
n∑
i=1

ai = c(n · 1) = cn

Rule (Rule for Sums)

n∑
i=1

i = 1 + 2 + . . .+ n = 1
2n(n+ 1)

n∑
i=1

i2 = 12 + 22 + . . .+ n2 = 1
6n(n+ 1)(2n+ 1)

n∑
i=1

i3 = 13 + 23 + . . .+ n3 =
(1

2n(n+ 1)
)2

=
(

n∑
i=1

i

)2

n∑
i=0

ai = 1− an+1

1− a

The double sum notation allows us to write lengthy expressions in a compact way.

Z∑
i=1

bi

S∑
j=1

aijbj =
Z∑
i=1

S∑
j=1

aijbibj =
S∑
j=1

Z∑
i=1

aijbibj =
S∑
j=1

bj

Z∑
i=1

aijbi

Consider some summation sign
∑Z
i=1 . All variables with index i must be to the right of that summation

sign.
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Examples

b1 (a11b1 + a12b2 + . . .+ a1SbS)
+b2 (a21b1 + a22b2 + . . .+ a2SbS)
...

+bS (aS1b1 + aS2b2 + . . .+ aSSbS)

This sum can be written in the form
S∑
i=1

bi (ai1b1 + ai2b2 + . . .+ aiSbS)

Writing the brackets in a more compact form like

S∑
i=1

bi

S∑
j=1

aijbj =
S∑
i=1

S∑
j=1

aijbibj

Writing it in the following forms is not admissable:

Z∑
i=1

bj

S∑
j=1

aijbi, bi

Z∑
i=1

S∑
j=1

aijbj , or
Z∑
i=1

aij

S∑
j=1

bibj ,

8.8 Rules for Logarithms and Exponentials

8.8.1 Exponential Function

y = f(x) = ex = exp(x) is strictly increasing ∀x ∈ R
Df = R =]−∞,∞[
ex > 0∀x ∈ R

ex = 1 + x+ x2

2 + x3

4 + x4

24 + . . .

e0 = 1
e1 = e = 2.718 . . .Euler number

lim
x→∞

ex →∞ and

lim
x→−∞

ex → 0

8.8.2 Logarithmic Function

y = f(x) = ln(x) is strictly increasing
Df = R+ =]0,∞[

ln(x) = elnx

ln 1 = 0
ln e = 1
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8.8.3 Rules to Transform exp

ex+y = ex · ey

ex−y = ex

ey

eax = (ex)a

elnx = x

Exercise 8.5 — Play with exp (Solution → p. 59)

a) e
1
2 ln 16 =? wegen eax =?

b) e−x =?

c) ex

e−x =?

d) e1−x · e1+x =?

e) e1−x2 = 1 Write as an exponential function.

Solution to Exercise 8.5 — Play with exp (Exercise → p. 59)

a) e
1
2 ln 16 =

(
eln 16

) 1
2 = 16

1
2 =
√

16 = 4 because of eax = (ex)a and elnx = x

b) e−x = (ex)−1 = 1
ex with limx→∞ e

−x = 0 und limx→−∞ e
−x =∞

c) ex

e−x = ex−(−x) = e2x because of ex

ey = ex−y

d) e1−x · e1+x = e1−x+1+x = e2 because of ex · ey = ex+y ⇒ x1 = 1, x2 = −1 because of
elnx = x and e0 = 1

e) e1−x2 = 1⇒ ln e1−x2 = ln 1⇒ 1−x2 = 0⇒ x2 = 1⇒ x1 = 1, x2 = −1 because of ln ex = x
and ln 1 = 0

8.8.4 Rules to Transform log

ln(x · y) = ln x+ ln y

ln(x
y

) = ln x− ln y

ln xa = a · ln x
ln ex = x

Exercise 8.6 — Play with log (Solution → p. 60)

a) ln 1√
x

=?

b) ln x− ln 2x =? wegen ln x− ln y =?

c) ln(x− 1) + ln(x+ 1) =? wegen ln x+ ln y =?

d) ln
(
2− x2) = 0
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e) f(x) = ln(x+ 1) Solve for x.

Solution to Exercise 8.6 — Play with log (Exercise → p. 59)

a) ln 1√
x

= ln x−
1
2 = −1

2 ln x because of ln xa = a · ln x

b) ln x− ln 2x = ln x
2x = ln 1

2 = ln 1− ln 2 = − ln 2 because of ln x− ln y = ln x
y and ln 1 = 0

c) ln(x− 1) + ln(x+ 1) = ln(x− 1)(x+ 1) = ln
(
x2 − 1

)
because of ln x+ ln y = ln(x · y)

d) ln
(
2− x2) = 0 ⇒ eln(2−x2) = e0 ⇒ 2 − x2 = 1 ⇒ x2 = 1 ⇒ ⇒ x1 = 1, x2 = −1

because of elnx = x and e0 = 1

e)
f(x) = ln(x+ 1)

You get the inverse function f−1 by solving x like this:

y = ln(x+ 1)⇒ ey = eln(x+1) = x+ 1⇒ x = ey − 1

by changing x and y we get
y = f−1(x) = ex − 1

8.8.5 Rules for Derivatives of Both Functions

f(x) = ex ⇒ f ′(x) = ex

f(x) = ln x⇒ f ′(x) = 1
x(

ef(x)
)′

= f ′(x) · ef(x)

(ln f(x))′ = f ′(x) · 1
f(x)

