
How to Use R for Data Science
Lecture Notes

Prof. Dr. Stephan Huber

June 18, 2024

Table of contents

I. Getting started with… 5

1. …R 6
1.1. Why R? . 6
1.2. How to learn R . 7
1.3. Learning resources . 9
1.4. What is a function in R? . 11
1.5. What are objects in R? . 12
1.6. What are R and RStudio? . 12
1.7. How to write and run code in R and RStudio . 14
1.8. How to install R, RStudio, and R packages . 15
1.9. What are R packages? . 16

1.9.1. Package installation . 16
1.9.2. Package loading . 17
1.9.3. Simplified package management with p_load 18

1.10. Base R and the tidyverse universe . 19

2. …writing code 21
2.1. Bake a cake . 21
2.2. Elegant code . 23
2.3. Bake a cheese cake . 24
2.4. Comment what you do . 24
2.5. Bake 10 cakes . 25
2.6. Writing real code . 26

3. …writing R scripts 28
3.1. The limitations of no-code applications . 28
3.2. R Scripts: Why they are useful . 29
3.3. Create, write, and run R scripts . 30

3.3.1. Create . 30
3.3.2. Write . 30
3.3.3. Run . 30

3.4. What to do at the header of each script . 31

II. Basics of coding 33

4. Interactive introduction with swirl 34
4.1. Set up swirl . 34
4.2. swirl-it: huber-intro-1 . 35
4.3. swirl-it: huber-intro-2 . 39
4.4. swirl-it: Data analytical basics . 44
4.5. swirl-it: The tidyverse package . 44
4.6. Other swirl modules . 44

ii

Table of contents

5. Kickstart 45
5.1. Analysing the association of weight and the price of cars 45
5.2. Accessing World Bank’s World Development Indicators 51

6. Pitfalls 58
6.1. No clue about the “working directory” . 58
6.2. No consistent directory structure . 58
6.3. Working manually outside R . 59
6.4. No active R Packages management . 59
6.5. Confusion between console and script . 59
6.6. Misunderstanding data types and formats . 60
6.7. Lack of knowledge about data identification . 60
6.8. Losing track of data due to excessive overwriting 60
6.9. No documentation . 61
6.10. Ignoring error messages and warnings . 61
6.11. No attempt to identify the problem and troubleshoot 62
6.12. Unstylish code . 65

III. Do stuff 66

7. Manage data 67
7.1. Import and generate data . 67

7.1.1. Assigning data to an object using the assignment operator <- 67
7.1.2. Vectors and matrices . 67
7.1.3. Open RData files . 69
7.1.4. Open datasets of packages . 69
7.1.5. Import data using public APIs . 69
7.1.6. Import various file formats . 71
7.1.7. Examples . 71

7.2. Data . 72
7.2.1. Data frames and tibbles . 72
7.2.2. Tidy data . 72
7.2.3. Data types . 74

7.3. Operators . 75
7.3.1. Algebraic operators . 75
7.3.2. The pipe operator: |> . 75
7.3.3. The %in% operator . 77
7.3.4. Extract operators . 77
7.3.5. Logical operators . 79

7.4. Data manipulation . 81
7.4.1. dplyr: A human readable grammar of data manipulation 81
7.4.2. If statements . 86
7.4.3. Examining and cleaning data with the janitor package 87
7.4.4. tabyl() - a better version of table() . 91

7.5. User-defined functions and conflicts . 92
7.6. Example: How to explore a dataset . 94

8. Visualize data 98

9. Collection of exercises 100
9.1. Import data with c() . 100

iii

Table of contents

9.2. Filter and select observations . 101
9.3. Base R,%in% operator, and the pipe |> . 101
9.4. Generate and drop variables . 105
9.5. Subsetting . 108
9.6. Consumer prices over time . 111
9.7. Load the Stata dataset “auto” using R . 117
9.8. DatasauRus . 120
9.9. Convergence . 123
9.10. Unemployment and GDP in Germany and France 126
9.11. Import data and write a report . 133
9.12. Explain the weight of students . 136
9.13. Calories and weight . 139
9.14. Bundesliga . 144
9.15. Okun’s Law . 148
9.16. Names and duplicates . 155
9.17. Zipf’s law . 158

References 167

Appendices 169

A. Navigating the file system 169
A.1. The file system . 169
A.2. Working directory . 169
A.3. Navigating the file system using the R console . 170
A.4. R Studio projects . 171
A.5. Why do the Windows paths use the back-slash? 171

B. Operators 172
B.1. Assignment: . 172
B.2. Arithmetic: . 172
B.3. Relational: . 172
B.4. Logical: . 172
B.5. Others: . 172

C. Popular functions 173
C.1. Help . 173
C.2. Package management . 173
C.3. General . 173
C.4. Tools . 173
C.5. Data import . 173
C.6. Inspect data . 174
C.7. Graphics . 174
C.8. Data management . 174
C.9. dplyr functions . 175
C.10.Data analysis . 175
C.11.Statistical functions . 175

D. Helpful shortcuts 177

iv

List of figures

1. Prof. Dr. Stephan Huber . 3

1.1. Play around with code . 8
1.2. A collection of textbooks . 10
1.3. The R Documentation of q() . 12
1.4. Analogy of difference between R and RStudio . 13
1.5. Icons of R versus RStudio on your computer . 13
1.6. A sketch of RStudio interface to R . 14
1.7. One plus four in a R script . 15
1.8. Set up R in three steps . 15
1.9. The tidyverse universe . 19

6.1. Googlling the error message . 62

7.1. The logo of the packages readr, haven, and readxl 71
7.2. The logos of the tidyr and tibble packages . 72
7.3. Features of a tidy dataset: variables are columns, observations are rows, and

values are cells . 73
7.4. The logo of the dplyr package . 81

8.1. Pie charts are problematic . 98

9.1. The logo of the DatasauRus package . 120
9.2. Weight vs. Calories . 140
9.3. Ranking history: 1. FC Kaiserslautern . 145
9.4. Ranking history: 1. FC Köln . 146

v

List of tables

6.1. Typical folder structure . 58
6.2. Most frequent errors . 61

7.1. Basic algebraic operators . 75
7.2. Logical operators . 79

9.1. Covid cases and deaths till August 2022 . 100

D.1. Different OS, different keys . 177
D.2. Helpful shortcuts . 177

vi

Preface

About R

The programming language R enables you to handle, visualize, and analyze data. It is compat-
ible with various operating systems (Windows, Mac, Linux) and can do a lot of things better
compared to other programs like Python, Stata, Eviews, SPSS, SAS, and Excel. R is open
source, extensively utilized, and there are abundant resources available for learning it. These
notes are just my five cents.

About the cover of the notes

Data science is a buzzword that combines different fields of knowledge such as computer science,
software engineering, informatics, database management, statistics, econometrics, business intel-
ligence, and mathematics. However, there is no universally accepted definition of it and I think
it is not important to define it precisely. Kelleher and Tierney [2018, p. 97] wrote “Data science
is best understood as a partnership between a data scientist and a computer.” So data science
is about embracing the power of computers for scientific, commercial or social purposes. Of
course, empirical models and statistics play a role in gaining meaningful insights. The graphic
on the cover page may illustrate that R combines four important fields, that are, data, science,
computer, and statistics.

1

Preface

About the notes

A PDF version of these notes is available here.

Please note that while the PDF contains the same content, it has not been optimized for
PDF format. Therefore, some parts may not appear as intended.

• These notes aims to support my lecture at the HS Fresenius but are incomplete and no
substitute for taking actively part in class.

• I hope you find this book helpful. Any feedback is both welcome and appreciated.
• This is work in progress so please check for updates regularly.
• These notes offer a curated collection of explanations, exercises, and tips to facilitate

learning R without causing unnecessary frustration. However, these notes don’t aim to
rival comprehensive textbooks such as Wickham and Grolemund [2023].

• These notes are published under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. This means it can be reused, remixed, retained,
revised and redistributed as long as appropriate credit is given to the authors. If you
remix, or modify the original version of this open textbook, you must redistribute all
versions of this open textbook under the same license. This script draws from the work
of Navarro [2020], Muschelli and Jaffe [2022], Thulin [2021], and Ismay and Kim [2022]

which is also published under the same license.
• I host the notes in a GitHub repo.

To reap the best benefits from studying,

I recommend to copy all the code that is shown in the book into a R script and try to
run it on your PC. That is the best way to learn, understand, and create your own notes
that may guide you later on. Whenever you see interesting code somewhere, try to run
it on your PC. Moreover, I recommend the exercises of the book, they are challenging
sometimes but to really understand code you need to run code yourself.

Structure of these notes

Chapter Explanations
…R Learn the basics everyone should know about R and

RStudio, including how to install them.
…writing code Learn the basics of writing code.
writing R scripts Learn how to use R scripts and their benefits.
Interactive introduction using swirl A hands-on tutorial on how to use the swirl package.

This section is optional.
Kickstart A quick start guide for beginners on how to dive into R,

showcasing some of its capabilities.
Pitfalls Discover common mistakes beginners often make and

how to avoid them to save time on troubleshooting.
Manage data Learn how to manipulate data in R.
Visualize data A quick guide on where to find resources to learn about

creating graphical visualizations in R.
Collection of exercises A set of exercises to practice R programming skills.

2

https://raw.githubusercontent.com/hubchev/hubchev.github.io/main/ds/How-to-Use-R-for-Data-Science.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/hubchev/hubchev.github.io/tree/main/ds

Preface

Chapter Explanations
Appendix A set of useful stuff that will help you to navigate

through your file system, find the right operator and
function, or to learn some useful shortcuts.

About the author

Contact:

Prof. Dr. Stephan Huber
Hochschule Fresenius für Wirtschaft & Medien GmbH
Im MediaPark 4c
50670 Cologne
Office: 4e OG-3
Telefon: +49 221 973199-523
Mail: stephan.huber@hs-fresenius.de
Private homepage: www.hubchev.github.io
Github: https://github.com/hubchev

Figure 1.: Prof. Dr. Stephan Huber

I am a Professor of International Economics and Data Science at HS Fresenius, holding a
Diploma in Economics from the University of Regensburg and a Doctoral Degree (summa cum
laude) from the University of Trier. I completed postgraduate studies at the Interdisciplinary
Graduate Center of Excellence at the Institute for Labor Law and Industrial Relations in the
European Union (IAAEU) in Trier. Prior to my current position, I worked as a research assistant
to Prof. Dr. Dr. h.c. Joachim Möller at the University of Regensburg, a post-doc at the Leibniz
Institute for East and Southeast European Studies (IOS) in Regensburg, and a freelancer at
Charles University in Prague.

Throughout my career, I have also worked as a lecturer at various institutions, including the
TU Munich, the University of Regensburg, Saarland University, and the Universities of Applied
Sciences in Frankfurt and Augsburg. Additionally, I have had the opportunity to teach abroad
for the University of Cordoba in Spain, the University of Perugia in Italy, and the Petra Christian
University in Surabaya, Indonesia. My published work can be found in international journals
such as the Canadian Journal of Economics and the Stata Journal. For more information on
my work, please visit my private homepage at hubchev.github.io.

I was always fascinated by data and statistics. For example, in 1992 I could name all soccer
players in Germany’s first division including how many goals they scored. Later, in 2003 I joined
the introductory statistics course of Daniel Rösch. I learned among others that probabilities
often play a role when analyzing data. I continued my data science journey with Harry Haupt’s
Introductory Econometrics course, where I studied the infamous Jeffrey M. Wooldridge [2002]
textbook. It got me hooked and so I took all the courses Rolf Tschernig offered at his chair of

3

www.hubchev.github.io
https://github.com/hubchev
https://hubchev.github.io/
https://scholar.google.com/citations?user=geLs3JUAAAAJ&hl=en
https://scholar.google.ca/citations?user=tHNB7wIAAAAJ&hl=en
https://www.uni-regensburg.de/business-economics-and-management-information-systems/economics-tschernig/team/rolf-tschernig/index.html

Preface

Econometrics, where I became a tutor at the University of Regensburg and a research assistant
of Joachim Möller. Despite everything we did had to do with how to make sense out of data,
we never actually used the term data science which is also absent in the more 850 pages long
textbook byWooldridge [2002]. The book also remains silent about machine learning or artificial
intelligence. These terms became popular only after I graduated. The Harvard Business Review
article by Davenport and Patil [2012] who claimed that data scientist is “The Sexiest Job of the
21st Century” may have boosted the popularity.

The term “data scientist” has become remarkably popular, and many people are eager to adopt
this title. Although I am a professor of data science, my professional identity is more like that
of an applied, empirically-oriented international economist. My hesitation to adopt the title
“data scientist” also stems from the deep respect I have developed through my interactions with
econometricians and statisticians. Considering their in-depth expertise, I feel like a passionate
amateur.

Ultimately, I poke around in data to find something interesting. Much like my ten-year-old
younger self who analyzed soccer statistics to gain a deeper understanding of the sport. The
only thing that has changed since then is that I know more promising methods and can efficiently
use tools for data processing and data analysis.

4

https://iab.de/en/employee/m%C3%B6ller-joachim/

Part I.

Getting started with…

5

1. …R

Learning Objectives

• Understand the reasons for choosing R as a programming language.
• Learn effective strategies and resources for mastering R programming.
• Learn the basic priciples of R.
• Distinguish between R and RStudio.
• Demonstrate how to write and execute code in R and RStudio.
• Learn how to install R, RStudio, and R packages.
• Explore options to use R and RStudio without installing them on your machine, such

as through cloud-based platforms.

Content

1. Why R?
2. How to learn R?
3. Learning resources
4. What is a function in R?
5. What are objects in R?
6. What are R and RStudio?
7. How to install R and RStudio
8. How to write and run code in R and RStudio
9. What are R packages?

10. Base R and the tidyverse universe

1.1. Why R?

R is an open-source programming language that allows to analyse and manipulate data, create
state-of-the-art graphics, and many more. It supports larger data sets, reads any type of data,
and runs on multiple platforms (Windows, Mac, Linux) and CPU architectures (x86_64, arm64).
R makes it easier to automate tasks, organize projects, ensure reproducibility, and find and fix
errors, and anyone can contribute packages to improve its functionality. Moreover, the following
points are worth to emphasize:

• R is an artist! Check out:

– The R Graph Gallery
– R CHARTS by R CODER

• R is an employment insurance! Programming is a core skill in research, economics,
and business. If you can write code, you have plenty of opportunities to earn a decent
salary. R is one of the most widely used programming languages in the world today. It is
used in almost every industry such as finance, banking, medicine or manufacturing. R is

6

https://www.r-graph-gallery.com/
https://r-charts.com/

1. …R

used for portfolio management, risk analytics in finance and banking industries. Even if
you need to learn a new programming language later, knowing R makes it much easier to
pick up another one.

• R uses the computer and computers are great! Doing statistics on a computer is
faster, easier and more powerful than doing it by hand. Computers are an extension to
your brain and can do repetitive tasks better and faster without making logical errors. The
only reason to do statistical calculations with pencil and paper is for learning purposes.

• Low-code and no-code applications such as Excel are limited! Using spreadsheets
software like Microsoft Excel for research can be problematic. It’s easy to lose track of op-
erations, making the process difficult to oversee and document. Command-line programs
are maybe not as easy to learn but offer a more straightforward approach that allows the
results to be replicated easily.

• R is open source! Proprietary software expansive, support can only be provided by
the copyright owner which means the software expires and you can’t do anything against
it. Moreover, security issues cannot be checked as the source code is not available, and
possibilities for customization are limited. R is yours and everybody can contribute to its
success.

• R is big! When you download and install R, you get some basic packages, that con-
tain functions that allow you to do already a lot of things. Beyond that, you can write
your own packages or install user-written packages that extend your possibilities. With
over 20,684 packages on the CRAN repository and many more available on GitHub and
other platforms, R’s extensive library supports a wide variety of data science tasks. Its
widespread use and open-source availability have cemented R as a standard tool in data
science and ensured that there are multiple approaches to most data handling processes.
These can be easily adopted.

R has weaknesses

For newcomers to programming, the learning curve is rather flat at the beginning. One
reason is that R tools are spread across many packages, which can overwhelm beginners.
There is no centralized support and the helpful and active online community have different
backgrounds. It can be difficult for beginners to find the right solution as there are often
many different ways to tackle the same problem. Moreover, R can be slower than languages
like Python, MATLAB, C/C++ or Java.

1.2. How to learn R

There are many different approaches to learning R. It pretty much depends on your preferences,
needs, goals, prerequisites and limitations. It is up to you to search and find a suitable way
to achieve your learning goals. While I hope you find my notes helpful, I additionally provide
in section Section 1.3 a list of other resources that are worth considering. To start with, I
recommend my swirl courses that provide an interactive learning environment, see Chapter 4.

Make your hands dirty!

Learning a programming language can, like learning a foreign language, be daunting and
frustrating. However, if you put in the effort and are not afraid to make mistakes, anybody
can learn it. You don’t have to be a nerd. To have a guide next to you can help and speed
up your progress significantly. The key is taking action and getting involved. I mean, do

7

1. …R

write code. Try to copy the code that you read here and elsewhere. Explore what the
code does on your machine. Don’t be afraid to make errors. Your PC will not explode.
In this paper, most of the code is written in a manner that allows you to effortlessly copy
and reproduce the output on your PC. Take advantage of this opportunity and go for it!
Hands-on practice is far more enjoyable than merely reading through the material.

Figure 1.1.: Play around with code

Source: DEV Community on GitHub

Here are some comments that may help you to learn efficiently:

• Computers need clear and precise instructions to work: They can’t handle mis-
takes or unclear directions. They are actually sort of stupid as they do not have an
intuition. They just take you literally. Even small errors like a missing comma or an
unclosed bracket can cause your code to not work. Computers do exactly what you tell
them, no more and no less.

Computers take you literally

Let me illustrate what I mean: Suppose you send your grandfather the following message:

“Let’s eat grandpa.”

He will probably understand that you’re inviting him to dinner. However, if you sent the
same message to a computer, it would interpret the sentence literally due to the missing
comma:

“Let’s eat, grandpa.”

8

https://github.com/thepracticaldev/orly-full-res

1. …R

The comma makes all the difference in clarifying that you’re speaking to your grandpa,
not about eating him! Similarly, in programming, an incorrectly placed comma can break
your code or change the meaning of your code.

• Copy, paste, and tweak: While learning code from scratch is sometimes essential, you
can speed up your work by modifying code that already exists. I call this the “copy, paste,
and tweak” approach. While this is not the only way to learn code, it gets a job done
quick, and it is fun, see Figure 1.1.

• Have a purpose when coding: Rather than learning to code for its own sake, it is
more fun and you’ll probably learn faster when you have a goal in mind. Try to analyze
data that you are interested in. Another good exercise is replicating a research paper.

• Practice is key: The best method to improving your coding skills is through lots of
practice. Consequently, these notes give you plenty of exercises.

• Use ChatGPT: The usage of supporting tools is not forbidden. ChatGPT can help
you to understand code and brainstorm solutions. However, it’s important to know that
ChatGPT might suggest complex methods when there are shorter and more elegant so-
lutions available Absolute beginners might find ChatGPT’s solutions overwhelming and
have difficulties to tweak the proposed sketch of a solution. So, use it thoughtfully.

1.3. Learning resources

Thousand of freely available books and resources exist. bookdown.org and the Big Book of R
are two vast collections of links to R books that might verify my claim.

In RStudio you find in the right side at the bottom a panel that is called Help. There you find a
lot of links, manuals, and references that offer you tons of resources to learn R for free including:
education.rstudio.com and Links for Getting Help with R. At the top right of RStudio you find
a panel called tutorial. Here you can install the learnr package that offers some nice interactive
tutorials.

Since you may feel overwhelmed by the number of resources, I would like to highlight some
books:

1. Wickham and Grolemund [2023]: R for Data Science: Import, Tidy, Transform, Visualize,
and Model Data is the most popular source to learn R. It focuses on introducing the
tidyverse package and is freely available online.

2. Healy [2018]: Data Visualization: A Practical Introduction is a hands-on introduction to
the principles and practice of looking at and presenting data using R and ggplot.

3. Irizarry [2022]: Introduction to Data Science: Data Analysis and Prediction Algorithms
With R is a complete, up to date, and applied introduction.

4. Venables et al. [2022] An Introduction to R: Notes on R: A Programming Environment
for Data Analysis and Graphics is a manual from the R Core Development Team that
shows how to use R without having to install and load additional packages.

5. Neth [2023]: Data Science for Psychologists is a comprehensive introduction to R and
data science for non experts of both programming and data science. It uses a variety of
data types and includes many examples and exercises.

6. Kabacoff [2024]: Modern Data Visualization with R teaches how to create graphs from
scratch providing a lot of examples that you can copy, paste and tweak.

Some other sources that are worth mentioning are these:

9

https://bookdown.org
www.bigbookofr.com
https://education.rstudio.com/
https://support.rstudio.com/hc/en-us/articles/200552336-Getting-Help-with-R
https://r4ds.hadley.nz/
https://r4ds.hadley.nz/
https://socviz.co/
http://rafalab.dfci.harvard.edu/dsbook-part-1/
http://rafalab.dfci.harvard.edu/dsbook-part-1/
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://bookdown.org/hneth/ds4psy/
https://rkabacoff.github.io/datavis/

1. …R

Figure 1.2.: A collection of textbooks

10

1. …R

• The search engine www.rseek.org is R specific and often better than www.google.com as
it only searches for content that has to do with the programming language R.

• On rdocumentation.org you can find the complete documentation of all R packages.
• Many find these cheatsheets helpful.

1.4. What is a function in R?

R is a functional programming language. If you want R to do something, you need to use a
function. Or, in the words of Chambers [2017, p. 4]:

“Everything that happens is a function call.”

For example, when you like to exit R, you do it with the function q():

> q()
Save workspace image? [y/n/c]:

If you want to specify what exactly you want R to do for you, you need to refer to the arguments
of a function. For example, if you don’t want to be asked interactively what you want to do
with your workspace (this is the place where you store all your objects, see section Section 1.5),
you can do this with an argument that is part of the q() function:

> q(save = "no")

To learn more about a function, you can access its documentation by typing a question mark
followed by the function name into the Console:

?q()

Unfortunately, the documentation can sometimes be a bit confusing for beginners in applied con-
texts. However, the documentation for all functions is structured similarly, typically featuring
several key sections:

• Description: A brief overview of what the function does.
• Usage: How to use the function, including the function name and its arguments.
• Arguments: Detailed descriptions of each argument the function accepts, including what

types of values are expected.
• Details: Additional details about the function’s behavior and any important notes.
• Examples: Practical examples demonstrating how to use the function in various contexts.

Understanding these sections can significantly enhance your ability to navigate and utilize R.

An excerpt of the R Documentation for the function q() is shown in Figure 1.3. Here, we
observe that the function has three arguments that you can manipulate. If you do not specify
any of these arguments explicitly, we see that by default, R sets the three arguments as shown.

11

http://www.rseek.org
http://www.google.com
http://www.rdocumentation.org
https://posit.co/resources/cheatsheets/

1. …R

Figure 1.3.: The R Documentation of q()

1.5. What are objects in R?

R is an object oriented programming language. That means,

“everything that exists in R is an object” [Chambers, 2017, p. 4].

Objects are the fundamental units that are used to store information. Objects can be a variety
of data types, including vectors, matrices, data frames, lists, functions. Moreover, you can store
empirical results, tables, figures and many more in form of so-called objects. All objects are
shown in the workspace which is shown in the Environment panel.

In R, you can show the content of the workspace with ls(). The function rm() allows to remove
objects and with rm(list=ls()) you clear all objects from the workspace.

1.6. What are R and RStudio?

While R has a command line interface, there are multiple third-party graphical user interfaces
available that improve the user experience a lot. The most successful graphical user interface
or integrated development environment (IDE) is RStudio. Throughout this book, I will assume
that you are using R via RStudio. First time users often confuse the two. At its simplest, R is
like a car’s engine while RStudio is like a car’s dashboard as illustrated in Figure Figure 1.4.

More precisely, R is a functional programming language that runs computations, while RStudio
is an integrated development environment (IDE) that provides an interface by adding many
convenient features and tools. So just as the way of having access to a speedometer, rearview

12

1. …R

Figure 1.4.: Analogy of difference between R and RStudio

mirrors, and a navigation system makes driving much easier, using RStudio’s interface makes
using R much easier as well.

Much as we don’t drive a car by interacting directly with the engine but rather by interacting
with elements on the car’s dashboard, we won’t be using R directly but rather we will use
RStudio’s interface. After you install R and RStudio on your computer, you’ll have two new
programs (also called applications) you can open. We’ll always work in RStudio and not in the
R application. Figure Figure 1.5 shows what icon you should be clicking on your computer.

Figure 1.5.: Icons of R versus RStudio on your computer

After you open RStudio, you should see something similar to Figure Figure 1.6 where three or
four panels dividing the screen.

1. The Environment panel, where a list of all objects is shown.
2. The Files, Plots and Help panel, allow you to manage files, preview plots, and find help

for different functions of R.
3. The Console panel, used for running code.
4. The Script panel, used for writing code.

If you don’t have panel number 4,

open it by opening an existing R-script or creating a new one. You can create a new on by
clicking Ctrl+Shift+N (alternatively, you can use the menu: File→New File→R Script).

The Console panel will contain R’s startup message, which shows information about which
version of R you’re running. My startup message at the time of writing was as follows:

13

1. …R

Figure 1.6.: A sketch of RStudio interface to R

R version 4.3.3 (2024-02-29) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

You can resize the panels as you like, either by clicking and dragging their borders or using
the minimise/maximise buttons in the upper right corner of each panel. Clicking Ctrl++ and
Ctrl+- allows to make the fonts larger or smaller.

1.7. How to write and run code in R and RStudio

In the Console you can type in code and push Enter to run the line of code. For example, you
can calculate:

1+4

[1] 5

While working in the Console is possible, we usually work in RStudio using so-called scripts.
These scripts are plain text files with the file extension “.R”. Scripts are discussed in detail in
Chapter 3. To create a script, go to the File menu, select New File and then choose R Script.

14

1. …R

With the key shortcut Ctrl+Enter for Windows and Linux user or by Cmd+Enter for MacOs
users (or by clicking Run) you can run a line of a script, that means you send one line of code
to the Console. See Figure 1.7 how this looks like in RStudio.

Figure 1.7.: One plus four in a R script

1.8. How to install R, RStudio, and R packages

Figure 1.8.: Set up R in three steps

As shown in Figure 1.8, setting up R on your personal computer (Windows, Mac, Linux) is a
three step process: You will first need to download and install R. After that has been successful
you can download and install RStudio. Please note that it is important that you install R first
and then install RStudio. As a third but optional step you can install R packages.

1. Do this firstly: Download and install R here.

• If you are a Windows user: Click on “Download R for Windows”, then click on
“base”, then click on the Download link.

• If you are macOS user: Click on “Download R for (Mac) OS X”, then under “Latest
release:” click on R-X.X.X.pkg, where R-X.X.X is the version number. For example,
the latest version of R as of March 29, 2024 was R-4.3.3.

• If you are a Linux user: Click on “Download R for Linux” and choose your distribu-
tion for more information on installing R for your setup.

2. Do this secondly: Download and install RStudio here.

15

https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/

1. …R

• Scroll down to “Installers for Supported Platforms” near the bottom of the page.
• Click on the download link corresponding to your computer’s operating system.

3. Do this thirdly: Install R packages. This step is optionally as you can install R packages
at any time. However, it may be a good idea to install frequently used packages in one take
because the installation of some packages can be time consuming. Therefore, I recommend
to read Section 1.9 and follow the instructions therein.

How to use R and RStudio without installation

If you don’t want to install R on your PC or you don’t have admin rights to do so or if you
want to run R on your tablet (IPad or Chromebook) or even your smartphone, you can
use RStudio online doing cloud computing on https://posit.cloud. Posit Cloud (formerly
RStudio Cloud) is a cloud-based solution that allows anyone to use RStudio online and
navigate it through your web browser. It is free for individuals with some restrictions and
limited capacities.

1.9. What are R packages?

A package is a collection of functions, data sets and other R objects that are all grouped together
under a common name. More than 20,000 packages are available at the official repository
(CRAN). CRAN is a network of ftp and web servers around the world that store identical,
up-to-date, versions of code and documentation for R, see: https://cran.r-project.org.].

However, before we get started, there’s a critical distinction that you need to understand, which
is the difference between having a package installed on your computer, and having a package
loaded in R. When you install R on your computer only a small number of packages come
bundled with the basic R installation. The installed packages are on your computer. The
critical thing to remember is that just because something is on your computer doesn’t mean R
can use it. In order for R to be able to use one of your installed packages, that package must
also be loaded. Generally, when you open up R, only a few of these packages (about 7 or 8) are
actually loaded.

Package management

1. A package must be installed before it can be loaded.
2. A package must be loaded before it can be used.

We only need to install a package once on our computer. However, to use the package, we need
to load it every time we start a new R environment or R Studio, respectively.

1.9.1. Package installation

To install an R package you can use the GUI of R Studio or the command line. In R Studio you
can click on the Packages tab, then on the Install button, then you must search for a package
and click Install. An alternative way to install a package is by typing

install.packages("package_name")

16

https://posit.cloud

1. …R

in the console pane of RStudio and pressing Return/Enter on your keyboard. Note you must
include the quotation marks around the name of the package.

If you want to update a previously installed package to a newer version, you need to re-install
it by repeating the earlier steps or you use update.packages(). To uninstall packages you can
use remove.packages().

How to speed up the installation of packages

The installation of packages can take some time. However, if your CPU has many cores, you
can speed up the process a lot using the argument Ncpus like this update.packages(ask
= F, Ncpus = 4L). This option allows you to adjust the number of parallel processes R
can use on your PC. So, if you have a CPU with many cores you can increase that number.
A tutorial on how to set the number of cores used by R permanently can be found here.

1.9.2. Package loading

Recall that after you’ve installed a package, you need to load it. We do this by using the
library() command. For example, to load the ggplot2 package, run the following code in the
console pane. What do we mean by “run the following code”? Either type or copy-and-paste
the following code into the console pane and then hit the Enter key.

library("ggplot2")

If after running the earlier code, a blinking cursor returns next to the > “prompt” sign, it means
you were successful and the ggplot2 package is now loaded and ready to use. If, however, you
get a red “error message” that reads

Error in library(ggplot2) : there is no package called ‘ggplot2’

It means that you didn’t successfully install it. If you get this error message, go back to section
Section 1.9.1 on R package installation and make sure to install the ggplot2 package before
proceeding.

One very common mistake new R users make when wanting to use particular packages is they
forget to load them first by using the library() command we just saw. Remember: you have
to load each package you want to use every time you start RStudio. If you don’t first load a
package, but attempt to use one of its features, you’ll see an error message similar to:

Error: could not find function

R is informing you that you are attempting to use a function from a package that has not yet
been loaded. Forgetting to load packages is a common mistake made by new users, and it can
be a bit frustrating to get used to at first. However, with practice, it will become second nature
for you. Unloading packages can be done with detach(package:ggplot2, unload=TRUE).

17

https://www.jumpingrivers.com/blog/speeding-up-package-installation/

1. …R

1.9.3. Simplified package management with p_load

I recommend to install and load packages using the p_load() function of the pacman package.
It is superior because

• it only installs a package if it is has not been installed yet,
• it loads the package, and
• does not require quotes nor the c()function.

For example, instead of the traditional approach:

install.packages(
c("tidyverse", "janitor", "haven", "readxl")
)

library(
c("tidyverse", "janitor", "haven", "readxl")
)

You can streamline the process as follows:

if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, janitor, haven, readxl)

The line if (!require(pacman)) install.packages("pacman") ensures the installation of
the pacman package, which is necessary for using the p_load function.

Before you load packages in a script, I recommend to unload all other packages with

pacman::p_unload(all)

to avoid conflicts of functions (see Section 7.5).

Tip 1: Install everything now

Throughout the lecture notes and in the exercises, I will use different packages. The
installation can be time consuming and hence I recommend to install all packages by
running the following lines of code in the Console. This takes some minutes depending on
your PC and your internet connection. However, after installing all these packages you
have all packages that are used in my exercises, my lecture notes How to Use R for Data
Science, and the book R for Data Science (2e) by Wickham and Grolemund [2023].

18

https://hubchev.github.io/ds/
https://hubchev.github.io/ds/
https://r4ds.hadley.nz/

1. …R

if (!require(pacman)) install.packages("pacman")
pacman::p_load(

arrow, babynames, car, curl, devtools, dplyr, duckdb, devtools,
expss, gapminder, ggplot2, ggrepel, ggridges, ggpubr,
ggstats, ggthemes, haven, HH, janitor, kableExtra, knitr,
Lahman, labelled, likert, magick, maps, MASS, nycflights13,
openxlsx, palmerpenguins, papaja, plm, psych,
remotes, rempsyc, repurrrsive, rstatix, skimr, sjlabelled,
sjmisc, sjPlot, stargazer, texreg, tidymodels, tidyr,
tidyverse, tinylabels, usethis, WDI, wbstats, writexl

)

In addition to these packages, I recommend to install a package that I created to offer
you some tutorials and functions. I host this package on my GitHub account and you can
install it as follows:

devtools::install_github("hubchev/hubchev")

1.10. Base R and the tidyverse universe

Upon successfully installing R, you gain access to functions that are part of Base R. This includes
standard packages automatically installed and loaded with each R session, such as stats, utils,
and graphics, providing a broad spectrum of functionalities for statistical analysis and graphical
capabilities [see Venables et al., 2022]. However, the syntax in Base R can become complex and
less intuitive for users. Consequently, many individuals, including Hadley Wickham, the Chief
Data Scientist at Posit (formerly RStudio), and his team, have developed an alternative suite
of packages known as the tidyverse. These packages share a common philosophy and syntax,
emphasizing readability and ease of use. We will heavily utilize the tidyverse in the following
sections.

Figure 1.9.: The tidyverse universe

The R package tidyverse (see Figure 1.9) is a comprehensive collection of R packages includ-
ing popular packages such are ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, and
forcats, which together offer extensive capabilities for data modeling, transformation, and
visualization.

19

1. …R

How to do data science with tidyverse is the subject of multiple books and tutorials. In partic-
ular, the popular book R for Data Science by Wickham and Grolemund [2023] is all about the
tidyverse universe. Thus, I highly recommend reading sections Workflow: basics), Data trans-
formation, and Data tidying. Additionally, explore www.tidyverse.org for more resources, and
consider completing the tidyverse module in my swirl package, swirl-it, as detailed in section
Chapter 4.

To install and load tidyverse run the following lines of code:

if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse)

Exercise 1.1. Set up R, RStudio, and R packages
Open this interactive tutorial and work through it.

20

https://r4ds.hadley.nz/workflow-basics.html
https://r4ds.hadley.nz/data-transform.html
https://r4ds.hadley.nz/data-transform.html
https://r4ds.hadley.nz/data-tidy
https://lr4un3-stephan-huber.shinyapps.io/lr_setup/

2. …writing code

When you talk to a computer, you use a programming language. Computers can handle certain
tasks for you, like doing math or creating graphs. They don’t complain and work fast. They
just need clear instructions. Giving clear instructions to a machine, however, isn’t easy. Unlike
humans, computers lack intuition and cannot adapt to the context of your commands; they
interpret instructions literally. Check out this video. It’ll show you that good communication
among human beings isn’t about explaining things perfectly, but about using your gut feeling
and common sense effectively.

If you want a computer to handle computationally intensive and repetitive tasks, you must learn
to “speak” in a way that the computer understands. Never assume the computer knows what
you mean. The following sections will emphasize this: Be precise and be specific.

2.1. Bake a cake

As a teacher, I often contemplate how I can teach students to communicate with a computer.
In this section, I will attempt to translate a cake baking recipe into a programming language,
using R. I hope you find this both amusing and insightful. Let’s start by examining a simplified
cake recipe:

Instructions to bake a cake:

1. Buy an oven.
2. Buy ingredients (flour, sugar, butter, eggs, soda).
3. Buy tools.
4. Clean everything..

5. Heat up the oven.
6. Prepare the tools (springform, bowl, mixer).
7. Weight all ingredients.
8. Take a bow and all the weighted ingredients and put everything in a bowl.
9. Take the mixer and mix all ingredients in the bowl for 3 minutes.

10. Put all the mixed ingredients in a springform pan.
11. Take the springform pan with the mixed ingredients and put it in the oven.
12. Bake for 30 minutes, take the springform pan it out of the oven, and turn off the

oven.
13. Clean the kitchen and the tools.

Although this recipe is simplified, it illustrates a process you might be familiar with. Now, let’s
assume a computer is tasked with baking a cake. How would we explain the necessary steps to
the computer using the R programming language?

21

https://youtu.be/cDA3_5982h8

2. …writing code

In R, a functional programming language, we understand that everything that happens is a
function call, and every entity is an object. Therefore, we must translate all actions into
functions and all items into objects.

Here’s what the translated recipe could look like in R:

buy(oven, springform, bowl, mixer, flour, sugar, butter, eggs, soda)
clean(oven, springform, bowl, mixer)
turn_on(oven)
prepare(springform, bowl, mixer)
weigh(flour, sugar, butter, eggs, soda)
dough <- bowl |>

put(flour, sugar, butter, eggs, soda) |>
action(tool = mixer, time = 3)

dough_springform <- springform |>
put(dough) |>

dough_oven <- oven |>
put(dough_springform) |>
action(tool = oven, time = 30) |>
pull()

turn_of(oven)
clean(oven, springform, bowl, mixer)

Understanding the translation of a recipe into code becomes clearer when we familiarize our-
selves with two key programming operators:

1. The “<-” is known as the assignment operator. It saves or stores data into a new object.
It might be helpful to think of it as saying, “I create the object <name of object> and
store therein”

2. The “|>” is known as the pipe operator. It passes the output of one action to serve as the
input for the next. Think of it as saying “and then.”