Exercise 8.7 — Derive log and exp (Solution → p. 60)

a) f(x) = x · e1−x

b) f(x) = ex

ex+1

c) f(x) = ln(2x− 4)

d) f(x) = ln
√
x2 + 1 = ln

(
x2 + 1

) 1
2 = 1

2 ln
(
x2 + 1

)
e) f(x) = (ln x)2

f) f(x) = x
lnx

Solution to Exercise 8.7 — Derive log and exp (Exercise → p. 60)

a) f(x) = x · e1−x

f ′(x) = 1 · e1−x + x · e1−x · (−1) = e1−x · (1− x)
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b) f(x) = ex

ex+1

f ′(x) = ex (ex + 1)− ex · ex

(ex + 1)2 = ex

(ex + 1)2 · (e
x + 1− ex) =

c) f(x) = ln(2x− 4)
f ′(x) = 1

2x− 4 · 2 = 1
x− 2

d) f(x) = ln
√
x2 + 1 = ln

(
x2 + 1

) 1
2 = 1

2 ln
(
x2 + 1

)
f(x) = 1

2 ·
2x

x2 + 1 = x

x2 + 1

e) f(x) = (ln x)2

f ′(x) = 2 · ln x · 1
x

= 2
x

ln x

f) f(x) = x
lnx

f ′(x) =
1 · ln x− x · 1

x

(ln x)2 = ln x− 1
(ln x)2
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Exam appendix: Rules of algebra
Basic Arithmetic
a) a + b = b + a

b) (a + b) + c = a + (b + c)

c) a + 0 = a

d) a + (−a) = 0

e) ab = ba

f) (ab)c = a(bc)

g) 1 · a = a

h) aa−1 = 1, for a 6= 0

i) (−a)b = a(−b) = −ab

j) (−a)(−b) = ab

k) a(b + c) = ab + ac

l) (a + b)c = ac + bc

m) (a + b)2 = a2 + 2ab + b2

n) (a− b)2 = a2 − 2ab + b2

o) (a + b)(a− b) = a2 − b2

Rules for Fractions
a) a

b
+ a

d
= ad+bc

bd

b) a
b
· c

d
= ac

bd

c) a
b

: c
d

=
a
b
c
d

= a
b
· d

c
= ad

bc

d) a
b
· c

c
= ac

bc

Rules for Powers
a) x0 = 1

b) xa · xb = xa+b

c) xa

xb = xa−b

d) xa · ya = (x · y)a

e)
(

x
y

)a = xa

ya

f) (xa)b = xa·b

g) xa · yb = zc ⇔ x
a
c · y

b
c = z

Rules for Roots
a) a

1
2 =
√

a

b) n
√

a = a
1
n (valid if a ≥ 0)

c) a
m
n = n

√
am

d) 1
n√am = a−

m
n

e)
√

ab =
√

a
√

b

f)
√

a + b 6=
√

a +
√

b

g)
√

a
b

=
√

a√
b

Rules for Quadratic Function
• The roots of a quadratic function, i.e. ax2 + bx + c = 0, are defined by the formula

x1,2 = −b±
√

b2 − 4ac

2a

if b2 − 4ac ≥ 0.
• Factorization of a quadratic function also gives us the roots:

ax2 + bx + c = a(x− x1)(x− x2)

Rules of Differentiation
Rule 1: f(x) = A

⇒ f ′(x) = 0
Rule 2: f(x) = A + g(x)

⇒ f ′(x) = g′(x)
Rule 3: f(x) = Ag(x)

⇒ f ′(x) = Ag′(x)
Rule 4 (power): f(x) = xa

⇒ f ′(x) = axa−1

with a being an arbitrary constant.
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If both f and g are differentiable at x, then the sum f + g and the difference f − g are both differentiable at x, and
Rule 5 (sums): h(x) = f(x)± g(x)

⇒ h′(x) = f ′(x)± g′(x)

If both f and g are differentiable at x, then so is h = f · g, and
Rule 6 (products): h(x) = f(x) · g(x)

⇒ h′(x) = f ′(x) · g(x) + f(x) · g′(x)

If both f and g are differentiable at x and g(x) 6= 0, then h = f/g is differentiable at x, and

Rule 7 (quotient): h(x) = f(x)
g(x)

⇒ h′(x) = f ′(x) · g(x)− f(x) · g′(x)
(g(x))2

If g is differentiable at x and f is differentiable at u = g(x), then the composite function h(x) = f(g(x)) is differentiable
at x, and

Rule 8 (sums): h′(x) = f ′(u) · g′(x) = f ′(g(x)) · g′(x)

In words: First differentiate the exterior function with respect to the interior function (kernel), then multiply by the
derivative of the interior function.

Rules for Summation
The summation sign,

∑
, allows for a compact formulation of lengthy expressions.

Rule (Additivity Property)
n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi

Rule (Homogeneity Property)
n∑

i=1

cai = c

n∑
i=1

ai

and if ai = 1 for all i then
n∑

i=1

cai = c

n∑
i=1

ai = c(n · 1) = cn

Rule (Rule for Sums)
n∑

i=1

i = 1 + 2 + . . . + n = 1
2n(n + 1)

n∑
i=1

i2 = 12 + 22 + . . . + n2 = 1
6n(n + 1)(2n + 1)

n∑
i=1

i3 = 13 + 23 + . . . + n3 =
(1

2n(n + 1)
)2

=

(
n∑

i=1

i

)2

n∑
i=0

ai = 1− an+1

1− a

The double sum notation allows us to write lengthy expressions in a compact way.
Z∑

i=1

bi

S∑
j=1

aijbj =
Z∑

i=1

S∑
j=1

aijbibj =
S∑

j=1

Z∑
i=1

aijbibj =
S∑

j=1

bj

Z∑
i=1

aijbi

Consider some summation sign
∑Z

i=1 . All variables with index i must be to the right of that summation sign.
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Rules for Logarithms and Exponentials
Exponential Function

y = f(x) = ex = exp(x) is strictly increasing ∀x ∈ R
Df = R =]−∞,∞[
ex > 0∀x ∈ R

ex = 1 + x + x2

2 + x3

4 + x4

24 + . . .

e0 = 1
e1 = e = 2.718 . . .Euler number

lim
x→∞

ex →∞ and

lim
x→−∞

ex → 0

Logarithmic Function

y = f(x) = ln(x) is strictly increasing
Df = R+ =]0,∞[

ln(x) = eln x

ln 1 = 0
ln e = 1

Rules to Transform exp

ex+y = ex · ey

ex−y = ex

ey

eax = (ex)a

eln x = x

Rules to Transform log

ln(x · y) = ln x + ln y

ln(x

y
) = ln x− ln y

ln xa = a · ln x

ln ex = x

Rules for Derivatives of Both Functions

f(x) = ex ⇒ f ′(x) = ex

f(x) = ln x⇒ f ′(x) = 1
x(

ef(x))′ = f ′(x) · ef(x)

(ln f(x))′ = f ′(x) · 1
f(x)
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Chapter 9

Additional Exercises

Exercise 9.1 — Equations with Parameters (Solution → p. 82)

Equations can be used to describe a relationship between two variables (e.g., x and y). Given
the following equations:

y1 = 10x1

y2 = 3x2 + 4

y3 = −8
3x3 −

7
2 .

a) Solve for the variable x.
b) Is there a solution for x if

• ya{1;2;3} = 1
• yb{1;2;3} = 10
• yc{1;2;3} = 0

Exercise 9.2 — Inverse Functions (Solution → p. 83)

Find the inverse of each of the following functions:
a) y = −2x+ 6
b) y =

√
3x− 4

c) y = (x+ 1)2

d) y = x−1
x−2

Exercise 9.3 — Equivalent Equations (Solution → p. 84)

Solve:
a) x+2

x−2 −
8

x2−2x = 2
x

b) z
z−5 + 1

3 = −5
5−z
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c) x2 + 8x− 9 = 0
Visit
® https://www.wolframalpha.com/examples/mathematics/plotting-and-graphics/

and draw each of the functions above.
Visit
® https://www.mathpapa.com/algebra-calculator.html

or
® https://www.wolframalpha.com/calculators/equation-solver-calculator

or
® https://quickmath.com/

and use it to solve the equations above.

Exercise 9.4 — Two Nonlinear Equations (Solution → p. 85)

Assume market demand is given by P +Q2 +Q = 11 and market supply by 2P −2Q2 +Q−4 = 0.
Calculate equilibrium price and quantity.

Exercise 9.5 — Production Possibility Frontier Curve (Solution → p. 86)

A firm can produce different amount of two goods, X and Y . The production possibility frontier
(PPF) curve shows the maximum output of either goods attainable for any given level of output
of the other, is

X2 + 2X = 10− Y.

What are the largest amounts of X and Y that can be produced? Can you sketch the PPF
curve using an online tool?

Exercise 9.6 — Nonlinear Average Costs (Solution → p. 86)

Total costs of a firm are 550 when output is 100 and fixed costs are 50. Assume that the total
cost function is linear

• Graph the average cost function.
• What are the asymptotes of the average cost function?
• Find the inverse form of the average cost function and give the values for which it is valid.
• If total costs decrease to 450 , assuming fixed costs and output remain unchanged, calculate

the average cost function and say for what values the inverse function is valid.

Exercise 9.7 — To Be Convex or Not to Be (Solution → p. ??)

a) Fill in the blanks:
Der Bauch vom T-Rex ist (konvex/konkav).
In konKAVE Dinge kann man (?) reinschütten.

b) Characterize the following functions with respect to f(x)′ and f(x)′′.
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Exercise 9.8 — Summation Notation (Solution → p. 87)

1. Find the following sums.

(a)
4∑

k=1

13
100k

(b)
4∑

n=0

n!
2

(c)
5∑

n=1

(−1)n+1

n
(x− 1)n

2. Write the following sums using summation notation.
(a) 1 + 3 + 5 + . . .+ 117

(b) 1− 1
2 + 1

3 −
1
4 +− . . .+ 1

117

(c) 0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9
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Chapter 10

Solutions

Solution to Exercise 3.1 — Is it a function? (Exercise → p. 19)

Relations (a) and (b) are functions.

Solution to Exercise 3.2 — Demand and Supply (Exercise → p. 21)

• x = x(p) = −3
4 + 300⇔ p(x) = −4

3x+ 400
• pS(x) = −4

5x+ 80
• The equilibrium market price and quantity is in x = 150 and p = 200.

Solution to Exercise 3.3 — Give Me The Standard Form (Exercise → p. 23)

1.

f(x) = x2 − 4x+ 3 (take ( b2)2)

=
(
x2 − 4x+ 4− 4

)
+ 3

=
(
x2 − 4x+ 4

)
− 4 + 3 (Group the perfect square trinomial.)