For example, the following lines:

dough <- bowl |>
put(flour, sugar, butter, eggs, soda) |>
action(tool = mixer, time = 3)

can be interpreted as:

I create the object `dough` and I store therein the bowl, and then
I put flour, sugar, butter, eggs, and soda to it, and then
I take action with the mixer for 3 minutes

In the preceding functions, you’ll notice objects separated by commas and parameters like tool
= mixer, time = 3. These parameters define the behavior of the function. When there’s
nothing within the brackets, as in pull(), the input is merely the output of the preceding pipe
operator.

22

2. …writing code

Even though R is no good as a cook and the recipe is missing some steps, this analogy helps
to illustrate how programming languages work: they allow us to instruct the computer in a
sequential way. Next, I will showcase why coding is appealing.

2.2. Elegant code

Let’s make our code more elegant, that is, easy to read, understand, and modify. For example,
while it is equivalent to write everything in one line

dough <- bowl |> put(flour, sugar, butter, eggs, soda) |> action(tool = mixer, time = 3)

or spread out over three lines,

dough <- bowl |>
put(flour, sugar, butter, eggs, soda) |>
action(tool = mixer, time = 3)

it is easier for the human eye to read the text in spread out form.

Style in Writing Code

Writing code involves certain conventions, often referred to as a coding style. Although not
strictly necessary, a consistent style can significantly enhance clarity and prevent common
pitfalls. Numerous style guides aim to standardize coding practices. For example, you
might find The tidyverse style guide by Hadley Wickham particularly helpful in adopting
a harmonious coding style in R.

By using the assignment operator <-, we can create two objects: ingredients and tools.
These objects are used multiple times throughout the process.

Here is an improved version of the script:

ingredients <- c(flour, sugar, butter, eggs, soda)
tools <- c(oven, springform, bowl, mixer)

buy(tools, ingredients)

clean(tools)
turn_on(oven)
prepare(tools)
weight(ingredients)
dough <- bowl |>

put(ingredients) |>
action(tool = mixer, time = 3)

dough_springform <- springform |>
put(dough)

dough_oven <- oven |>
put(dough_springform) |>

23

https://style.tidyverse.org/

2. …writing code

action(tool = oven, time = 30) |>
pull()

turn_of(oven)
clean(, tools)

This version refines the process, making the code more streamlined and easier to follow.

2.3. Bake a cheese cake

Now, let’s assume you want to bake another cake, this time with chocolate and banana, but
without eggs. Moreover, you need to bake it for 45 minutes. We can easily adapt the code
snippet from above to accommodate the ingredients for this new recipe:

ingredients <- c(flour, sugar, butter, soda, banana, chocolate)
tools <- c(oven, springform, bowl, mixer)

buy(tools, ingredients)

clean(tools)
turn_on(oven)
prepare(tools)
weight(ingredients)
dough <- bowl |>

put(ingredients) |>
action(tool = mixer, time = 3)

dough_springform <- springform |>
put(dough)

dough_oven <- oven |>
put(dough_springform) |>
action(tool = oven, time = 45) |>
pull()

turn_of(oven)
clean(kitchen, tools)

2.4. Comment what you do

Sometimes code can be difficult to understand for humans. It is therefore helpful to add com-
ments to clarify what the individual code sections are supposed to do. In R, comments can be
added with a leading hashtag, #.

Decide on tools and ingredients
ingredients <- c(flour, sugar, butter, soda, banana, chocolate)
tools <- c(oven, springform, bowl, mixer)

24

2. …writing code

Go shopping
buy(tools, ingredients)

Prepare the kitchen, tools, and ingredients
clean(tools)
turn_on(oven)
prepare(tools)
weight(ingredients)

Make the dough
dough <- bowl |>

put(ingredients) |>
action(tool = mixer, time = 3)

dough_springform <- springform |>
put(dough) |>

bake the cake
dough_oven <- oven |>

put(dough_springform) |>
action(tool = oven, time = 45) |>
pull()

Clean up
turn_of(oven)
clean(kitchen, tools)

2.5. Bake 10 cakes

As a computer can reproduce a cake within seconds (I mean, not really, just in my little fun
exercise here), we now have the opportunity to experiment with several versions of the cake
by varying the baking time from 35 to 45 minutes. Here’s how the corresponding code might
look:

ingredients <- c(flour, sugar, butter, soda, banana, chocolate)
tools <- c(springform, bowl, mixer)

buy(tools, ingredients)

clean(tools)
turn_on(oven)
prepare(tools)
weight(ingredients)
dough <- bowl |>

put(ingredients) |>
action(tool = mixer, time = 3)

dough_springform <- springform |>
put(dough)

25

2. …writing code

for (timing in 35:44) {
dough_oven <- oven |>
put(dough_springform) |>
action(tool = oven, time = timing) |>
pull()

assign(paste("dough_oven_min_", timing, sep = ""), dough_oven)
}

turn_of(oven)
clean(tools)

You can see a loop with some new and tweaked lines:

for (timing in 35:44) {
dough_oven <- oven |>
put(dough_springform) |>
action(tool = oven, time = timing) |>
pull()

assign(paste("dough_oven_min_", timing, sep = ""), dough_oven)
}

These lines sequentially execute the following actions:

Let the object timing be 35, make a cake, and save it in the object `dough_oven_min_35` then start again and
let the object timing be 36, make a cake, and save it in the object `dough_oven_min_36` then start again and
let the object timing be 37, make a cake, and save it in the object `dough_oven_min_37` then start again and
let the object timing be 38, make a cake, and save it in the object `dough_oven_min_38` then start again and
let the object timing be 39, make a cake, and save it in the object `dough_oven_min_39` then start again and
let the object timing be 40, make a cake, and save it in the object `dough_oven_min_40` then start again and
let the object timing be 41, make a cake, and save it in the object `dough_oven_min_41` then start again and
let the object timing be 42, make a cake, and save it in the object `dough_oven_min_42` then start again and
let the object timing be 43, make a cake, and save it in the object `dough_oven_min_43` then start again and
let the object timing be 44, make a cake, and save it in the object `dough_oven_min_44` then start again

After all, we have ten cakes. This shows how we can harness the processing power of a computer.
Computers are excellent at performing everyday, repetitive tasks so that we can automate
processes and perform procedures effortlessly over and over again.

2.6. Writing real code

Of course, computers can’t bake a cake. The R programming language can do none of the above.
Nevertheless, there are analogies to the programming language R. Let me present a few lines of
code and explain these lines of code to you, and you will see that the similarities are striking.

Copy that code chunk, paste it into a R script and run it.

26

2. …writing code

This script demonstrates a typical data analysis workflow in R

Install and load required libraries
if (!require(pacman)) install.packages("pacman")
pacman::p_unload(all)
pacman::p_load(tidyverse,haven, janitor)

Set the working directory to a project-specific folder
setwd("~/Documents")

Clear the current environment of any objects
rm(list = ls())

Load data from a Stata file available online
auto <- read_dta("http://www.stata-press.com/data/r18/auto.dta")

Display basic information about the dataset
ncol(auto) # Number of columns
nrow(auto) # Number of rows
dim(auto) # Dimensions of the dataset
names(auto) # Names of variables
head(auto) # First few rows
tail(auto) # Last few rows
summary(auto) # Summary statistics for each column
glimpse(auto) # Compact display of the structure of the dataset
print(auto, n = Inf) # Print all rows of the dataset

Check for duplicate entries based on the 'make' variable
auto |>

get_dupes(make)

Create and display a scatter plot of car price versus weight
plot_weight_price <- ggplot(auto, aes(x = weight, y = price)) +

geom_point()
plot_weight_price

Save the plot to a file
ggsave("plot_weight_price.png", plot = plot_weight_price, dpi = 300)

27

3. …writing R scripts

3.1. The limitations of no-code applications

No-Code Applications (NCA) such as Microsoft Excel, RapidMiner, KNIME, DataRobot,
Tableau, Microsoft Power BI, and Google AutoML are popular for good reasons. They
enable the application of advanced empirical methods with no or minimal programming effort.
Their intuitive graphical user interfaces comes with pre-built templates and drag-and-drop
functionality which helps to get things done quick, without having to study the programm
documentation for hours. Despite their apparent ease of use and efficiency, these platforms
come with several disadvantages compared to traditional ways of working with computer by
scripting and coding. Understanding these weaknesses helps to see why professional researchers,
especially those actively publishing in academic journals, tend to rely on scripting languages
like R and Python. These programming languages offer full control, are customizeable and
extendable, offer extensive opportunities for automation and reproducibility, and are often
better suited for demanding data science tasks.

Disadvantages of No-Code Applications (NCA)

• NCA lack flexibility and are limited in their adaptability.
• NCA often have problems scaling with increasing data volumes or user requirements.
• NCA are often closed systems that make it difficult to integrate other systems or

applications.
• NCA often bind a company to a specific ecosystem. This can lead to dependencies

and vendor lock-in.
• NCA can obscure the underlying logic of how applications work, which can make

troubleshooting more difficult.
• NCA abstracts the coding process and prevents users from understanding fundamen-

tal concepts that could be beneficial to their professional growth and ability to tackle
more complex problems.

In summary, while low-code and no-code platforms offer quick deployment and ease of use, they
can lack the depth, flexibility, and control provided by traditional scripting. Researchers and
businesses must consider these trade-offs, especially when planning for long-term scalability,
complex customizations, or in-depth integrations.

A hypothetical but realistic example with Excel

Suppose you work with a spreadsheet software like Excel. You import a CSV file using the
implemented import tool, you save the converted file. You notice that Excel has messed
up the dates during the import, so you spend a few minutes cleanig that manually. Then,
you visualize the data and you save the visualisations in various tabs. Maybe, you can
spot some outliers and you document in footnote that these outliers are the result of some
issues with the raw data. As these errors cannot be solved, you delete the observations and
variables that contain a significant amount of errors. Finally, you use filters to calculate

28

https://www.microsoft.com/en-us/microsoft-365/excel
https://altair.com/altair-rapidminer
https://www.knime.com/
https://www.datarobot.com/
https://www.tableau.com/
https://www.microsoft.com/en-us/power-platform/products/power-bi
https://cloud.google.com/automl

3. …writing R scripts

some summary statistics. All your results are written in a new tab. You’re convinced that
you’ve done a great job. However, you send the file to your supervisor and you ask him
for her opinion.

• She probably asks you what you have done to the data. How can you efficiently and
completely communicate that?

• She comes back to you some time later and asks you to do the same analysis with an
updated version of the data. How can you exactly redo the analysis and how long
do you think it will take you to complete the job?

• She finds an error in your work or she has an idea to improve your analysis by making
a few adjustments. Can you implement the adjustments easily, or do you have to
redo everything from scratch?

• She sends you back the file with the comment that she has worked out some things
in the file and now everything should be fine. How do you know what she has done
to the data?

To say it in the words of Stephenson [2023, sec. 5.1]:

“Spreadsheets are a nightmare for quality control and reproducibility, and you
should always think twice before using one. Spreadsheets will always be a handy
way to manipulate tabular datasets, and you’ll probably find them useful for
data collection and quick back-of-the-envelope calculations, but they’re often
more trouble than they’re worth.”

3.2. R Scripts: Why they are useful

I have already discussed in Section 1.7 that you can run code either directly by typing your
code into the console of R or by writing a script and then sending the code with Ctrl+Enter
or with the Run button to the console of R. Typing functions into the console to run code may
seem simple, but this interactive style has limitations:

• Typing commands one at a time can be cumbersome and time-consuming.
• It’s hard to save your work effectively.
• Going back to the beginning when you make a mistake is annoying.
• You can’t leave notes for yourself.
• Reusing and adapting analyses can be difficult.
• It’s hard to do anything except the basics.
• Sharing your work with others can be challenging.

That’s where having a transcript of all the code, which can be re-run and edited at any time,
becomes useful. An R script is just plain text that is interpreted as code or as a comment if the
text follows a hastag #. A script comes with important advantages.

Scripts…

• … provide a record of everything you did during your data analysis.
• … can easily be edited and re-run.
• … allow you to leave notes for yourself.
• … make it easy to reuse and adapt analyses.
• … allow you to do more complex analyses.
• … make it easy to share your work with others.

29

3. …writing R scripts

3.3. Create, write, and run R scripts

3.3.1. Create

3 equivalent ways to create a script

1. Use the menu: File > New File > R Script
2. Use the keyboard shortcut: Ctrl+Shift+N (Windows/Linux) or Cmd+Shift+N

(Mac) or
3. Type the following in the console:

file.create("hello.R")

In the first two ways, a new R script window will open which can be edited and should be saved
either by clicking on the File menu and selecting Save, clicking the disk icon, or by using the
shortcut Ctrl+S (Windows/Linux) or Cmd+S (Mac). If you go for the third way, you need to
open it manually.

3.3.2. Write

Regardless of your preferred way of generating a script, we can now start writing our first
script:

x <- "hello world"
print(x)

Then save the script using the menus (File > Save) as hello.R.

The above lines of code do the following:

• With the assignment operator <- we create an object that stores the words “hello world”
in an object entitled x. In Section 7.1.1 the assignment operator is further explained.

• With the third input we print the content of the object x.

3.3.3. Run

So how do we run the script? Assuming that the hello.R file has been saved to your working
directory, then you can run the script using the following command:

source("hello.R")

Suppose you saved the script in a sub-folder called scripts of your working directory, then you
need to run the script using the following command:

source("./scripts/hello.R")

30

3. …writing R scripts

Just note that the dot, ., means the current folder. Instead of using the source function, you
can click on the source button in Rstudio.

With the character # you can write a comment in a script and R will simply ignore everything
that follows in that line onwards.

Exercise 3.1. Run a script and round numbers
Please copy and paste the following lines of code into an R script, run it on your computer,
and try to understand how it works.

Create a vector that contains the sales data
sales_by_month <- c(0, 100, 200, 50, 3, 4, 8, 0, 0, 0, 0, 0)
sales_by_month
sales_by_month[2]
sales_by_month[4]
february_sales <- sales_by_month[2]
february_sales
sales_by_month[5] <- 25 # added May sales data
sales_by_month
Do I have 12 month?
length(x = sales_by_month)
Assume each unit costs 7 Euro, then the revenue is
price <- 7
revenue <- sales_by_month*price
revenue
To get statistics for daily revenue we define the number of days:
days_per_month <- c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
Calculate the daily revenue
revenue_per_day <- revenue/days_per_month
revenue_per_day
round number
round(revenue_per_day)

Use the “?” to search for the documentation of all functions used. In particular, do you
understand how the function round() works? What arguments does the function contain?
How can you manipulate the pre-defined arguments. For example, can you calculate the
rounded revenue per day with two or four digits? Try it out!

?round()

Solution

round(revenue_per_day, digits = 4)

3.4. What to do at the header of each script

At the beginning of each script, ensure that all required packages are loaded correctly. Use
the pacman package, which provides the p_load() function to load and, if necessary, install

31

3. …writing R scripts

packages, and the p_unload(all) function to unload all packages. Additionally, set your work-
ing directory with setwd() and clear all objects from the environment with rm(list = ls()).
This ensures that everything in the environment after sourcing the script originates from the
script itself. Below is the code that I use at the beginning of all my scripts. I recommend you
do the same.

Tip 5: Start your script with

if (!require(pacman)) install.packages("pacman")
pacman::p_unload(all)
pacman::p_load(tidyverse, janitor)
setwd("~/your-directory/")
rm(list = ls())

32

Part II.

Basics of coding

33

4. Interactive introduction with swirl

This section is designed to kickstart your journey into data science with R through the R package
swirl that offers an interactive learning platform. swirl teaches you R programming and data
science interactively, at your own pace, and right in the R console! You get immediate feedback
on your progress. If you are new to R, have no fear. swirl will walk you through each of the
steps required to employ Rstudio and R for your purpose.

For those seeking additional or alternative resources beyond swirl, exploring other introductory
textbooks and resources on R is highly recommended. Please consider the resources I discuss
in Section 1.3. One notable example is Irizarry [2022] who provides a comprehensive and
conservative approach to understanding R.

4.1. Set up swirl

To install swirl and my learning modules, please follow my instructions precisely!

Open Rstudio and type in the console the following:

install.packages("swirl")
library("swirl")
install_course_github("hubchev", "swirl-it")
swirl()

The above four lines of code do the following:

• Install the swirl package, ensuring it’s available for use in R.
• Load the swirl package, making its functions accessible.
• Install my swirl course that is hosted on GitHub, making its functions accessible.
• By entering swirl into the Console (located at the bottom-left in RStudio) and pressing

the Enter key, you initiate swirl. This begins your interactive learning experience with
the package.

Tip 3: If the course has failed to install,

you can try to download the file swirl-it.swc from github.com/hubchev/swirl-it and
install the course with loading the swirl package and typing install_course() into the
console.

After initiating the swirl environment, follow the instructions displayed in the Console. Specif-
ically, select the swirl-it course and the huber-intro-1 learning module to begin. You can exit
swirl at any moment by typing bye() into the Console or pressing the Esc key on your key-
board.

34

https://github.com/hubchev/swirl-it

4. Interactive introduction with swirl

4.2. swirl-it: huber-intro-1

Click to see the full content of the module

Welcome to this swirl course. If you find any errors or if you have suggestions for improve-
ment, please let me know via stephan.huber@hs-fresenius.de.
The RStudio interface consists of several windows. You can change the size of the windows
by dragging the grey bars between the windows. We’ll go through the most important
windows now.
Bottom left is the Console window (also called command window/line). Here you can type
commands after the > prompt and R will then execute your command. This is the most
important window, because this is where R actually does stuff.
Top left is the Editor window (also called script window). Here collections of commands
(scripts) can be edited and saved. When you do not get this window, you can open it with
‘File’ > ‘New’ > ‘R script’.
Just typing a command in the editor window is not enough, it has to be send to the Console
before R executes the command. If you want to run a line from the script window (or the
whole script), you can click ‘Run’ or press ‘CTRL+ENTER’ to send it to the command
window.
The shortcut to send the current line to the console and run it there is _________.

a) CTRL+SHIFT
b) CTRL+ENTER
c) CTRL+SPACE
d) SHIFT+ENTER

Hint: You find all shortcuts in the menu at Tools > Keyboard Shortcuts Help or click
ALT+SHIFT+K. If you are a Mac user, your shortcut is ‘Cmd+Return’ instead of
‘SHIFT+ENTER’. To move on type skip().

Solution

answer: b

Top right is the environment window (a.k.a workspace). Here you can see which data R
has in its memory. You can view and edit the values by clicking on them.
Bottom right is the plots / packages / help window. Here you can view plots, install and
load packages or use the help function.
The first thing you should do whenever you start Rstudio is to check if you are happy with
your working directory. That directory is the folder on your computer in which you are
currently working. That means, when you ask R to open a certain file, it will look in the
working directory for this file, and when you tell R to save a data file or figure, it will save
it in the working directory.
You can check your working directory with the function getwd(). So let’s do that. Type
in the command window getwd() .

getwd()

[1] "/home/sthu/Dropbox/hsf/courses/dsr"

Are you happy with that place? if not, you should set your working directory to where all
your data and script files are (or will be). Within RStudio you can go to ‘Session’ > ‘Set
working directory’ > ‘Choose directory’. Please do this now.

35

4. Interactive introduction with swirl

Instead of clicking, you can use the function setwd("/YOURPATH"). For example,
setwd("/Users/MYNAME/MYFOLDER") or setwd("C:/Users/jenny/myrstuff"). Make
sure that the slashes are forward slashes and that you do not forget the apostrophes.
R is case sensitive, so make sure you write capitals where necessary.
Whenever you want R to do something you need to use a function. It is like a command.
All functions of R are organized in so-called packages or libraries. With the standard
installation many packages are already installed. However, many more exist and some of
them are really cool. For example, with installed.packages() all installed packages are
listed. Or, with swirl(), you started swirl.
Of course, you can also go to the Packages window at the bottom right. If the box in front
of the package name is ticked, the package is loaded (activated) and can be used. To see
via Console which packages are loaded type in the console (.packages())

(.packages())

[1] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
[7] "base"

There are many more packages available on the R website. If you want to install and use
a package (for example, the package called geometry) you should first install the package.
Type install.packages("geometry") in the console. Don’t be afraid about the many
messages. Depending on your PC and your internet connection this may take some time.

install.packages("geometry")

After having installed a package, you need to load the package. That is a bit annoying
but essential. Type in library("geometry") in the Console. You also did this for the
swirl package (otherwise you couldn’t have been doing these exercises).

library("geometry")

Check if the package is loaded typing (.packages())

(.packages())

Now, let’s get started with the real programming.
R can be used as a calculator. You can just type your equation in the command window
after the >. Type 10^2 + 36.

10^2 + 36

[1] 136

And R gave the answer directly. By the way, spaces do not matter.
If you use brackets and forget to add the closing bracket, the > on the command line
changes into a +. The + can also mean that R is still busy with some heavy computation.
If you want R to quit what it was doing and give back the >, press ESC.
You can also give numbers a name. By doing so, they become so-called variables which
can be used later. For example, you can type in the command window A <- 4.

A <- 4

36

4. Interactive introduction with swirl

The <- is the so-called assignment operator. It allows you to assign data to a named object
in order to store the data.
Don’t be confussed about the term object. All sorts of data are stored in so-called objects
in R. All objects of a session are shown in the Environment window. In the second part
of this course, I will introduce different data types.
You can see that A appeared in the environment window in the top right corner, which
means that R now remembers what A is.
You can also ask R what A is. Just type A in the command window.

A

[1] 4

You can also do calculations with A. Type A * 5 .

A * 5

[1] 20

If you specify A again, it will forget what value it had before. You can also assign a new
value to A using the old one. Type A <- A + 10 .

A <- A + 10

You can see that the value in the environment window changed.
To remove all variables from R’s memory, type rm(list=ls()) .

rm(list = ls())

You see that the environment window is now empty. You can also click the broom icon
(clear all) in the environment window. You can see that RStudio then empties the
environment window. If you only want to remove the variable A, you can type rm(A).
Like in many other programs, R organizes numbers in scalars (a single number, 0-
dimensional), vectors (a row of numbers, also called arrays, 1-dimensional) and matrices
(like a table, 2-dimensional).
The A you defined before was a scalar. To define a vector with the numbers 3, 4 and 5, you
need the function c(), which is short for concatenate (paste together). Type B=c(3,4,5).

B <- c(3, 4, 5)

If you would like to compute the mean of all the elements in the vector B from the example
above, you could type (3+4+5)/3. Try this

(3 + 4 + 5) / 3

[1] 4

But when the vector is very long, this is very boring and time-consuming work. This is why
things you do often are automated in so-called functions. For example, type mean(x=B)
and guess what this function mean() can do for you.

mean(x = B)

37

4. Interactive introduction with swirl

[1] 4

Within the brackets you specify the arguments. Arguments give extra information to the
function. In this case, the argument x says of which set of numbers (vector) the mean
should be computed (namely of B). Sometimes, the name of the argument is not necessary;
mean(B) works as well. Try it.

mean(B)

[1] 4

Compute the sum of 4, 5, 8 and 11 by first combining them into a vector and then using
the function sum. Use the function c inside the function sum.

sum(c(4, 5, 8, 11))

[1] 28

The function rnorm, as another example, is a standard R function which creates random
samples from a normal distribution. Type rnorm(10) and you will see 10 random numbers

rnorm(10)

[1] -0.8462885 -0.4935327 0.9338698 1.8779053 -0.5766011 1.0768528
[7] -0.4758123 1.3445777 -0.7367863 0.1692006

Here rnorm is the function and the 10 is an argument specifying how many random numbers
you want - in this case 10 numbers (typing n=10 instead of just 10 would also work). The
result is 10 random numbers organised in a vector with length 10.
If you want 10 random numbers out of normal distribution with mean 1.2 and standard
deviation 3.4 you can type rnorm(10, mean=1.2, sd=3.4). Try this.

rnorm(10, mean = 1.2, sd = 3.4)

[1] 7.1268596 -3.3637419 -7.5968553 3.5095991 -0.6394695 7.2545035
[7] -1.0008906 5.7231421 -2.7122617 -0.8327368

This shows that the same function (rnorm()) may have different interfaces and that R has
so called named arguments (in this case mean and sd).
Comparing this example to the previous one also shows that for the function rnorm only
the first argument (the number 10) is compulsory, and that R gives default values to the
other so-called optional arguments. Use the help function to see which values are used as
default by typing ?rnorm.

?rnorm

You see the help page for this function in the help window on the right. RStudio has a
nice features such as autocompletion and snapshots of the R documentation. For example,
when you type rnorm(in the command window and press TAB, RStudio will show the
possible arguments.
You can also store the output of the function in a variable. Type x=rnorm(100).

38

4. Interactive introduction with swirl

x <- rnorm(100)

Now 100 random numbers are assigned to the variable x, which becomes a vector by this
operation. You can see it appears in the Environment window.
R can also make graphs. Type plot(x) for a very simple example.

plot(x)

0 20 40 60 80 100

−
4

−
2

0
1

2

Index

x

The 100 random numbers are now plotted in the plots window on the right.
You now are more familiar to RStudio and you know some basic R stuff. In particular,
you know…
…that everything in R is said with functions,
…that functions can but don’t have to have arguments,
…that you can install packages which contain functions,
…that you must load the installed packages every time you start a session in RStudio, and
…that this is just the beginning. Thus, please continue with the second module of this
introduction.

After you have successfully finished learning module huber-intro-1 please go ahead with the
learning module huber-intro-2 that is also part of my swirl course swirl-it.

4.3. swirl-it: huber-intro-2

Click to see the full content of the module

Welcome to the second module. Again, if you find any errors or if you have suggestions
for improvement, please let me know via stephan.huber@hs-fresenius.de .
Before you start working, you should set your working directory to where all your data
and script files are or should be stored. Within RStudio you can go to ‘Session’> ‘Set
working directory’, or you can type in setwd(YOURPATH). Please do this now.

setwd("/home/sthu/Documents/mydir")

Hint: Instead of clicking, you can also type setwd(“path”), where you replace “path” with
the location of your folder, for example setwd(“D:/R/swirl”).
R is an interpreter that uses a command line based environment. This means that you

39

4. Interactive introduction with swirl

have to type commands, rather than use the mouse and menus. This has many advantages.
Foremost, it is easy to get a full transcript of everything you did and you can replicate
your work easy.
As already mentioned, all commands in R are functions where arguments come (or do not
come) in round brackets after the function name.
You can store your workflow in files, the so-called scripts. These scripts have typically file
names with the extension, e.g., foo.R .
You can open an editor window to edit these files by clicking ‘File’ and ‘New’. Try this.
Under ‘File’ you also find the options ‘Open file…’, ‘Save’ and ‘Save as’. Alternatively, just
type CTRL+SHIFT+N.
You can run (send to the Console window) part of the code by selecting lines and pressing
CTRL+ENTER or click ‘Run’ in the editor window. If you do not select anything, R will
run the line your cursor is on.
You can always run the whole script with the console command source, so e.g. for the
script in the file foo.R you type source(‘foo.R’). You can also click ‘Run all’ in the editor
window or type CTRL+SHIFT+S to run the whole script at once.
Make a script called firstscript.R. Therefore, open the editor window with ‘File’ > ‘New’.
Type plot(rnorm(100)) in the script, save it as firstscript.R in the working directory.
Then type source("firstscript.R") on the command line.

source("firstscript.R")

Run your script again with source("firstscript.R"). The plot will change because new
numbers are generated.

source("firstscript.R")

Hint: Type source(“firstscript.R”) again or type skip() if you are not interested.
Vectors were already introduced, but they can do more. Make a vector with numbers 1, 4,
6, 8, 10 and call it vec1.
Hint: Type vec1 <- c(1,4,6,8,10).

vec1 <- c(1, 4, 6, 8, 10)

Elements in vectors can be addressed by standard [i] indexing. Select the 5th element of
this vector by typing vec1[5].

vec1[5]

Replace the 3rd element with a new number by typing vec1[3]=12.

vec1[3] <- 12

Ask R what the new version is of vec1.

vec1

You can also see the numbers of vec1 in the environment window. Make a new vector
vec2 using the seq() (sequence) function by typing seq(from=0, to=1, by=0.25) and
check its values in the environment window.
Hint: Type vec2 <- seq(from=0, to=1, by=0.25).

40

4. Interactive introduction with swirl

vec2 <- seq(from = 0, to = 1, by = 0.25)

Type sum(vec1).

sum(vec1)

The function sum sums up the elements within a vector, leading to one number (a scalar).
Now use + to add the two vectors.
Hint: Type vec1 + vec2.

vec1 + vec2

If you add two vectors of the same length, the first elements of both vectors are summed,
and the second elements, etc., leading to a new vector of length 5 (just like in regular
vector calculus).
Matrices are nothing more than 2-dimensional vectors. To define a matrix, use the function
matrix. Make a matrix with matrix(data=c(9,2,3,4,5,6),ncol=3) and call it mat.
Hint: Type mat <- matrix(data=c(9,2,3,4,5,6),ncol=3) or type skip() if you are
not interested.

mat <- matrix(data = c(9, 2, 3, 4, 5, 6), ncol = 3)

The third type of data structure treated here is the data frame. Time series are often
ordered in data frames. A data frame is a matrix with names above the columns. This is
nice, because you can call and use one of the columns without knowing in which position
it is. Make a data frame with t = data.frame(x = c(11,12,14), y = c(19,20,21),
z = c(10,9,7)).

t <- data.frame(x = c(11, 12, 14), y = c(19, 20, 21), z = c(10, 9, 7))

Ask R what t is.
Hint: Type t or skip() if you are not interested.

t

The data frame is called t and the columns have the names x, y and z. You can select one
column by typing t$z. Try this.

t$z

Another option is to type t[["z"]]. Try this as well.

t[["z"]]

Compute the mean of column z in data frame t.
Hint: Use function mean or type skip() if you are not interested.

mean(t$z)

In the following question you will be asked to modify a script that will appear as soon as
you move on from this question. When you have finished modifying the script, save your

41

4. Interactive introduction with swirl

changes to the script and type submit() and the script will be evaluated. There will be
some comments in the script that opens up. Be sure to read them!
Make a script file which constructs three random normal vectors of length 100. Call these
vectors x1, x2 and x3. Make a data frame called t with three columns (called a, b and c)
containing respectively x1, x1+x2 and x1+x2+x3. Call plot(t) for this data frame. Then,
save it and type submit() on the command line.
Hint: Type plot(rnorm(100)) in the script, save it and type submit() on the command line.

Text behind the #-sign is not evaluated as code by R.
This is useful, because it allows you to add comments explaining what the script does.

In this script, replace the ... with the appropriate commands.

x1 <- ...
x2 <- ...
x3 <- ...
t <- ...
plot(...)

Result

Text behind the #-sign is not evaluated as code by R.
This is useful, because it allows you to add comments explaining what the script does.

In this script, replace the ... with the appropriate commands.

x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
t <- data.frame(a = x1, b = x1 + x2, c = x1 + x2 + x3)
plot(t)

Do you understand the results?
Another basic structure in R is a list. The main advantage of lists is that the columns
(they are not really ordered in columns any more, but are more a collection of vectors)
don’t have to be of the same length, unlike matrices and data frames. Make this list L <-
list(one=1, two=c(1,2), five=seq(0, 1, length=5)).

L <- list(one = 1, two = c(1, 2), five = seq(0, 1, length = 5))

The list L has names and values. You can type L to see the contents.

L

L also appeared in the environment window. To find out what’s in the list, type names(L).

names(L)

Add 10 to the column called five.
Hint: Type L$five + 10

42

4. Interactive introduction with swirl

L$five + 10

Plotting is an important statistical activity. So it should not come as a surprise that R
has many plotting facilities. Type plot(rnorm(100), type="l", col="gold").
Hint: The symbol between quotes after the type=, is the letter l, not the number 1. To see
the result you can also just type skip().

plot(rnorm(100), type = "l", col = "gold")

Hundred random numbers are plotted by connecting the points by lines in a gold color.
Another very simple example is the classical statistical histogram plot, generated by the
simple command hist. Make a histogram of 100 random numbers.
Hint: Type hist(rnorm(100))

hist(rnorm(100))

The script that opens up is the same as the script you made before, but with more plotting
commands. Type submit() on the command line to run it (you don’t have to change
anything yet).
Hint: Change plotting parameters in the script, save it and type submit() on the command
line.

Text behind the #-sign is not evaluated as code by R.
This is useful, because it allows you to add comments explaining what the script does.

Make data frame
x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
t <- data.frame(a = x1, b = x1 + x2, c = x1 + x2 + x3)

Plot data frame
plot(t$a, type = "l", ylim = range(t), lwd = 3, col = rgb(1, 0, 0, 0.3))
lines(t$b, type = "s", lwd = 2, col = rgb(0.3, 0.4, 0.3, 0.9))
points(t$c, pch = 20, cex = 4, col = rgb(0, 0, 1, 0.3))

Note that with plot you get a new plot window while points and lines add to the previous plot.

Try to find out by experimenting what the meaning is of rgb, the last argument of rgb,
lwd, pch, cex. Type play() on the command line to experiment. Modify lines 11, 12 and
13 of the script by putting your cursor there and pressing CTRL+ENTER. When you are
finished, type nxt() and then ?par.
Hint: Type ?par or type skip() if you are not interested.

?par

You searched for par in the R help. This is a useful page to learn more about formatting
plots. Google ‘R color chart’ for a pdf file with a wealth of color options.
To copy your plot to a document, go to the plots window, click the ‘Export’ button, choose
the nicest width and height and click ‘Copy’ or ‘Save’.

43

4. Interactive introduction with swirl

After having almost completed the second learning module, you are getting closer to
become a nerd as you know…
…that everything in R is stored in objects (values, vectors, matrices, lists, or data frames),
…that you should always work in scripts and send code from scripts to the Console,
…that you can do it if you don’t give up.
Please continue choosing another swirl learning module.

4.4. swirl-it: Data analytical basics

In my swirl modules huber-data-1, huber-data-2, and huber-data-3 I introduce some very basic
statistical principles on how to analyse data.

4.5. swirl-it: The tidyverse package

I compiled a short swirlmodule to introduce the tidyverse universe. This is a powerful collection
of packages which I discuss later on. The learning module is also part of my swirl-it course.

4.6. Other swirl modules

You can also install some other courses. You find a list of courses here http://swirlstats.com/scn/index.html
or here https://github.com/swirldev/swirl_courses.

I recommend this one as it gives a general overview on very basic principles of R:

library(swirl)
install_course_github("swirldev", "R_Programming_E")
swirl()

44

5. Kickstart

Ever got a kick that actually moved you forward? Well, let’s kickstart your R adventure by
walking you through a typical data analysis workflow in R, covering everything from setting
up your environment to performing data analysis and visualization. Along the way, we’ll also
tackle some common troubleshooting to smooth out any bumps in the road. Please don’t worry
if you don’t understand some lines of code. You will learn that later on, however, you hopefully
will get a sense of what it is like to work with a command line based program.

5.1. Analysing the association of weight and the price of cars

Before we start, we need to ensure that all necessary libraries are installed and loaded. We use
the pacman package for convenient package management.

Install and load required libraries
Installs 'pacman' if not already available, which is used for package management
if (!require(pacman)) install.packages("pacman")

Unload all previously loaded packages to start fresh
suppressMessages(pacman::p_unload(all))

Load necessary packages for data manipulation, cleaning, and visualization
pacman::p_load(

tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.

)

Set the working directory to a project-specific folder
setwd("~/Dropbox/hsf/courses/dsr")

Clear the current environment of any objects
rm(list = ls())

Now, let us load the dataset from a Stata file (auto.dta) and explore its basic properties.