= (x− 2)2 − 1

From the standard form we can immediately (if desired) produce a sketch of the graph of f ,
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as shown in Figure 3.3.
2. Here, our first step is to factor out the (−1) from both the x2 and x terms. We then follow

the completing the square recipe.

g(x) = −x2 − x+ 6

= (−1)
(
x2 + x

)
+ 6 (take ( b2)2)

= (−1)
(
x2 + x+ 1

4 −
1
4

)
+ 6

= (−1)
(
x2 + x+ 1

4

)
+ (−1)

(
−1

4

)
+ 6

(Group the perfect square trinomial.)

= −
(
x+ 1

2

)2
+ 25

4

Using the standard form, we can again obtain the graph of g, as shown in Figure 3.4.

Solution to Exercise 3.4 — Derive the Quadratic Formula (Exercise → p. 24)

ax2 + bx+ c = 0

a

(
x2 + b

a
x

)
= −c

a

(
x2 + b

a
x+ b2

4a2

)
= −c+ b2

4a

a

(
x+ b

2a

)2
= b2 − 4ac

4a

(
x+ b

2a

)2
= b2 − 4ac

4a2

x+ b

2a = ±
√
b2 − 4ac

2a

x = −b±
√
b2 − 4ac

2a .
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Alternatively, you can also do this:

a

(
x+ b

2a

)2
+ 4ac− b2

4a = 0

a

(
x+ b

2a

)2
= −4ac− b2

4a

1
a

[
a

(
x+ b

2a

)2]
= 1
a

(
b2 − 4ac

4a

)

(
x+ b

2a

)2
= b2 − 4ac

4a2

x+ b

2a = ±

√
b2 − 4ac

4a2 extract square roots

x+ b

2a = ±
√
b2 − 4ac

2a

x = − b

2a ±
√
b2 − 4ac

2a

= −b±
√
b2 − 4ac

2a

Solution to Exercise 3.5 — Its All About Profits (1) (Exercise → p. 24)

1. Since R(x, p) = x(p)p(x) = xp, we substitute p(x) = −1.5x+ 250 to get

R(x) = x(−1.5x+ 250) = −1.5x2 + 250x.

From the price-demand function p(x) (or inverse demand function), we get the demand
function is

x = 1662
3 −

2
3p.

Thus, demand is restricted to 0 ≤ x ≤ 166, R(x) is restricted to these values of x as well.
Summing up, the weekly revenue made by selling x goods was found to be

R(x) = −1.5x2 + 250x

with the restriction that 0 ≤ x ≤ 166.
2. To find the profit function P (x), we subtract

P (x) = R(x)− C(x) =
(
−1.5x2 + 250x

)
− (80x+ 150) = −1.5x2 + 170x− 150.

Since the revenue function is valid when 0 ≤ x ≤ 166, P is also restricted to these values.
3. To find the x-intercepts, we set P (x) = 0 and solve −1.5x2 + 170x− 150 = 0. The mere

thought of trying to factor the left hand side of this equation could do serious psychological

70



damage, so we resort to the quadratic formula. Identifying a = −1.5, b = 170, and
c = −150, we obtain

x = −b±
√
b2 − 4ac

2a

= −170±
√

1702 − 4(−1.5)(−150)
2(−1.5) = −170±

√
28000

−3 = 170± 20
√

70
3 .

We get two x-intercepts:
(

170−20
√

70
3 , 0

)
and

(
170+20

√
70

3 , 0
)
.

To find the y-intercept, we set x = 0 and find y = P (0) = −150 for a y-intercept of
(0,−150).
To find the vertex, we use the fact that P (x) = −1.5x2 + 170x− 150 is in the general form
of a quadratic function. Substituting a = −1.5 and b = 170, we get x = − 170

2(−1.5) = 170
3 .

To find the y-coordinate of the vertex, we compute P
(

170
3

)
= 14000

3 and find that our vertex

is
(

170
3 , 14000

3

)
. The axis of symmetry is the vertical line passing through the vertex so it is

the line x = 170
3 .

To sketch a reasonable graph in Figure 10.1, we approximate the x-intercepts, (0.89, 0) and
(112.44, 0), and the vertex, (56.67, 4666.67).a

4. The zeros of P are the solutions to P (x) = 0, which we have found to be approximately
0.89 and 112.44. These are the ‘break-even’ points of the profit function, where enough
product is sold to recover the cost spent to make the product. More importantly, we see
from the graph that as long as x is between 0.89 and 112.44, the graph y = P (x) is above
the x-axis, meaning y = P (x) > 0 there. This means that for these values of x, a profit is
being made. Since x represents the weekly sales of the respective good, we round the zeros
to positive integers and have that as long as 1, but no more than 112 goods are sold weekly,
the retailer will make a profit.

x

y

10 20 30 40 50 60 70 80 90 100110120

1000

2000

3000

4000

Figure 10.1: The graph of the profit function P (x)

5. From the graph, we see that the maximum value of P occurs at the vertex, which is
approximately (56.67, 4666.67). As above, x represents the weekly sales, so we can’t sell
56.67 units of the good. Comparing P (56) = 4666 and P (57) = 4666.5, we conclude that
we will make a maximum profit of $4666.50 if we sell 57 units of x.