Load data from a Stata file available online
auto <- read_dta("http://www.stata-press.com/data/r18/auto.dta")
'auto': Dataset contains information about different car models

Display basic information about the dataset
ncol(auto) # Number of columns

45

5. Kickstart

[1] 12

nrow(auto) # Number of rows

[1] 74

dim(auto) # Dimensions of the dataset

[1] 74 12

names(auto) # Names of variables

[1] "make" "price" "mpg" "rep78" "headroom"
[6] "trunk" "weight" "length" "turn" "displacement"
[11] "gear_ratio" "foreign"

head(auto) # First few rows

A tibble: 6 x 12
make price mpg rep78 headroom trunk weight length turn displacement
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 AMC Concord 4099 22 3 2.5 11 2930 186 40 121
2 AMC Pacer 4749 17 3 3 11 3350 173 40 258
3 AMC Spirit 3799 22 NA 3 12 2640 168 35 121
4 Buick Centu~ 4816 20 3 4.5 16 3250 196 40 196
5 Buick Elect~ 7827 15 4 4 20 4080 222 43 350
6 Buick LeSab~ 5788 18 3 4 21 3670 218 43 231
i 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>

tail(auto) # Last few rows

A tibble: 6 x 12
make price mpg rep78 headroom trunk weight length turn displacement
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Toyota Coro~ 5719 18 5 2 11 2670 175 36 134
2 VW Dasher 7140 23 4 2.5 12 2160 172 36 97
3 VW Diesel 5397 41 5 3 15 2040 155 35 90
4 VW Rabbit 4697 25 4 3 15 1930 155 35 89
5 VW Scirocco 6850 25 4 2 16 1990 156 36 97
6 Volvo 260 11995 17 5 2.5 14 3170 193 37 163
i 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>

summary(auto) # Summary statistics for each column

46

5. Kickstart

make price mpg rep78
Length:74 Min. : 3291 Min. :12.00 Min. :1.000
Class :character 1st Qu.: 4220 1st Qu.:18.00 1st Qu.:3.000
Mode :character Median : 5006 Median :20.00 Median :3.000

Mean : 6165 Mean :21.30 Mean :3.406
3rd Qu.: 6332 3rd Qu.:24.75 3rd Qu.:4.000
Max. :15906 Max. :41.00 Max. :5.000

NA's :5
headroom trunk weight length turn

Min. :1.500 Min. : 5.00 Min. :1760 Min. :142.0 Min. :31.00
1st Qu.:2.500 1st Qu.:10.25 1st Qu.:2250 1st Qu.:170.0 1st Qu.:36.00
Median :3.000 Median :14.00 Median :3190 Median :192.5 Median :40.00
Mean :2.993 Mean :13.76 Mean :3019 Mean :187.9 Mean :39.65
3rd Qu.:3.500 3rd Qu.:16.75 3rd Qu.:3600 3rd Qu.:203.8 3rd Qu.:43.00
Max. :5.000 Max. :23.00 Max. :4840 Max. :233.0 Max. :51.00

displacement gear_ratio foreign
Min. : 79.0 Min. :2.190 Min. :0.0000
1st Qu.:119.0 1st Qu.:2.730 1st Qu.:0.0000
Median :196.0 Median :2.955 Median :0.0000
Mean :197.3 Mean :3.015 Mean :0.2973
3rd Qu.:245.2 3rd Qu.:3.353 3rd Qu.:1.0000
Max. :425.0 Max. :3.890 Max. :1.0000

glimpse(auto) # Compact display of the structure of the dataset

Rows: 74
Columns: 12
$ make <chr> "AMC Concord", "AMC Pacer", "AMC Spirit", "Buick Century"~
$ price <dbl> 4099, 4749, 3799, 4816, 7827, 5788, 4453, 5189, 10372, 40~
$ mpg <dbl> 22, 17, 22, 20, 15, 18, 26, 20, 16, 19, 14, 14, 21, 29, 1~
$ rep78 <dbl> 3, 3, NA, 3, 4, 3, NA, 3, 3, 3, 3, 2, 3, 3, 4, 3, 2, 2, 3~
$ headroom <dbl> 2.5, 3.0, 3.0, 4.5, 4.0, 4.0, 3.0, 2.0, 3.5, 3.5, 4.0, 3.~
$ trunk <dbl> 11, 11, 12, 16, 20, 21, 10, 16, 17, 13, 20, 16, 13, 9, 20~
$ weight <dbl> 2930, 3350, 2640, 3250, 4080, 3670, 2230, 3280, 3880, 340~
$ length <dbl> 186, 173, 168, 196, 222, 218, 170, 200, 207, 200, 221, 20~
$ turn <dbl> 40, 40, 35, 40, 43, 43, 34, 42, 43, 42, 44, 43, 45, 34, 4~
$ displacement <dbl> 121, 258, 121, 196, 350, 231, 304, 196, 231, 231, 425, 35~
$ gear_ratio <dbl> 3.58, 2.53, 3.08, 2.93, 2.41, 2.73, 2.87, 2.93, 2.93, 3.0~
$ foreign <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~

print(auto, n = Inf) # Print all rows of the dataset

A tibble: 74 x 12
make price mpg rep78 headroom trunk weight length turn displacement
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 AMC Concord 4099 22 3 2.5 11 2930 186 40 121
2 AMC Pacer 4749 17 3 3 11 3350 173 40 258
3 AMC Spirit 3799 22 NA 3 12 2640 168 35 121

47

5. Kickstart

4 Buick Cent~ 4816 20 3 4.5 16 3250 196 40 196
5 Buick Elec~ 7827 15 4 4 20 4080 222 43 350
6 Buick LeSa~ 5788 18 3 4 21 3670 218 43 231
7 Buick Opel 4453 26 NA 3 10 2230 170 34 304
8 Buick Regal 5189 20 3 2 16 3280 200 42 196
9 Buick Rivi~ 10372 16 3 3.5 17 3880 207 43 231
10 Buick Skyl~ 4082 19 3 3.5 13 3400 200 42 231
11 Cad. Devil~ 11385 14 3 4 20 4330 221 44 425
12 Cad. Eldor~ 14500 14 2 3.5 16 3900 204 43 350
13 Cad. Sevil~ 15906 21 3 3 13 4290 204 45 350
14 Chev. Chev~ 3299 29 3 2.5 9 2110 163 34 231
15 Chev. Impa~ 5705 16 4 4 20 3690 212 43 250
16 Chev. Mali~ 4504 22 3 3.5 17 3180 193 31 200
17 Chev. Mont~ 5104 22 2 2 16 3220 200 41 200
18 Chev. Monza 3667 24 2 2 7 2750 179 40 151
19 Chev. Nova 3955 19 3 3.5 13 3430 197 43 250
20 Dodge Colt 3984 30 5 2 8 2120 163 35 98
21 Dodge Dipl~ 4010 18 2 4 17 3600 206 46 318
22 Dodge Magn~ 5886 16 2 4 17 3600 206 46 318
23 Dodge St. ~ 6342 17 2 4.5 21 3740 220 46 225
24 Ford Fiesta 4389 28 4 1.5 9 1800 147 33 98
25 Ford Musta~ 4187 21 3 2 10 2650 179 43 140
26 Linc. Cont~ 11497 12 3 3.5 22 4840 233 51 400
27 Linc. Mark~ 13594 12 3 2.5 18 4720 230 48 400
28 Linc. Vers~ 13466 14 3 3.5 15 3830 201 41 302
29 Merc. Bobc~ 3829 22 4 3 9 2580 169 39 140
30 Merc. Coug~ 5379 14 4 3.5 16 4060 221 48 302
31 Merc. Marq~ 6165 15 3 3.5 23 3720 212 44 302
32 Merc. Mona~ 4516 18 3 3 15 3370 198 41 250
33 Merc. XR-7 6303 14 4 3 16 4130 217 45 302
34 Merc. Zeph~ 3291 20 3 3.5 17 2830 195 43 140
35 Olds 98 8814 21 4 4 20 4060 220 43 350
36 Olds Cutl ~ 5172 19 3 2 16 3310 198 42 231
37 Olds Cutla~ 4733 19 3 4.5 16 3300 198 42 231
38 Olds Delta~ 4890 18 4 4 20 3690 218 42 231
39 Olds Omega 4181 19 3 4.5 14 3370 200 43 231
40 Olds Starf~ 4195 24 1 2 10 2730 180 40 151
41 Olds Toron~ 10371 16 3 3.5 17 4030 206 43 350
42 Plym. Arrow 4647 28 3 2 11 3260 170 37 156
43 Plym. Champ 4425 34 5 2.5 11 1800 157 37 86
44 Plym. Hori~ 4482 25 3 4 17 2200 165 36 105
45 Plym. Sapp~ 6486 26 NA 1.5 8 2520 182 38 119
46 Plym. Vola~ 4060 18 2 5 16 3330 201 44 225
47 Pont. Cata~ 5798 18 4 4 20 3700 214 42 231
48 Pont. Fire~ 4934 18 1 1.5 7 3470 198 42 231
49 Pont. Gran~ 5222 19 3 2 16 3210 201 45 231
50 Pont. Le M~ 4723 19 3 3.5 17 3200 199 40 231
51 Pont. Phoe~ 4424 19 NA 3.5 13 3420 203 43 231
52 Pont. Sunb~ 4172 24 2 2 7 2690 179 41 151
53 Audi 5000 9690 17 5 3 15 2830 189 37 131
54 Audi Fox 6295 23 3 2.5 11 2070 174 36 97

48

5. Kickstart

55 BMW 320i 9735 25 4 2.5 12 2650 177 34 121
56 Datsun 200 6229 23 4 1.5 6 2370 170 35 119
57 Datsun 210 4589 35 5 2 8 2020 165 32 85
58 Datsun 510 5079 24 4 2.5 8 2280 170 34 119
59 Datsun 810 8129 21 4 2.5 8 2750 184 38 146
60 Fiat Strada 4296 21 3 2.5 16 2130 161 36 105
61 Honda Acco~ 5799 25 5 3 10 2240 172 36 107
62 Honda Civic 4499 28 4 2.5 5 1760 149 34 91
63 Mazda GLC 3995 30 4 3.5 11 1980 154 33 86
64 Peugeot 604 12990 14 NA 3.5 14 3420 192 38 163
65 Renault Le~ 3895 26 3 3 10 1830 142 34 79
66 Subaru 3798 35 5 2.5 11 2050 164 36 97
67 Toyota Cel~ 5899 18 5 2.5 14 2410 174 36 134
68 Toyota Cor~ 3748 31 5 3 9 2200 165 35 97
69 Toyota Cor~ 5719 18 5 2 11 2670 175 36 134
70 VW Dasher 7140 23 4 2.5 12 2160 172 36 97
71 VW Diesel 5397 41 5 3 15 2040 155 35 90
72 VW Rabbit 4697 25 4 3 15 1930 155 35 89
73 VW Scirocco 6850 25 4 2 16 1990 156 36 97
74 Volvo 260 11995 17 5 2.5 14 3170 193 37 163
i 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>

The data seems to be a cross-section of cars. Let us check if the variable make identifies each
line uniquely:

Check for duplicate entries based on the 'make' variable
auto |>

get_dupes(make)

No duplicate combinations found of: make

A tibble: 0 x 13
i 13 variables: make <chr>, dupe_count <int>, price <dbl>, mpg <dbl>,
rep78 <dbl>, headroom <dbl>, trunk <dbl>, weight <dbl>, length <dbl>,
turn <dbl>, displacement <dbl>, gear_ratio <dbl>, foreign <dbl+lbl>

Indeed, the variable make has no duplicates. Now, let’s make and save some graphical visual-
izations:

Create and display a scatter plot of car price versus weight
plot_weight_price <- ggplot(auto, aes(x = weight, y = price)) +

geom_point()
plot_weight_price

49

5. Kickstart

4000

8000

12000

16000

2000 3000 4000
weight

pr
ic

e

Save the plot to a file
ggsave("fig/plot_weight_price.png", plot = plot_weight_price, dpi = 300)

Saving 5.5 x 3.5 in image

Create a scatter plot with a linear regression line of price vs weight
plot_weight_price_fit <- ggplot(auto, aes(x = weight, y = price)) +

geom_point() +
geom_smooth(method = lm, se = FALSE) # 'lm' denotes linear model, 'se' is standard error

plot_weight_price_fit

`geom_smooth()` using formula = 'y ~ x'

4000

8000

12000

16000

2000 3000 4000
weight

pr
ic

e

50

5. Kickstart

Save the plot to a file
ggsave("fig/plot_weight_price_fit.png", plot = plot_weight_price_fit, dpi = 300)

Saving 5.5 x 3.5 in image
`geom_smooth()` using formula = 'y ~ x'

Let us perform a linear regression to quantify the impact of weight on price:

Perform a linear regression to analyze the relationship between weight and price
reg_result <- lm(price ~ weight , data = auto)
summary(reg_result) # Display the regression results

Call:
lm(formula = price ~ weight, data = auto)

Residuals:
Min 1Q Median 3Q Max

-3341.9 -1828.3 -624.1 1232.1 7143.7

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.7074 1174.4296 -0.006 0.995
weight 2.0441 0.3768 5.424 7.42e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2502 on 72 degrees of freedom
Multiple R-squared: 0.2901, Adjusted R-squared: 0.2802
F-statistic: 29.42 on 1 and 72 DF, p-value: 7.416e-07

5.2. Accessing World Bank’s World Development Indicators

The World Wide Web is a treasure trove of data, and most major databases offer researchers
direct download options. Numerous user-supplied packages are available for seamless access to
such data. In this section, I present two popular packages that facilitate the downloading of
data from the World Bank’s World Development Indicators:

WDI (World Development Indicators) Package - Official CRAN package documentation:
WDI on CRAN - Source code on GitHub: WDI GitHub Repository

wbstats (World Bank Statistics) Package - Official CRAN package documentation: wb-
stats on CRAN - Source code on GitHub: wbstats GitHub Repository

Now, let’s download some GDP data and explore how to manipulate it. This exercise will
demonstrate practical applications of the tools.

Search for GDP indicators and display the first 10
WDIsearch("gdp")[1:10,]

51

https://cran.r-project.org/web/packages/WDI/WDI.pdf
https://github.com/vincentarelbundock/WDI
https://cran.r-project.org/web/packages/wbstats/wbstats.pdf
https://cran.r-project.org/web/packages/wbstats/wbstats.pdf
https://github.com/gshs-ornl/wbstats

5. Kickstart

indicator name
712 5.51.01.10.gdp Per capita GDP growth
714 6.0.GDP_current GDP (current $)
715 6.0.GDP_growth GDP growth (annual %)
716 6.0.GDP_usd GDP (constant 2005 $)
717 6.0.GDPpc_constant GDP per capita, PPP (constant 2011 international $)
1557 BG.GSR.NFSV.GD.ZS Trade in services (% of GDP)
1558 BG.KAC.FNEI.GD.PP.ZS Gross private capital flows (% of GDP, PPP)
1559 BG.KAC.FNEI.GD.ZS Gross private capital flows (% of GDP)
1560 BG.KLT.DINV.GD.PP.ZS Gross foreign direct investment (% of GDP, PPP)
1561 BG.KLT.DINV.GD.ZS Gross foreign direct investment (% of GDP)

Retrieve GDP per capita data for specified countries and years
df_WDI <- WDI(

indicator = "NY.GDP.PCAP.KD",
country = c("MX", "CA", "US"),
start = 1960,
end = 2012

)

Plot GDP per capita over time for the specified countries
ggplot(df_WDI, aes(year, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita")

10000

20000

30000

40000

50000

1960 1970 1980 1990 2000 2010
Year

G
D

P
 p

er
 c

ap
ita country

Canada

Mexico

United States

Retrieve GDP per capita data for specified countries and years using the wbstats package
df_wb <- wb_data(

indicator = "NY.GDP.PCAP.KD",
country = c("MX", "CA", "US"),
start = 1960,
end = 2012,

52

5. Kickstart

return_wide = TRUE
)

Plot GDP per capita over time for the specified countries
ggplot(df_wb, aes(date, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita (constant 2010 US$)")

10000

20000

30000

40000

50000

1960 1970 1980 1990 2000 2010
Year

G
D

P
 p

er
 c

ap
ita

 (
co

ns
ta

nt
 2

01
0

U
S

$)

country

Canada

Mexico

United States

The latter graph appears empty. Why? Let’s take a closer look at the data to identify any
discrepancies that might explain this issue:

Look at the data types year and date are different:
glimpse(df_WDI)

Rows: 159
Columns: 5
$ country <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana~
$ iso2c <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "~
$ iso3c <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",~
$ year <int> 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2~
$ NY.GDP.PCAP.KD <dbl> 42319.63, 42043.51, 41165.57, 40377.82, 42067.80, 42106~

glimpse(df_wb)

Rows: 159
Columns: 9
$ iso2c <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "~
$ iso3c <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",~
$ country <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana~
$ date <dbl> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1~

53

5. Kickstart

$ NY.GDP.PCAP.KD <dbl> 14229.83, 14389.40, 15173.02, 15689.70, 16419.39, 17143~
$ unit <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ obs_status <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ footnote <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ last_updated <date> 2024-05-30, 2024-05-30, 2024-05-30, 2024-05-30, 2024-0~

The answer is: A lineplot with a character variable (date is <chr>) on the x-axis does not
work!

Now, let us manipulate the df_wb data so that the two dataset are equal:

df_wb_cln <- df_wb |>
Convert 'date' in df_wb from character to integer
mutate(year = as.integer(date)) |>
Since 'year' has been created, remove the original 'date' column
select(-date) |>
Relocate columns to organize the data frame
relocate(country, iso2c, iso3c, year, NY.GDP.PCAP.KD)

glimpse(df_WDI)

Rows: 159
Columns: 5
$ country <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana~
$ iso2c <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "~
$ iso3c <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",~
$ year <int> 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2~
$ NY.GDP.PCAP.KD <dbl> 42319.63, 42043.51, 41165.57, 40377.82, 42067.80, 42106~

glimpse(df_wb_cln)

Rows: 159
Columns: 9
$ country <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana~
$ iso2c <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "~
$ iso3c <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",~
$ year <int> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1~
$ NY.GDP.PCAP.KD <dbl> 14229.83, 14389.40, 15173.02, 15689.70, 16419.39, 17143~
$ unit <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ obs_status <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ footnote <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ last_updated <date> 2024-05-30, 2024-05-30, 2024-05-30, 2024-05-30, 2024-0~

Now it works:

Plot GDP per capita over time for the specified countries
ggplot(df_wb_cln, aes(year, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita (constant 2010 US$)")

54

5. Kickstart

10000

20000

30000

40000

50000

1960 1970 1980 1990 2000 2010
Year

G
D

P
 p

er
 c

ap
ita

 (
co

ns
ta

nt
 2

01
0

U
S

$)

country

Canada

Mexico

United States

Solution

The script uses the following functions: aes, as.integer, c, dim, geom_line, geom_point,
geom_smooth, get_dupes, ggplot, ggsave, glimpse, head, lm, mutate, names, ncol, nrow,
print, read_dta, relocate, select, setwd, summary, tail, wb, WDI, WDIsearch, xlab,
ylab.

55

5. Kickstart

R script

This script demonstrates a typical data analysis workflow in R

Install and load required libraries
Installs 'pacman' if not already available, which is used for package management
if (!require(pacman)) install.packages("pacman")

Unload all previously loaded packages to start fresh
suppressMessages(pacman::p_unload(all))

Load necessary packages for data manipulation, cleaning, and visualization
pacman::p_load(

tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.

)

Set the working directory to a project-specific folder
setwd("~/Dropbox/hsf/courses/dsr")

Clear the current environment of any objects
rm(list = ls())

Load data from a Stata file available online
auto <- read_dta("http://www.stata-press.com/data/r8/auto.dta")
'auto': Dataset contains information about different car models

Display basic information about the dataset
ncol(auto) # Number of columns
nrow(auto) # Number of rows
dim(auto) # Dimensions of the dataset
names(auto) # Names of variables
head(auto) # First few rows
tail(auto) # Last few rows
summary(auto) # Summary statistics for each column
glimpse(auto) # Compact display of the structure of the dataset
print(auto, n = Inf) # Print all rows of the dataset

Check for duplicate entries based on the 'make' variable
auto |>

get_dupes(make)

Create and display a scatter plot of car price versus weight
plot_weight_price <- ggplot(auto, aes(x = weight, y = price)) +

geom_point()
plot_weight_price

Save the plot to a file
ggsave("fig/plot_weight_price.png", plot = plot_weight_price, dpi = 300)

Create a scatter plot with a linear regression line of price vs weight
plot_weight_price_fit <- ggplot(auto, aes(x = weight, y = price)) +

geom_point() +
geom_smooth(method = lm, se = FALSE) # 'lm' denotes linear model, 'se' is standard error

plot_weight_price_fit

Save the plot to a file
ggsave("fig/plot_weight_price_fit.png", plot = plot_weight_price_fit, dpi = 300)

Perform a linear regression to analyze the relationship between weight and price
reg_result <- lm(price ~ weight, data = auto)
summary(reg_result) # Display the regression results

Load and demonstrate usage of World Development Indicators (WDI) data
Two different packages can help here:
WDI:
--- https://cran.r-project.org/web/packages/WDI/WDI.pdf
--- https://github.com/vincentarelbundock/WDI
wbstats:
--- https://cran.r-project.org/web/packages/wbstats/wbstats.pdf
--- https://github.com/gshs-ornl/wbstats
?WDI # Access documentation for the WDI package
?wbstats # # Access documentation for the wbstats package

Search for GDP indicators and display the first 10
WDIsearch("gdp")[1:10,]

Retrieve GDP per capita data for specified countries and years
df_WDI <- WDI(

indicator = "NY.GDP.PCAP.KD",
country = c("MX", "CA", "US"),
start = 1960,
end = 2012

)

Plot GDP per capita over time for the specified countries
ggplot(df_WDI, aes(year, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita")

Retrieve GDP per capita data for specified countries and years using the wbstats package
df_wb <- wb(

indicator = "NY.GDP.PCAP.KD",
country = c("MX", "CA", "US"),
start = 1960,
end = 2012,
return_wide = TRUE

)

Plot GDP per capita over time for the specified countries
ggplot(df_wb, aes(date, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita (constant 2010 US$)")

!!! This does not work !!!
Why?

Look at the data types year and date are different:
glimpse(df_WDI)
glimpse(df_wb)

Answer: A lineplot with a character variable on the x-axis does not work!

make the two dataframe equal:
df_wb_cln <- df_wb |>

Convert 'date' in df_wb from character to integer
mutate(year = as.integer(date)) |>
Since 'year' has been created, remove the original 'date' column
select(-date) |>
Relocate columns to organize the data frame
relocate(country, iso2c, iso3c, year, NY.GDP.PCAP.KD)

glimpse(df_WDI)
glimpse(df_wb_cln)

Now it works:
Plot GDP per capita over time for the specified countries
ggplot(df_wb_cln, aes(year, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita (constant 2010 US$)")

suppressMessages(pacman::p_unload(
tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.

))

56

5. Kickstart

Output of the R script

This script demonstrates a typical data analysis workflow in R

Install and load required libraries
Installs 'pacman' if not already available, which is used for package management
if (!require(pacman)) install.packages("pacman")

Unload all previously loaded packages to start fresh
suppressMessages(pacman::p_unload(all))

Load necessary packages for data manipulation, cleaning, and visualization
pacman::p_load(

tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.

)

Set the working directory to a project-specific folder
setwd("~/Dropbox/hsf/courses/dsr")

Clear the current environment of any objects
rm(list = ls())

Load data from a Stata file available online
auto <- read_dta("http://www.stata-press.com/data/r8/auto.dta")
'auto': Dataset contains information about different car models

Display basic information about the dataset
ncol(auto) # Number of columns

[1] 12

nrow(auto) # Number of rows

[1] 74

dim(auto) # Dimensions of the dataset

[1] 74 12

names(auto) # Names of variables

[1] "make" "price" "mpg" "rep78" "headroom"
[6] "trunk" "weight" "length" "turn" "displacement"
[11] "gear_ratio" "foreign"

head(auto) # First few rows

A tibble: 6 x 12
make price mpg rep78 headroom trunk weight length turn displacement
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 AMC Concord 4099 22 3 2.5 11 2930 186 40 121
2 AMC Pacer 4749 17 3 3 11 3350 173 40 258
3 AMC Spirit 3799 22 NA 3 12 2640 168 35 121
4 Buick Centu~ 4816 20 3 4.5 16 3250 196 40 196
5 Buick Elect~ 7827 15 4 4 20 4080 222 43 350
6 Buick LeSab~ 5788 18 3 4 21 3670 218 43 231
i 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>

tail(auto) # Last few rows

A tibble: 6 x 12
make price mpg rep78 headroom trunk weight length turn displacement
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Toyota Coro~ 5719 18 5 2 11 2670 175 36 134
2 VW Dasher 7140 23 4 2.5 12 2160 172 36 97
3 VW Diesel 5397 41 5 3 15 2040 155 35 90
4 VW Rabbit 4697 25 4 3 15 1930 155 35 89
5 VW Scirocco 6850 25 4 2 16 1990 156 36 97
6 Volvo 260 11995 17 5 2.5 14 3170 193 37 163
i 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>

summary(auto) # Summary statistics for each column

make price mpg rep78
Length:74 Min. : 3291 Min. :12.00 Min. :1.000
Class :character 1st Qu.: 4220 1st Qu.:18.00 1st Qu.:3.000
Mode :character Median : 5006 Median :20.00 Median :3.000

Mean : 6165 Mean :21.30 Mean :3.406
3rd Qu.: 6332 3rd Qu.:24.75 3rd Qu.:4.000
Max. :15906 Max. :41.00 Max. :5.000

NA's :5
headroom trunk weight length turn

Min. :1.500 Min. : 5.00 Min. :1760 Min. :142.0 Min. :31.00
1st Qu.:2.500 1st Qu.:10.25 1st Qu.:2250 1st Qu.:170.0 1st Qu.:36.00
Median :3.000 Median :14.00 Median :3190 Median :192.5 Median :40.00
Mean :2.993 Mean :13.76 Mean :3019 Mean :187.9 Mean :39.65
3rd Qu.:3.500 3rd Qu.:16.75 3rd Qu.:3600 3rd Qu.:203.8 3rd Qu.:43.00
Max. :5.000 Max. :23.00 Max. :4840 Max. :233.0 Max. :51.00

displacement gear_ratio foreign
Min. : 79.0 Min. :2.190 Min. :0.0000
1st Qu.:119.0 1st Qu.:2.730 1st Qu.:0.0000
Median :196.0 Median :2.955 Median :0.0000
Mean :197.3 Mean :3.015 Mean :0.2973
3rd Qu.:245.2 3rd Qu.:3.353 3rd Qu.:1.0000
Max. :425.0 Max. :3.890 Max. :1.0000

glimpse(auto) # Compact display of the structure of the dataset

Rows: 74
Columns: 12
$ make <chr> "AMC Concord", "AMC Pacer", "AMC Spirit", "Buick Century"~
$ price <dbl> 4099, 4749, 3799, 4816, 7827, 5788, 4453, 5189, 10372, 40~
$ mpg <dbl> 22, 17, 22, 20, 15, 18, 26, 20, 16, 19, 14, 14, 21, 29, 1~
$ rep78 <dbl> 3, 3, NA, 3, 4, 3, NA, 3, 3, 3, 3, 2, 3, 3, 4, 3, 2, 2, 3~
$ headroom <dbl> 2.5, 3.0, 3.0, 4.5, 4.0, 4.0, 3.0, 2.0, 3.5, 3.5, 4.0, 3.~
$ trunk <dbl> 11, 11, 12, 16, 20, 21, 10, 16, 17, 13, 20, 16, 13, 9, 20~
$ weight <dbl> 2930, 3350, 2640, 3250, 4080, 3670, 2230, 3280, 3880, 340~
$ length <dbl> 186, 173, 168, 196, 222, 218, 170, 200, 207, 200, 221, 20~
$ turn <dbl> 40, 40, 35, 40, 43, 43, 34, 42, 43, 42, 44, 43, 45, 34, 4~
$ displacement <dbl> 121, 258, 121, 196, 350, 231, 304, 196, 231, 231, 425, 35~
$ gear_ratio <dbl> 3.58, 2.53, 3.08, 2.93, 2.41, 2.73, 2.87, 2.93, 2.93, 3.0~
$ foreign <dbl+lbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~

print(auto, n = Inf) # Print all rows of the dataset

A tibble: 74 x 12
make price mpg rep78 headroom trunk weight length turn displacement
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 AMC Concord 4099 22 3 2.5 11 2930 186 40 121
2 AMC Pacer 4749 17 3 3 11 3350 173 40 258
3 AMC Spirit 3799 22 NA 3 12 2640 168 35 121
4 Buick Cent~ 4816 20 3 4.5 16 3250 196 40 196
5 Buick Elec~ 7827 15 4 4 20 4080 222 43 350
6 Buick LeSa~ 5788 18 3 4 21 3670 218 43 231
7 Buick Opel 4453 26 NA 3 10 2230 170 34 304
8 Buick Regal 5189 20 3 2 16 3280 200 42 196
9 Buick Rivi~ 10372 16 3 3.5 17 3880 207 43 231
10 Buick Skyl~ 4082 19 3 3.5 13 3400 200 42 231
11 Cad. Devil~ 11385 14 3 4 20 4330 221 44 425
12 Cad. Eldor~ 14500 14 2 3.5 16 3900 204 43 350
13 Cad. Sevil~ 15906 21 3 3 13 4290 204 45 350
14 Chev. Chev~ 3299 29 3 2.5 9 2110 163 34 231
15 Chev. Impa~ 5705 16 4 4 20 3690 212 43 250
16 Chev. Mali~ 4504 22 3 3.5 17 3180 193 31 200
17 Chev. Mont~ 5104 22 2 2 16 3220 200 41 200
18 Chev. Monza 3667 24 2 2 7 2750 179 40 151
19 Chev. Nova 3955 19 3 3.5 13 3430 197 43 250
20 Dodge Colt 3984 30 5 2 8 2120 163 35 98
21 Dodge Dipl~ 4010 18 2 4 17 3600 206 46 318
22 Dodge Magn~ 5886 16 2 4 17 3600 206 46 318
23 Dodge St. ~ 6342 17 2 4.5 21 3740 220 46 225
24 Ford Fiesta 4389 28 4 1.5 9 1800 147 33 98
25 Ford Musta~ 4187 21 3 2 10 2650 179 43 140
26 Linc. Cont~ 11497 12 3 3.5 22 4840 233 51 400
27 Linc. Mark~ 13594 12 3 2.5 18 4720 230 48 400
28 Linc. Vers~ 13466 14 3 3.5 15 3830 201 41 302
29 Merc. Bobc~ 3829 22 4 3 9 2580 169 39 140
30 Merc. Coug~ 5379 14 4 3.5 16 4060 221 48 302
31 Merc. Marq~ 6165 15 3 3.5 23 3720 212 44 302
32 Merc. Mona~ 4516 18 3 3 15 3370 198 41 250
33 Merc. XR-7 6303 14 4 3 16 4130 217 45 302
34 Merc. Zeph~ 3291 20 3 3.5 17 2830 195 43 140
35 Olds 98 8814 21 4 4 20 4060 220 43 350
36 Olds Cutl ~ 5172 19 3 2 16 3310 198 42 231
37 Olds Cutla~ 4733 19 3 4.5 16 3300 198 42 231
38 Olds Delta~ 4890 18 4 4 20 3690 218 42 231
39 Olds Omega 4181 19 3 4.5 14 3370 200 43 231
40 Olds Starf~ 4195 24 1 2 10 2730 180 40 151
41 Olds Toron~ 10371 16 3 3.5 17 4030 206 43 350
42 Plym. Arrow 4647 28 3 2 11 3260 170 37 156
43 Plym. Champ 4425 34 5 2.5 11 1800 157 37 86
44 Plym. Hori~ 4482 25 3 4 17 2200 165 36 105
45 Plym. Sapp~ 6486 26 NA 1.5 8 2520 182 38 119
46 Plym. Vola~ 4060 18 2 5 16 3330 201 44 225
47 Pont. Cata~ 5798 18 4 4 20 3700 214 42 231
48 Pont. Fire~ 4934 18 1 1.5 7 3470 198 42 231
49 Pont. Gran~ 5222 19 3 2 16 3210 201 45 231
50 Pont. Le M~ 4723 19 3 3.5 17 3200 199 40 231
51 Pont. Phoe~ 4424 19 NA 3.5 13 3420 203 43 231
52 Pont. Sunb~ 4172 24 2 2 7 2690 179 41 151
53 Audi 5000 9690 17 5 3 15 2830 189 37 131
54 Audi Fox 6295 23 3 2.5 11 2070 174 36 97
55 BMW 320i 9735 25 4 2.5 12 2650 177 34 121
56 Datsun 200 6229 23 4 1.5 6 2370 170 35 119
57 Datsun 210 4589 35 5 2 8 2020 165 32 85
58 Datsun 510 5079 24 4 2.5 8 2280 170 34 119
59 Datsun 810 8129 21 4 2.5 8 2750 184 38 146
60 Fiat Strada 4296 21 3 2.5 16 2130 161 36 105
61 Honda Acco~ 5799 25 5 3 10 2240 172 36 107
62 Honda Civic 4499 28 4 2.5 5 1760 149 34 91
63 Mazda GLC 3995 30 4 3.5 11 1980 154 33 86
64 Peugeot 604 12990 14 NA 3.5 14 3420 192 38 163
65 Renault Le~ 3895 26 3 3 10 1830 142 34 79
66 Subaru 3798 35 5 2.5 11 2050 164 36 97
67 Toyota Cel~ 5899 18 5 2.5 14 2410 174 36 134
68 Toyota Cor~ 3748 31 5 3 9 2200 165 35 97
69 Toyota Cor~ 5719 18 5 2 11 2670 175 36 134
70 VW Dasher 7140 23 4 2.5 12 2160 172 36 97
71 VW Diesel 5397 41 5 3 15 2040 155 35 90
72 VW Rabbit 4697 25 4 3 15 1930 155 35 89
73 VW Scirocco 6850 25 4 2 16 1990 156 36 97
74 Volvo 260 11995 17 5 2.5 14 3170 193 37 163
i 2 more variables: gear_ratio <dbl>, foreign <dbl+lbl>

Check for duplicate entries based on the 'make' variable
auto |>

get_dupes(make)

No duplicate combinations found of: make

A tibble: 0 x 13
i 13 variables: make <chr>, dupe_count <int>, price <dbl>, mpg <dbl>,
rep78 <dbl>, headroom <dbl>, trunk <dbl>, weight <dbl>, length <dbl>,
turn <dbl>, displacement <dbl>, gear_ratio <dbl>, foreign <dbl+lbl>

Create and display a scatter plot of car price versus weight
plot_weight_price <- ggplot(auto, aes(x = weight, y = price)) +

geom_point()
plot_weight_price

4000

8000

12000

16000

2000 3000 4000
weight

pr
ic

e

Save the plot to a file
ggsave("fig/plot_weight_price.png", plot = plot_weight_price, dpi = 300)

Saving 5.5 x 3.5 in image

Create a scatter plot with a linear regression line of price vs weight
plot_weight_price_fit <- ggplot(auto, aes(x = weight, y = price)) +

geom_point() +
geom_smooth(method = lm, se = FALSE) # 'lm' denotes linear model, 'se' is standard error

plot_weight_price_fit

`geom_smooth()` using formula = 'y ~ x'

4000

8000

12000

16000

2000 3000 4000
weight

pr
ic

e

Save the plot to a file
ggsave("fig/plot_weight_price_fit.png", plot = plot_weight_price_fit, dpi = 300)

Saving 5.5 x 3.5 in image

`geom_smooth()` using formula = 'y ~ x'

Perform a linear regression to analyze the relationship between weight and price
reg_result <- lm(price ~ weight, data = auto)
summary(reg_result) # Display the regression results

Call:
lm(formula = price ~ weight, data = auto)

Residuals:
Min 1Q Median 3Q Max

-3341.9 -1828.3 -624.1 1232.1 7143.7

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.7074 1174.4296 -0.006 0.995
weight 2.0441 0.3768 5.424 7.42e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2502 on 72 degrees of freedom
Multiple R-squared: 0.2901, Adjusted R-squared: 0.2802
F-statistic: 29.42 on 1 and 72 DF, p-value: 7.416e-07

Load and demonstrate usage of World Development Indicators (WDI) data
Two different packages can help here:
WDI:
--- https://cran.r-project.org/web/packages/WDI/WDI.pdf
--- https://github.com/vincentarelbundock/WDI
wbstats:
--- https://cran.r-project.org/web/packages/wbstats/wbstats.pdf
--- https://github.com/gshs-ornl/wbstats
?WDI # Access documentation for the WDI package
?wbstats # # Access documentation for the wbstats package

Search for GDP indicators and display the first 10
WDIsearch("gdp")[1:10,]

indicator name
712 5.51.01.10.gdp Per capita GDP growth
714 6.0.GDP_current GDP (current $)
715 6.0.GDP_growth GDP growth (annual %)
716 6.0.GDP_usd GDP (constant 2005 $)
717 6.0.GDPpc_constant GDP per capita, PPP (constant 2011 international $)
1557 BG.GSR.NFSV.GD.ZS Trade in services (% of GDP)
1558 BG.KAC.FNEI.GD.PP.ZS Gross private capital flows (% of GDP, PPP)
1559 BG.KAC.FNEI.GD.ZS Gross private capital flows (% of GDP)
1560 BG.KLT.DINV.GD.PP.ZS Gross foreign direct investment (% of GDP, PPP)
1561 BG.KLT.DINV.GD.ZS Gross foreign direct investment (% of GDP)

Retrieve GDP per capita data for specified countries and years
df_WDI <- WDI(

indicator = "NY.GDP.PCAP.KD",
country = c("MX", "CA", "US"),
start = 1960,
end = 2012

)

Plot GDP per capita over time for the specified countries
ggplot(df_WDI, aes(year, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita")

10000

20000

30000

40000

50000

1960 1970 1980 1990 2000 2010
Year

G
D

P
 p

er
 c

ap
ita country

Canada

Mexico

United States

Retrieve GDP per capita data for specified countries and years using the wbstats package
df_wb <- wb(

indicator = "NY.GDP.PCAP.KD",
country = c("MX", "CA", "US"),
start = 1960,
end = 2012,
return_wide = TRUE

)

Warning: `wb()` was deprecated in wbstats 1.0.0.
i Please use `wb_data()` instead.

Warning: `spread_()` was deprecated in tidyr 1.2.0.
i Please use `spread()` instead.
i The deprecated feature was likely used in the wbstats package.

Please report the issue at <https://github.com/nset-ornl/wbstats/issues>.

Plot GDP per capita over time for the specified countries
ggplot(df_wb, aes(date, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita (constant 2010 US$)")

`geom_line()`: Each group consists of only one observation.
i Do you need to adjust the group aesthetic?

10000

20000

30000

40000

50000

19601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012
Year

G
D

P
 p

er
 c

ap
ita

 (
co

ns
ta

nt
 2

01
0

U
S

$)

country

Canada

Mexico

United States

!!! This does not work !!!
Why?