6. In the previous part, we found that we need to sell 57 goods per week to maximize profit.
To find the price per unit, we substitute x = 57 into the price-demand function to get
p(57) = −1.5(57) + 250 = 164.5. The price should be set at $164.50.

aNote that in order to get the x-intercepts and the vertex to show up in the same picture, we had to scale
the x-axis differently than the y-axis in Figure 10.1. This results in the left-hand x-intercept and the y-intercept
being uncomfortably close to each other and to the origin in the picture.
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Solution to Exercise 3.6 — Its All About Profits (2) (Exercise → p. 24)

a) fixed cost is C(0) = 108
b) variable cost is C(x)− C(0) = 180x
c) R(x) = xp(x) where p(x) results from x(p) by resolving to p, i.e.,

x = x(p) = −3p+ 600

3p = −x+ 600

p = −1
3x+ 200

⇒ R(x) = xp(x) = x

(
−1

3x+ 200
)

= −1
3x

2 + 200x

d) G(x) = R(x)− C(x) = −1
3x

2 + 20x− 108
e) Since G(x) is a parabola with a = −1

3 its graph is opened down and thus G(x) has its
maximum in the position x = − b

2a = − 20
2(− 1

3 ) = 30
f) G(30) = −1

3 · 302 + 20 · 30− 108 = 190
g) G(x) = 0 ⇔ x2 − 60x + 324 = 0 ⇒ x1, x2 = 30 ±

√
302 − 324 = 30 ± 24 = 6.54 ⇒ G(x) =

−1
3 · (x− 6) · (x− 54) = 1

3 · (x− 6) · (54− x)
h) For 6 < x < 54, because then both factors are negative.

Solution to Exercise 3.7 — Calculate a logarithmic function without a calculator
(Exercise → p. 30)

• log2 16 = 4 because 24 = 16
• log3 243 = 5 because 35 = 243
• log5 125 = 3 because 53 = 125
• log3 81 = 4 because 34 = 81
• log2

(
1
8

)
= −3 because 2−3 = 1

8

Solution to Exercise 3.8 — Rule of 70 (Exercise → p. 32)

Let X be the initial value of a growing variable, and Y denote the terminal value at time t+ n.
The relationship between the two is given by

Y = X(1 + g)n

where g is the annual growth rate. As we are interested in the time span required for X to double,
Y = 2 and

2 = (1 + g)n
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Taking natural logs which is the logarithm to the base of e, we get

ln 2 = n ln(1 + g)

and hence
n = ln 2

ln(1 + g) (∗).

This is the exact time periods required for a growing variable to double its size. One can
approximate n using the definition of ex

ex = 1 + x+ x2

2! + x3

3! + . . .+ xn

n! +Rn

where the remainder term Rn → 0 as n→∞. Ignoring high order terms, for small x, it may be
approximated by

ex ≈ 1 + x

Taking logarithms of both sides, we get

x ≈ ln(1 + x) (∗∗)

Using (**), equation (*) may be approximated as

n ≈ ln 2
g

= 0.693147
g

∼=
70
g%

This is the origin of the Rule of 70.
Using the number e right away is simpler:

(er)t = 2

ln ert = ln 2

rt = ln 2

t = ln 2
r

t ≈ 0.693147
r

Solution to Exercise 3.10 — Investments over time (Exercise → p. 36)

The formula under discrete time is:

Yt = Y0 · (1 + g)t

The formula under continuous time is:

Yt = Y0 · egt
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Solution to Exercise 4.1 — Proof: 0.9999... is equal to 1 (Exercise → p. 40)

0.999 · · · = 9
10 + 9

100 + 9
1000 + · · · = 9

10 · (1 + 1
10 + 1

100 + · · · )︸ ︷︷ ︸
infinite geometric series

plugging a = 1 and k = 1
10 in the infinite geometric series formula, we get

∞∑
n=1

akn−1 = 1
1− 1

10
= 1

9
10

= 10
9

and hence, we can plug that back into the equation above to get:

0.999 · · · = 9
10 ·

10
9 = 1

q.e.d.

Solution to Exercise 4.2 — Exponential Growth (Exercise → p. 40)

0

20

40

60

80

100

at

0 20 40 60 80 100
t

a_(t-1)+g

-2

0

2

4

6

ln
_a

0 20 40 60 80 100
t

ln(a_(t-1)+g)

0

5000

10000

15000

b

0 20 40 60 80 100
t

b_(t-1)*(1+g)

0

2

4

6

8

10

ln
_b

0 20 40 60 80 100
t

ln(b_(t-1)*(1+g))

Solution to Exercise 5.1 — Production Under Constraints and Fixed Prices (Exercise
→ p. 41)

1. State the problem: How many of product X and product Y to produce to maximize
profit?
2. Decision variables: Let x = number of product X to produce per day
Let y = number of product Y to produce per day

3. Objective function: Maximize

P = 10x+ 14y

4. Constraints:
• machine time=120h

74



• assembling time=80h
• hours needed for production of one good:

machine time: x→ 3h and y → 2h
assembling time: x→ 1h and y → 2h

Thus, we get:

3x+ 2y ≤ 120 ⇔ y ≤ 60− 3
2x (hours of machining time)

x+ 2y ≤ 80 ⇔ y ≤ 40− 1
2x (hours of assembly time)

Since there are only two products, these limitations can be shown on a two-dimensional graph
(Figure 10.2). Since all relationships are linear, the solution to our problem will fall at one of
the corners.