Look at the data types year and date are different:
glimpse(df_WDI)

Rows: 159
Columns: 5
$ country <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana~
$ iso2c <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "~
$ iso3c <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",~
$ year <int> 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2~
$ NY.GDP.PCAP.KD <dbl> 42319.63, 42043.51, 41165.57, 40377.82, 42067.80, 42106~

glimpse(df_wb)

Rows: 159
Columns: 5
$ iso3c <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",~
$ date <chr> "1960", "1961", "1962", "1963", "1964", "1965", "1966",~
$ iso2c <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "~
$ country <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana~
$ NY.GDP.PCAP.KD <dbl> 14229.83, 14389.40, 15173.02, 15689.70, 16419.39, 17143~

Answer: A lineplot with a character variable on the x-axis does not work!

make the two dataframe equal:
df_wb_cln <- df_wb |>

Convert 'date' in df_wb from character to integer
mutate(year = as.integer(date)) |>
Since 'year' has been created, remove the original 'date' column
select(-date) |>
Relocate columns to organize the data frame
relocate(country, iso2c, iso3c, year, NY.GDP.PCAP.KD)

glimpse(df_WDI)

Rows: 159
Columns: 5
$ country <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana~
$ iso2c <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "~
$ iso3c <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",~
$ year <int> 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2~
$ NY.GDP.PCAP.KD <dbl> 42319.63, 42043.51, 41165.57, 40377.82, 42067.80, 42106~

glimpse(df_wb_cln)

Rows: 159
Columns: 5
$ country <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Cana~
$ iso2c <chr> "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "CA", "~
$ iso3c <chr> "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN",~
$ year <int> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1~
$ NY.GDP.PCAP.KD <dbl> 14229.83, 14389.40, 15173.02, 15689.70, 16419.39, 17143~

Now it works:
Plot GDP per capita over time for the specified countries
ggplot(df_wb_cln, aes(year, NY.GDP.PCAP.KD, color = country)) +

geom_line() +
xlab("Year") +
ylab("GDP per capita (constant 2010 US$)")

10000

20000

30000

40000

50000

1960 1970 1980 1990 2000 2010
Year

G
D

P
 p

er
 c

ap
ita

 (
co

ns
ta

nt
 2

01
0

U
S

$)

country

Canada

Mexico

United States

suppressMessages(pacman::p_unload(
tidyverse, # A suite of packages designed for data science that includes tools for data manipulation, plotting, and more.
haven, # Used for importing and exporting data with SPSS, Stata, and SAS formats.
janitor, # Provides functions for examining and cleaning data, such as `clean_names()` and `tabyl()`.
WDI, # Facilitates downloading data from the World Bank's World Development Indicators database.
wbstats # Provides an interface to the World Bank's APIs for a comprehensive range of data sets.

))

57

6. Pitfalls

R newbies often make the same small mistakes that can lead to major confusion, frustration
and inefficiency. Some of them can be easily avoided. In this section, I will outline common
pitfalls that I have repeatedly observed as an R instructor and offer practical solutions to avoid
them.

6.1. No clue about the “working directory”

Problem: Students start their R sessions unaware of their current working directory. This can
lead to difficulties when reading and writing files.

Solution: At the beginning of your R script set a working directory using setwd(). Consider
using R Studio projects, see Section A.4. For more information, see Appendix A: Navigating
the file system and Workflow: scripts and projects of Wickham and Grolemund [2023].

6.2. No consistent directory structure

Problem: Students save files in different directories without a clear scheme. This disorganiza-
tion often leads to problems: Scripts and data gets lost and code breaks.

Solution: Organize your project into a clear directory structure from the beginning. Here is
my suggestion for a directory structure but feel free to come up with your own:

Table 6.1.: Typical folder structure
Sub-Directory What to save here
doc/ documentation
dta/ processed data
fig/ figures
lit/ literature and pdfs
ori/ original raw data that you should never change
qmd/ reports
scr/ R scripts
tab/ tables
tmp/ temporary files

This structure will save time and headaches when navigating projects.

Tip 4: Do not save processed data unless necessary

It may seem reasonable to save data after editing, but this often isn’t necessary if you’re
using scripts to create your data. These scripts can be rerun whenever needed, regenerating

58

https://r4ds.hadley.nz/workflow-scripts.html

6. Pitfalls

the dataset each time. To avoid wasting disk space and maintain an organized project
folder, it’s advisable to save processed datasets only when the preprocessing steps are
time-consuming. This way, you can keep your project folder more organized and ensure
that your data analyses are always reproducible with the latest updates to your code.

6.3. Working manually outside R

Problem: Students want to get their work done quickly. This sometimes leads to them relying
on manual processes that they have already mastered for their data work. This approach can
lead to serious problems when it comes to the reproducibility of their data work.

Consider a typical three-step process for loading data: (1) downloading the data, (2) unpacking
the data, and finally (3) importing the data into R. Many students often take a manual approach
by using their Internet browser to download the data, then using their operating system’s
unpacking application, and finally importing the data into an R script. While this method is
not inherently wrong, there is a risk that students will forget to unpack the downloaded data,
resulting in them accidentally working with outdated data. In the kickstart example provided
by Section 5.2, I show that all three steps can be performed seamlessly in R. This way you
ensure that you are always working with the most up-to-date data.

Solution: Do as much as possible in the script. Invest some time to find out how to download
and manipulate the data within R. If it is not possible or if alternatives are superior, describe
what you do outside of R explicitly and write a warning note at the top of your script.

6.4. No active R Packages management

Problem: Students often forget to install and/or load the packages correctly at the beginning
of a script. Some unnecessarily install packages repeatedly when running a script. All this can
lead to errors and interruptions.

Solution: At the beginning of each script, make sure that all required packages are loaded
correctly. Use the pacman package, which provides the p_load() function to load and, if
necessary, install packages and the p_unload(all) function to unload all packages.

Tip 5: Start your script with

if (!require(pacman)) install.packages("pacman")
pacman::p_unload(all)
pacman::p_load(tidyverse, janitor)
setwd("~/your-directory/")
rm(list = ls())

6.5. Confusion between console and script

Problem: Alternating between running code in the console and from the script without a
systematic approach can lead to untracked changes and confusion about the current state of
objects in the workspace. Additionally, students often borrow code snippets from others and run

59

6. Pitfalls

only the sections that seem immediately relevant. This practice can lead to errors or unexpected
results, as such code often relies on previous commands or setups.

Solution: Develop the habit of testing small blocks of code in the console but run the complete
script regularly to ensure everything works in sequence. Use shortcuts like Ctrl + Alt + R to
source the entire script or Ctrl + Alt + B/E to execute it up to a specific point.

6.6. Misunderstanding data types and formats

Problem: Misusing or misunderstanding R’s data types and structures can lead to errors in
data manipulation and analysis. Many functions require certain types of data. For example,
the tidyverse packages required data to be “tidy”. Moreover, data often comes with errors
and/or missings (NA). Beginners overlook data cleaning and considering missings.

Solution: Familiarize yourself with basic data types and structures like vectors, lists, data
frames/tibbles, and factors. For more information, see Section 7.2 and Data tidying of Wickham
and Grolemund [2023]. Moreover, spend adequate time on data cleaning and preprocessing.
Techniques such as handling missing values, normalizing data, and correcting data types are
critical. For more information, see Missing values of Wickham and Grolemund [2023].

6.7. Lack of knowledge about data identification

Problem: Students often handle data without understanding which variables uniquely identify
the information contained in other variables. It is crucial to recognize these identifying variables
and verify their uniqueness to ensure data integrity.

Solution: Perform checks for uniqueness at the beginning of their data analysis process. See
exercise Names and duplicates in Section 9.16 and the get_dupes fuction introduced in Sec-
tion 7.4.3.2.

Tip 6: Always check your data with get_dupes

For example, you expect that your dataframe df is a panel dataset. With

get_dupes(df, country, year)

you can check whether the two variables country and year indeed identify each row
uniquely.

6.8. Losing track of data due to excessive overwriting

Problem: Students often manipulate their data by repeatedly overwriting the same object.
This can lead to confusion about the data‘s current state and the transformations applied.

Solution: Minimize the number of assignments to a single object. Instead, create a new object
with a descriptive and concise name each time you alter the data. This practice helps maintain
clarity about each stage of data manipulation.

60

https://r4ds.hadley.nz/data-tidy
https://r4ds.hadley.nz/missing-values.html

6. Pitfalls

For example, if you’re working with data df, you might store the cleanded data as df_cln, then
after filtering for specific criteria, you could use df_cln_flt, and finally, if you aggregate the
data, name it df_cln_flt_agg. Having some clear naming convention makes it clear what each
dataset represents and the transformations it has undergone.

Tip 7: Do clear the environment at the beginning of a script with

rm(list = ls())

6.9. No documentation

Problem: Students do not comment code. This makes it hard to remember the purpose of
various lines of code and difficult for other people to read and understand the code.

Solution: Regularly comment your code, explaining why something is done, not just what is
done. Use clear, concise comments to improve readability and maintainability.

6.10. Ignoring error messages and warnings

Problem: Students see that their code doesn’t work but do not read the error message which
often contains hints for solving the problem.

Solution: Read and follow error messages. Do not ignore warnings or errors unless you know
what they mean. Study what the error message might mean. Use online resources such as
Google and ChatGPT, see Figure 6.1. Finally, have the confidence to implement the suggested
solution. Don’t be frustrated if the first attempt does not work: Try again and play around.

Tip 8: Common error messages

Students often come to me with error messages suggesting that they install the tinytex
package or the RTools compiler for Windows. Since they are not familiar with these R and
software packages, they wonder if it is safe to proceed with the installation. My answer
here is: yes, it is recommendable to install it.
Based the report of Noam Ross who examine roughly 10,000 R error messages, the most
frequently encountered error messages of R are shown in Table 6.2 with some ideas of mine
what to do.

Table 6.2.: Most frequent errors
Error Type Some suggestions on what to do
Could not find function Check spelling of the function and whether the respective

packages are loaded properly.
Error in if This suggests an issue with non-logical or missing values in

a conditional statement. Check syntax and spelling.
Maybe use ChatGPT to debug the code.

Error in eval Points to references to non-existent objects.
Cannot open Check if the files exist at the place you try to call them.
No applicable method Check your data type and whether it fits to the

requirements of the functions you’re trying to use.

61

https://github.com/noamross/zero-dependency-problems/blob/master/misc/stack-overflow-common-r-errors.md

6. Pitfalls

Figure 6.1.: Googlling the error message

Source: DEV Community on GitHub

Package errors This can stem from issues with installing, compiling, or
loading a package. Maybe you try to re-install the package
and their dependencies, or update the packages.

6.11. No attempt to identify the problem and troubleshoot

Problem: Students often do not fully understand the problems they encounter, which can
lead to difficulties in seeking solutions. It’s common for students to feel overwhelmed and seek
help without attempting to find the source of the problem and without attempting to work out
possible solutions first.

Solution: When you encounter an issue in your R code, it’s crucial to methodically dissect
the problem. Here’s how you can effectively troubleshoot, that is, a problem-solving skill that is
essential for becoming proficient in programming:

• Identify the problem: Attempt to identify the issue to better understand its nature.
Once you know which line of code is causing some trouble, you are often close to a solution.
Commenting out parts of your script or going back until there is no error can help here.

• Active solution search: Once you’ve identified the problem, actively look for solutions.
This can include consulting the R documentation, searching for similar issues online, or
asking others for help.

• Trial and error process: Don’t hesitate to experiment with different solutions to see
what works best.

62

https://github.com/thepracticaldev/orly-full-res

6. Pitfalls

• Seek Help: If you’re stuck, ask for help from more experienced R users or communities.
• Minimal Reproducible Example (MRE): When asking for help, explain your problem

precisely and provide a MRE. That is the simplest version of the code that still produces
the error, including only essential data and code. This practice not only aids in self-
troubleshooting but also makes it easier for others to help by providing a clear, concise
context.

• Additional information: Sometime the interplay of your the packages loaded, your
operating system, the version of R, and/or the RStudio version may play a role in your
problem. Thus, when seeking help, be sure to provide information about your machine,
including the operating system, the version of R, and the packages you have loaded. You
can use the sessionInfo() function to gather this information.

Here’s an example from my machine:

sessionInfo()

R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Debian GNU/Linux 12 (bookworm)

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.21.so; LAPACK version 3.11.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: Europe/Berlin
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):
[1] compiler_4.4.1 fastmap_1.1.1 cli_3.6.2 tools_4.4.1
[5] htmltools_0.5.8.1 rstudioapi_0.16.0 rmarkdown_2.26 knitr_1.46
[9] jsonlite_1.8.8 xfun_0.43 digest_0.6.35 rlang_1.1.3
[13] evaluate_0.23

For more information, see Workflow: getting help of Wickham and Grolemund [2023].
Example of a minimal reproducible example

For example, the following script is a MRE:

63

https://r4ds.hadley.nz/workflow-help

6. Pitfalls

library(ggplot2)
data <- data.frame(x = 1:4, y = c(2, 3, 5, 3.4))
ggplot(data, aes(x, y))

2

3

4

5

1 2 3 4
x

y

+geom_point()

Error:
! Cannot use `+` with a single argument.
i Did you accidentally put `+` on a new line?

Everybody who copies these few lines of code can reproduce the shown error message and
hence can work on a solution. Obviously, the + was set falsly. It must be placed in the
line of ggplot:

library(ggplot2)
data <- data.frame(x = 1:4, y = c(2, 3, 5, 3.4))
ggplot(data, aes(x, y)) +

geom_point()

64

6. Pitfalls

2

3

4

5

1 2 3 4
x

y

6.12. Unstylish code

To avoid issues while programming in R, it’s essential to understand and adhere to various
conventions, rules, and best practices specific to the language. Following these conventions
makes your code more readable and simplifies your own experience with R. Below, you will find
a non-exhaustive list of these guidelines.

1. Do remember that R programming language is case sensitive.
2. Do start names of objects such as vectors, numbers, variables, and data frames with a

letter, not a number.
3. Do avoid using dots in names of objects.
4. Do avoid using certain keywords in naming objects, such as if, else, repeat, while, function,

for, in, next, break, TRUE, FALSE, NULL, Inf, NaN, and NA.
5. Do use front slash / instead of backslash \ for navigating the file system (see Appendix A).
6. Do not use whitespace and indentation for naming files, directories, or objects.
7. Do define objects to represent hard-coded values instead of using them directly in code.
8. Do remember to (install and) load packages that contain functions you want to use.
9. Do use <- instead of = for assignment.

Tip 9

There are two packages, styler and lintr, that support you writing code according to
the The tidyverse style guide of Wickham [2024].

65

https://styler.r-lib.org/
https://github.com/r-lib/lintr
https://style.tidyverse.org/

Part III.

Do stuff

66

7. Manage data

7.1. Import and generate data

7.1.1. Assigning data to an object using the assignment operator <-

Suppose I’m trying to calculate how much money I’m going to make from selling an item. Let’s
assume you sell 350 units. To create a variable called sales and assigns a value to it, we need
to use the assignment operator of R, that is, <-:

sales <- 350

When you send that line of code to the console, it doesn’t print out any output but it creates
the object sales. In Rstudio, you can see the object in the environment panel at the top right.
Alternatively, you can call the object in the console:

sales

[1] 350

R also allows to use -> and = for the assigment. For example, the following ways of assigning
data are equivalent:

350 -> sales
sales = 350
sales <- 350

However, it is common practice and “good style” to use <- and I recommend only to use this
one because it is easier to read in scripts.

7.1.2. Vectors and matrices

We already got known to the c() function which allows to combine multiple values into a vector
or list. Here are some examples how you can use this function to create vectors and matrices:

defining multiple vectors using the colon operator `:`
v_a <- c(1:3)
v_a

[1] 1 2 3

67

7. Manage data

v_b <- c(10:12)
v_b

[1] 10 11 12

creating matrix
m_ab <- matrix(c(v_a, v_b), ncol = 2)
m_cbind <- cbind(v_a, v_b)
m_rbind <- rbind(v_a, v_b)

print matrix
print(m_ab)

[,1] [,2]
[1,] 1 10
[2,] 2 11
[3,] 3 12

print(m_cbind)

v_a v_b
[1,] 1 10
[2,] 2 11
[3,] 3 12

print(m_rbind)

[,1] [,2] [,3]
v_a 1 2 3
v_b 10 11 12

defining row names and column names
rown <- c("row_1", "row_2", "row_3")
coln <- c("col_1", "col_2")

creating matrix
m_ab_label <- matrix(m_ab,

ncol = 2, byrow = FALSE,
dimnames = list(rown, coln)

)

print matrix
print(m_ab_label)

col_1 col_2
row_1 1 10
row_2 2 11
row_3 3 12

68

7. Manage data

The two most common formats to store and work with data in R are dataframe and tibble.
Both formats store table-like structures of data in rows and columns. We will learn more on
that in section Section 7.2.

convert the matrix into dataframe
df_ab <- as.data.frame(m_ab_label)
tbl_ab <- data.frame(m_ab_label)

Exercise

See exercise in Section 9.1: Import data with c().

7.1.3. Open RData files

You can save some of your objects with save() or all with save.image(). Load data that are
stored in the .RData format can be loaded with load(). Please note, when you delete an object
in R, you cannot recover it by clicking some Undo button. With rm() you remove objects from
your workspace and with rm(list = ls()) you clear all objects from the workspace.

7.1.4. Open datasets of packages

The datasets package contains numerous datasets that are commonly used in textbooks. To get
an overview of all the datasets provided by the package, you can use the command help(package
= datasets). One such dataset that we will be using further is the mtcars dataset:

library("datasets")
head(mtcars, 3)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

?mtcars # data dictionary

7.1.5. Import data using public APIs

An API which stands for application programming interface specifies how computers can ex-
change information. There are many R packages available that provide a convenient way to
access data from various online sources directly within R using the API of webpages. In most
cases, it’s better to download and import data within R using these tools than to navigate
through the website’s interface. This ensures that changes can be made easily at any time and
that the data is always up-to-date. For example, wbstats provides access to World Bank data,
eurostat allows users to access Eurostat databases, fredrmakes it easy to obtain data from the
Federal Reserve Economic Data (FRED) platform, which offers economic data for the United
States, ecb provides an interface to the European Central Bank’s Statistical Data Warehouse,
and the OECD package facilitates the extraction of data from the Organization for Economic
Cooperation and Development (OECD). Here is an example using the wbstats package:

69

7. Manage data

install.packages("wbstats")
library("wbstats")
GDP at market prices (current US$) for all available countries and regions
df_gdp <- wb(indicator = "NY.GDP.MKTP.CD")

Warning: `wb()` was deprecated in wbstats 1.0.0.
i Please use `wb_data()` instead.

head(df_gdp, 3)

iso3c date value indicatorID indicator iso2c
2 AFE 2022 1.185138e+12 NY.GDP.MKTP.CD GDP (current US$) ZH
3 AFE 2021 1.086531e+12 NY.GDP.MKTP.CD GDP (current US$) ZH
4 AFE 2020 9.288802e+11 NY.GDP.MKTP.CD GDP (current US$) ZH

country
2 Africa Eastern and Southern
3 Africa Eastern and Southern
4 Africa Eastern and Southern

glimpse(df_gdp)

Rows: 13,178
Columns: 7
$ iso3c <chr> "AFE", "AFE", "AFE", "AFE", "AFE", "AFE", "AFE", "AFE", "A~
$ date <chr> "2022", "2021", "2020", "2019", "2018", "2017", "2016", "2~
$ value <dbl> 1.185138e+12, 1.086531e+12, 9.288802e+11, 1.006191e+12, 1.~
$ indicatorID <chr> "NY.GDP.MKTP.CD", "NY.GDP.MKTP.CD", "NY.GDP.MKTP.CD", "NY.~
$ indicator <chr> "GDP (current US$)", "GDP (current US$)", "GDP (current US~
$ iso2c <chr> "ZH", "ZH", "ZH", "ZH", "ZH", "ZH", "ZH", "ZH", "ZH", "ZH"~
$ country <chr> "Africa Eastern and Southern", "Africa Eastern and Souther~

summary(df_gdp)

iso3c date value indicatorID
Length:13178 Length:13178 Min. :8.825e+06 Length:13178
Class :character Class :character 1st Qu.:2.429e+09 Class :character
Mode :character Mode :character Median :1.779e+10 Mode :character

Mean :1.225e+12
3rd Qu.:2.281e+11
Max. :1.009e+14

indicator iso2c country
Length:13178 Length:13178 Length:13178
Class :character Class :character Class :character
Mode :character Mode :character Mode :character

70

7. Manage data

Figure 7.1.: The logo of the packages readr, haven, and readxl

7.1.6. Import various file formats

RStudio provides convenient data import tools that can be accessed by clicking File > Import
Dataset. In addition, tidyverse offers packages for importing data in various formats. This
cheatsheet, for example, is about the packages readr, readxl and googlesheets4. The first
allows you to read data in various file formats, including fixed-width files like .csv and .tsv.
The package readxl can read in Excel files, i.e., .xls and .xlsx file formats and googlesheets4
allows to read and write data from Google Sheets directly from R.

For more information, I recommend once again the second version book R for Data Science
by Wickham and Grolemund [2023]. In particular, check out the “Data tidying” section for
importing CSV and TSV files, the “Spreadsheets” section for Excel files, the “Databases” section
for retrieving data with SQL, the “Arrow” section for working with large datasets, and the “Web
scraping” section for extracting data from web pages.

For an overview on packages for reading data that are provided by the tidyverse universe, see
here.

7.1.7. Examples

Flat files such as CSV (Comma-Separated Values) are among the most common and straight-
forward data formats to work with.

data_csv <- read_csv("https://github.com/hubchev/courses/raw/main/dta/classdata.csv")

Excel files, due to their wide use in business and research, require a specific approach specifying
sheets and cell ranges.

BWL_Zeitschriftenliste <-
read_excel(
"https://www.forschungsmonitoring.org/VWL_Zeitschriftenliste%202023.xlsx",
sheet = "SJR main",
range = "A1:D1977"

)

71

https://posit.co/wp-content/uploads/2022/10/data-import.pdf
https://r4ds.hadley.nz/
https://r4ds.hadley.nz/data-tidy.html
https://r4ds.hadley.nz/spreadsheets.html
https://r4ds.hadley.nz/databases.html
https://r4ds.hadley.nz/arrow.html
https://r4ds.hadley.nz/webscraping.html
https://r4ds.hadley.nz/webscraping.html
https://www.tidyverse.org/packages/#import

7. Manage data

7.2. Data

7.2.1. Data frames and tibbles

Figure 7.2.: The logos of the tidyr and tibble packages

Both data frames and tibbles are two of the most commonly used data structures in R for
handling tabular data. A tibble actually is a data frame and you can use all functions that
work with a data frame also with a tibble. However, a tibble has some additional features in
printing and subsetting. Please note, data frames are provided by base R while tibbles are
provided by the tidyverse package. This means that if you want to use tibbles you must load
tidyverse. It turned out that it is helpful that a tibble has the folllowing features to simplify
working with data: - Each vector is labeled by the variable name. - Variable names don’t have
spaces and are not put in quotes. - All variables have the same length. - Each variable is of a
single type (numeric, character, logical, or a categorical).

7.2.2. Tidy data

A popular quote from Hadley Wickham is that

“tidy datasets are all alike, but every messy dataset is messy in its own way” [Hadley,
2014, p. 2].

It paraphrases the fact that it is a good idea to set rules how a dataset should structure its
information to make it easier to work with the data. The tidyverse requires the data to be
structured like is illustrated in Figure Figure 7.3. The rules are:

1. Each variable is a column and vice versa.
2. Each observation is a row and vice verse.
3. Each value is a cell.

Whenever data follow that consistent structure, we speak of tidy data. The underlying unifor-
mity of tidy data facilitates learning and using data manipulation tools.

One difference between data frames and tibbles is that dataframes store the row names. For
example, take the mtcars dataset which consists of 32 different cars and the names of the cars
are not stored as rownames:

class(mtcars) # mtcars is a data frame

[1] "data.frame"

72

7. Manage data

Figure 7.3.: Features of a tidy dataset: variables are columns, observations are rows, and values
are cells

Source: Wickham and Grolemund [2023].

rownames(mtcars)

[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710"
[4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
[7] "Duster 360" "Merc 240D" "Merc 230"
[10] "Merc 280" "Merc 280C" "Merc 450SE"
[13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
[16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
[19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
[22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
[25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
[28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
[31] "Maserati Bora" "Volvo 142E"

To store mtcars as a tibble, we can use the as_tibble function:

tbl_mtcars <- as_tibble(mtcars)
class(tbl_mtcars) # check if it is a tibble now

[1] "tbl_df" "tbl" "data.frame"

is_tibble(tbl_mtcars) # alternative check

[1] TRUE

head(tbl_mtcars, 3)

A tibble: 3 x 11
mpg cyl disp hp drat wt qsec vs am gear carb

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1

73

7. Manage data

When we look at the data, we’ve lost the names of the cars. To store the these, you need to
first add a column to the dataframe containing the rownames and then you can generate the
tibble:

tbl_mtcars <- mtcars |>
rownames_to_column(var = "car") |>
as_tibble()

class(tbl_mtcars)

[1] "tbl_df" "tbl" "data.frame"

head(tbl_mtcars, 3)

A tibble: 3 x 12
car mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 Mazda RX4 W~ 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1

7.2.3. Data types

In R, different data classes, or types of data exist:

• numeric: can be any real number
• character: strings and characters
• integer: any whole numbers
• factor: any categorical or qualitative variable with finite number of distinct outcomes
• logical: contain either TRUE or FALSE
• Date: special format that describes time

The following example should exemplify these types of data:

integer_var <- c(1, 2, 3, 4, 5)
numeric_var <- c(1.1, 2.2, NA, 4.4, 5.5)
character_var <- c("apple", "banana", "orange", "cherry", "grape")
factor_var <- factor(c("red", "yellow", "red", "blue", "green"))
logical_var <- c(TRUE, TRUE, TRUE, FALSE, TRUE)
date_var <- as.Date(c("2022-01-01", "2022-02-01", "2022-03-01", "2022-04-01", "2022-05-01"))

date_var[2] - date_var[5] # number of days in between these two dates

Time difference of -89 days

There are some special data values used in R that needs further explanation:

• NA stands for not available or missing and is used to represent missing or undefined values.

74

7. Manage data

• Inf stands for infinity and is used to represent mathematical infinity, such as the result
of dividing a non-zero number by zero. Can be positive or negative.

• NULL represents an empty or non-existent object. It is often used as a placeholder when a
value or object is not yet available or when an object is intentionally removed.

• NaN stands for not a number and is used to represent an undefined or unrepresentable
value, such as the result of taking the square root of a negative number. It can also occur
as a result of certain arithmetic operations that are undefined. In contrast to NA it can
only exist in numerical data.

7.3. Operators

An overview of the most important operators of R is proided in Appendix B.

7.3.1. Algebraic operators

R can perform any kind of arithmetic calculation using the operators listed in Table 7.1.

Table 7.1.: Basic algebraic operators
Operation Operator Example input Example output
addition + 10+2 12
subtraction - 9-3 6
multiplication * 5*5 25
division / 10/3 3
power ^ 5^2 25

7.3.2. The pipe operator: |>

The pipe operator, %>%, comes from the magrittr package, which is also part of the tidyverse
package. The pipe operator, |>, has been part of base R since version 4.1.0. For most cases,
these two operators are identical. The pipe operator is designed to help you write code in a way
that is easier to read and understand. As R is a functional language, code often contains a lot
of parentheses, (and). Nesting these parentheses together can be complex and make your R
code hard to read and understand, which is where |> comes to the rescue! It allows you to use
the output of a function as the input of the next function.

Tip 10: Set the native pipe in RStudio

With the keyboard shortcut Ctrl+Shift+M, RStudio inserts %>%. To change that behavior,
simply check the box labeled “Use native pipe operator, |>” in the Global Options, see:
Tools > Global Options > Code > Editing.

Consider the following example of code to explain the usage of the pipe operator:

75

7. Manage data

create some data `x`
x <- c(1, 1.002, 1.004, .99, .99)
take the logarithm of `x`,
log_x <- log(x)
compute the lagged and iterated differences (see `diff()`)
growth_rate_x <- diff(log_x)
growth_rate_x

[1] 0.001998003 0.001994019 -0.014042357 0.000000000

round the result (4 digit)
growth_rate_x_round <- round(growth_rate_x, 4)
growth_rate_x_round

[1] 0.002 0.002 -0.014 0.000

That is rather long and we actually don’t need objects log_x, growth_rate_x, and
growth_rate_x_round. Well, then let us write that in a nested function:

round(diff(log(x)), 4)

[1] 0.002 0.002 -0.014 0.000

This is short but hard to read and understand. The solution is the “pipe”:

load one of these packages: `magrittr` or `tidyverse`
library(tidyverse)

Perform the same computations on `x` as above
x |>

log() |>
diff() |>
round(4)

[1] 0.002 0.002 -0.014 0.000

You can read the |> with “and then” because it takes the results of some function “and then”
does something with that in the next. For example, reading out loud the following code would
sound something like this:

• I take the mtcars data, and then
• I consider only cars with more than 4 cylinders, and then
• I group the cars by the number of cylinders the cars have, and then
• I summarize the data and show the means of miles per gallon (mpg) and horse powers

(hp) by groups of cars that distinguish by their number of cylinders.

76

7. Manage data

mtcars |>
filter(cyl > 4) |>
group_by(cyl) |>
summarise_at(c("mpg", "hp"), mean)

A tibble: 2 x 3
cyl mpg hp

<dbl> <dbl> <dbl>
1 6 19.7 122.
2 8 15.1 209.

Exercise

See exercise in Section 9.3: Base R,%in% operator, and the pipe |>.

7.3.3. The %in% operator

%in% is used to subset a vector by comparison. Here’s an example:

x <- c(1, 3, 5, 7)
y <- c(2, 4, 6, 8)
z <- c(1, 2, 3)

x %in% y

[1] FALSE FALSE FALSE FALSE

x %in% z

[1] TRUE TRUE FALSE FALSE

z %in% x

[1] TRUE FALSE TRUE

The %in% operator can be used in combination with other functions like subset() and
filter().

Exercise

See exercise in Section 9.3: Base R,%in% operator, and the pipe |>.

7.3.4. Extract operators

The extract operators are used to retrieve data from objects in R. The operator may take four
forms, including [], [[]], and $.

[] allows to extract content from vector, lists, or data frames. For example,

77

7. Manage data

a <- mtcars[3,]
b <- mtcars["Datsun 710",]
identical(a, b)

[1] TRUE

a

mpg cyl disp hp drat wt qsec vs am gear carb
Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1

extracts the third observation of the mtcars dataset, and

c <- mtcars[, "cyl"]
d <- mtcars[, 2]
identical(x, y)

[1] FALSE

c

[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

extracts the variable/vector cyl.

The operators, [[]] and $ extract a single item from an object. It is used to refer to an element
in a list or a column in a data frame. For example,

e <- mtcars$cyl
f <- mtcars[["cyl"]]
identical(e, f)

[1] TRUE

e

[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

will return the values of the variable cyl from the data frame mtcars. Thus, x$y is actually
just a short form for x[[“y”]].

78

7. Manage data

7.3.5. Logical operators

The extract operators can be combined with the logical operators (more precisely, I should call
these binary relational operators) that are shown in Table 7.2.

Table 7.2.: Logical operators
operation operator example input answer
less than < 2 < 3 TRUE
less than or equal to <= 2 <= 2 TRUE
greater than > 2 > 3 FALSE
greater than or equal to >= 2 >= 2 TRUE
equal to == 2 == 3 FALSE
not equal to != 2 != 3 TRUE

not ! !(1==1) FALSE
or | (1==1) | (2==3) TRUE
and & (1==1) & (2==3) FALSE

Here are some examples: Select rows where the number of cylinders is greater than or equal to
6:

mtcars[mtcars$cyl >= 6,]

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

Select rows where the number of cylinders is either 4 or 6:

79

7. Manage data

mtcars[mtcars$cyl == 4 | mtcars$cyl == 6,]

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Select rows where the number of cylinders is 4 and the mpg is greater than 22:

mtcars[mtcars$cyl == 4 & mtcars$mpg > 22,]

mpg cyl disp hp drat wt qsec vs am gear carb
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

Select rows where the weight is less than 3.5 or the number of gears is greater than 4:

mtcars[mtcars$wt < 3.5 | mtcars$gear > 4,]

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1

80

7. Manage data

Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Select rows where either mpg is greater than 25 or carb is less than 2, and the number of
cylinders is either 4 or 8.

mtcars[(mtcars$mpg > 25 | mtcars$carb < 2) & mtcars$cyl %in% c(4, 8),]

mpg cyl disp hp drat wt qsec vs am gear carb
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

7.4. Data manipulation

7.4.1. dplyr: A human readable grammar of data manipulation

Figure 7.4.: The logo of the dplyr package

The dplyr package is part of tidyverse and makes data manipulation easy as it works well with
the pipe operator |>. The most important function are the following:

81

7. Manage data

• Reorder the rows with arrange().
• Pick observations by their values with filter().
• Pick variables by their names with select().
• Create new variables with functions of existing variables with mutate().
• Collapse many values down to a single summary with summarise().
• Rename variables with rename().
• Change the position of variables with relocate().

These functions can be used in conjunction with group_by() and/or rowwise(), which changes
the scope of each function from operating on the entire dataset to operating on it group-by-
group or by rows. Moreover, you can check for conditions and take action with, for example,
if_else() and case_when().

All functions work similarly:

1. The first argument is a data frame.
2. The subsequent arguments describe what to do with the data frame.
3. The result is a new data frame.
Read the vignette of dplyr that you find here or with:

vignette("dplyr")

Here are some examples that may help to understand these functions:

library(tidyverse)

load mtcars dataset
data(mtcars)

filter only cars with four gears
mtcars_gear_4 <- mtcars |>

filter(gear == 4)

arrange rows by mpg in descending order
mtcars_gear_4 |>

arrange(desc(mpg))

mpg cyl disp hp drat wt qsec vs am gear carb
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4

82

https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html

7. Manage data

Change the order of the variables
glimpse(mtcars_gear_4)

Rows: 12
Columns: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 24.4, 22.8, 19.2, 17.8, 32.4, 30.4, 33.9, 27.3,~
$ cyl <dbl> 6, 6, 4, 4, 4, 6, 6, 4, 4, 4, 4, 4
$ disp <dbl> 160.0, 160.0, 108.0, 146.7, 140.8, 167.6, 167.6, 78.7, 75.7, 71.1~
$ hp <dbl> 110, 110, 93, 62, 95, 123, 123, 66, 52, 65, 66, 109
$ drat <dbl> 3.90, 3.90, 3.85, 3.69, 3.92, 3.92, 3.92, 4.08, 4.93, 4.22, 4.08,~
$ wt <dbl> 2.620, 2.875, 2.320, 3.190, 3.150, 3.440, 3.440, 2.200, 1.615, 1.~
$ qsec <dbl> 16.46, 17.02, 18.61, 20.00, 22.90, 18.30, 18.90, 19.47, 18.52, 19~
$ vs <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
$ carb <dbl> 4, 4, 1, 2, 2, 4, 4, 1, 2, 1, 1, 2

mtcars_gear_4 |>
relocate(cyl, disp, carb) |>
glimpse()

Rows: 12
Columns: 11
$ cyl <dbl> 6, 6, 4, 4, 4, 6, 6, 4, 4, 4, 4, 4
$ disp <dbl> 160.0, 160.0, 108.0, 146.7, 140.8, 167.6, 167.6, 78.7, 75.7, 71.1~
$ carb <dbl> 4, 4, 1, 2, 2, 4, 4, 1, 2, 1, 1, 2
$ mpg <dbl> 21.0, 21.0, 22.8, 24.4, 22.8, 19.2, 17.8, 32.4, 30.4, 33.9, 27.3,~
$ hp <dbl> 110, 110, 93, 62, 95, 123, 123, 66, 52, 65, 66, 109
$ drat <dbl> 3.90, 3.90, 3.85, 3.69, 3.92, 3.92, 3.92, 4.08, 4.93, 4.22, 4.08,~
$ wt <dbl> 2.620, 2.875, 2.320, 3.190, 3.150, 3.440, 3.440, 2.200, 1.615, 1.~
$ qsec <dbl> 16.46, 17.02, 18.61, 20.00, 22.90, 18.30, 18.90, 19.47, 18.52, 19~
$ vs <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

mtcars_gear_4 |>
relocate(sort(names(mtcars_gear_4))) |>
glimpse()

Rows: 12
Columns: 11
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1
$ carb <dbl> 4, 4, 1, 2, 2, 4, 4, 1, 2, 1, 1, 2
$ cyl <dbl> 6, 6, 4, 4, 4, 6, 6, 4, 4, 4, 4, 4
$ disp <dbl> 160.0, 160.0, 108.0, 146.7, 140.8, 167.6, 167.6, 78.7, 75.7, 71.1~
$ drat <dbl> 3.90, 3.90, 3.85, 3.69, 3.92, 3.92, 3.92, 4.08, 4.93, 4.22, 4.08,~
$ gear <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
$ hp <dbl> 110, 110, 93, 62, 95, 123, 123, 66, 52, 65, 66, 109
$ mpg <dbl> 21.0, 21.0, 22.8, 24.4, 22.8, 19.2, 17.8, 32.4, 30.4, 33.9, 27.3,~

83

7. Manage data

$ qsec <dbl> 16.46, 17.02, 18.61, 20.00, 22.90, 18.30, 18.90, 19.47, 18.52, 19~
$ vs <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$ wt <dbl> 2.620, 2.875, 2.320, 3.190, 3.150, 3.440, 3.440, 2.200, 1.615, 1.~

filter rows where cyl = 4
mtcars_gear_4 |>

filter(cyl == 4)

mpg cyl disp hp drat wt qsec vs am gear carb
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

select columns mpg, cyl, and hp
mtcars_gear_4 |>

select(mpg, cyl, hp) |>
head()

mpg cyl hp
Mazda RX4 21.0 6 110
Mazda RX4 Wag 21.0 6 110
Datsun 710 22.8 4 93
Merc 240D 24.4 4 62
Merc 230 22.8 4 95
Merc 280 19.2 6 123

select columns all variables except wt and hp
mtcars_gear_4 |>

select(-wt, -hp) |>
head()

mpg cyl disp drat qsec vs am gear carb
Mazda RX4 21.0 6 160.0 3.90 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 3.90 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 3.85 18.61 1 1 4 1
Merc 240D 24.4 4 146.7 3.69 20.00 1 0 4 2
Merc 230 22.8 4 140.8 3.92 22.90 1 0 4 2
Merc 280 19.2 6 167.6 3.92 18.30 1 0 4 4

select only variables starting with `c`
mtcars_gear_4 |>

select(starts_with("c"))

84

7. Manage data

cyl carb
Mazda RX4 6 4
Mazda RX4 Wag 6 4
Datsun 710 4 1
Merc 240D 4 2
Merc 230 4 2
Merc 280 6 4
Merc 280C 6 4
Fiat 128 4 1
Honda Civic 4 2
Toyota Corolla 4 1
Fiat X1-9 4 1
Volvo 142E 4 2

summarize avg mpg by number of cylinders
mtcars_gear_4 |>

group_by(cyl) |>
summarize(avg_mpg = mean(mpg))

A tibble: 2 x 2
cyl avg_mpg

<dbl> <dbl>
1 4 26.9
2 6 19.8

create new column wt_kg, which is wt in kg
mtcars_gear_4 |>

select(wt) |>
mutate(wt_kg = wt / 2.205) |>
head()

wt wt_kg
Mazda RX4 2.620 1.188209
Mazda RX4 Wag 2.875 1.303855
Datsun 710 2.320 1.052154
Merc 240D 3.190 1.446712
Merc 230 3.150 1.428571
Merc 280 3.440 1.560091

Create a new variable by calculating hp divided by wt
mtcars_new <- mtcars |>

select(wt, hp) |>
mutate(hp_per_t = hp / wt) |>
head()

Print the first few rows of the updated dataset
head(mtcars_new)

wt hp hp_per_t

85

7. Manage data

Mazda RX4 2.620 110 41.98473
Mazda RX4 Wag 2.875 110 38.26087
Datsun 710 2.320 93 40.08621
Hornet 4 Drive 3.215 110 34.21462
Hornet Sportabout 3.440 175 50.87209
Valiant 3.460 105 30.34682

Rename hp to horsepower
mtcars_gear_4 |>

rename(horsepower = hp) |>
glimpse()

Rows: 12
Columns: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 24.4, 22.8, 19.2, 17.8, 32.4, 30.4, 33.9,~
$ cyl <dbl> 6, 6, 4, 4, 4, 6, 6, 4, 4, 4, 4, 4
$ disp <dbl> 160.0, 160.0, 108.0, 146.7, 140.8, 167.6, 167.6, 78.7, 75.7~
$ horsepower <dbl> 110, 110, 93, 62, 95, 123, 123, 66, 52, 65, 66, 109
$ drat <dbl> 3.90, 3.90, 3.85, 3.69, 3.92, 3.92, 3.92, 4.08, 4.93, 4.22,~
$ wt <dbl> 2.620, 2.875, 2.320, 3.190, 3.150, 3.440, 3.440, 2.200, 1.6~
$ qsec <dbl> 16.46, 17.02, 18.61, 20.00, 22.90, 18.30, 18.90, 19.47, 18.~
$ vs <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$ am <dbl> 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1
$ gear <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
$ carb <dbl> 4, 4, 1, 2, 2, 4, 4, 1, 2, 1, 1, 2

Exercise

See exercise:

• Section 9.4: Generate and drop variables
• Section 9.5: Subsetting

7.4.2. If statements

In many cases, it’s necessary to execute certain code only when a particular condition is met. To
achieve this, there are several conditional statements that can be used in code. These include:

• The if statement: This is used to execute a block of code if a specified condition is true.
• The else statement: This is used to execute a block of code if the same condition is false.
• The else if statement: This is used to specify a new condition to test if the first condition

is false.
• The if_else() function: This is used to check a condition for every element of a vector.

The following examples should exemplify how these statements work:

Example of if statement
if (mean(mtcars$mpg) > 20) {

print("The average miles per gallon is greater than 20.")
}

86

7. Manage data

[1] "The average miles per gallon is greater than 20."

Example of if-else statement
if (mean(mtcars$mpg) > 20) {

print("The average miles per gallon is greater than 20.")
} else {

print("The average miles per gallon is less than or equal to 20.")
}

[1] "The average miles per gallon is greater than 20."

Example of if-else if statement
if (mean(mtcars$mpg) > 25) {

print("The average miles per gallon is greater than 25.")
} else if (mean(mtcars$mpg) > 20) {

print("The average miles per gallon is between 20 and 25.")
} else {

print("The average miles per gallon is less than or equal to 20.")
}

[1] "The average miles per gallon is between 20 and 25."

Example of if_else function
mtcars_2 <- mtcars
mtcars_2$mpg_category <- if_else(mtcars_2$mpg > 20, "High", "Low")

When you have a fixed number of cases and don’t want to use a long chain of if-else statements,
you can use case_when();

mtcars_cyl <- mtcars |>
mutate(cyl_category = case_when(
cyl == 4 ~ "four",
cyl == 6 ~ "six",
cyl == 8 ~ "eight"

))

The mutate() function is used to add the new variable, and case_when() is used to assign the
values “four”, “six”, or “eight” to the new variable based on the number of cylinders in each
car. Both functions are part of the dplyr package (see chapter Section 7.4.1).

7.4.3. Examining and cleaning data with the janitor package

The janitor package follows the principles of the tidyverse and works well with the pipe
operator |>. The janitor functions has many usefull functions for the initial data exploration
and cleaning that are essential when you load any new data set.

First, make sure the janitor package is installed and loaded:

87

7. Manage data

7.4.3.1. Clean data.frame names with clean_names()

I call this function frequently when I read in new data. It handles problematic variable names,
especially those that are so well-preserved by readxl::read_excel() and readr::read_csv().
For example, it does the following:

• Parses letter cases and separators to a consistent format.
• Handles special characters and spaces, including transliterating characters like œ to oe.
• Appends numbers to duplicated names
• Converts “%” to “percent” and “#” to “number” to retain meaning
• Spacing (or lack thereof) around numbers is preserved

To exemplify what it does, let’s create some data with akward names and then clean them:

df_test <- as.data.frame(matrix(ncol = 6))
names(df_test) <- c(

"firstName", "ábc@!*", "% successful (2009)",
"REPEAT VALUE", "REPEAT VALUE", ""

)
df_cln <- df_test |>

clean_names()
names(df_test)

[1] "firstName" "ábc@!*" "% successful (2009)"
[4] "REPEAT VALUE" "REPEAT VALUE" ""

names(df_cln)

[1] "first_name" "abc"
[3] "percent_successful_2009" "repeat_value"
[5] "repeat_value_2" "x"

7.4.3.2. Find duplicated values for specific combinations of variables with get_dupes()

get_dupes allows you to check for the indentifying variable. In other words, it shows you
duplicates for specific combinations of variables.

For example, consider the following tibble:

df_panel <- tibble(
country = c(rep("a", 3), rep("b", 3), rep("c", 3)),
year = rep(1:3, 3),
GDP = c(1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000)

)
df_panel

A tibble: 9 x 3
country year GDP
<chr> <int> <dbl>

1 a 1 1000

88

7. Manage data

2 a 2 2000
3 a 3 3000
4 b 1 4000
5 b 2 5000
6 b 3 6000
7 c 1 7000
8 c 2 8000
9 c 3 9000

with

get_dupes(df_panel, country, year)

No duplicate combinations found of: country, year

A tibble: 0 x 4
i 4 variables: country <chr>, year <int>, dupe_count <int>, GDP <dbl>

we see that this is a panel dataset identified by a combination of country and year. Now let
us introduce a duplicate and check again:

new_obs <- tibble(country = "b", year = 2, GDP = 5000)
df_panel_dup <- bind_rows(df_panel, new_obs)
get_dupes(df_panel_dup, country, year)

A tibble: 2 x 4
country year dupe_count GDP
<chr> <dbl> <int> <dbl>

1 b 2 2 5000
2 b 2 2 5000

Tip 11: The plm package

Speaking of panel datasets, it’s worth mentioning the plm package, which is excellent for
managing such data. For example, you can use is.pbalanced to verify whether a panel
is balanced, meaning it has the same years for all countries.

pacman::p_load(plm)
is.pbalanced(df_panel)

[1] TRUE

If your panel is unbalanced, you can use make.pbalanced to rectify it:

df_unbal <- df_panel |>
filter(row_number() != 7)

df_unbal

A tibble: 8 x 3

89

7. Manage data

country year GDP
<chr> <int> <dbl>

1 a 1 1000
2 a 2 2000
3 a 3 3000
4 b 1 4000
5 b 2 5000
6 b 3 6000
7 c 2 8000
8 c 3 9000

is.pbalanced(df_unbal)

[1] FALSE

df_unbal_balanced <- make.pbalanced(df_unbal)
df_unbal_balanced

country year GDP
1 a 1 1000
2 a 2 2000
3 a 3 3000
4 b 1 4000
5 b 2 5000
6 b 3 6000
7 c 1 NA
8 c 2 8000
9 c 3 9000

7.4.3.3. remove_empty() rows and columns

For cleaning Excel files that contain empty rows and columns after being read into R,
remove_empty can be very helpful:

q <- data.frame(
v1 = c(1, NA, 3),
v2 = c(NA, NA, NA),
v3 = c("a", NA, "b")

)
q |>

remove_empty(c("rows", "cols"))

v1 v3
1 1 a
3 3 b

90

7. Manage data

7.4.3.4. remove_constant() columns

Removes variables from data that contain only a single constant value (with an na.rm option
to control whether NAs should be considered as different values from the constant).

a <- data.frame(good = 1:3, boring = "the same")
a

good boring
1 1 the same
2 2 the same
3 3 the same

a |>
remove_constant()

good
1 1
2 2
3 3

7.4.4. tabyl() - a better version of table()

tabyl() is a tidyverse-oriented replacement for table(). It counts combinations of one, two,
or three variables, and then can be formatted with a suite of adorn_* functions to look just
how you want. For example:

mtcars |>
tabyl(gear, cyl) |>
adorn_totals("col") |>
adorn_percentages("row") |>
adorn_pct_formatting(digits = 2) |>
adorn_ns() |>
adorn_title()

cyl
gear 4 6 8 Total

3 6.67% (1) 13.33% (2) 80.00% (12) 100.00 (15)
4 66.67% (8) 33.33% (4) 0.00% (0) 100.00 (12)
5 40.00% (2) 20.00% (1) 40.00% (2) 100.00% (5)

Learn more in the tabyls vignette.

91

https://sfirke.github.io/janitor/articles/tabyls.html

7. Manage data

7.5. User-defined functions and conflicts

One of the great strengths of R is the user’s ability to add functions. Sometimes there is a small
task (or series of tasks) you need done and you find yourself having to repeat it multiple times.
In these types of situations it can be helpful to create your own custom function. The structure
of a function is given below:

name_of_function <- function(argument1, argument2) {
statements or code that does something
return(something)

}

First you give your function a name. Then you assign value to it, where the value is the
function. When defining the function you will want to provide the list of arguments required
(inputs and/or options to modify behavior of the function), and wrapped between curly brackets
place the tasks that are being executed on/using those arguments. The argument(s) can be any
type of object (like a scalar, a matrix, a dataframe, a vector, a logical, etc), and it’s not necessary
to define what it is in any way. Finally, you can return the value of the object from the function,
meaning pass the value of it into the global environment. The important idea behind functions
is that objects that are created within the function are local to the environment of the function
– they don’t exist outside of the function. Note, a function doesn’t require any arguments.

Let’s try creating a simple example function. This function will take in a numeric value as
input, and return the squared value.

square_it <- function(x) {
square <- x * x
return(square)

}

Now, we can use the function as we would any other function. We type out the name of the
function, and inside the parentheses we provide a numeric value x:

square_it(5)

[1] 25

Let us get back to script with sales and try to calculate the monthly growth rates of revenue
using a self-written function.

The formula of a growth rate is clear:

𝑔 = (𝑦𝑡 − 𝑦𝑡−1
𝑦𝑡−1

) ⋅ 100 = (𝑦𝑡
𝑦𝑡−1

− 1) ⋅ 100

So the challenge is to divide the value of revenue with the value of the previous period, a.k.a.
the lagged value. Let us assume that the function lag() can give you exactly that value of a
vector. Lets try it out:

92

7. Manage data

lag(revenue)

[1] 0 700 1400 350 175 28 56 0 0 0 0 0
attr(,"tsp")
[1] 0 11 1

(revenue/lag(revenue)-1)*100

[1] NaN 0 0 0 0 0 0 NaN NaN NaN NaN NaN
attr(,"tsp")
[1] 0 11 1

Unfortunately, this does not work out. The lag() function does not work as we think it should.
Well, the reason is simply that we are using the wrong function. The current lag() function
is part of the stats package which is part of the package stats which is part of R base and is
loaded automatically. The lag() function we aim to use stems from the dplyr package which
we must install and load to be able to use it. So let’s do it:

check if the package is installed
find.package("dplyr")

[1] "/usr/local/lib/R/site-library/dplyr"

I already installed the package so I can just load it
install.packages("dplyr")
library("dplyr")

Attaching package: 'dplyr'

The following objects are masked from 'package:plm':

between, lag, lead

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

This message informs us that among other functions the lag() function is masked. That means
that now the function of the newly loaded package is active. This is one example of why I
highly recommend to unload all packages at the beginning of a script and then to use p_load
to install and load the packages that should be used in the upcoming script:

93

7. Manage data

pacman::p_unload(all)
pacman::p_load(dplyr)

So, let’s try again:

lag(revenue)

[1] NA 0 700 1400 350 175 28 56 0 0 0 0

(revenue/lag(revenue)-1)*100

[1] NA Inf 100 -75 -50 -84 100 -100 NaN NaN NaN NaN

That looks good now. And here is a way to calculate growth rates with a self-written function:

growth_rate <- function(x) {
(x / lag(x) - 1) * 100

}
growth_rate(revenue)

[1] NA Inf 100 -75 -50 -84 100 -100 NaN NaN NaN NaN

sales_gr_rate <- growth_rate(revenue)
sales_gr_rate

[1] NA Inf 100 -75 -50 -84 100 -100 NaN NaN NaN NaN

In R, all functions are written by users, and it is not uncommon for two people to name their
functions identically. In such cases, we must resolve the conflict by choosing which function to
use. To use the lag function from the stats package, you can use the double colon operator ::
like this stats::lag().

7.6. Example: How to explore a dataset

Creating dataframe
df <- tibble(

integer_var, numeric_var, character_var, factor_var, logical_var, date_var,
)

Overview of the data
head(df)

94

7. Manage data

A tibble: 5 x 6
integer_var numeric_var character_var factor_var logical_var date_var

<dbl> <dbl> <chr> <fct> <lgl> <date>
1 1 1.1 apple red TRUE 2022-01-01
2 2 2.2 banana yellow TRUE 2022-02-01
3 3 NA orange red TRUE 2022-03-01
4 4 4.4 cherry blue FALSE 2022-04-01
5 5 5.5 grape green TRUE 2022-05-01

summary(df)

integer_var numeric_var character_var factor_var logical_var
Min. :1 Min. :1.100 Length:5 blue :1 Mode :logical
1st Qu.:2 1st Qu.:1.925 Class :character green :1 FALSE:1
Median :3 Median :3.300 Mode :character red :2 TRUE :4
Mean :3 Mean :3.300 yellow:1
3rd Qu.:4 3rd Qu.:4.675
Max. :5 Max. :5.500

NA's :1
date_var

Min. :2022-01-01
1st Qu.:2022-02-01
Median :2022-03-01
Mean :2022-03-02
3rd Qu.:2022-04-01
Max. :2022-05-01

glimpse(df)

Rows: 5
Columns: 6
$ integer_var <dbl> 1, 2, 3, 4, 5
$ numeric_var <dbl> 1.1, 2.2, NA, 4.4, 5.5
$ character_var <chr> "apple", "banana", "orange", "cherry", "grape"
$ factor_var <fct> red, yellow, red, blue, green
$ logical_var <lgl> TRUE, TRUE, TRUE, FALSE, TRUE
$ date_var <date> 2022-01-01, 2022-02-01, 2022-03-01, 2022-04-01, 2022-05-~

look closer at variables

unique values
unique(df$integer_var)

[1] 1 2 3 4 5

unique(df$factor_var)

95

7. Manage data

[1] red yellow blue green
Levels: blue green red yellow

table(df$factor_var)

blue green red yellow
1 1 2 1

length(unique(df$factor_var))

[1] 4

distributions
df |> count(factor_var)

A tibble: 4 x 2
factor_var n
<fct> <int>

1 blue 1
2 green 1
3 red 2
4 yellow 1

prop.table(table(df$factor_var))

blue green red yellow
0.2 0.2 0.4 0.2

df |>
count(factor_var) |>
mutate(prop = n / sum(n))

A tibble: 4 x 3
factor_var n prop
<fct> <int> <dbl>

1 blue 1 0.2
2 green 1 0.2
3 red 2 0.4
4 yellow 1 0.2

aggregate(df$numeric_var,
by = list(fruit = df$factor_var),
mean

)

96

7. Manage data

fruit x
1 blue 4.4
2 green 5.5
3 red NA
4 yellow 2.2

--> the mean of red cannot be calculated as there is a NA in it
Solution: exclude NAs from calculation:
aggregate(df$numeric_var,

by = list(fruit = df$factor_var),
mean,
na.rm = TRUE

)

fruit x
1 blue 4.4
2 green 5.5
3 red 1.1
4 yellow 2.2

install.packages("janitor")
require("janitor")
mtcars |>

tabyl(cyl)

cyl n percent
4 11 0.34375
6 7 0.21875
8 14 0.43750

mtcars |>
tabyl(cyl, hp)

cyl 52 62 65 66 91 93 95 97 105 109 110 113 123 150 175 180 205 215 230 245
4 1 1 1 2 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 0 3 0 2 0 1 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 1 1 1 2

264 335
0 0
0 0
1 1

97

8. Visualize data

Data visualization is an art. The purposes of visualizing data are manifold. You can emphasize
facts, get known to data, detect anomalies, and communicate a large amount of information
simply and intuitive. Whatever your goal is, thousand of appropriate ways exist to visualize data.
Many decisions to take are simply a matter of taste. However, there are some conventions and
guidelines that help you to make on average better decisions when designing a visualization:

• Good graphs are easy to understand and eye catching.
• Graphs can be misleading and manipulative and that is opposing to the ideas of science.

Thus, be responsible and honest.
• Minimize colors and other attention-grabbing elements that are not directly related to the

data of interest. Worldwide, there are approximately 300 million color blind people. In
particular, red, green or blue light are problematic to color blind people. Thus, better
rely on color schemes that are designed for colorblind people.

• Don’t truncate an axis or change the scaling within an axis just to make you your story
more appealing. Show the full scale of the graph, then zoom to show the data of interest,
if necessary.

• Label and describe your chart sufficiently so that everybody can fully understand the
content of the shown data set and statistics without having to study the notes of the
graph for too long.

• Don’t do pie charts. They may look simple, but they’re tricky to get right and there are
usually better alternatives. Humans are not very good at comparing the size of angles
and as there’s no scale in pie plots, reading accurate values is difficult. Figure Figure 8.1
may proof this.

Figure 8.1.: Pie charts are problematic

Source: https://en.wikipedia.org/wiki/Pie_chart

98

8. Visualize data

More tips

• Data Visualization: Chart Dos and Don’ts (by Duke University)
• Graphs and Visualising Data by Oliver Kirchkamp. In particular, I highly recom-

mend his handout [Kirchkamp, 2018]. It discusses many pitfalls of visualizing data,
instructs how to do good graphs, and he shows the corresponding R code of all graphs.

• The From Data to Viz website leads you to the most appropriate graph for your data.
It links to the code to build it and lists common caveats you should avoid.

• The R Graph Gallery and R CHARTS by R CODER shows graphs and the corre-
sponding R code to replicate the graphs

• The work of Edward Tufte and his book The Visual Display of Quantitative Infor-
mation [Tufte, 2022] are classical readings.

A great resource to learn how to visualize data is Wickham and Grolemund [2023]. As I cannot
do that any better, I refer to that source and refrain from writing section myself. It introduces
the ggplot function which is part of the ggplot2 package which, in turn, is part of the tidyverse
package. Thus, if you’ve installed and loaded tidyverse, you automatically have access to ggplot.
Creating beautiful and informative graphs is easy with ggplot. To proof that claim, study the
chapter (Data visualization) of Wickham and Grolemund [2023]. Another good resource on
modern data visualization is Kabacoff [2024].

99

https://guides.library.duke.edu/datavis/topten
https://www.kirchkamp.de/graph/
https://www.kirchkamp.de/oekonometrie/pdf/gra-p.pdf
https://www.data-to-viz.com/
https://www.r-graph-gallery.com
https://r-charts.com/
www.edwardtufte.com
https://r4ds.hadley.nz/data-visualize.html

9. Collection of exercises

9.1. Import data with c()

Table 9.1 shows COVID for three states in Germany:

Table 9.1.: Covid cases and deaths till August 2022
state Bavaria North Rhine-Westphalia Baden-Württemberg
deaths (in mio) 4,92M 5,32M 3,69M
cases 24.111 25.466 16.145

Write down the code you would need to put into the R-console…

• …to store each of variables state and deaths in a vector.
• …to store both vectors in a data frame with the name df_covid.
• …to store both vectors in a tibble with the name tbl_covid.

Solution

The script uses the following functions: c, data.frame, tibble.
R script

Solution to excercise "Import data":

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tibble)

state <- c("BY", "NRW", "BW")
deaths <- c(4.92, 5.32, 3.69)
cases <- c(24111, 25466, 16145)
df_covid <- data.frame(state, deaths)
tbl_covid <- tibble(state, deaths)

tbl_covid

suppressMessages(pacman::p_unload(tibble))

100

9. Collection of exercises

Output of the R script

Solution to excercise "Import data":

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tibble)

state <- c("BY", "NRW", "BW")
deaths <- c(4.92, 5.32, 3.69)
cases <- c(24111, 25466, 16145)
df_covid <- data.frame(state, deaths)
tbl_covid <- tibble(state, deaths)

tbl_covid

A tibble: 3 x 2
state deaths
<chr> <dbl>

1 BY 4.92
2 NRW 5.32
3 BW 3.69

suppressMessages(pacman::p_unload(tibble))

9.2. Filter and select observations

Set up R, RStudio, and R packages

Open this interactive tutorial and work through it.

The script uses among others the following functions: filter, is.na, select.

9.3. Base R,%in% operator, and the pipe |>

a) Using the mtcars dataset, write code to create a new dataframe that includes only the
rows where the number of cylinders is either 4 or 6, and the weight (wt) is less than 3.5.

Do this in two different ways using:

1. The %in% operator and the pipe |> .
2. Base R without the pipe |>.

Compare the resulting dataframes using the identical() function.

b) Using the mtcars dataset, generate a logical variable that indicates with TRUE all cars
with either 4 or 6 cylinders that wt is less than 3.5 and add this variable to a new dataset.

101

https://lr4un3-stephan-huber.shinyapps.io/lr-filter/

9. Collection of exercises

Solution

The script uses the following functions: c, filter, identical, if_else, mutate, subset,
transform, with.

102

9. Collection of exercises

R script

Base R or pipe
exe_base_pipe.R
Stephan Huber; 2023-05-08

setwd("/home/sthu/Dropbox/hsf/test")
rm(list=ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(datasets, tidyverse)

a)
Using the pipe |>
Select rows where cyl is 4 or 6 and wt is less than 3.5
df1 <- mtcars |>

filter(cyl %in% c(4, 6) & wt < 3.5)
df1

Without the pipe |>
Select rows where cyl is 4 or 6 and wt is less than 3.5
df2 <- subset(mtcars, cyl %in% c(4, 6) & wt < 3.5)
df2

Check if the resulting dataframe is identical to the expected output
identical(df1, df2)

b)
Using the pipe |> and tidyverse (mutate)
df3 <- mtcars |>

mutate(cyl_4_or_6 =
if_else(cyl %in% c(4, 6) & wt < 3.5, TRUE, FALSE))

df3

without pipe and with base R (transform)
df4 <- mtcars
df4$cyl_4_or_6 <- with(mtcars, cyl %in% c(4, 6) & wt < 3.5)

Alternatively in one line:
df5 <- transform(mtcars, cyl_4_or_6 = cyl %in% c(4,6) & wt < 3.5)

Check if the resulting dataframe is identical to the expected output
identical(df3, df4)
identical(df3, df5)

unload packages
suppressMessages(pacman::p_unload(datasets, tidyverse))

103

9. Collection of exercises

Output of the R script

Base R or pipe
exe_base_pipe.R
Stephan Huber; 2023-05-08

setwd("/home/sthu/Dropbox/hsf/test")
rm(list=ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(datasets, tidyverse)

a)
Using the pipe |>
Select rows where cyl is 4 or 6 and wt is less than 3.5
df1 <- mtcars |>

filter(cyl %in% c(4, 6) & wt < 3.5)
df1

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Without the pipe |>
Select rows where cyl is 4 or 6 and wt is less than 3.5
df2 <- subset(mtcars, cyl %in% c(4, 6) & wt < 3.5)
df2

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Check if the resulting dataframe is identical to the expected output
identical(df1, df2)

[1] TRUE

b)
Using the pipe |> and tidyverse (mutate)
df3 <- mtcars |>

mutate(cyl_4_or_6 =
if_else(cyl %in% c(4, 6) & wt < 3.5, TRUE, FALSE))

df3

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

cyl_4_or_6
Mazda RX4 TRUE
Mazda RX4 Wag TRUE
Datsun 710 TRUE
Hornet 4 Drive TRUE
Hornet Sportabout FALSE
Valiant TRUE
Duster 360 FALSE
Merc 240D TRUE
Merc 230 TRUE
Merc 280 TRUE
Merc 280C TRUE
Merc 450SE FALSE
Merc 450SL FALSE
Merc 450SLC FALSE
Cadillac Fleetwood FALSE
Lincoln Continental FALSE
Chrysler Imperial FALSE
Fiat 128 TRUE
Honda Civic TRUE
Toyota Corolla TRUE
Toyota Corona TRUE
Dodge Challenger FALSE
AMC Javelin FALSE
Camaro Z28 FALSE
Pontiac Firebird FALSE
Fiat X1-9 TRUE
Porsche 914-2 TRUE
Lotus Europa TRUE
Ford Pantera L FALSE
Ferrari Dino TRUE
Maserati Bora FALSE
Volvo 142E TRUE

without pipe and with base R (transform)
df4 <- mtcars
df4$cyl_4_or_6 <- with(mtcars, cyl %in% c(4, 6) & wt < 3.5)

Alternatively in one line:
df5 <- transform(mtcars, cyl_4_or_6 = cyl %in% c(4,6) & wt < 3.5)

Check if the resulting dataframe is identical to the expected output
identical(df3, df4)

[1] TRUE

identical(df3, df5)

[1] TRUE

unload packages
suppressMessages(pacman::p_unload(datasets, tidyverse))

104

9. Collection of exercises

9.4. Generate and drop variables

Use the mtcars dataset. It is part of the package datasets and can be called with

mtcars

a) Create a new tibble called mtcars_new using the pipe operator |>. Generate a new dummy
variable called d_cyl_6to8 that takes the value 1 if the number of cylinders (cyl) is greater
than 6, and 0 otherwise. Do all of this in a single pipe.

b) Generate a new dummy variable called posercar that takes a value of 1 if a car has more
than 6 cylinders (cyl) and can drive less than 18 miles per gallon (mpg), and 0 otherwise.
Add this variable to the tibble mtcars_new.

c) Remove the variable d_cyl_6to8 from the data frame.

Solution

The script uses the following functions: as_tibble, if_else, mutate,
rownames_to_column, select.

105

9. Collection of exercises

R script

Generate and drop variables
exe_genanddrop.R
Stephan Huber; 2023-05-09

setwd("/home/sthu/Dropbox/hsf/test")
rm(list = ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(datasets, tidyverse)

a)
mtcars_new <- mtcars |>

rownames_to_column(var = "car") |>
as_tibble() |>
mutate(d_cyl_6to8 = if_else(cyl > 6, 1, 0))

mtcars_new

b)
mtcars_new <- mtcars_new |>

mutate(posercar = if_else(cyl > 6 & mpg < 18, 1, 0))
mtcars_new

c)
mtcars_new <- mtcars_new |>

select(-d_cyl_6to8)
mtcars_new

unload packages
suppressMessages(pacman::p_unload(datasets, tidyverse))

106

9. Collection of exercises

Output of the R script

Generate and drop variables
exe_genanddrop.R
Stephan Huber; 2023-05-09

setwd("/home/sthu/Dropbox/hsf/test")
rm(list = ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(datasets, tidyverse)

a)
mtcars_new <- mtcars |>

rownames_to_column(var = "car") |>
as_tibble() |>
mutate(d_cyl_6to8 = if_else(cyl > 6, 1, 0))

mtcars_new

A tibble: 32 x 13
car mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 Mazda RX4 ~ 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 Hornet 4 D~ 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 Hornet Spo~ 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
i 22 more rows
i 1 more variable: d_cyl_6to8 <dbl>

b)
mtcars_new <- mtcars_new |>

mutate(posercar = if_else(cyl > 6 & mpg < 18, 1, 0))
mtcars_new

A tibble: 32 x 14
car mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 Mazda RX4 ~ 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 Hornet 4 D~ 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 Hornet Spo~ 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
i 22 more rows
i 2 more variables: d_cyl_6to8 <dbl>, posercar <dbl>

c)
mtcars_new <- mtcars_new |>

select(-d_cyl_6to8)
mtcars_new

A tibble: 32 x 13
car mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 Mazda RX4 ~ 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 Hornet 4 D~ 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 Hornet Spo~ 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
i 22 more rows
i 1 more variable: posercar <dbl>

unload packages
suppressMessages(pacman::p_unload(datasets, tidyverse))

107

9. Collection of exercises

9.5. Subsetting

1. Check to see if you have the mtcars dataset by entering mtcars.
2. Save the mtcars dataset in an object named cars.
3. What class is cars?
4. How many observations (rows) and variables (columns) are in the mtcars dataset?
5. Rename mpg in cars to MPG. Use rename().
6. Convert the column names of cars to all upper case. Use rename_all, and the toupper

function.
7. Convert the rownames of cars to a column called car using rownames_to_column.
8. Subset the columns from cars that end in “p” and call it pvars using ends_with().
9. Create a subset cars that only contains the columns: wt, qsec, and hp and assign this

object to carsSub. (Use select().)
10. What are the dimensions of carsSub? (Use dim().)
11. Convert the column names of carsSub to all upper case. Use rename_all(), and

toupper() (or colnames()).
12. Subset the rows of cars that get more than 20 miles per gallon (mpg) of fuel efficiency.

How many are there? (Use filter().)
13. Subset the rows that get less than 16 miles per gallon (mpg) of fuel efficiency and have more

than 100 horsepower (hp). How many are there? (Use filter() and the pipe operator.)
14. Create a subset of the cars data that only contains the columns: wt, qsec, and hp for cars

with 8 cylinders (cyl) and reassign this object to carsSub. What are the dimensions of
this dataset? Do not use the pipe operator.

15. Create a subset of the cars data that only contains the columns: wt, qsec, and hp for cars
with 8 cylinders (cyl) and reassign this object to carsSub2. Use the pipe operator.

16. Re-order the rows of carsSub by weight (wt) in increasing order. (Use arrange().)
17. Create a new variable in carsSub called wt2, which is equal to wt2, using mutate() and

piping |>.

Solution

The script uses the following functions: arrange, class, dim, ends_with, filter, mutate,
ncol, nrow, rename, rename_all, rownames_to_column, select.

108

9. Collection of exercises

R script

Subsetting with \R
exe_subset.R
Stephan Huber; 2022-06-07

setwd("/home/sthu/Dropbox/hsf/22-ss/dsda/work/")
rm(list = ls())

0
load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, dplyr, tibble)

1
mtcars

2
cars <- mtcars

3
class(cars)

4
dim(cars)

Alternative
ncol(cars)
nrow(cars)

5
cars <- rename(cars, MPG = mpg)

6
cars <- rename_all(cars, toupper)
if you like lower cases:
cars <- rename_all(cars, tolower)

7
cars <- rownames_to_column(mtcars, var = "car")

8
pvars <- select(cars, car, ends_with("p"))

9
carsSub <- select(cars, car, wt, qsec, hp)

10
dim(carsSub)

11
carsSub <- rename_all(carsSub, toupper)

12
cars_mpg <- filter(cars, mpg > 20)
dim(cars_mpg)

13
cars_whattever <- filter(cars, mpg < 16 & hp > 100)

14
carsSub <- filter(cars, cyl == 8)
carsSub <- select(carsSub, wt, qsec, hp, car)
dim(carsSub)

15
Alternative with pipe operator:
carsSub <- cars |>

filter(cyl == 8) |>
select(wt, qsec, hp, car)

16
carsSub <- arrange(carsSub, wt)

17
carsSub <- carsSub |>

mutate(wt2 = wt^2)

Alternatively you can put everything into one pipe:
carsSub2 <- cars |>

filter(cyl == 8) |>
select(wt, qsec, hp, car) |>
arrange(carsSub, wt) |>
mutate(wt2 = wt^2)

unload packages
suppressMessages(pacman::p_unload(tidyverse, dplyr, tibble))

109

9. Collection of exercises

Output of the R script

Subsetting with \R
exe_subset.R
Stephan Huber; 2022-06-07

setwd("/home/sthu/Dropbox/hsf/22-ss/dsda/work/")
rm(list = ls())

0
load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, dplyr, tibble)

1
mtcars

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

2
cars <- mtcars

3
class(cars)

[1] "data.frame"

4
dim(cars)

[1] 32 11

Alternative
ncol(cars)

[1] 11

nrow(cars)

[1] 32

5
cars <- rename(cars, MPG = mpg)

6
cars <- rename_all(cars, toupper)
if you like lower cases:
cars <- rename_all(cars, tolower)

7
cars <- rownames_to_column(mtcars, var = "car")

8
pvars <- select(cars, car, ends_with("p"))

9
carsSub <- select(cars, car, wt, qsec, hp)

10
dim(carsSub)

[1] 32 4

11
carsSub <- rename_all(carsSub, toupper)

12
cars_mpg <- filter(cars, mpg > 20)
dim(cars_mpg)

[1] 14 12

13
cars_whattever <- filter(cars, mpg < 16 & hp > 100)

14
carsSub <- filter(cars, cyl == 8)
carsSub <- select(carsSub, wt, qsec, hp, car)
dim(carsSub)

[1] 14 4

15
Alternative with pipe operator:
carsSub <- cars |>

filter(cyl == 8) |>
select(wt, qsec, hp, car)

16
carsSub <- arrange(carsSub, wt)

17
carsSub <- carsSub |>

mutate(wt2 = wt^2)

Alternatively you can put everything into one pipe:
carsSub2 <- cars |>

filter(cyl == 8) |>
select(wt, qsec, hp, car) |>
arrange(carsSub, wt) |>
mutate(wt2 = wt^2)

unload packages
suppressMessages(pacman::p_unload(tidyverse, dplyr, tibble))

110

9. Collection of exercises

9.6. Consumer prices over time

1. Read in the following data:

https://raw.githubusercontent.com/hubchev/courses/main/dta/PCEPI.csv

The data stem from the Federal Reserve Bank of St. Louis (FRED).

Tip

You should always try to use most recent data and you should not work outside of R. Thus,
it would be optimal to download the data directly from FRED and using a R package.
If this would be serious research, I would not recommend to use the data that I have
downloaded from FRED, I’d recommend to use the fredr package which allows to fetch
the observation directly from FRED database using the function fredr.

Here is an excerpt of the data:

DATE PCEPI_NBD20190101
1 1965-01-01 15.92229
2 1966-01-01 16.32477
3 1967-01-01 16.73491
4 1968-01-01 17.38977
5 1969-01-01 18.17313
6 1970-01-01 19.02267

2. Divide the variable PCEPI_NBD20190101 by 100 and name the resulting variable pce. Addi-
tionally, generate a new variable year that contains the respective year. Save the modified
dataframe as pce_cl.

3. Make the following plot:

0.25

0.50

0.75

1.00

1980 2000 2020
year

pc
e

3. Make the following plot:

111

https://fred.stlouisfed.org/series/PCEPI
https://sboysel.github.io/fredr/

9. Collection of exercises

0.00

0.25

0.50

0.75

1.00

1980 2000 2020
year

pc
e

4. Make the following plot:

0.00

0.25

0.50

0.75

1.00

2000 2005 2010 2015 2020
year

pc
e

5. Make a plot of inflation for all years except the 90s:

112

9. Collection of exercises

0.00

0.25

0.50

0.75

1.00

1980 2000 2020
year

pc
e

6. Calculate the yearly inflation. Here is an excpert of how the data should look like:

year pce inflation_rate
1 1965 0.1592229 NA
2 1966 0.1632477 2.527777
3 1967 0.1673491 2.512378
4 1968 0.1738977 3.913137
5 1969 0.1817313 4.504717
6 1970 0.1902267 4.674704

7. Plot the yearly inflation rate:

0

3

6

9

1980 2000 2020
year

in
fla

tio
n_

ra
te

8. Calculate the average inflation rate over all years.

9. Calculate the average inflation rate for each decade:

113

9. Collection of exercises

A tibble: 7 x 2
decade avg_inf
<chr> <dbl>

1 1960s 3.36
2 1970s 6.43
3 1980s 5.03
4 1990s 2.32
5 2000s 2.14
6 2010s 1.57
7 2020s 2.53

10. Make the following plot:

0

2

4

6

1960s 1970s 1980s 1990s 2000s 2010s 2020s
decade

av
g_

in
f

Solution

The script uses the following functions: aes, as.integer, case_when, filter, geom_bar,
geom_line, geom_point, ggplot, group_by, lag, mean, mutate, read.csv, select,
str_sub, summarize.