Figure 10.2: Linear program example: constraints and solution

To draw the isoprofit function in a plot with the
good y on the y-axis and good x on the x-axis,
we can re-arrange the objective function to get

y = 1
14P −

10
14x

To illustrate the function let us consider some
arbitrarily chosen levels of profit in Figure 10.3:

• $350 by selling 35 units of X or 25 units
of Y

• $700 by selling 70 units of X or 50 units
of Y

• $620 by selling 62 units of X or 44.3 units
of Y.

Figure 10.3: Linear program example: isoprofit
lines

To find the solution, begin at some feasible solution (satisfying the given constraints) such as
(x, y) = (0, 0), and proceed in the direction of steepest ascent of the profit function (in this case,
by increasing production of Y at $14.00 profit per unit) until some constraint is reached. Since
assembly hours are limited to 80, no more than 80/2, or 40, units of Y can be made, earning
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40 · $14.00, or $560 profit. Then proceed along the steepest allowable ascent from there (along
the assembly constraint line) until another constraint (machining hours) is reached. At that
point, (x,y) = (20,30) and profit P = (20 * +10.00) + (30 * +14.00), or $620. Since there is
no remaining edge along which profit increases, this is the optimum solution.

Solution to Exercise 5.2 — Burgers and Drinks (Exercise → p. 43)

a) In the plot, I marked all 19 possible bundles of burger and drinks of consumption. The budget
constraint is shown by the solid line.

B

D0
pxx+ pyy = I

D∗

B∗
U(x, y) = Umax

b) We now should calculate the utility of all 19 points but only the red dots denote choices that
may yield an optimal utility. The best utility is at when we buy 2 burger and 3 drinks:

U = 2.63.4 = 2.35

c) Solve:
L = B0.6D0.4 + λ(3B + 2D − 12)

FOC:

3B + 2D − 12 = 0

.6B−0.4D0.4 + 3λ = 0

.4B0.6D−0.6 + 2λ = 0

Solving the second and third FOC for λ, substituting λ gives:

B = D

which we can plug in the first FOC to get

B∗ = 2.4 and D∗ = 2.4
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Solution to Exercise 5.3 — Consumption Choice (Exercise → p. 43)

L = A0.8B0.2 + λ(6A+ 4B − 30)

FOC : ∂L
∂λ

= 6A+ 4B − 30 = 0 (∗)

∂L
∂A

= 0.8A−0.2B0.2 + 6λ = 0 (∗∗)

∂L
∂B

= 0.2A0.8B−0.8 + 4λ = 0 (∗ ∗ ∗)

System of 3 equation with 3 unknowns can be solved in various ways. The easiest way is to solve
(**) and (***) for λ and substitute it out:

1. solve for λ

− 2
15A

−0.2B0.2 = λ (∗∗′)

− 1
20A

0.8B−0.8 = λ (∗ ∗ ∗′)

2. set both equations equal by substituting λ and solve for B

2
15A

−0.2B0.2 = 1
20A

0.8B−0.8

B = 0.375A (∗ ∗ ∗∗)

3. Now, plug in (∗ ∗ ∗∗) into (∗) to get a number for A

30 = 6A+ 4 · 0.375A

⇔ 30 = 7.5A

⇔ A = 4

4. Use A = 4 in (∗) to get a number for B

30 = 6 · 4 + 4B

⇔ 6 = 4B

B = 6
4 = 1.5

Thus, we’d consume 4 units of good A and 1.5 of good B.
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Solution to Exercise 5.4 — Cost-Minimizing Combination of Factors (Exercise → p.
44)

L = r1 + 4r2 + λ

(5
4r

1
2
1 r

1
2
2 − 20

)
Taking the FOC we get

r1 = 4r2

using that in the constraint, we get r1 = 32 and r2 = 8.
Also see https: // t1p. de/ huber-lagr1 which uses this tool: https: // www. emathhelp. net/ calculators/

calculus-3/ lagrange-multipliers-calculator/

Solution to Exercise 5.5 — Derivation of Demand Function (Exercise → p. 44)

The Lagrangian for this problem is

Z = xy + λ (Pxx+ Pyy −B)

The first order conditions are

Zx = y + λPx = 0
Zy = x+ λPy = 0
Zλ = −B + Pxx+ Pyy = 0

Solving the first order conditions yield the following solutions

xM = B

2Px
yM = B

2Py
λ = B

2PxPy

where xM and yM are the consumer’s demand functions.

Solution to Exercise 5.6 — Cobb-Douglas and Demand (Exercise → p. 44)

The Lagrangian is
L(x, y) = Axαyβ + λ(px+ qy − I)

Therefore, the first-order conditions are

L′x(x, y) = Aαxα−1yβ − λp = 0 (∗)

L′y(x, y) = Axαβyβ−1 − λq = 0 (∗∗)

px+ qy − I = 0 (∗ ∗ ∗)

Solving (∗) and (∗∗) for λ yields

λ = Aαxα−1yβ−1y

p
= Axα−1xβyβ−1

q
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Canceling the common factor Axα−1yβ−1 from the last two fractions gives

αy

p
= xβ

q

and therefore
qy = px

β

α

Inserting this result in (∗ ∗ ∗) yields

px+ px
β

α
= I

Rearranging gives
px

(
α+ β

α

)
= I

Solving for x yields the following demand function

x = α

α+ β

I

p

Inserting
px = qy

α

β

in (∗ ∗ ∗) gives
qy
∂

β
+ qy = I

and therefore the demand function
y = β

α+ β

I

q

Solution to Exercise 5.7 — Lagrange with n-constraints (Exercise → p. 44)

L(x1, . . . , xm, λi, . . . , λn) = f(x) + λ1g1(x) + λ2g2(x) + . . .+ λngn(x)

The points of local minimum would be the solution of the following equations:

∂L
∂xj

= 0 ∀j = 1 . . .m

gi(x) = 0 ∀i = 1 . . . n

Solution to Exercise 6.1 — Integral I (Exercise → p. 46)

Since
y = 4x− x2 = x · (4− x) = 0 ⇔ x1 = 0 or x2 = 4,

the position of the vertex of this parabola is in

x = 0 + 4
2 = 2 and so V = (2, 4)
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A =
∫ 4

0

(
4x− x2

)
dx

=
[
2x2 − 1

3x
3
]x=4

x=0

=
(

2 · 42 − 1
343

)
−
(

2 · 02 − 1
303

)

= 32− 64
3

= 32
3

Solution to Exercise 6.2 — Integral II (Exercise → p. 46)

Since
y = x2 − 4 = 0⇔ x = ±2,

the position of the vertex of this parabola is in

x = −2 + 2
2 = 0 and thus V = (0,−4).

A =
∫ 4

2

(
x2 − 4

)
dx

=
[1

3x
3 − 4x

]x=4

x=2

= 64
3 − 16−

(8
3 − 8

)

= 32
3

Solution to Exercise 6.3 — Integral III (Exercise → p. 46)

A =
∫ 1

0
(ex − 0) dx+

∫ 2

1
(ex − (x− 1)) dx

= ex|2x=0 +
(
ex − 1

2x
2 + x

)∣∣∣∣x=2

x=1

= e− e0 + e2 − 2 + 2−
(
e− 1

2 + 1
)

= e2 − 3
2
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Solution to Exercise 6.4 — Consumer and Producer Surplus (Exercise → p. 46)

Because for 0 6 x 6 80 the demand is given by function

p(x) = −0.01x2 − 0.2x+ 80

and the supply by the function

pS(x) = 0.03x2 + 0.6x+ 20

one has in the market balance

pS(x) = p(x)⇐⇒ −0.01x2 − 0.2x+ 80 = 0.03x2 + 0.6x+ 20

that reduces to
0.04x2 + 0.8x− 60 = 0.04 · (x− 30)(x+ 50) = 0

Thus the market balance is (x0, p0) = (30, p(30)) = (30, 65).

To calculate the consumer and producer surplus is straightforward:

CS =
∫ x0

0
p(x)dx− x0p0

=
∫ 30

0

(
−0.01x2 − 0.2x+ 80

)
dx− 30 · 65

=
[
−0.01

3 x3 − 0.1x2 + 80x
]30

x=0
− 1950

= 270

PS = x0p0 −
∫ x0

0
pS(x)dx

= 30 · 65−
∫ 30

0

(
0.03x2 + 0.6x+ 20

)
dx

= 1950−
[
0.01x3 + 0.3x2 + 20x

]x=30

x=0

= 810
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Solution to Exercise 7.1 — Matrices (Exercise → p. 50)

A =
(

1 −2 4
−3 0 −1

)
, B =


0 3
2 1
1 0

 , C =


5 −1 0
−4 6 7
−3 2 −2



1. A ·B =
(

0 1
−1 −9

)

2. B ·A =


−9 0 −3
−1 −4 7

1 −2 4


3. A · C =

(
1 −5 −22

−12 1 2

)
4. C ·A is impossible
5. A2 is imposssible
6. B · C is impossible

7. C2 =


29 −11 −7
−65 54 28
−17 11 18


8. (A ·B)2 =

(
−1 −9

9 80

)

9. A · C ·B =
(
−32 −2

4 −35

)

Solution to Exercise 9.1 — Equations with Parameters (Exercise → p. 65)

a)

y1 = 10x1 ⇒ x1 = y1
10

y2 = 3x2 + 4 ⇒ x2 = y2 − 4
3 = 1

3y2 −
4
3

y3 = −8
3x3 −

7
2 ⇒ x = −

y3 + 7
2

8
3

= −3
8y3 −

21
16 .

b) • ya{1;2;3} = 1

xa1 = 1
10

xa2 = 1− 4
3 = 1

xa3 = −3
8 · 1−

21
16 = −27

16 .
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• yb{1;2;3} = 10

xa1 = 10
10 = 1

xa2 = 10− 4
3 = 2

xa3 = −3
8 · 10− 21

16 = −81
16 .

• yc{1;2;3} = 0

xa1 = 0
10 = 0

xa2 = 0− 4
3 = −4

3

xa3 = −3
8 · 0−

21
16 = −21

16 .