114

9. Collection of exercises

R script

if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, janitor, expss)
setwd("~/yourdirectory-of-choice")
rm(list = ls())

read in raw data
PCEPI <- read.csv("PCEPI.csv")
PCEPI <- read.csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/PCEPI.csv")

clean data
pce_cl <- PCEPI |>

mutate(pce = PCEPI_NBD20190101/100) |>
mutate(year = str_sub(DATE, 1, 4)) |>
mutate(year = as.integer(year)) |>
select(pce, year)

make a plot
pce_cl |>

ggplot(aes(x=year, y=pce))+
geom_line() +
geom_point()

make a barplot
pce_cl |>

ggplot(aes(x=year, y=pce))+
geom_bar(stat="identity")

make a plot for all years from 2000 onwards
pce_cl |>

filter(year > 2000) |>
ggplot(aes(x=year, y=pce)) +
geom_bar(stat="identity")

make a plot for all years except the 90s
pce_cl |>

filter(year > 2000 | year <1990) |>
ggplot(aes(x=year, y=pce)) +
geom_bar(stat="identity")

calculate yearly inflation
pce_cl <- pce_cl |>

mutate(inflation_rate = (pce/lag(pce)-1)*100)

plot the inflation rate
pce_cl |>

ggplot(aes(x=year, y=inflation_rate))+
geom_bar(stat="identity")

what is the avergage inflation rate
pce_cl |>

summarize(avg_mpg = mean(inflation_rate, na.rm = TRUE))

make a variable that indicates the decades 1 for 60s, 2 for 70s, etc.

pce_cl <- pce_cl |>
mutate(decade = case_when(
year < 1970 ~ "1960s",
(year > 1969 & year < 1980) ~ "1970s",
(year > 1979 & year < 1990) ~ "1980s",
(year > 1989 & year < 2000) ~ "1990s",
(year > 1999 & year < 2010) ~ "2000s",
(year > 2009 & year < 2020) ~ "2010s",
(year > 2019 & year < 2030) ~ "2020s",

))

pce_decade <- pce_cl |>
group_by(decade) |>
summarize(avg_inf = mean(inflation_rate, na.rm = TRUE))

pce_decade
pce_decade |>

ggplot(aes(x=decade, y=avg_inf))+
geom_bar(stat="identity")

115

9. Collection of exercises

Output of the R script

if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, janitor, expss)
setwd("~/yourdirectory-of-choice")
rm(list = ls())

read in raw data
PCEPI <- read.csv("PCEPI.csv")
PCEPI <- read.csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/PCEPI.csv")

clean data
pce_cl <- PCEPI |>

mutate(pce = PCEPI_NBD20190101/100) |>
mutate(year = str_sub(DATE, 1, 4)) |>
mutate(year = as.integer(year)) |>
select(pce, year)

make a plot
pce_cl |>

ggplot(aes(x=year, y=pce))+
geom_line() +
geom_point()

0.25

0.50

0.75

1.00

1980 2000 2020
year

pc
e

make a barplot
pce_cl |>

ggplot(aes(x=year, y=pce))+
geom_bar(stat="identity")

0.00

0.25

0.50

0.75

1.00

1980 2000 2020
year

pc
e

make a plot for all years from 2000 onwards
pce_cl |>

filter(year > 2000) |>
ggplot(aes(x=year, y=pce)) +
geom_bar(stat="identity")

0.00

0.25

0.50

0.75

1.00

2000 2005 2010 2015 2020
year

pc
e

make a plot for all years except the 90s
pce_cl |>

filter(year > 2000 | year <1990) |>
ggplot(aes(x=year, y=pce)) +
geom_bar(stat="identity")

0.00

0.25

0.50

0.75

1.00

1980 2000 2020
year

pc
e

calculate yearly inflation
pce_cl <- pce_cl |>

mutate(inflation_rate = (pce/lag(pce)-1)*100)

plot the inflation rate
pce_cl |>

ggplot(aes(x=year, y=inflation_rate))+
geom_bar(stat="identity")

Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_bar()`).

0

3

6

9

1980 2000 2020
year

in
fla

tio
n_

ra
te

what is the avergage inflation rate
pce_cl |>

summarize(avg_mpg = mean(inflation_rate, na.rm = TRUE))

avg_mpg
1 3.454529

make a variable that indicates the decades 1 for 60s, 2 for 70s, etc.

pce_cl <- pce_cl |>
mutate(decade = case_when(
year < 1970 ~ "1960s",
(year > 1969 & year < 1980) ~ "1970s",
(year > 1979 & year < 1990) ~ "1980s",
(year > 1989 & year < 2000) ~ "1990s",
(year > 1999 & year < 2010) ~ "2000s",
(year > 2009 & year < 2020) ~ "2010s",
(year > 2019 & year < 2030) ~ "2020s",

))

pce_decade <- pce_cl |>
group_by(decade) |>
summarize(avg_inf = mean(inflation_rate, na.rm = TRUE))

pce_decade

A tibble: 7 x 2
decade avg_inf
<chr> <dbl>

1 1960s 3.36
2 1970s 6.43
3 1980s 5.03
4 1990s 2.32
5 2000s 2.14
6 2010s 1.57
7 2020s 2.53

pce_decade |>
ggplot(aes(x=decade, y=avg_inf))+
geom_bar(stat="identity")

0

2

4

6

1960s 1970s 1980s 1990s 2000s 2010s 2020s
decade

av
g_

in
f

116

9. Collection of exercises

9.7. Load the Stata dataset “auto” using R

1. Create a scatter plot illustrating the relationship between the price and weight of a car.
Provide a meaningful title for the graph and try to make it clear which car each observation
corresponds to.

2. Save this graph in the formats of .png and .pdf.

3. Create a variable lp100km that indicates the fuel consumption of an average car in liters
per 100 kilometers. (Note: One gallon is approximately equal to 3.8 liters, and one mile
is about 1.6 kilometers.)

4. Create a dummy variable larger6000 that is equal to 1 if the price of a car is above
$6000.

5. Now, search for the “most unreasonable poser car” that costs no more than $6000. A
poser car is defined as one that is expensive, has a large turning radius, consumes a lot
of fuel, and is often defective (rep78 is low). For this purpose, create a metric indicator
for each corresponding variable that indicates a value of 1 for the car that is the most
unreasonable in that variable and 0 for the most reasonable car. All other cars should fall
between 0 and 1.

Solution

The script uses the following functions: aes, arrange, desc, dir.create, dir.exists,
filter, geom_point, geom_text_repel, ggplot, head, ifelse, max, min, min_max_norm,
mutate, na.omit, read_dta, select, tail, theme_minimal, xlab, ylab.

117

9. Collection of exercises

R script

Load the required libraries
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, haven, ggrepel)

setwd("~/Dropbox/hsf/23-ws/R_begin")

rm(list = ls())

Read the Stata dataset
auto <- read_dta("http://www.stata-press.com/data/r8/auto.dta")

Create a scatter plot of price vs. weight
scatter_plot <- ggplot(auto, aes(x = mpg, y = price, label = make)) +

geom_point() +
geom_text_repel() +
xlab("Miles per Gallon") +
ylab("Price in Dollar") +
theme_minimal()

scatter_plot

Create "fig" directory if it doesn't already exist
if (!dir.exists("fig")) {

dir.create("fig")
}

Save the scatter plot in different formats
ggsave("fig/scatter_plot.png", plot = scatter_plot, device = "png")
ggsave("fig/scatter_plot.pdf", plot = scatter_plot, device = "pdf")

Create 'lp100km' variable for fuel consumption
n_auto <- auto |>

mutate(lp100km = (1 / (mpg * 1.6 / 3.8)) * 100)

Create 'larger6000' dummy variable
n_auto <- n_auto |>

mutate(larger6000 = ifelse(price > 6000, 1, 0))

Normalize variables

Do it slowly
n_auto <- n_auto |>

mutate(sprice = (price - min(auto$price)) / (max(auto$price) - min(auto$price)))

n_auto <- n_auto |>
filter(larger6000 == 0)

Do it with a self-written function
min_max_norm <- function(x) {

(x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
}

n_auto <- n_auto |>
mutate(smpg = min_max_norm(mpg)) |>
mutate(sturn = min_max_norm(turn)) |>
mutate(slp100km = min_max_norm(lp100km)) |>
mutate(sprice = min_max_norm(price)) |>
mutate(srep78 = min_max_norm(rep78))

With a loop:

vars_to_normalize <- c("mpg", "turn", "lp100km", "price", "rep78")
#
Loop through the selected variables and apply min_max_norm
for (var in c("mpg", "turn", "lp100km", "price", "rep78")) {
auto <- auto |>
mutate(!!paste0("s", var) := min_max_norm(!!sym(var))) |>
select(make, starts_with("s"))
}

mpg and rep78 need to be changed because a SMALL value is poser-like
n_auto <- n_auto |>

mutate(smpg = 1 - smpg) |>
mutate(srep78 = 1 - srep78)

create the poser (composite) indicator
n_auto <- n_auto |>

mutate(poser = (sturn + smpg + sprice + srep78) / 4)

filter results
n_auto |>

arrange(desc(poser)) |>
select(make, poser) |>
head(5)

df_poser <- n_auto |>
filter(larger6000 == 0) |>
arrange(desc(poser)) |>
select(make, poser) |>
na.omit()

Five top poser cars
head(df_poser, 15)

Five top non-poser cars
tail(df_poser, 5)

unload packages
suppressMessages(pacman::p_unload(tidyverse, haven, ggrepel))

118

9. Collection of exercises

Output of the R script

Load the required libraries
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, haven, ggrepel)

setwd("~/Dropbox/hsf/23-ws/R_begin")

rm(list = ls())

Read the Stata dataset
auto <- read_dta("http://www.stata-press.com/data/r8/auto.dta")

Create a scatter plot of price vs. weight
scatter_plot <- ggplot(auto, aes(x = mpg, y = price, label = make)) +

geom_point() +
geom_text_repel() +
xlab("Miles per Gallon") +
ylab("Price in Dollar") +
theme_minimal()

scatter_plot

Warning: ggrepel: 52 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Buick Electra

Buick RivieraCad. Deville

Cad. Eldorado
Cad. Seville

Linc. Continental

Linc. Mark V
Linc. Versailles

Olds 98

Olds Toronado

Plym. Champ
Plym. Sapporo

Audi 5000

BMW 320i

Datsun 210

Datsun 810

Peugeot 604

Subaru

VW Dasher

VW Diesel

VW Scirocco

Volvo 260

4000

8000

12000

16000

20 30 40
Miles per Gallon

P
ric

e
in

 D
ol

la
r

Create "fig" directory if it doesn't already exist
if (!dir.exists("fig")) {

dir.create("fig")
}

Save the scatter plot in different formats
ggsave("fig/scatter_plot.png", plot = scatter_plot, device = "png")
ggsave("fig/scatter_plot.pdf", plot = scatter_plot, device = "pdf")

Create 'lp100km' variable for fuel consumption
n_auto <- auto |>

mutate(lp100km = (1 / (mpg * 1.6 / 3.8)) * 100)

Create 'larger6000' dummy variable
n_auto <- n_auto |>

mutate(larger6000 = ifelse(price > 6000, 1, 0))

Normalize variables

Do it slowly
n_auto <- n_auto |>

mutate(sprice = (price - min(auto$price)) / (max(auto$price) - min(auto$price)))

n_auto <- n_auto |>
filter(larger6000 == 0)

Do it with a self-written function
min_max_norm <- function(x) {

(x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
}

n_auto <- n_auto |>
mutate(smpg = min_max_norm(mpg)) |>
mutate(sturn = min_max_norm(turn)) |>
mutate(slp100km = min_max_norm(lp100km)) |>
mutate(sprice = min_max_norm(price)) |>
mutate(srep78 = min_max_norm(rep78))

With a loop:

vars_to_normalize <- c("mpg", "turn", "lp100km", "price", "rep78")
#
Loop through the selected variables and apply min_max_norm
for (var in c("mpg", "turn", "lp100km", "price", "rep78")) {
auto <- auto |>
mutate(!!paste0("s", var) := min_max_norm(!!sym(var))) |>
select(make, starts_with("s"))
}

mpg and rep78 need to be changed because a SMALL value is poser-like
n_auto <- n_auto |>

mutate(smpg = 1 - smpg) |>
mutate(srep78 = 1 - srep78)

create the poser (composite) indicator
n_auto <- n_auto |>

mutate(poser = (sturn + smpg + sprice + srep78) / 4)

filter results
n_auto |>

arrange(desc(poser)) |>
select(make, poser) |>
head(5)

A tibble: 5 x 2
make poser
<chr> <dbl>

1 Dodge Magnum 0.888
2 Pont. Firebird 0.782
3 Merc. Cougar 0.763
4 Buick LeSabre 0.754
5 Pont. Grand Prix 0.720

df_poser <- n_auto |>
filter(larger6000 == 0) |>
arrange(desc(poser)) |>
select(make, poser) |>
na.omit()

Five top poser cars
head(df_poser, 15)

A tibble: 15 x 2
make poser
<chr> <dbl>

1 Dodge Magnum 0.888
2 Pont. Firebird 0.782
3 Merc. Cougar 0.763
4 Buick LeSabre 0.754
5 Pont. Grand Prix 0.720
6 Chev. Impala 0.702
7 Dodge Diplomat 0.690
8 Chev. Monte Carlo 0.684
9 Pont. Catalina 0.678
10 Olds Cutl Supr 0.671
11 Plym. Volare 0.665
12 Buick Regal 0.663
13 Olds Cutlass 0.629
14 Olds Starfire 0.626
15 AMC Pacer 0.619

Five top non-poser cars
tail(df_poser, 5)

A tibble: 5 x 2
make poser
<chr> <dbl>

1 VW Diesel 0.261
2 Dodge Colt 0.227
3 Toyota Corolla 0.195
4 Datsun 210 0.195
5 Subaru 0.178

unload packages
suppressMessages(pacman::p_unload(tidyverse, haven, ggrepel))

119

9. Collection of exercises

9.8. DatasauRus

Figure 9.1.: The logo of the DatasauRus package

Source: https://github.com/jumpingrivers/datasauRus _

a) Load the packages datasauRus and tidyverse. If necessary, install these packages.

b) The packagedatasauRus comes with a dataset in two different formats: datasaurus_dozen
and datasaurus_dozen_wide. Store them as ds and ds_wide.

c) Open and read the R vignette of the datasauRus package. Also open the R documentation
of the dataset datasaurus_dozen.

d) Explore the dataset: What are the dimensions of this dataset? Look at the descriptive
statistics.

e) How many unique values does the variable dataset of the tibble ds have? Hint: The
function unique() return the unique values of a variable and the function length() returns
the length of a vector, such as the unique elements.

f) Compute the mean values of the x and y variables for each entry in dataset. Hint:
Use the group_by() function to group the data by the appropriate column and then the
summarise() function to calculate the mean.

g) Compute the standard deviation, the correlation, and the median in the same way. Round
the numbers.

h) What can you conclude?

i) Plot all datasets of ds. Hide the legend. Hint: Use the facet_wrap() and the theme()
function.

j) Create a loop that generates separate scatter plots for each unique datatset of the tibble
ds. Export each graph as a png file.

k) Watch the video Animating the Datasaurus Dozen Dataset in R from The Data Digest
on YouTube.

Solution

The script uses the following functions: aes, cor, dim, dir.create, dir.exists,
facet_wrap, filter, geom_point, ggplot, ggsave, glimpse, group_by, head, labs,
length, mean, median, paste, paste0, round, sd, select, summarise, summary, theme,
theme_bw, unique, view.

120

https://github.com/jumpingrivers/datasauRus
https://youtu.be/T-kxUB29t0o

9. Collection of exercises

R script

setwd("/home/sthu/Dropbox/hsf/23-ws/ds_mim/")
rm(list = ls())

Load the packages datasauRus and tidyverse. If necessary, install these packages.

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(datasauRus, tidyverse)

The packagedatasauRus comes with a dataset in two different formats:
datasaurus_dozen and datasaurus_dozen_wide. Store them as ds and ds_wide.

ds <- datasaurus_dozen
ds_wide <- datasaurus_dozen_wide

Open and read the R vignette of the datasauRus package.
Also open the R documentation of the dataset datasaurus_dozen.

??datasaurus

Explore the dataset: What are the dimensions of this dataset? Look at the descriptive statistics.

ds
dim(ds)
head(ds)
glimpse(ds)
view(ds)
summary(ds)

How many unique values does the variable dataset of the tibble ds have?
Hint: The function unique() return the unique values of a variable and the
function length() returns the length of a vector, such as the unique elements.

unique(ds$dataset)

unique(ds$dataset) |>
length()

Compute the mean values of the x and y variables for each entry in dataset.
Hint: Use the group_by() function to group the data by the appropriate column and
then the summarise() function to calculate the mean.

ds |>
group_by(dataset) |>
summarise(
mean_x = mean(x),
mean_y = mean(y)

)

Compute the standard deviation, the correlation, and the median in the same way. Round the numbers.

ds |>
group_by(dataset) |>
summarise(
mean_x = round(mean(x), 2),
mean_y = round(mean(y), 2),
sd_x = round(sd(x), 2),
sd_y = round(sd(y), 2),
med_x = round(median(x), 2),
med_y = round(median(y), 2),
cor = round(cor(x, y), digits = 4)

)

What can you conclude?
--> The standard deviation, the mean, and the correlation are basically the
same for all datasets. The median is different.

Plot all datasets of ds. Hide the legend. Hint: Use the facet_wrap() and the theme() function.

ggplot(ds, aes(x = x, y = y)) +
geom_point() +
facet_wrap(~dataset, ncol = 3) +
theme(legend.position = "none")

Create a loop that generates separate scatter plots for each unique datatset of the tibble ds.
Export each graph as a png file.

Assuming uni_ds is a vector of unique values for the 'dataset' variable
uni_ds <- unique(ds$dataset)

Create the 'pic' folder if it doesn't exist
if (!dir.exists("fig")) {

dir.create("fig")
}

for (uni_v in uni_ds) {
Select data for the current value
subset_ds <- ds |>
filter(dataset == uni_v) |>
select(x, y)

Make plot
graph <- ggplot(subset_ds, aes(x = x, y = y)) +
geom_point() +
labs(

title = paste("Dataset:", uni_v),
x = "X",
y = "Y"

) +
theme_bw()

Save the plot as a PNG file
filename <- paste0("fig/", "plot_ds_", uni_v, ".png")
ggsave(filename, plot = graph)

}

unload packages
suppressMessages(pacman::p_unload(datasauRus, tidyverse))

121

9. Collection of exercises

Output of the R script

setwd("/home/sthu/Dropbox/hsf/23-ws/ds_mim/")
rm(list = ls())

Load the packages datasauRus and tidyverse. If necessary, install these packages.

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(datasauRus, tidyverse)

The packagedatasauRus comes with a dataset in two different formats:
datasaurus_dozen and datasaurus_dozen_wide. Store them as ds and ds_wide.

ds <- datasaurus_dozen
ds_wide <- datasaurus_dozen_wide

Open and read the R vignette of the datasauRus package.
Also open the R documentation of the dataset datasaurus_dozen.

??datasaurus

Explore the dataset: What are the dimensions of this dataset? Look at the descriptive statistics.

ds

A tibble: 1,846 x 3
dataset x y
<chr> <dbl> <dbl>

1 dino 55.4 97.2
2 dino 51.5 96.0
3 dino 46.2 94.5
4 dino 42.8 91.4
5 dino 40.8 88.3
6 dino 38.7 84.9
7 dino 35.6 79.9
8 dino 33.1 77.6
9 dino 29.0 74.5
10 dino 26.2 71.4
i 1,836 more rows

dim(ds)

[1] 1846 3

head(ds)

A tibble: 6 x 3
dataset x y
<chr> <dbl> <dbl>

1 dino 55.4 97.2
2 dino 51.5 96.0
3 dino 46.2 94.5
4 dino 42.8 91.4
5 dino 40.8 88.3
6 dino 38.7 84.9

glimpse(ds)

Rows: 1,846
Columns: 3
$ dataset <chr> "dino", "dino", "dino", "dino", "dino", "dino", "dino", "dino"~
$ x <dbl> 55.3846, 51.5385, 46.1538, 42.8205, 40.7692, 38.7179, 35.6410,~
$ y <dbl> 97.1795, 96.0256, 94.4872, 91.4103, 88.3333, 84.8718, 79.8718,~

view(ds)
summary(ds)

dataset x y
Length:1846 Min. :15.56 Min. : 0.01512
Class :character 1st Qu.:41.07 1st Qu.:22.56107
Mode :character Median :52.59 Median :47.59445

Mean :54.27 Mean :47.83510
3rd Qu.:67.28 3rd Qu.:71.81078
Max. :98.29 Max. :99.69468

How many unique values does the variable dataset of the tibble ds have?
Hint: The function unique() return the unique values of a variable and the
function length() returns the length of a vector, such as the unique elements.

unique(ds$dataset)

[1] "dino" "away" "h_lines" "v_lines" "x_shape"
[6] "star" "high_lines" "dots" "circle" "bullseye"
[11] "slant_up" "slant_down" "wide_lines"

unique(ds$dataset) |>
length()

[1] 13

Compute the mean values of the x and y variables for each entry in dataset.
Hint: Use the group_by() function to group the data by the appropriate column and
then the summarise() function to calculate the mean.

ds |>
group_by(dataset) |>
summarise(
mean_x = mean(x),
mean_y = mean(y)

)

A tibble: 13 x 3
dataset mean_x mean_y
<chr> <dbl> <dbl>

1 away 54.3 47.8
2 bullseye 54.3 47.8
3 circle 54.3 47.8
4 dino 54.3 47.8
5 dots 54.3 47.8
6 h_lines 54.3 47.8
7 high_lines 54.3 47.8
8 slant_down 54.3 47.8
9 slant_up 54.3 47.8
10 star 54.3 47.8
11 v_lines 54.3 47.8
12 wide_lines 54.3 47.8
13 x_shape 54.3 47.8

Compute the standard deviation, the correlation, and the median in the same way. Round the numbers.

ds |>
group_by(dataset) |>
summarise(
mean_x = round(mean(x), 2),
mean_y = round(mean(y), 2),
sd_x = round(sd(x), 2),
sd_y = round(sd(y), 2),
med_x = round(median(x), 2),
med_y = round(median(y), 2),
cor = round(cor(x, y), digits = 4)

)

A tibble: 13 x 8
dataset mean_x mean_y sd_x sd_y med_x med_y cor
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 away 54.3 47.8 16.8 26.9 53.3 47.5 -0.0641
2 bullseye 54.3 47.8 16.8 26.9 53.8 47.4 -0.0686
3 circle 54.3 47.8 16.8 26.9 54.0 51.0 -0.0683
4 dino 54.3 47.8 16.8 26.9 53.3 46.0 -0.0645
5 dots 54.3 47.8 16.8 26.9 51.0 51.3 -0.0603
6 h_lines 54.3 47.8 16.8 26.9 53.1 50.5 -0.0617
7 high_lines 54.3 47.8 16.8 26.9 54.2 32.5 -0.0685
8 slant_down 54.3 47.8 16.8 26.9 53.1 46.4 -0.069
9 slant_up 54.3 47.8 16.8 26.9 54.3 45.3 -0.0686
10 star 54.3 47.8 16.8 26.9 56.5 50.1 -0.063
11 v_lines 54.3 47.8 16.8 26.9 50.4 47.1 -0.0694
12 wide_lines 54.3 47.8 16.8 26.9 64.6 46.3 -0.0666
13 x_shape 54.3 47.8 16.8 26.9 47.1 39.9 -0.0656

What can you conclude?
--> The standard deviation, the mean, and the correlation are basically the
same for all datasets. The median is different.

Plot all datasets of ds. Hide the legend. Hint: Use the facet_wrap() and the theme() function.

ggplot(ds, aes(x = x, y = y)) +
geom_point() +
facet_wrap(~dataset, ncol = 3) +
theme(legend.position = "none")

x_shape

star v_lines wide_lines

high_lines slant_down slant_up

dino dots h_lines

away bullseye circle

25 50 75 100

25 50 75 100 25 50 75 100

0255075100

0255075100

0255075100

0255075100

0255075100

x

y

Create a loop that generates separate scatter plots for each unique datatset of the tibble ds.
Export each graph as a png file.

Assuming uni_ds is a vector of unique values for the 'dataset' variable
uni_ds <- unique(ds$dataset)

Create the 'pic' folder if it doesn't exist
if (!dir.exists("fig")) {

dir.create("fig")
}

for (uni_v in uni_ds) {
Select data for the current value
subset_ds <- ds |>
filter(dataset == uni_v) |>
select(x, y)

Make plot
graph <- ggplot(subset_ds, aes(x = x, y = y)) +
geom_point() +
labs(

title = paste("Dataset:", uni_v),
x = "X",
y = "Y"

) +
theme_bw()

Save the plot as a PNG file
filename <- paste0("fig/", "plot_ds_", uni_v, ".png")
ggsave(filename, plot = graph)

}

Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image
Saving 5.5 x 3.5 in image

unload packages
suppressMessages(pacman::p_unload(datasauRus, tidyverse))

122

9. Collection of exercises

9.9. Convergence

The dataset convergence.dta, see https://github.com/hubchev/courses/blob/main/dta/convergence.dta,
contains the per capita GDP of 1960 (gdppc60) and the average growth rate of GDP per
capita between 1960 and 1995 (growth) for different countries (country), as well as 3 dummy
variables indicating the belonging of a country to the region Asia (asia), Western Europe
(weurope) or Africa (africa).

• Some countries are not assigned to a certain country group. Name the countries which
are assign to be part of Western Europe, Africa or Asia. If you find countries that are
members of the EU, assign them a ‘1’ in the variable weurope.

• Create a table that shows the average GDP per capita for all available points in time.
Group by Western European, Asian, African, and the remaining countries.

• Create the growth rate of GDP per capita from 1960 to 1995 and call it gdpgrowth. (Note:
The log value X minus the log value X of the previous period is approximately equal to
the growth rate).

• Calculate the unconditional convergence of all countries by constructing a graph in which
a scatterplot shows the GDP per capita growth rate between 1960 and 1995 (gdpgrowth)
on the y-axis and the 1960 GDP per capita (gdppc60) on the x-axis. Add to the same
graph the estimated linear relationship. You do not need to label the graph further, just
two things: title the graph world and label the individual observations with the country
names.

• Create three graphs describing the same relationship for the sample of Western European,
African and Asian countries. Title the graph accordingly with weurope, africa and asia.

• Combine the four graphs into one image. Discuss how an upward or downward sloping
regression line can be interpreted.

• Estimate the relationships illustrated in the 4 graphs using the least squares method.
Present the 4 estimation results in a table, indicating the significance level with stars.
In addition, the Akaike information criterion, and the number of observations should be
displayed in the table. Interpret the four estimation results regarding their significance.

• Put the data set into the so-called long format and calculate the GDP per capita growth
rates for the available time points in the countries.

Solution

The script uses the following functions: aes, as.numeric, c, cor, describe, diff,
filter, gather, geom_point, geom_text, ggarrange, ggplot, ggtitle, group_by,
head, ifelse, lag, list, lm, log, mean, mutate, names, read_dta, select,
set_label, starts_with, stat_smooth, stat.desc, str, subset, substr, summarise,
summarise_all, summarise_at, summary, tab_model, tail, tbl_summary, vars, view.

123

9. Collection of exercises

R script

Convergence

set working directory
setwd("/home/sthu/Dropbox/hsf/github/courses/")

clear the environment
rm(list = ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(

haven, tidyverse, vtable, gtsummary, pastecs, Hmisc,
sjlabelled, tis, ggpubr, sjPlot, psych

)

import data
data <- read_dta("https://github.com/hubchev/courses/raw/main/dta/convergence.dta")

inspect data
names(data)
str(data)
data
head(data)
tail(data)
summary(data)
view(data)

library(vtable)
vtable(data, missing=TRUE)

library(pastecs)
stat.desc(data)

library(Hmisc)
describe(data)

library(gtsummary)
tbl_summary(data)

check the assignments of countries to continents
data |>

select(country, africa, asia, weurope) |>
view()

data <- mutate(data, x_1 = africa + asia + weurope)

data |>
filter(x_1 == 0) |>
select(africa, asia, weurope, country) |>
view()

correct the assignment manually
data$weurope[data$country == "Austria"] <- 1
data$weurope[data$country == "Greece"] <- 1
data$weurope[data$country == "Cyprus"] <- 1

filter(data, data$weurope == 1) # check changes

In the following, I do the same with a loop
c_europe <- c("Austria","Greece","Cyprus")
sum(data$weurope) # check changes
for (i in c_europe){
print(i)
data$weurope[data$country == i] <- 1
}
sum(data$weurope) # check changes
data$weurope[data$country == "Austria"] # check changes

create a category for the remaining countries
use ifelse -- ifelse(condition, result if TRUE, result if FALSE)
data$rest <- ifelse(data$africa == 0 & data$asia == 0 & data$weurope == 0, 1, 0)
data$rest <- set_label(data$rest, label = "=1 if not in Africa, W.Europe, or Asia")

create table with means across country groups
table_gdp <- data |>

group_by(africa, asia, weurope) |>
summarise_at(vars(gdppc60:gdppc95), list(name = mean))

data |>
group_by(africa, asia, weurope) |>
select(gdppc60:gdppc95) |>
summarise_all(mean)

create growth rate
data$gr1 <- (data$gdppc95 - data$gdppc60) / data$gdppc60
data$gr2 <- log(data$gdppc95) - log(data$gdppc60)
cor(data$gr1, data$gr2)

ggplot(data, aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
geom_text(hjust = 0, vjust = 0)

p1 <- ggplot(data, aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1) +
geom_text(hjust=0, vjust=0) +
ggtitle("World")

p2 <- data |>
filter(weurope == 1) |>
ggplot(aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1) +
geom_text(hjust=0, vjust=0) +
ggtitle("Western Europe")

p3 <- data |>
filter(asia == 1) |>
ggplot(aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1) +
geom_text(hjust=0, vjust=0) +
ggtitle("Asia")

p4 <- data |>
filter(africa == 1) |>
ggplot(aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1) +
geom_text(hjust=0, vjust=0) +
ggtitle("Africa")

ggarrange(p1, p2, p3, p4,
labels = c("A", "B", "C", "D"),
ncol = 2, nrow = 2

)

Regression analysis
m1 <- lm(growth ~ gdppc60, data = data)
m2 <- lm(growth ~ gdppc60, data = subset(data, weurope == 1))
m3 <- lm(growth ~ gdppc60, data = subset(data, asia == 1))
m4 <- lm(growth ~ gdppc60, data = subset(data, africa == 1))

tab_model(m1, m2, m3, m4,
p.style = "stars",
p.threshold = c(0.2, 0.1, 0.05),
show.ci = FALSE,
show.se = FALSE,
show.aic = TRUE,
dv.labels = c("World", "W.Europe", "Asia", "Africa")

)

reshape data (see: https://stackoverflow.com/questions/2185252/reshaping-data-frame-from-wide-to-long-format)
data_long <- gather(data, condition, measurement, gdppc60:gdppc95, factor_key = TRUE)
data_long$year <- as.numeric(substr(data_long$condition, 6, 7))

data_long$gr_long <- data_long |>
select(country, measurement) |>
group_by(country) |>
mutate(gr = c(NA, diff(measurement)) / lag(measurement, 1))

erase all helping variables
data <- select(data, -starts_with("h_"))

generate and remove variables in a dataframe
data <- mutate(data, Land = country)
data <- select(data, -country)

data |>
summarise(
y65 = mean(gdppc65, na.rm = TRUE),
y70 = mean(gdppc70, na.rm = TRUE),
y75 = mean(gdppc75, na.rm = TRUE),
y80 = mean(gdppc80, na.rm = TRUE),
y85 = mean(gdppc85, na.rm = TRUE),
y90 = mean(gdppc90, na.rm = TRUE),
y95 = mean(gdppc95, na.rm = TRUE)

)

suppressMessages(pacman::p_unload(
haven, tidyverse, vtable, gtsummary, pastecs, Hmisc,
sjlabelled, tis, ggpubr, sjPlot

))

124

9. Collection of exercises

Output of the R script

Convergence

set working directory
setwd("/home/sthu/Dropbox/hsf/github/courses/")

clear the environment
rm(list = ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(

haven, tidyverse, vtable, gtsummary, pastecs, Hmisc,
sjlabelled, tis, ggpubr, sjPlot, psych

)

import data
data <- read_dta("https://github.com/hubchev/courses/raw/main/dta/convergence.dta")

inspect data
names(data)

[1] "country" "gdppc60" "gdppc65" "gdppc70" "gdppc75" "gdppc80" "gdppc85"
[8] "gdppc90" "gdppc95" "africa" "asia" "weurope" "growth"

str(data)

tibble [107 x 13] (S3: tbl_df/tbl/data.frame)
$ country: chr [1:107] "Algeria" "Angola" "Argentina" "Australia" ...
..- attr(*, "format.stata")= chr "%24s"

$ gdppc60: num [1:107] 2848 2642 7879 11436 7842 ...
..- attr(*, "label")= chr "real gdp per capita 1960"
..- attr(*, "format.stata")= chr "%9.0g"

$ gdppc65: num [1:107] 3536 3072 8802 13192 9387 ...
..- attr(*, "label")= chr "real gdp per capita 1965"
..- attr(*, "format.stata")= chr "%9.0g"

$ gdppc70: num [1:107] 3670 3558 9903 15842 11946 ...
..- attr(*, "label")= chr "real gdp per capita 1970"
..- attr(*, "format.stata")= chr "%9.0g"

$ gdppc75: num [1:107] 3917 2230 10609 16716 14198 ...
..- attr(*, "label")= chr "real gdp per capita 1975"
..- attr(*, "format.stata")= chr "%9.0g"

$ gdppc80: num [1:107] 5094 2059 11359 18300 16869 ...
..- attr(*, "label")= chr "real gdp per capita 1980"
..- attr(*, "format.stata")= chr "%9.0g"

$ gdppc85: num [1:107] 5876 1988 9246 19669 17919 ...
..- attr(*, "label")= chr "real gdp per capita 1985"
..- attr(*, "format.stata")= chr "%9.0g"

$ gdppc90: num [1:107] 5307 2081 7716 21446 21178 ...
..- attr(*, "label")= chr "real gdp per capita 1990"
..- attr(*, "format.stata")= chr "%9.0g"

$ gdppc95: num [1:107] 4935 1339 10973 23827 22474 ...
..- attr(*, "label")= chr "real gdp per capita 1995"
..- attr(*, "format.stata")= chr "%9.0g"

$ africa : num [1:107] 1 1 0 0 0 0 0 0 1 0 ...
..- attr(*, "label")= chr "=1 if in Africa"
..- attr(*, "format.stata")= chr "%8.0g"

$ asia : num [1:107] 0 0 0 0 0 1 0 0 0 0 ...
..- attr(*, "label")= chr "=1 if in Asia"
..- attr(*, "format.stata")= chr "%8.0g"

$ weurope: num [1:107] 0 0 0 0 0 0 0 1 0 0 ...
..- attr(*, "label")= chr "=1 if in Western Europe"
..- attr(*, "format.stata")= chr "%8.0g"

$ growth : num [1:107] 0.55 -0.68 0.331 0.734 1.053 ...
..- attr(*, "format.stata")= chr "%9.0g"

data

A tibble: 107 x 13
country gdppc60 gdppc65 gdppc70 gdppc75 gdppc80 gdppc85 gdppc90 gdppc95
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Algeria 2848. 3536. 3670. 3917. 5094. 5876. 5307. 4935.
2 Angola 2642. 3072. 3558. 2230. 2059. 1988. 2081. 1339.
3 Argentina 7879. 8802. 9903. 10609. 11359. 9246. 7716. 10973.
4 Australia 11436. 13192. 15842. 16716. 18300. 19669. 21446. 23827.
5 Austria 7842. 9387. 11946. 14198. 16869. 17919. 21178. 22474.
6 Bangladesh 1130. 1164. 1181. 1030. 1040. 1245. 1366. 1568.
7 Barbados 3632. 4632. 6456. 8827. 10911. 11090. 14411. 14636.
8 Belgium 8314. 10454. 12980. 15024. 17451. 18109. 21246. 22356.
9 Benin 1140. 1188. 1170. 1048. 1069. 1252. 1069. 1139.
10 Bolivia 2516. 2880. 2670. 3124. 3264. 2718. 2615. 2795.
i 97 more rows
i 4 more variables: africa <dbl>, asia <dbl>, weurope <dbl>, growth <dbl>

head(data)

A tibble: 6 x 13
country gdppc60 gdppc65 gdppc70 gdppc75 gdppc80 gdppc85 gdppc90 gdppc95 africa
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Algeria 2848. 3536. 3670. 3917. 5094. 5876. 5307. 4935. 1
2 Angola 2642. 3072. 3558. 2230. 2059. 1988. 2081. 1339. 1
3 Argent~ 7879. 8802. 9903. 10609. 11359. 9246. 7716. 10973. 0
4 Austra~ 11436. 13192. 15842. 16716. 18300. 19669. 21446. 23827. 0
5 Austria 7842. 9387. 11946. 14198. 16869. 17919. 21178. 22474. 0
6 Bangla~ 1130. 1164. 1181. 1030. 1040. 1245. 1366. 1568. 0
i 3 more variables: asia <dbl>, weurope <dbl>, growth <dbl>

tail(data)

A tibble: 6 x 13
country gdppc60 gdppc65 gdppc70 gdppc75 gdppc80 gdppc85 gdppc90 gdppc95 africa
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 United~ 10341. 11633. 12917. 14072. 15302. 16878. 19585. 20963. 0
2 United~ 13118. 15697. 17478. 19284. 22806. 25251. 28281. 30366. 0
3 Uruguay 6279. 5936. 6553. 6949. 8580. 6625. 7763. 9399. 0
4 Venezu~ 8381. 10618. 11253. 8815. 8516. 7274. 7431. 7582. 0
5 Zambia 1290. 1564. 1427. 1446. 1324. 1167. 1091. 870. 1
6 Zimbab~ 1317. 1539. 2303. 2694. 2816. 2923. 3115. 2832. 1
i 3 more variables: asia <dbl>, weurope <dbl>, growth <dbl>

summary(data)

country gdppc60 gdppc65 gdppc70
Length:107 Min. : 407.8 Min. : 513.6 Min. : 354.5
Class :character 1st Qu.: 1153.2 1st Qu.: 1364.5 1st Qu.: 1488.0
Mode :character Median : 2484.7 Median : 2884.4 Median : 3072.2