Solution to Exercise 9.2 — Inverse Functions (Exercise → p. 65)

a) x = 6−y
2

b)

y =
√

3x− 4

y = (3x− 4)
1
2

y2 = 3x− 4

x = y2 + 4
3

c)

y = (x+ 1)2

y
1
2 = x+ 1

x = y
1
2 − 1

x = √y − 1
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d)

y = x− 1
x− 2

(x− 2)y = x− 1

yx− 2y = x− 1

yx− x = 2y − 1

x(y − 1) = 2y − 1

x(y − 1)
y − 1 = 2y − 1

y − 1

x = 2y − 1
y − 1

Solution to Exercise 9.3 — Equivalent Equations (Exercise → p. 65)

Solve:
a) The equation is not defined for x = 2, x = 0.

x+ 2
x− 2 −

8
x2 − 2x = 2

x

x(x+ 2)
x(x− 2) −

8
x(x− 2) = 2(x− 2)

x(x− 2) ( for x 6= 2 and x 6= 0)

x(x+ 2)− 8 = 2(x− 2)

x2 + 2x− 8 = 2x− 4

x2 = 4

x = −2

This is the only solution, since for x = 2 the equation is not defined.
b)

z

z − 5 + 1
3 = −5

5− z

z + z − 5
3 = 5

3z + z − 5 = 15

4z = 20

z = 5
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For z = 5, the equation is not defined. Thus, no solution exists.
c)

x2 + 8x = 9

x2 + 2 · 4 · x = 9

x2 + 2 · 4 · x+ 42 = 9 + 42

(x+ 4)2 = 25

Therefore, the solutions are x1 = 1 and x2 = −9.
Alternative 2: you can use the quadratic formula:

x1,2 = −b±
√
b2 − 4ac

2a = −8±
√

82 − 4 · 1 · (−9)
2 · 1 = −8± 10

2

Alternative 3: If x1 and x2 are the solutions of ax2 + bx+ c = 0, then

ax2 + bx+ c = 0 ⇔ a (x− x1) (x− x2) = 0.

Thus, you can re-write the equation like this:

(x− 1)(x+ 9) = 0

Solution to Exercise 9.4 — Two Nonlinear Equations (Exercise → p. 66)

We rewrite the first equation to
P = 11−Q2 −Q

and the second equation to

2P = 2Q2 −Q+ 4

P = Q2 − 0.5Q+ 2.

Equalizing both expressions results in

11−Q2 −Q = Q2 − 0.5Q+ 2.

Sorting gives
2Q2 + 0.5Q− 9 = 0

or
4Q2 +Q− 18 = 0.

Using the quadratic formula
(
−b±
√
b2−4ac

2a

)
with a = 4, b = 1 and c = −18 gives

Q1 = −2.25 and Q2 = 2,

85



but only the second value makes sense in this question. We may use that in one of the original
equations to get

P = 5.

Solution to Exercise 9.5 — Production Possibility Frontier Curve (Exercise → p. 66)

X is as large as possible if Y = 0. Therefore

X2 + 2X = 10.

Applying the quadratic formula results in X1,2 = −b±
√
b2−4ac

2a with a = 1, b = 2 and c = −10 and

X = −1±
√

11.

Since X should be positive we have X = −1 +
√

11 ≈ 2.3166. Y is as large as possible if X = 0.
Therefore 0 = 10− Y , resulting in Y = 10.

Solution to Exercise 9.6 — Nonlinear Average Costs (Exercise → p. 66)

Total costs are variable costs plus fixed costs. If fixed costs are 50, variable costs are 500 or 5
per unit. The resulting cost function is C = 5Q+ 50
Average costs are given by AC = 50

Q + 5.

We can rewrite the function to
AC ·Q = 5Q+ 50

or
(AC− 5)(Q− 0) = 50,

thus, asymptotic average costs are AC = 5
The inverse is

Q = 50
AC− 5 .

For positive quantities we should have Z > 5.
If fixed costs are 50, variable costs are 400 or 4 per unit. The resulting cost function is

C = 4Q+ 50.
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Average costs are given by
AC = 50

Q
+ 4.

The inverse is
Q = 50

AC− 4
and valid for AC > 4

Solution to Exercise 9.8 — Summation Notation (Exercise → p. 67)

1. (a) We substitute k = 1 into the formula 13
100k and add successive terms until we reach

k = 4.

4∑
k=1

13
100k = 13

1001 + 13
1002 + 13

1003 + 13
1004

= 0.13 + 0.0013 + 0.000013 + 0.00000013
= 0.13131313

(b) Proceeding as in (a), we replace every occurrence of n with the values 0 through 4 to
get

4∑
n=0

n!
2 = 0!

2 + 1!
2 + 2!

2 + 3!
2 = 4!

2

= 1
2 + 1

2 + 2 · 1
2 + 3 · 2 · 1

2 + 4 · 3 · 2 · 1
2

= 1
2 + 1

2 + 1 + 3 + 12

= 17

(c) We proceed as before, replacing the index n, but not the variable x, with the values 1
through 5 and adding the resulting terms.

5∑
n=1

(−1)n+1

n
(x− 1)n = (−1)1+1

1 (x− 1)1 + (−1)2+1

2 (x− 1)2 + (−1)3+1

3 (x− 1)3

+(−1)1+4

4 (x− 1)4 + (−1)1+5

5 (x− 1)5

= (x− 1)− (x− 1)2

2 + (x− 1)3

3 − (x− 1)4

4 + (x− 1)5

5

2. The key to writing these sums with summation notation is to find the pattern of the terms.
(a)

1 + 3 + 5 + . . .+ 117 =
59∑
n=1

(2n− 1)
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(b) We rewrite all of the terms as fractions, the subtraction as addition, and associate
the negatives ‘−’ with the numerators to get

1
1 + −1

2 + 1
3 + −1

4 + . . .+ 1
117

The numerators, 1, −1, etc. can be described by the geometric sequence cn =
(−1)n−1∀n ≥ 1.

1− 1
2 + 1

3 −
1
4 +− . . .+ 1

117 =
117∑
n=1

(−1)n−1

n

(c)

0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =
n∑
k=1

9
10k
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