Mean : 3634.3 Mean : 4367.5 Mean : 5128.4
3rd Qu.: 4354.0 3rd Qu.: 5873.3 3rd Qu.: 6994.6
Max. :16010.3 Max. :18928.9 Max. :22030.9

gdppc75 gdppc80 gdppc85 gdppc90
Min. : 617.9 Min. : 473.6 Min. : 542.3 Min. : 527.7
1st Qu.: 1480.7 1st Qu.: 1708.6 1st Qu.: 1598.8 1st Qu.: 1829.0
Median : 3741.7 Median : 4306.2 Median : 4200.7 Median : 4034.0
Mean : 5759.1 Mean : 6553.6 Mean : 6900.3 Mean : 7775.1
3rd Qu.: 8355.8 3rd Qu.: 9968.6 3rd Qu.:10037.2 3rd Qu.:11716.2
Max. :21808.9 Max. :23860.1 Max. :25251.4 Max. :28744.1

gdppc95 africa asia weurope
Min. : 499.3 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.: 1673.7 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
Median : 4467.9 Median :0.0000 Median :0.0000 Median :0.0000
Mean : 8468.2 Mean :0.3738 Mean :0.1308 Mean :0.1402
3rd Qu.:13627.8 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
Max. :36741.1 Max. :1.0000 Max. :1.0000 Max. :1.0000

growth
Min. :-0.6888
1st Qu.: 0.2458
Median : 0.6587
Mean : 0.6345
3rd Qu.: 1.0505
Max. : 2.3493

view(data)

library(vtable)
vtable(data, missing=TRUE)

library(pastecs)
stat.desc(data)

country gdppc60 gdppc65 gdppc70 gdppc75
nbr.val NA 1.070000e+02 1.070000e+02 1.070000e+02 1.070000e+02
nbr.null NA 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
nbr.na NA 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
min NA 4.078180e+02 5.135667e+02 3.545075e+02 6.178639e+02
max NA 1.601025e+04 1.892888e+04 2.203095e+04 2.180892e+04
range NA 1.560243e+04 1.841531e+04 2.167644e+04 2.119105e+04
sum NA 3.888715e+05 4.673224e+05 5.487424e+05 6.162241e+05
median NA 2.484720e+03 2.884388e+03 3.072176e+03 3.741725e+03
mean NA 3.634313e+03 4.367500e+03 5.128433e+03 5.759103e+03
SE.mean NA 3.314566e+02 4.021934e+02 4.736475e+02 5.272377e+02
CI.mean NA 6.571449e+02 7.973875e+02 9.390523e+02 1.045300e+03
var NA 1.175539e+07 1.730827e+07 2.400459e+07 2.974381e+07
std.dev NA 3.428613e+03 4.160321e+03 4.899448e+03 5.453789e+03
coef.var NA 9.434006e-01 9.525635e-01 9.553499e-01 9.469857e-01

gdppc80 gdppc85 gdppc90 gdppc95 africa
nbr.val 1.070000e+02 1.070000e+02 1.070000e+02 1.070000e+02 107.00000000
nbr.null 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 67.00000000
nbr.na 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.00000000
min 4.735793e+02 5.422725e+02 5.277151e+02 4.993415e+02 0.00000000
max 2.386009e+04 2.525136e+04 2.874414e+04 3.674105e+04 1.00000000
range 2.338651e+04 2.470909e+04 2.821642e+04 3.624171e+04 1.00000000
sum 7.012400e+05 7.383373e+05 8.319308e+05 9.061030e+05 40.00000000
median 4.306217e+03 4.200733e+03 4.034010e+03 4.467940e+03 0.00000000
mean 6.553645e+03 6.900349e+03 7.775054e+03 8.468253e+03 0.37383178
SE.mean 6.018749e+02 6.552251e+02 7.711596e+02 8.456513e+02 0.04699273
CI.mean 1.193276e+03 1.299048e+03 1.528899e+03 1.676586e+03 0.09316766
var 3.876112e+07 4.593724e+07 6.363152e+07 7.651850e+07 0.23628990
std.dev 6.225843e+03 6.777701e+03 7.976937e+03 8.747486e+03 0.48609659
coef.var 9.499817e-01 9.822259e-01 1.025965e+00 1.032974e+00 1.30030838

asia weurope growth
nbr.val 107.00000000 107.00000000 107.0000000
nbr.null 93.00000000 92.00000000 0.0000000
nbr.na 0.00000000 0.00000000 0.0000000
min 0.00000000 0.00000000 -0.6887722
max 1.00000000 1.00000000 2.3493433
range 1.00000000 1.00000000 3.0381155
sum 14.00000000 15.00000000 67.8899760
median 0.00000000 0.00000000 0.6586871
mean 0.13084112 0.14018692 0.6344858
SE.mean 0.03275433 0.03372119 0.0601857
CI.mean 0.06493865 0.06685553 0.1193240
var 0.11479457 0.12167166 0.3875881
std.dev 0.33881347 0.34881465 0.6225657
coef.var 2.58950297 2.48821120 0.9812131

library(Hmisc)
describe(data)

vars n mean sd median trimmed mad min max
country* 1 107 54.00 31.03 54.00 54.00 40.03 1.00 107.00
gdppc60 2 107 3634.31 3428.61 2484.72 3032.19 2027.76 407.82 16010.25
gdppc65 3 107 4367.50 4160.32 2884.39 3673.42 2579.50 513.57 18928.88
gdppc70 4 107 5128.43 4899.45 3072.18 4370.29 2854.11 354.51 22030.95
gdppc75 5 107 5759.10 5453.79 3741.72 4977.54 3708.25 617.86 21808.92
gdppc80 6 107 6553.64 6225.84 4306.22 5707.40 4476.29 473.58 23860.09
gdppc85 7 107 6900.35 6777.70 4200.73 5929.46 4382.44 542.27 25251.36
gdppc90 8 107 7775.05 7976.94 4034.01 6660.00 4258.37 527.72 28744.14
gdppc95 9 107 8468.25 8747.49 4467.94 7235.12 4935.09 499.34 36741.05
africa 10 107 0.37 0.49 0.00 0.34 0.00 0.00 1.00
asia 11 107 0.13 0.34 0.00 0.05 0.00 0.00 1.00
weurope 12 107 0.14 0.35 0.00 0.06 0.00 0.00 1.00
growth 13 107 0.63 0.62 0.66 0.63 0.59 -0.69 2.35

range skew kurtosis se
country* 106.00 0.00 -1.23 3.00
gdppc60 15602.43 1.53 1.55 331.46
gdppc65 18415.31 1.41 1.16 402.19
gdppc70 21676.44 1.29 0.74 473.65
gdppc75 21191.05 1.15 0.09 527.24
gdppc80 23386.51 1.07 -0.11 601.87
gdppc85 24709.09 1.14 0.01 655.23
gdppc90 28216.42 1.13 -0.10 771.16
gdppc95 36241.71 1.14 0.12 845.65
africa 1.00 0.51 -1.75 0.05
asia 1.00 2.16 2.69 0.03
weurope 1.00 2.04 2.20 0.03
growth 3.04 0.15 0.07 0.06

library(gtsummary)
tbl_summary(data)

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic N = 107
country
Algeria 1 (0.9%)
Angola 1 (0.9%)
Argentina 1 (0.9%)
Australia 1 (0.9%)
Austria 1 (0.9%)
Bangladesh 1 (0.9%)
Barbados 1 (0.9%)
Belgium 1 (0.9%)
Benin 1 (0.9%)
Bolivia 1 (0.9%)
Botswana 1 (0.9%)
Brazil 1 (0.9%)
Burkina Faso 1 (0.9%)
Burundi 1 (0.9%)
Cameroon 1 (0.9%)
Canada 1 (0.9%)
Cape Verde 1 (0.9%)
Central African Republic 1 (0.9%)
Chad 1 (0.9%)
Chile 1 (0.9%)
China 1 (0.9%)
Colombia 1 (0.9%)
Comoros 1 (0.9%)
Congo, Republic of 1 (0.9%)
Costa Rica 1 (0.9%)
Cote d’lvoire 1 (0.9%)
Cyprus 1 (0.9%)
Denmark 1 (0.9%)
Dominican Republic 1 (0.9%)
Ecuador 1 (0.9%)
Egypt 1 (0.9%)
El Salvador 1 (0.9%)
Ethiopia 1 (0.9%)
Fiji 1 (0.9%)
Finland 1 (0.9%)
France 1 (0.9%)
Gabon 1 (0.9%)
Gambia, The 1 (0.9%)
Ghana 1 (0.9%)
Greece 1 (0.9%)
Guatemala 1 (0.9%)
Guinea 1 (0.9%)
Guinea-Bissau 1 (0.9%)
Guyana 1 (0.9%)
Honduras 1 (0.9%)
Hong Kong 1 (0.9%)
Iceland 1 (0.9%)
India 1 (0.9%)
Indonesia 1 (0.9%)
Iran 1 (0.9%)
Ireland 1 (0.9%)
Israel 1 (0.9%)
Italy 1 (0.9%)
Jamaica 1 (0.9%)
Japan 1 (0.9%)
Jordan 1 (0.9%)
Kenya 1 (0.9%)
Lesotho 1 (0.9%)
Luxembourg 1 (0.9%)
Madagascar 1 (0.9%)
Malawi 1 (0.9%)
Malaysia 1 (0.9%)
Mali 1 (0.9%)
Mauritania 1 (0.9%)
Mauritius 1 (0.9%)
Mexico 1 (0.9%)
Morocco 1 (0.9%)
Mozambique 1 (0.9%)
Namibia 1 (0.9%)
Nepal 1 (0.9%)
Netherlands 1 (0.9%)
New Zealand 1 (0.9%)
Nicaragua 1 (0.9%)
Niger 1 (0.9%)
Nigeria 1 (0.9%)
Norway 1 (0.9%)
Pakistan 1 (0.9%)
Panama 1 (0.9%)
Papua New Guinea 1 (0.9%)
Paraguay 1 (0.9%)
Peru 1 (0.9%)
Philippines 1 (0.9%)
Portugal 1 (0.9%)
Romania 1 (0.9%)
Rwanda 1 (0.9%)
Senegal 1 (0.9%)
Seychelles 1 (0.9%)
Singapore 1 (0.9%)
South Africa 1 (0.9%)
South Korea 1 (0.9%)
Spain 1 (0.9%)
Sri Lanka 1 (0.9%)
Sweden 1 (0.9%)
Switzerland 1 (0.9%)
Syria 1 (0.9%)
Tanzania 1 (0.9%)
Thailand 1 (0.9%)
Togo 1 (0.9%)
Trinidad & Tobago 1 (0.9%)
Turkey 1 (0.9%)
Uganda 1 (0.9%)
United Kingdom 1 (0.9%)
United States of America 1 (0.9%)
Uruguay 1 (0.9%)
Venezuela 1 (0.9%)
Zambia 1 (0.9%)
Zimbabwe 1 (0.9%)
real gdp per capita 1960 2,485 (1,153, 4,354)
real gdp per capita 1965 2,884 (1,365, 5,873)
real gdp per capita 1970 3,072 (1,488, 6,995)
real gdp per capita 1975 3,742 (1,481, 8,356)
real gdp per capita 1980 4,306 (1,709, 9,969)
real gdp per capita 1985 4,201 (1,599, 10,037)
real gdp per capita 1990 4,034 (1,829, 11,716)
real gdp per capita 1995 4,468 (1,674, 13,628)
=1 if in Africa 40 (37%)
=1 if in Asia 14 (13%)
=1 if in Western Europe 15 (14%)
growth 0.66 (0.25, 1.05)

check the assignments of countries to continents
data |>

select(country, africa, asia, weurope) |>
view()

data <- mutate(data, x_1 = africa + asia + weurope)

data |>
filter(x_1 == 0) |>
select(africa, asia, weurope, country) |>
view()

correct the assignment manually
data$weurope[data$country == "Austria"] <- 1
data$weurope[data$country == "Greece"] <- 1
data$weurope[data$country == "Cyprus"] <- 1

filter(data, data$weurope == 1) # check changes

A tibble: 18 x 14
country gdppc60 gdppc65 gdppc70 gdppc75 gdppc80 gdppc85 gdppc90 gdppc95
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Austria 7842. 9387. 11946. 14198. 16869. 17919. 21178. 22474.
2 Belgium 8314. 10454. 12980. 15024. 17451. 18109. 21246. 22356.
3 Cyprus 3178. 4261. 5638. 4827. 8302. 10228. 13798. 17169.
4 Denmark 11745. 14749. 17143. 17750. 19558. 21596. 23308. 25293.
5 Finland 8007. 9851. 12198. 14884. 16621. 18585. 21667. 20084.
6 France 8364. 10497. 13186. 14951. 17335. 18429. 21403. 21502.
7 Greece 4454. 6549. 9022. 11121. 12672. 12287. 12794. 13332.
8 Iceland 8786. 11403. 11678. 15235. 19440. 20414. 22502. 21901.
9 Ireland 5490. 6413. 7760. 9064. 10649. 11641. 15133. 18456.
10 Italy 7364. 9097. 12072. 13386. 16286. 17518. 20638. 21691.
11 Luxembourg 12510. 14019. 16163. 17384. 19089. 21414. 28744. 36741.
12 Netherlands 9883. 11702. 14237. 15803. 17339. 17974. 20823. 22320.
13 Norway 8808. 10478. 11959. 14873. 17977. 20630. 21855. 25538.
14 Portugal 3665. 4866. 6730. 7951. 9667. 9847. 13155. 13924.
15 Spain 4956. 7459. 9701. 11970. 12294. 12583. 15475. 17434.
16 Sweden 10870. 13552. 15850. 17588. 18348. 20001. 22219. 22122.
17 Switzerland 16010. 18929. 22031. 21809. 23860. 24844. 27931. 26227.
18 United Kingd~ 10341. 11633. 12917. 14072. 15302. 16878. 19585. 20963.
i 5 more variables: africa <dbl>, asia <dbl>, weurope <dbl>, growth <dbl>,
x_1 <dbl>

In the following, I do the same with a loop
c_europe <- c("Austria","Greece","Cyprus")
sum(data$weurope) # check changes
for (i in c_europe){
print(i)
data$weurope[data$country == i] <- 1
}
sum(data$weurope) # check changes
data$weurope[data$country == "Austria"] # check changes

create a category for the remaining countries
use ifelse -- ifelse(condition, result if TRUE, result if FALSE)
data$rest <- ifelse(data$africa == 0 & data$asia == 0 & data$weurope == 0, 1, 0)
data$rest <- set_label(data$rest, label = "=1 if not in Africa, W.Europe, or Asia")

create table with means across country groups
table_gdp <- data |>

group_by(africa, asia, weurope) |>
summarise_at(vars(gdppc60:gdppc95), list(name = mean))

data |>
group_by(africa, asia, weurope) |>
select(gdppc60:gdppc95) |>
summarise_all(mean)

Adding missing grouping variables: `africa`, `asia`, `weurope`

A tibble: 4 x 11
Groups: africa, asia [3]

africa asia weurope gdppc60 gdppc65 gdppc70 gdppc75 gdppc80 gdppc85 gdppc90
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 0 0 0 4288. 5034. 5727. 6411. 7042. 7185. 7457.
2 0 0 1 8366. 10294. 12401. 13994. 16059. 17272. 20192.
3 0 1 0 1739. 2247. 3090. 3760. 4905. 5761. 7501.
4 1 0 0 1596. 1860. 2046. 2182. 2426. 2382. 2562.
i 1 more variable: gdppc95 <dbl>

create growth rate
data$gr1 <- (data$gdppc95 - data$gdppc60) / data$gdppc60
data$gr2 <- log(data$gdppc95) - log(data$gdppc60)
cor(data$gr1, data$gr2)

[1] 0.9008887

ggplot(data, aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
geom_text(hjust = 0, vjust = 0)

Algeria

Angola

Argentina

Australia

Austria

Bangladesh

Barbados

Belgium

Benin
Bolivia

Botswana

Brazil

Burkina Faso
Burundi

Cameroon

Canada

Cape Verde

Central African Republic

Chad

Chile

China

Colombia

Comoros

Congo, Republic of

Costa Rica

Cote d'lvoire

Cyprus

DenmarkDominican Republic
Ecuador

Egypt

El Salvador
Ethiopia

Fiji

FinlandFrance
Gabon

Gambia, The
Ghana

Greece

Guatemala

Guinea

Guinea−Bissau

Guyana
Honduras

Hong Kong

IcelandIndia

Indonesia

Iran

Ireland
Israel Italy

Jamaica

Japan

JordanKenya
Lesotho

Luxembourg

Madagascar

Malawi

Malaysia

Mali

Mauritania

Mauritius

Mexico

Morocco

Mozambique

Namibia
Nepal

Netherlands

New Zealand

Nicaragua
Niger

Nigeria

NorwayPakistan
Panama

Papua New Guinea

Paraguay

PeruPhilippines

Portugal
Romania

RwandaSenegal

Seychelles

Singapore

South Africa

South Korea

Spain

Sri Lanka
Sweden

Switzerland

Syria

Tanzania

Thailand

Togo

Trinidad & TobagoTurkey

Uganda

United Kingdom
United States of America

Uruguay

Venezuela

Zambia

Zimbabwe

0

1

2

0 5000 10000 15000
gdppc60

gr
ow

th

p1 <- ggplot(data, aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1) +
geom_text(hjust=0, vjust=0) +
ggtitle("World")

p2 <- data |>
filter(weurope == 1) |>
ggplot(aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1) +
geom_text(hjust=0, vjust=0) +
ggtitle("Western Europe")

p3 <- data |>
filter(asia == 1) |>
ggplot(aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1) +
geom_text(hjust=0, vjust=0) +
ggtitle("Asia")

p4 <- data |>
filter(africa == 1) |>
ggplot(aes(x = gdppc60, y = growth, label = country)) +
geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1) +
geom_text(hjust=0, vjust=0) +
ggtitle("Africa")

ggarrange(p1, p2, p3, p4,
labels = c("A", "B", "C", "D"),
ncol = 2, nrow = 2

)

Warning: The following aesthetics were dropped during statistical transformation: label.
i This can happen when ggplot fails to infer the correct grouping structure in

the data.
i Did you forget to specify a `group` aesthetic or to convert a numerical

variable into a factor?
The following aesthetics were dropped during statistical transformation: label.
i This can happen when ggplot fails to infer the correct grouping structure in

the data.
i Did you forget to specify a `group` aesthetic or to convert a numerical

variable into a factor?
The following aesthetics were dropped during statistical transformation: label.
i This can happen when ggplot fails to infer the correct grouping structure in

the data.
i Did you forget to specify a `group` aesthetic or to convert a numerical

variable into a factor?
The following aesthetics were dropped during statistical transformation: label.
i This can happen when ggplot fails to infer the correct grouping structure in

the data.
i Did you forget to specify a `group` aesthetic or to convert a numerical

variable into a factor?

0

1

2

0 5000 10000 15000
gdppc60

gr
ow

th

WorldA

0.50

0.75

1.00

1.25

1.50

4000 8000 12000 16000
gdppc60

gr
ow

th

Western EuropeB

0.5

1.0

1.5

2.0

1000 2000 3000 4000 5000
gdppc60

gr
ow

th

AsiaC

0

1

1000 2000 3000 4000 5000
gdppc60

gr
ow

th

AfricaD

Regression analysis
m1 <- lm(growth ~ gdppc60, data = data)
m2 <- lm(growth ~ gdppc60, data = subset(data, weurope == 1))
m3 <- lm(growth ~ gdppc60, data = subset(data, asia == 1))
m4 <- lm(growth ~ gdppc60, data = subset(data, africa == 1))

tab_model(m1, m2, m3, m4,
p.style = "stars",
p.threshold = c(0.2, 0.1, 0.05),
show.ci = FALSE,
show.se = FALSE,
show.aic = TRUE,
dv.labels = c("World", "W.Europe", "Asia", "Africa")

)

World W.Europe Asia Africa
Predictors Estimates Estimates Estimates Estimates
(Intercept) 0.54 *** 1.59 *** 0.91 *** 0.20

real gdp per capita 1960 0.00 * -0.00 *** 0.00 * 0.00
Observations 107 18 14 40

R2 / R2 adjusted 0.021 / 0.012 0.727 / 0.710 0.158 / 0.088 0.002 / -0.024
AIC 204.917 -14.237 31.220 76.318

* p<0.2 ** p<0.1 *** p<0.05

reshape data (see: https://stackoverflow.com/questions/2185252/reshaping-data-frame-from-wide-to-long-format)
data_long <- gather(data, condition, measurement, gdppc60:gdppc95, factor_key = TRUE)

Warning: attributes are not identical across measure variables; they will be
dropped

data_long$year <- as.numeric(substr(data_long$condition, 6, 7))

data_long$gr_long <- data_long |>
select(country, measurement) |>
group_by(country) |>
mutate(gr = c(NA, diff(measurement)) / lag(measurement, 1))

erase all helping variables
data <- select(data, -starts_with("h_"))

generate and remove variables in a dataframe
data <- mutate(data, Land = country)
data <- select(data, -country)

data |>
summarise(
y65 = mean(gdppc65, na.rm = TRUE),
y70 = mean(gdppc70, na.rm = TRUE),
y75 = mean(gdppc75, na.rm = TRUE),
y80 = mean(gdppc80, na.rm = TRUE),
y85 = mean(gdppc85, na.rm = TRUE),
y90 = mean(gdppc90, na.rm = TRUE),
y95 = mean(gdppc95, na.rm = TRUE)

)

A tibble: 1 x 7
y65 y70 y75 y80 y85 y90 y95

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 4367. 5128. 5759. 6554. 6900. 7775. 8468.

suppressMessages(pacman::p_unload(
haven, tidyverse, vtable, gtsummary, pastecs, Hmisc,
sjlabelled, tis, ggpubr, sjPlot

))

125

9. Collection of exercises

9.10. Unemployment and GDP in Germany and France

The following exercise was a former exam.

Please answer all (!) questions in an R script. Normal text should be written as comments,
using the ‘#’ to comment out text. Make sure the script runs without errors before submitting
it. Each task (starting with 1) is worth five points. You have a total of 120 minutes of editing
time. Please do not forget to number your answers.

When you are done with your work, save the R script, export the script to pdf format and
upload the pdf file.

Suppose you aim to empirically examine unemployment and GDP for Germany and France.
The data set that we use in the following is ‘forest.Rdata’.

(0) Write down your name, matriculation number, and date.

(1) Set your working directory.

(2) Clear your global environment.

(3) Install and load the following packages: ‘tidyverse’, ‘sjPlot’, and ‘ggpubr’

(4) Download and load the data, respectively, with the following code:

load(url("https://github.com/hubchev/courses/raw/main/dta/forest.Rdata"))

If that is not working, you can also download the data from ILIAS, save it in your working
directory and load it from there with:

load("forest.Rdata")

(5) Show the first eight observations of the dataset df.

(6) Show the last observation of the dataset df.

(7) Which type of data do we have here (Panel, cross-section,time series, …)? Name the
variable(s) that are necessary to identify the observations in the dataset.

(8) Explain what the assignment operator in R is and what it is good for.

(9) Write down the R code to store the number of observations and the number of variables
that are in the dataset df. Name the object in which you store these numbers ‘observa-
tions_df’.

(10) In the dataset df, rename the variable ‘country.x’ to ‘nation’ and the variable ‘date’ to
‘year’.

(11) Explain what the pipe operator in R is and what it is good for.

(12) For the upcoming analysis you are only interested the following variables that are part
of the dataframe df: nation, year, gdp, pop, gdppc, and unemployment. Drop all other
variables from the dataframe df.

(13) Create a variable that indicates the GDP per capita (‘gdp’ divided by ‘pop’). Name the
variable ‘gdp_pc’. (Hint: If you fail here, use the variable ‘gdppc’ which is already in the
dataset as a replacement for ‘gdp_pc’ in the following tasks.)

126

9. Collection of exercises

(14) For the upcoming analysis you are only interested the following countries that are part
of the dataframe df: Germany and France. Drop all other countries from the dataframe
df.

(15) Create a table showing the average unemployment rate and GDP per capita for Germany
and France in the given years. Use the pipe operator. (Hint: See below for how your results
should look like.)

A tibble: 2 x 3
nation `mean(unemployment)` `mean(gdppc)`
<chr> <dbl> <dbl>

1 France 9.75 34356.
2 Germany 7.22 36739.

(16) Create a table showing the unemployment rate and GDP per capita for Germany and
France in the year 2020. Use the pipe operator. (Hint: See below for how your results
should look like.)

A tibble: 2 x 3
nation `mean(unemployment)` `mean(gdppc)`
<chr> <dbl> <dbl>

1 France 8.01 35786.
2 Germany 3.81 41315.

(17) Create a table showing the highest unemployment rate and the highest GDP per capita
for Germany and France during the given period. Use the pipe operator. (Hint: See below
for how your results should look like.)

A tibble: 2 x 3
nation `max(unemployment)` `max(gdppc)`
<chr> <dbl> <dbl>

1 France 12.6 38912.
2 Germany 11.2 43329.

(18) Calculate the standard deviation of the unemployment rate and GDP per capita for Ger-
many and France in the given years. (Hint: See below for how your result should look
like.)

A tibble: 2 x 3
nation `sd(gdppc)` `sd(unemployment)`
<chr> <dbl> <dbl>

1 France 2940. 1.58
2 Germany 4015. 2.37

(19) In statistics, the coefficient of variation (COV) is a standardized measure of dispersion. It
is defined as the ratio of the standard deviation (𝜎) to the mean (𝜇): 𝐶𝑂𝑉 = 𝜎

𝜇 . Write
down the R code to calculate the coefficient of variation (COV) for the unemployment
rate in Germany and France. (Hint: See below for what your result should should look
like.)

127

9. Collection of exercises

A tibble: 2 x 4
nation `sd(unemployment)` `mean(unemployment)` cov
<chr> <dbl> <dbl> <dbl>

1 France 1.58 9.75 0.162
2 Germany 2.37 7.22 0.328

(20) Write down the R code to calculate the coefficient of variation (COV) for the GDP per
capita in Germany and France. (Hint: See below for what your result should look like.)

A tibble: 2 x 4
nation `sd(gdppc)` `mean(gdppc)` cov
<chr> <dbl> <dbl> <dbl>

1 France 2940. 34356. 0.0856
2 Germany 4015. 36739. 0.109

(21) Create a chart (bar chart, line chart, or scatter plot) that shows the unemployment rate of
Germany over the available years. Label the chart ‘Germany’ with ‘ggtitle(“Germany”)’.
Please note that you may choose any type of graphical representation. (Hint: Below you
can see one of many |> of what your result may look like).

5.0

7.5

10.0

2000 2010 2020
year

un
em

pl
oy

m
en

t

Germany

(22) and 23. (This task is worth 10 points) The following chart shows the simultaneous devel-
opment of the unemployment rate and GDP per capita over time for France.

128

9. Collection of exercises

30000 32000 34000 36000 38000

7
8

9
10

12

GDP per capita

U
ne

m
pl

oy
m

en
t r

at
e

1992

1993

1994
1995

19961997
19981999

2000

20012002
2003

2004
20052006

2007
2008

200920102011
2012
2013
201420152016

2017
2018

2019
2020

France

Suppose you want to visualize the simultaneous evolution of the unemployment rate and GDP
per capita over time for Germany as well.
Suppose further that you have found the following lines of code that create the kind of chart
you are looking for.

Data
x <- c(1, 2, 3, 4, 5, 4, 7, 8, 9)
y <- c(12, 16, 14, 18, 16, 13, 15, 20, 22)
labels <- 1970:1978

Connected scatter plot with text
plot(x, y, type = "b", xlab = "Var 1", ylab = "Var 2")
text(x + 0.4, y + 0.1, labels)

2 4 6 8

12
16

20

Var 1

V
ar

 2

1970

1971

1972

1973

1974

1975

1976

1977

1978

Use these lines of code and customize them to create the co-movement visualization for Ger-
many using the available df data. The result should look something like this:

129

9. Collection of exercises

32000 34000 36000 38000 40000 42000

4
6

8
10

Var 1

V
ar

 2

1992

1993
1994

1995
1996

19971998
1999

20002001
2002

2003
20042005

2006

2007
20082009

2010
201120122013201420152016201720182019

2020

Germany

(24) Interpret the two graphs above, which show the simultaneous evolution of the unemploy-
ment rate and GDP per capita over time for Germany and France. What are your ex-
pectations regarding the correlation between the unemployment rate and GDP per capita
variables? Can you see this expectation in the figures? Discuss.

Solution

The script uses the following functions: aes, c, dim, filter, geom_line, ggplot, ggtitle,
group_by, head, load, max, mean, mutate, plot, rename, sd, select, summarise, tail,
text, title, url.

130

9. Collection of exercises

R script

setwd("/home/sthu/Dropbox/hsf/exams/22-11/scr/")

rm(list = ls())

if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, ggpubr, sjPlot)

load(url("https://github.com/hubchev/courses/raw/main/dta/forest.Rdata"))

head(df, 8)

tail(df, 1)

panel data set
date and country.x

observations_df <- dim(df)

df <- rename(df, nation = country.x)
df <- rename(df, year = date)

df <- df |>
select(nation, year, gdp, pop, gdppc, unemployment)

df <- df |>
mutate(gdp_pc = gdp / pop)

df <- df |> filter(nation == "Germany" | nation == "France")

df |>
group_by(nation) |>
summarise(mean(unemployment), mean(gdppc))

df |>
filter(year == 2020) |>
group_by(nation) |>
summarise(mean(unemployment), mean(gdppc))

df |>
group_by(nation) |>
summarise(max(unemployment), max(gdppc))

df |>
group_by(nation) |>
summarise(sd(gdppc), sd(unemployment))

df |>
group_by(nation) |>
summarise(sd(unemployment), mean(unemployment), cov = sd(unemployment) / mean(unemployment))

df |>
group_by(nation) |>
summarise(sd(gdppc), mean(gdppc), cov = sd(gdppc) / mean(gdppc))

df |>
filter(nation == "Germany") |>
ggplot(aes(x = year, y = unemployment)) +
geom_line() +
ggtitle("Germany")

labels <- 1992:2020
dfra <- df |> filter(nation == "France")
plot(dfra$gdppc, dfra$unemployment,

type = "b",
xlab = "GDP per capita", ylab = "Unemployment rate"

)
text(dfra$gdppc + 0.1, dfra$unemployment + 0.1, labels)
title("France")

Data
x <- c(1, 2, 3, 4, 5, 4, 7, 8, 9)
y <- c(12, 16, 14, 18, 16, 13, 15, 20, 22)
labels <- 1970:1978

Connected scatter plot with text
plot(x, y, type = "b", xlab = "Var 1", ylab = "Var 2")
text(x + 0.4, y + 0.1, labels)

dfger <- df |> filter(nation == "Germany")
labels <- 1992:2020
plot(dfger$gdppc, dfger$unemployment,

type = "b",
xlab = "Var 1", ylab = "Var 2"

)
text(dfger$gdppc + 0.7, dfger$unemployment + 0.4, labels)
title("Germany")

rmarkdown::render("22-11_dsda_exam.Rmd", "all")

knitr::purl(input = "22-11_dsda_exam.Rmd", output = "22-11_dsda_solution.R",documentation = 0)

suppressMessages(pacman::p_unload(tidyverse, ggpubr, sjPlot))

131

9. Collection of exercises

Output of the R script

setwd("/home/sthu/Dropbox/hsf/exams/22-11/scr/")

rm(list = ls())

if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, ggpubr, sjPlot)

load(url("https://github.com/hubchev/courses/raw/main/dta/forest.Rdata"))

head(df, 8)

A tibble: 8 x 11
Groups: country.x [1]

country.x date gdp gdp_growth unemployment region income forest pop
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>

1 United Arab~ 1992 1.26e11 -2.48 1.84 Middl~ High ~ 3.63 2.05e6
2 United Arab~ 1993 1.27e11 -4.34 1.85 Middl~ High ~ 3.72 2.17e6
3 United Arab~ 1994 1.36e11 1.25 1.81 Middl~ High ~ 3.81 2.29e6
4 United Arab~ 1995 1.45e11 1.35 1.80 Middl~ High ~ 3.90 2.42e6
5 United Arab~ 1996 1.54e11 0.631 1.90 Middl~ High ~ 3.99 2.54e6
6 United Arab~ 1997 1.66e11 2.83 1.98 Middl~ High ~ 4.08 2.67e6
7 United Arab~ 1998 1.67e11 -4.77 2.14 Middl~ High ~ 4.18 2.81e6
8 United Arab~ 1999 1.72e11 -2.40 2.22 Middl~ High ~ 4.27 2.97e6
i 2 more variables: unemployment_dif <dbl>, gdppc <dbl>

tail(df, 1)

A tibble: 1 x 11
Groups: country.x [1]

country.x date gdp gdp_growth unemployment region income forest pop
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>

1 Zimbabwe 2020 1.94e10 -7.62 5.35 Sub-S~ Lower~ 45.1 1.49e7
i 2 more variables: unemployment_dif <dbl>, gdppc <dbl>

panel data set
date and country.x

observations_df <- dim(df)

df <- rename(df, nation = country.x)
df <- rename(df, year = date)

df <- df |>
select(nation, year, gdp, pop, gdppc, unemployment)

df <- df |>
mutate(gdp_pc = gdp / pop)

df <- df |> filter(nation == "Germany" | nation == "France")

df |>
group_by(nation) |>
summarise(mean(unemployment), mean(gdppc))

A tibble: 2 x 3
nation `mean(unemployment)` `mean(gdppc)`
<chr> <dbl> <dbl>

1 France 9.75 34356.
2 Germany 7.22 36739.

df |>
filter(year == 2020) |>
group_by(nation) |>
summarise(mean(unemployment), mean(gdppc))

A tibble: 2 x 3
nation `mean(unemployment)` `mean(gdppc)`
<chr> <dbl> <dbl>

1 France 8.01 35786.
2 Germany 3.81 41315.

df |>
group_by(nation) |>
summarise(max(unemployment), max(gdppc))

A tibble: 2 x 3
nation `max(unemployment)` `max(gdppc)`
<chr> <dbl> <dbl>

1 France 12.6 38912.
2 Germany 11.2 43329.

df |>
group_by(nation) |>
summarise(sd(gdppc), sd(unemployment))

A tibble: 2 x 3
nation `sd(gdppc)` `sd(unemployment)`
<chr> <dbl> <dbl>

1 France 2940. 1.58
2 Germany 4015. 2.37

df |>
group_by(nation) |>
summarise(sd(unemployment), mean(unemployment), cov = sd(unemployment) / mean(unemployment))

A tibble: 2 x 4
nation `sd(unemployment)` `mean(unemployment)` cov
<chr> <dbl> <dbl> <dbl>

1 France 1.58 9.75 0.162
2 Germany 2.37 7.22 0.328

df |>
group_by(nation) |>
summarise(sd(gdppc), mean(gdppc), cov = sd(gdppc) / mean(gdppc))

A tibble: 2 x 4
nation `sd(gdppc)` `mean(gdppc)` cov
<chr> <dbl> <dbl> <dbl>

1 France 2940. 34356. 0.0856
2 Germany 4015. 36739. 0.109

df |>
filter(nation == "Germany") |>
ggplot(aes(x = year, y = unemployment)) +
geom_line() +
ggtitle("Germany")

5.0

7.5

10.0

2000 2010 2020
year

un
em

pl
oy

m
en

t

Germany

labels <- 1992:2020
dfra <- df |> filter(nation == "France")
plot(dfra$gdppc, dfra$unemployment,

type = "b",
xlab = "GDP per capita", ylab = "Unemployment rate"

)
text(dfra$gdppc + 0.1, dfra$unemployment + 0.1, labels)
title("France")

30000 32000 34000 36000 38000

7
8

9
10

12

GDP per capita

U
ne

m
pl

oy
m

en
t r

at
e

1992

1993

1994
1995

19961997
19981999

2000

20012002
2003

2004
20052006

2007
2008

200920102011
2012
2013
201420152016

2017
2018

2019
2020

France

Data
x <- c(1, 2, 3, 4, 5, 4, 7, 8, 9)
y <- c(12, 16, 14, 18, 16, 13, 15, 20, 22)
labels <- 1970:1978

Connected scatter plot with text
plot(x, y, type = "b", xlab = "Var 1", ylab = "Var 2")
text(x + 0.4, y + 0.1, labels)

2 4 6 8

12
16

20

Var 1

V
ar

 2

1970

1971

1972

1973

1974

1975

1976

1977

1978

dfger <- df |> filter(nation == "Germany")
labels <- 1992:2020
plot(dfger$gdppc, dfger$unemployment,

type = "b",
xlab = "Var 1", ylab = "Var 2"

)
text(dfger$gdppc + 0.7, dfger$unemployment + 0.4, labels)
title("Germany")

32000 34000 36000 38000 40000 42000

4
6

8
10

Var 1

V
ar

 2

1992

1993
1994

1995
1996

19971998
1999

20002001
2002

2003
20042005

2006

2007
20082009

2010
201120122013201420152016201720182019

2020

Germany

rmarkdown::render("22-11_dsda_exam.Rmd", "all")

knitr::purl(input = "22-11_dsda_exam.Rmd", output = "22-11_dsda_solution.R",documentation = 0)

suppressMessages(pacman::p_unload(tidyverse, ggpubr, sjPlot))

132

9. Collection of exercises

9.11. Import data and write a report

Reproduce Figure 3 of Hortaçsu and Syverson [2015, p. 99] using R. Write a clear report about
your work, i.e., document everything with a R script or a R Markdown file.

Here are the required steps:

1. Go to https://www.aeaweb.org/articles?id=10.1257/jep.29.4.89 and download the
replication package from the OPENICPSR page. Please note, that you can download the
replication package after you have registered for the platform.

2. Unzip the replication package.
3. In the file diffusion_curves_figure.xlsx you find the required data. Import them to R.
4. Reproduce the plot using ggplot().

Solution

The script uses the following functions: aes, download.file, geom_line, ggplot,
pivot_longer, read_excel, unzip.

133

https://www.aeaweb.org/articles?id=10.1257/jep.29.4.89

9. Collection of exercises

R script

setwd("~/Dropbox/hsf/courses/Rlang/hortacsu")

rm(list = ls())

install and load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, readxl)

Define the URL of the ZIP file
zip_f <- "https://github.com/hubchev/courses/raw/main/dta/113962-V1.zip"

Download the ZIP file
download.file(zip_f, destfile = "113962-V1.zip")

Unzip the contents
unzip("113962-V1.zip")

df_curves <- read_excel("Hortacsu_Syverson_JEP_Retail/diffusion_curves_figure.xlsx",
sheet = "Data and Predictions", range = "N3:Y60"

)

df <- df_curves |>
pivot_longer(
cols = "Music and Video":"Food and Beverages",
names_to = "industry",
values_to = "value"

)

Plot
df |>

ggplot(aes(x = Year, y = value, group = industry, color = industry)) +
geom_line()

unload packages
suppressMessages(pacman::p_unload(tidyverse, readxl))

134

9. Collection of exercises

Output of the R script

setwd("~/Dropbox/hsf/courses/Rlang/hortacsu")

rm(list = ls())

install and load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, readxl)

Define the URL of the ZIP file
zip_f <- "https://github.com/hubchev/courses/raw/main/dta/113962-V1.zip"

Download the ZIP file
download.file(zip_f, destfile = "113962-V1.zip")

Unzip the contents
unzip("113962-V1.zip")

df_curves <- read_excel("Hortacsu_Syverson_JEP_Retail/diffusion_curves_figure.xlsx",
sheet = "Data and Predictions", range = "N3:Y60"

)

df <- df_curves |>
pivot_longer(
cols = "Music and Video":"Food and Beverages",
names_to = "industry",
values_to = "value"

)

Plot
df |>

ggplot(aes(x = Year, y = value, group = industry, color = industry)) +
geom_line()

Warning: Removed 18 rows containing missing values or values outside the scale range
(`geom_line()`).

0.00

0.25

0.50

0.75

1.00

2000 2020 2040
Year

va
lu

e

industry

Books and Magazines

Clothing, Accessories, and Footwear

Computers and Software

Drugs, Health, and Beauty

Electronics and Appliances

Food and Beverages

Furniture

Music and Video

Office Equipment and Supplies

Sporting Goods

Toys, Hobbies, and Games

unload packages
suppressMessages(pacman::p_unload(tidyverse, readxl))

135

9. Collection of exercises

9.12. Explain the weight of students

In the statistic course of WS 2020, I asked 23 students about their weight, height, sex, and
number of siblings. I wonder how good the height can explain the weight of students. Examine
with corelations and a regression analysis the association. Load the data as follows:

library("haven")

Attaching package: 'haven'

The following objects are masked from 'package:expss':

is.labelled, read_spss

classdata <- read.csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/classdata.csv")

Solution

The script uses the following functions: aes, c, coef, fitted, geom_abline, geom_point,
ggplot, head, library, lm, plot, read.csv, residuals, show, stat_smooth, subset,
summary, tab_model.

136

9. Collection of exercises

R script

---- echo = TRUE--
install and load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, haven)

classdata <- read.csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/classdata.csv")

head(classdata)

---- echo = TRUE--

summary(classdata)

----pressure, echo=TRUE---
library("ggplot2")
ggplot(classdata, aes(x = height, y = weight)) +

geom_point()

---- echo=TRUE--
ggplot(classdata, aes(x = height, y = weight)) +

geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1)

---- echo=TRUE--
baseline regression model
model <- lm(weight ~ height + sex, data = classdata)
show(model)
interm <- model$coefficients[1]
slope <- model$coefficients[2]
interw <- model$coefficients[1] + model$coefficients[3]

---- echo=TRUE--
summary(model)

---- echo=TRUE--
ggplot(classdata, aes(x = height, y = weight, shape = sex)) +

geom_point() +
geom_abline(slope = slope, intercept = interw, linetype = 2, size = 1.5) +
geom_abline(slope = slope, intercept = interm, linetype = 2, size = 1.5) +
geom_abline(slope = coef(model)[[2]], intercept = coef(model)[[1]])

---- echo=TRUE--

ggplot(classdata, aes(x = height, y = weight, shape = sex)) +
geom_point(aes(size = 2)) +
stat_smooth(
formula = y ~ x, method = "lm",
se = FALSE, colour = "red", linetype = 1

)

---- echo=TRUE--
ggplot(classdata, aes(x = height, y = weight, shape = sex)) +

geom_point(aes(size = siblings))

---- echo=TRUE--
baseline model
model <- lm(weight ~ height + sex, data = classdata)

ggplot(classdata, aes(x = height, y = weight, shape = sex)) +
geom_point(aes(size = 2)) +
stat_smooth(
formula = y ~ x,
method = "lm",
se = T,
colour = "red",
linetype = 1

)

---- echo=TRUE, results='hide'------------------------------------

m1 <- lm(weight ~ height, data = classdata)
m2 <- lm(weight ~ height + sex, data = classdata)
m3 <- lm(weight ~ height + sex + height * sex, data = classdata)
m4 <- lm(weight ~ height + sex + height * sex + siblings, data = classdata)
m5 <- lm(weight ~ height + sex + height * sex, data = subset(classdata, siblings < 4))

library(sjPlot)
tab_model(m1, m2, m3, m4, m5,

p.style = "stars",
p.threshold = c(0.2, 0.1, 0.05),
show.ci = FALSE,
show.se = FALSE

)

---- echo=FALSE---
tab_model(m1, m2, m3, m4,

p.style = "stars",
p.threshold = c(0.2, 0.1, 0.05),
show.ci = FALSE,
show.se = FALSE

)

---- echo=FALSE---
tab_model(m3, m5,

p.style = "stars",
p.threshold = c(0.2, 0.1, 0.05),
show.ci = FALSE,
show.se = FALSE

)

---- echo=T---
plot(residuals(m3), fitted(m3))
plot(residuals(m3), classdata$siblings)

----eval=FALSE--
rmarkdown::render("regress_lecture.Rmd", "all")

unload packages
suppressMessages(pacman::p_unload(tidyverse, haven))

137

9. Collection of exercises

Output of the R script

---- echo = TRUE--
install and load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, haven)

classdata <- read.csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/classdata.csv")

head(classdata)

id sex weight height siblings row
1 1 w 53 156 1 g
2 2 w 73 170 1 g
3 3 m 68 169 1 g
4 4 w 67 166 1 g
5 5 w 65 175 1 g
6 6 w 48 161 0 g

---- echo = TRUE--

summary(classdata)

id sex weight height
Min. : 1.0 Length:23 Min. :48.00 Min. :156.0
1st Qu.: 6.5 Class :character 1st Qu.:64.50 1st Qu.:168.0
Median :12.0 Mode :character Median :70.00 Median :175.0
Mean :12.0 Mean :70.61 Mean :173.7
3rd Qu.:17.5 3rd Qu.:81.00 3rd Qu.:180.0
Max. :23.0 Max. :90.00 Max. :194.0

siblings row
Min. :0.000 Length:23
1st Qu.:1.000 Class :character
Median :1.000 Mode :character
Mean :1.391
3rd Qu.:2.000
Max. :4.000

----pressure, echo=TRUE---
library("ggplot2")
ggplot(classdata, aes(x = height, y = weight)) +

geom_point()

50

60

70

80

90

160 170 180 190
height

w
ei

gh
t

---- echo=TRUE--
ggplot(classdata, aes(x = height, y = weight)) +

geom_point() +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE, colour = "red", linetype = 1)

50

60

70

80

90

160 170 180 190
height

w
ei

gh
t

---- echo=TRUE--
baseline regression model
model <- lm(weight ~ height + sex, data = classdata)
show(model)

Call:
lm(formula = weight ~ height + sex, data = classdata)

Coefficients:
(Intercept) height sexw

-29.5297 0.5923 -5.7894

interm <- model$coefficients[1]
slope <- model$coefficients[2]
interw <- model$coefficients[1] + model$coefficients[3]

---- echo=TRUE--
summary(model)

Call:
lm(formula = weight ~ height + sex, data = classdata)

Residuals:
Min 1Q Median 3Q Max

-17.086 -3.730 2.850 7.245 12.914

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -29.5297 47.6606 -0.620 0.5425
height 0.5923 0.2671 2.217 0.0383 *
sexw -5.7894 4.4773 -1.293 0.2107

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.942 on 20 degrees of freedom
Multiple R-squared: 0.4124, Adjusted R-squared: 0.3537
F-statistic: 7.019 on 2 and 20 DF, p-value: 0.004904

---- echo=TRUE--
ggplot(classdata, aes(x = height, y = weight, shape = sex)) +

geom_point() +
geom_abline(slope = slope, intercept = interw, linetype = 2, size = 1.5) +
geom_abline(slope = slope, intercept = interm, linetype = 2, size = 1.5) +
geom_abline(slope = coef(model)[[2]], intercept = coef(model)[[1]])

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

50

60

70

80

90

160 170 180 190
height

w
ei

gh
t sex

m

w

---- echo=TRUE--

ggplot(classdata, aes(x = height, y = weight, shape = sex)) +
geom_point(aes(size = 2)) +
stat_smooth(
formula = y ~ x, method = "lm",
se = FALSE, colour = "red", linetype = 1

)

50

60

70

80

90

160 170 180 190
height

w
ei

gh
t

sex

m

w

size

2

---- echo=TRUE--
ggplot(classdata, aes(x = height, y = weight, shape = sex)) +

geom_point(aes(size = siblings))

50

60

70

80

90

160 170 180 190
height

w
ei

gh
t

siblings

0

1

2

3

4

sex

m

w

---- echo=TRUE--
baseline model
model <- lm(weight ~ height + sex, data = classdata)

ggplot(classdata, aes(x = height, y = weight, shape = sex)) +
geom_point(aes(size = 2)) +
stat_smooth(
formula = y ~ x,
method = "lm",
se = T,
colour = "red",
linetype = 1

)

40

50

60

70

80

90

160 170 180 190
height

w
ei

gh
t

sex

m

w

size

2

---- echo=TRUE, results='hide'------------------------------------

m1 <- lm(weight ~ height, data = classdata)
m2 <- lm(weight ~ height + sex, data = classdata)
m3 <- lm(weight ~ height + sex + height * sex, data = classdata)
m4 <- lm(weight ~ height + sex + height * sex + siblings, data = classdata)
m5 <- lm(weight ~ height + sex + height * sex, data = subset(classdata, siblings < 4))

library(sjPlot)

Learn more about sjPlot with 'browseVignettes("sjPlot")'.

tab_model(m1, m2, m3, m4, m5,
p.style = "stars",
p.threshold = c(0.2, 0.1, 0.05),
show.ci = FALSE,
show.se = FALSE

)

weight weight weight weight weight
Predictors Estimates Estimates Estimates Estimates Estimates
(Intercept) -65.44 * -29.53 47.14 50.27 27.69

height 0.78 *** 0.59 *** 0.16 0.16 0.28
sex [w] -5.79 -153.96 ** -161.92 ** -134.51 *

height × sex [w] 0.85 * 0.89 * 0.74 *

siblings -1.16
Observations 23 23 23 23 21

R2 / R2 adjusted 0.363 / 0.333 0.412 / 0.354 0.487 / 0.407 0.496 / 0.385 0.572 / 0.497
* p<0.2 ** p<0.1 *** p<0.05

---- echo=FALSE---
tab_model(m1, m2, m3, m4,

p.style = "stars",
p.threshold = c(0.2, 0.1, 0.05),
show.ci = FALSE,
show.se = FALSE

)

weight weight weight weight
Predictors Estimates Estimates Estimates Estimates
(Intercept) -65.44 * -29.53 47.14 50.27

height 0.78 *** 0.59 *** 0.16 0.16
sex [w] -5.79 -153.96 ** -161.92 **

height × sex [w] 0.85 * 0.89 *

siblings -1.16
Observations 23 23 23 23

R2 / R2 adjusted 0.363 / 0.333 0.412 / 0.354 0.487 / 0.407 0.496 / 0.385
* p<0.2 ** p<0.1 *** p<0.05

---- echo=FALSE---
tab_model(m3, m5,

p.style = "stars",
p.threshold = c(0.2, 0.1, 0.05),
show.ci = FALSE,
show.se = FALSE

)

weight weight
Predictors Estimates Estimates
(Intercept) 47.14 27.69

height 0.16 0.28
sex [w] -153.96 ** -134.51 *

height × sex [w] 0.85 * 0.74 *

Observations 23 21
R2 / R2 adjusted 0.487 / 0.407 0.572 / 0.497

* p<0.2 ** p<0.1 *** p<0.05

---- echo=T---
plot(residuals(m3), fitted(m3))

−15 −10 −5 0 5 10

55
65

75

residuals(m3)

fit
te

d(
m

3)

plot(residuals(m3), classdata$siblings)

−15 −10 −5 0 5 10

0
1

2
3

4

residuals(m3)

cl
as

sd
at

a$
si

bl
in

gs

----eval=FALSE--
rmarkdown::render("regress_lecture.Rmd", "all")

unload packages
suppressMessages(pacman::p_unload(tidyverse, haven))

138

9. Collection of exercises

9.13. Calories and weight

a) Write down your name, your matriculation number, and the date.
b) Set your working directory.
c) Clear your global environment.
d) Load the following package: tidyverse

The following table stems from a survey carried out at the Campus of the German Sport
University of Cologne at Opening Day (first day of the new semester) between 8:00am and
8:20am. The survey consists of 6 individuals with the following information:

id sex age weight calories sport
1 f 21 48 1700 60
2 f 19 55 1800 120
3 f 23 50 2300 180
4 m 18 71 2000 60
5 m 20 77 2800 240
6 m 61 85 2500 30

Data Description:

• id: Variable with an anonymized identifier for each participant.
• sex: Gender, i.e., the participants replied to be either male (m) or female (f).
• age: The age in years of the participants at the time of the survey.
• weight: Number of kg the participants pretended to weight.
• calories: Estimate of the participants on their average daily consumption of calories.
• sport: Estimate of the participants on their average daily time that they spend on doing

sports (measured in minutes).

e) Which type of data do we have here? (Panel data, repeated cross-sectional data, cross-
sectional data, time Series data)

f) Store each of the five variables in a vector and put all five variables into a dataframe with
the title df. If you fail here, read in the data using this line of code:

df <- read_csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/df-calories.csv")

Rows: 6 Columns: 5
-- Column specification --
Delimiter: ","
chr (1): sex
dbl (4): age, weight, calories, sport

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

g) Show for all numerical variables the summary statistics including the mean, median, min-
imum, and the maximum.

h) Show for all numerical variables the summary statistics including the mean and the stan-
dard deviation, separated by male and female. Use therefore the pipe operator.

139

9. Collection of exercises

i) Suppose you want to analyze the general impact of average calories consumption per day
on the weight. Discuss if the sample design is appropriate to draw conclusions on the
population. What may cause some bias in the data? Discuss possibilities to improve the
sampling and the survey, respectively.

j) The following plot visualizes the two variables weight and calories. Discuss what can be
improved in the graphical visualization.

Figure 9.2.: Weight vs. Calories

k) Make a scatterplot matrix containing all numerical variables.

l) Calculate the Pearson Correlation Coefficient of the two variables

1. calories and sport
2. weight and calories

m) Make a scatterplot with weight in the y-axis and calories on the x-axis. Additionally,
the plot should contain a linear fit and the points should be labeled with the sex just like
in the figure shown above.

n) Estimate the following regression specification using the OLS method: [weight_i=�_0+�_1
calories_i+ �_i]

Show a summary of the estimates that look like the following:

Call:
lm(formula = weight ~ calories, data = df)

Residuals:
1 2 3 4 5 6

-5.490 -1.182 -6.640 9.435 -6.099 9.976

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.730275 20.197867 0.383 0.7214
calories 0.026917 0.009107 2.956 0.0417 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.68 on 4 degrees of freedom
Multiple R-squared: 0.6859, Adjusted R-squared: 0.6074

140

9. Collection of exercises

F-statistic: 8.735 on 1 and 4 DF, p-value: 0.04174

o) Interpret the results. In particular, interpret how many kg the estimated weight increases—
on average and ceteris paribus—if calories increase by 100 calories. Additionally, discuss
the statistical properties of the estimated coefficient ̂𝛽1 and the meaning of the Adjusted
R-squared.

p) OLS estimates can suffer from omitted variable bias. State the two conditions that need
to be fulfilled for omitted bias to occur.

q) Discuss potential confounding variables that may cause omitted variable bias. Given the
dataset above how can some of the confounding variables be controlled for?

Solution

The script uses the following functions: aes, c, cor, data.frame, geom_point, geom_text,
ggplot, group_by, lm, mean, plot, read_csv, sd, stat_smooth, summarise, summary.

141

9. Collection of exercises

R script

1
Stephan Huber, 000, 2020-May-30

2
setwd("/home/sthu/Dropbox/hsf/22-ss/dsb_bac/work/")

3
rm(list = ls())

4
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, haven)

5
cross-section

6
sex <- c("f", "f", "f", "m", "m", "m")
age <- c(21, 19, 23, 18, 20, 61)
weight <- c(48, 55, 63, 71, 77, 85)
calories <- c(1700, 1800, 2300, 2000, 2800, 2500)
sport <- c(60, 120, 180, 60, 240, 30)
df <- data.frame(sex, age, weight, calories, sport)

write_csv(df, file = "/home/sthu/Dropbox/hsf/exams/21-04/stuff/df.csv")
write_csv(df, file = "/home/sthu/Dropbox/hsf/github/courses/dta/df-calories.csv")
df <- read_csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/df-calories.csv")

7
summary(df)

8
df |>

group_by(sex) |>
summarise(
mcal = mean(calories),
sdcal = sd(calories),
mweight = mean(weight),
sdweight = sd(weight)

)

9
discussed in class

10
Many things can be mentioned here such as the use of colors
(red/blue is not a good choice for color blind people),
the legend makes no sense as red and green both refer to \textit{sport},
the label of `f' and `m' is not explained in the legend,
rotating the labels of the y-axis would increase readability, and
both axes do not start at zero which is hard to see.
Also, it is a common to draw the variable you want to explain
(here: calories) on the y-axis.

11
plot(df)

12
cor(df$calories, df$sport, method = c("pearson"))
cor(df$weight, df$calories, method = c("pearson"))

13
ggplot(df, aes(x = calories, y = weight, label = sex)) +

geom_point() +
geom_text(hjust = 0, vjust = 0) +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE)

14
reg_base <- lm(weight ~ calories, data = df)
summary(reg_base)

15
1) An increase of 100 calories (taken on average on a daily basis) is associated
- on average and ceteris paribus - with 2.69 more of kg the participants are
pretended to weight.
2) The estimated coefficient $beta_1$ is statistically significantly different to zero
on a significance level of 5%.
3) About 60 % of the variation of the weight is explained by the
estimated coefficients of the empirical model.

16
For omitted variable bias to occur, the omitted variable `Z` must satisfy
two conditions:
1) The omitted variable is correlated with the included regressor
2) The omitted variable is a determinant of the dependent variable

17
discussed in class

unload packages
suppressMessages(pacman::p_unload(tidyverse, haven))

142

9. Collection of exercises

Output of the R script

1
Stephan Huber, 000, 2020-May-30

2
setwd("/home/sthu/Dropbox/hsf/22-ss/dsb_bac/work/")

3
rm(list = ls())

4
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, haven)

5
cross-section

6
sex <- c("f", "f", "f", "m", "m", "m")
age <- c(21, 19, 23, 18, 20, 61)
weight <- c(48, 55, 63, 71, 77, 85)
calories <- c(1700, 1800, 2300, 2000, 2800, 2500)
sport <- c(60, 120, 180, 60, 240, 30)
df <- data.frame(sex, age, weight, calories, sport)

write_csv(df, file = "/home/sthu/Dropbox/hsf/exams/21-04/stuff/df.csv")
write_csv(df, file = "/home/sthu/Dropbox/hsf/github/courses/dta/df-calories.csv")
df <- read_csv("https://raw.githubusercontent.com/hubchev/courses/main/dta/df-calories.csv")

Rows: 6 Columns: 5
-- Column specification --
Delimiter: ","
chr (1): sex
dbl (4): age, weight, calories, sport

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

7
summary(df)

sex age weight calories sport
Length:6 Min. :18.00 Min. :48.0 Min. :1700 Min. : 30
Class :character 1st Qu.:19.25 1st Qu.:57.0 1st Qu.:1850 1st Qu.: 60
Mode :character Median :20.50 Median :67.0 Median :2150 Median : 90

Mean :27.00 Mean :66.5 Mean :2183 Mean :115
3rd Qu.:22.50 3rd Qu.:75.5 3rd Qu.:2450 3rd Qu.:165
Max. :61.00 Max. :85.0 Max. :2800 Max. :240

8
df |>

group_by(sex) |>
summarise(
mcal = mean(calories),
sdcal = sd(calories),
mweight = mean(weight),
sdweight = sd(weight)

)

A tibble: 2 x 5
sex mcal sdcal mweight sdweight
<chr> <dbl> <dbl> <dbl> <dbl>

1 f 1933. 321. 55.3 7.51
2 m 2433. 404. 77.7 7.02

9
discussed in class

10
Many things can be mentioned here such as the use of colors
(red/blue is not a good choice for color blind people),
the legend makes no sense as red and green both refer to \textit{sport},
the label of `f' and `m' is not explained in the legend,
rotating the labels of the y-axis would increase readability, and
both axes do not start at zero which is hard to see.
Also, it is a common to draw the variable you want to explain
(here: calories) on the y-axis.

11
plot(df)

sex

20
50

18
00

1.0 1.4 1.8

20 40 60

age

weight

50 70

1800 2400

calories

1.
0

1.
8

50
80

50 150

50

sport

12
cor(df$calories, df$sport, method = c("pearson"))

[1] 0.5330615

cor(df$weight, df$calories, method = c("pearson"))

[1] 0.8281972

13
ggplot(df, aes(x = calories, y = weight, label = sex)) +

geom_point() +
geom_text(hjust = 0, vjust = 0) +
stat_smooth(formula = y ~ x, method = "lm", se = FALSE)

Warning: The following aesthetics were dropped during statistical transformation: label.
i This can happen when ggplot fails to infer the correct grouping structure in

the data.
i Did you forget to specify a `group` aesthetic or to convert a numerical

variable into a factor?

f

f

f

m

m

m

50

60

70

80

2000 2400 2800
calories

w
ei

gh
t

14
reg_base <- lm(weight ~ calories, data = df)
summary(reg_base)

Call:
lm(formula = weight ~ calories, data = df)

Residuals:
1 2 3 4 5 6

-5.490 -1.182 -6.640 9.435 -6.099 9.976

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.730275 20.197867 0.383 0.7214
calories 0.026917 0.009107 2.956 0.0417 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.68 on 4 degrees of freedom
Multiple R-squared: 0.6859, Adjusted R-squared: 0.6074
F-statistic: 8.735 on 1 and 4 DF, p-value: 0.04174

15
1) An increase of 100 calories (taken on average on a daily basis) is associated
- on average and ceteris paribus - with 2.69 more of kg the participants are
pretended to weight.
2) The estimated coefficient $beta_1$ is statistically significantly different to zero
on a significance level of 5%.
3) About 60 % of the variation of the weight is explained by the
estimated coefficients of the empirical model.

16
For omitted variable bias to occur, the omitted variable `Z` must satisfy
two conditions:
1) The omitted variable is correlated with the included regressor
2) The omitted variable is a determinant of the dependent variable

17
discussed in class

unload packages
suppressMessages(pacman::p_unload(tidyverse, haven))

143

9. Collection of exercises

9.14. Bundesliga

Open the script that you find here and work on the following tasks:

1. Set your working directory.

2. Clear th environment.

3. Install and load the bundesligR and tidyverse.

4. Read in the data bundesligR as a tibble.

5. Replace “Bor. Moenchengladbach” with “Borussia Moenchengladbach.”

6. Check for the data class.

7. View the data.

8. Glimpse on the data.

9. Show the first and last observations.

10. Show summary statistics to all variables.

11. How many teams have played in the league over the years?

12. Which teams have played Bundesliga so far?

13. How many teams have played Bundesliga?

14. How often has each team played in the Bundesliga?

15. Show summary statistics of variable Season only.

16. Show summary statistics of all numeric variables (Team is a character).

17. What is the highest number of points ever received by a team? Show only the name of
the club with the highest number of points ever received.

18. Create a new tibble using liga removing the variable Pts_pre_95 from the data.

19. Create a new tibble using liga renaming W, D, and L to Win, Draw, and Loss. Addi-
tionally rename GF, GA, GD to Goals_shot, Goals_received, Goal_difference.

20. Create a new tibble using liga without the variable Pts_pre_95 and only observations
before the year 1996.

21. Remove the three tibbles just created from the environment.

22. Rename all variables of liga to lowercase and store it as dfb.

23. Show the winner and the runner up after the year 2010. Additionally show the points
received.

24. Create a variable that counts how often a team was ranked first.

25. How often has each team played in the Bundesliga?

26. Make a ranking that shows which team has played the Bundesliga most often.

27. Add a variable to dfb that contains the number of appearances of a team in the league.

28. Create a number that indicates how often a team has played Bundesliga in a given year.

29. Make a ranking with the number of titles of all teams that ever won the league.

144

https://raw.githubusercontent.com/hubchev/courses/main/scr/ask_dfb.R

9. Collection of exercises

30. Create a numeric identifying variable for each team.

31. When a team is in the league, what is the probability that it wins the league?

32. Make a scatterplot with points on the y-axis and position on the x-axis.

33. Make a scatterplot with points on the y-axis and position on the x-axis. Additionally,
only consider seasons with 18 teams and add lines that make clear how many points you
needed to be placed in between rank 2 and 15.

34. Remove all objects from the environment except dfb and liga.

35. In Figure Figure 9.3, the ranking history of 1. FC Kaiserslautern is shown. Replicate
that plot.

Figure 9.3.: Ranking history: 1. FC Kaiserslautern
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1970 1980 1990 2000 2010
season

po
si

tio
n

34. In Figure Figure 9.4, I made the graph a bit nicer. Can you spot all differences and can
you guess what the dashed line and the triangles mean? How could the visualization be
improved further? Replicate the plot.

35. Try to make the ranking history for each club ever played the league and export the graph
as a png file.

Solution

The script uses the following functions: aes, arrange, as_tibble, as.numeric, between,
c, case_when, class, complete, desc, dir.create, dir.exists, element_blank,
facet_wrap, factor, filter, geom_hline, geom_line, geom_point, geom_vline,
ggplot, ggsave, glimpse, group_by, head, ifelse, is.na, labs, list, max, mutate,
n_distinct, paste, print, rename, rename_all, row_number, scale_x_continuous,
scale_y_continuous, scale_y_reverse, select, seq, setdiff, slice_head, subset,
sum, summarise, summary, table, tail, theme, theme_classic, theme_minimal, unique,
unlink, view, xlim.

145

9. Collection of exercises

Figure 9.4.: Ranking history: 1. FC Köln

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1970 1980 1990 2000 2010
season

po
si

tio
n

Ranking History: 1. FC Koeln

R script

In dfb.R I analyze German soccer results

set working directory
setwd("~/Dropbox/hsf/23-ws/dsda/scripts")

clear environment
rm(list = ls())

(Install and) load packagages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(

bundesligR,
tidyverse

)

Read in the data as tibble
liga <- as_tibble(bundesligR)

!!! ERRORS / ISSUES:
"Borussia Moenchengladbach" is also entitled "Bor. Moenchengladbach"!
Leverkusen is falsly entitled "SV Bayer 04 Leverkusen"
Uerdingen has changed its name several times
Stuttgarter Kickers are named differently

How often is "Bor. Moenchengladbach" in the data?
sum(liga$Team == "Bor. Moenchengladbach")

show the entries
liga |>

filter(Team == "Bor. Moenchengladbach")

Replace "Bor. Moenchengladbach" with "Borussia Moenchengladbach"
liga <- liga |>

mutate(Team = ifelse(Team == "Bor. Moenchengladbach",
"Borussia Moenchengladbach",
Team

)) |>
mutate(Team = ifelse(Team == "SV Bayer 04 Leverkusen",
"TSV Bayer 04 Leverkusen",
Team

)) |>
mutate(Team = ifelse(Team == "FC Bayer 05 Uerdingen" |
Team == "Bayer 05 Uerdingen",

"KFC Uerdingen 05",
Team
)) |>
mutate(Team = ifelse(Team == "SV Stuttgarter Kickers",
"Stuttgarter Kickers",
Team

))

Check for the data class
class(liga)

view data
view(liga)

Glimpse on the data
glimpse(liga)

first and last observations
head(liga)
tail(liga)

summary statistics
summary(liga)

How many teams have played in the league over the years?
table(liga$Season)

Which teams have played Bundesliga
unique(liga$Team)

How many teams have played Bundesliga
n_distinct(liga$Team)

How often has each team played in the Bundesliga
table(liga$Team)

summary of variable Season only
summary(liga$Season)

summary of numeric of variables (Team is a character)
liga |>

select(Season, Position, Played, W, D, L, GF, GA, GD, Points, Pts_pre_95) |>
summary()

shorter alternative
liga |>

select(Season, Position, Played:Pts_pre_95) |>
summary()

shortest alternative
liga |>

select(-Team) |>
filter(Season == 1999 | Season == 2010) |>
summary()

Most points ever received by a team
liga |>

filter(Points == max(Points))

Show only the team name
liga |>

filter(Points == max(Points)) |>
select(Team) |>
print()

remove the variable `Pts_pre_95` from the data
liga_post95 <- liga |>

select(-Pts_pre_95)

rename W, D, and L to Win, Draw, and Loss
additionally rename GF, GA, GD to Goals_shot, Goals_received, Goal_difference
liga_longnames <- liga |>

rename(Win = W, Draw = D, Loss = L) |>
rename(Goals_shot = GF, Goals_received = GA, Goal_difference = GD)

Remove the variable `Pts_pre_95` from `liga`
additionally remove all observations before the year 1996
liga_no3point <- liga |>

select(-Pts_pre_95) |>
filter(Season >= 1996)

Remove the objects liga_post95, liga_longnames, and liga_no3point from the environment
rm(liga_post95, liga_longnames, liga_no3point)

Rename all variables of `liga`to lower cases and store it as `dfb`
dfb <- liga |>

rename_all(tolower)

Show the winner and the runner up after 2010
additionally show the points
dfb |>

filter(season > 2010) |>
group_by(season) |>
arrange(desc(points)) |>
slice_head(n = 2) |>
select(team, points, position)

Create a variable that counts how often a team was ranked first
dfb <- dfb |>

group_by(team) |>
mutate(meister_count = sum(position == 1))

How often has each team played in the Bundesliga
table(liga$Team)

Make a ranking
dfb |>

group_by(team) |>
summarise(appearances = n_distinct(season)) |>
arrange(desc(appearances)) |>
print(n = Inf)

Add a variable to `dfb` that contains the number of appearances of a team in the league
dfb <- dfb |>

group_by(team) |>
mutate(appearances = n_distinct(season))

create a number that indicates how often a team has played Bundesliga in a given year
dfb <- dfb |>

arrange(team, season) |>
group_by(team) |>
mutate(team_in_liga_count = row_number())

Make a ranking with the number of titles of all teams that ever won the league
dfb |>

filter(team_in_liga_count == 1) |>
filter(meister_count != 0) |>
arrange(desc(meister_count)) |>
select(meister_count, team)

Create a numeric identifying variable for each team
dfb_teamid <- dfb |>

mutate(team_id = as.numeric(factor(team)))

When a team is in the league, what is the probability that it wins the league
dfb |>

filter(team_in_liga_count == 1) |>
mutate(prob_win = meister_count / appearances) |>
filter(prob_win > 0) |>
arrange(desc(prob_win)) |>
select(meister_count, prob_win, team)

make a scatterplot with points on the y-axis and position on the x-axis
ggplot(dfb, aes(x = position, y = points)) +

geom_point()

Make a scatterplot with points on the y-axis and position on the x-axis.
Additionally, only consider seasons with 18 teams and
add lines that make clear how many points you needed to be placed
in between rank 2 and 15.
dfb_18 <- dfb |>

group_by(season) |>
mutate(teams_in_league = n_distinct(team)) |>
filter(teams_in_league == 18)

h_1 <- dfb_18 |>
filter(position == 16) |>
mutate(ma = max(points))

max_points_rank_16 <- max(h_1$ma) + 1

h_2 <- dfb_18 |>
filter(position == 2) |>
mutate(mb = max(points))

min_points_rank_2 <- max(h_2$mb) + 1

dfb_18 <- dfb_18 |>
mutate(season_category = case_when(
season < 1970 ~ 1,
between(season, 1970, 1979) ~ 2,
between(season, 1980, 1989) ~ 3,
between(season, 1990, 1999) ~ 4,
between(season, 2000, 2009) ~ 5,
between(season, 2010, 2019) ~ 6,
TRUE ~ 7 # Adjust this line based on the actual range of your data

))

ggplot(dfb_18, aes(x = position, y = points)) +
geom_point() +
labs(
title = "Scatterplot of Points and Position",
x = "Position",
y = "Points"

) +
geom_vline(xintercept = c(1.5, 15.5), linetype = "dashed", color = "red") +
geom_hline(yintercept = max_points_rank_16, linetype = "dashed", color = "blue") +
geom_hline(yintercept = min_points_rank_2, linetype = "dashed", color = "blue") +
scale_y_continuous(breaks = c(min_points_rank_2, max_points_rank_16, seq(0, max(dfb_18$points), by = 5))) +
scale_x_continuous(breaks = c(seq(0, max(dfb_18$points), by = 1))) +
theme_classic()

Remove all objects except liga and dfb
rm(list = setdiff(ls(), c("liga", "dfb")))

Rank "1. FC Kaiserslautern" over time
dfb_bal <- dfb |>

select(season, team, position) |>
as_tibble() |>
complete(season, team)

table(dfb_bal$team)

dfb_fck <- dfb_bal |>
filter(team == "1. FC Kaiserslautern")

ggplot(dfb_fck, aes(x = season, y = position)) +
geom_point() +
geom_line() +
scale_y_reverse(breaks = seq(1, 18, by = 1))

Make the plot nice

consider different rules for having to leave the league:
dfb_fck <- dfb_fck |>

mutate(godown = ifelse(season <= 1964, 14.5, NA)) |>
mutate(godown = ifelse(season > 1964 & season <= 1973, 16.5, godown)) |>
mutate(godown = ifelse(season > 1973 & season <= 1980, 15.5, godown)) |>
mutate(godown = ifelse(season > 1980 & season <= 1990, 16, godown)) |>
mutate(godown = ifelse(season == 1991, 16.5, godown)) |>
mutate(godown = ifelse(season > 1991 & season <= 2008, 15.5, godown)) |>
mutate(godown = ifelse(season > 2008, 16, godown))

ggplot(dfb_fck, aes(x = season)) +
geom_point(aes(y = position)) +
geom_line(aes(y = position)) +
geom_point(aes(y = godown), shape = 25) +
scale_y_reverse(breaks = seq(1, 18, by = 1)) +
theme_minimal() +
theme(panel.grid.minor = element_blank()) +
geom_hline(yintercept = 1.5, linetype = "dashed", color = "blue")

dfb_bal <- dfb_bal |>
mutate(godown = ifelse(season <= 1964, 14.5, NA)) |>
mutate(godown = ifelse(season > 1964 & season <= 1973, 16.5, godown)) |>
mutate(godown = ifelse(season > 1973 & season <= 1980, 15.5, godown)) |>
mutate(godown = ifelse(season > 1980 & season <= 1990, 16, godown)) |>
mutate(godown = ifelse(season == 1991, 16.5, godown)) |>
mutate(godown = ifelse(season > 1991 & season <= 2008, 15.5, godown)) |>
mutate(godown = ifelse(season > 2008, 16, godown)) |>
mutate(inliga = ifelse(is.na(position), 0, 1))

rank_plot <- ggplot(dfb_bal, aes(x = season)) +
geom_point(aes(y = position), shape = 1) +
geom_line(aes(y = position)) +
geom_point(aes(y = godown), shape = 25) +
scale_y_reverse(breaks = seq(1, 20, by = 1), limits = c(20, 1)) +
xlim(1963, 2015) +
theme(panel.grid.minor = element_blank()) +
geom_hline(yintercept = 1.5, linetype = "dashed", color = "gray") +
geom_point(aes(y = position), shape = 1)

rank_plot
!--> in 1979 is a gap! Error?
No. Reason: two clubs shared the third place.

rank_plot +
facet_wrap(~team)

Create "test" directory if it doesn't already exist
if (!dir.exists("test")) {

dir.create("test")
}

plots <- list()
for (club in unique(dfb_bal$team)) {

dfb_subset <- subset(dfb_bal, team == club)

p <- ggplot(dfb_subset, aes(x = season)) +
geom_point(aes(y = position), shape = 15) +
geom_line(aes(y = position)) +
geom_point(aes(y = godown), shape = 25) +
scale_y_reverse(breaks = seq(1, 20, by = 1), limits = c(20, 1)) +
xlim(1963, 2015) +
theme(panel.grid.minor = element_blank()) +
geom_hline(yintercept = 1.5, linetype = "dashed", color = "gray") +
geom_point(aes(y = position), shape = 1) +
labs(title = paste("Ranking History:", club))

ggsave(filename = paste("test/r_", club, ".png", sep = ""))
plots[[club]] <- p

}

print(plots$`Meidericher SV`)
print(plots$`1. FC Koeln`)

unload packages
suppressMessages(pacman::p_unload(

bundesligR,
tidyverse

))

Remove the "test" directory and its contents after saving all graphs
unlink("test", recursive = TRUE)

146

9. Collection of exercises

Output of the R script

In dfb.R I analyze German soccer results

set working directory
setwd("~/Dropbox/hsf/23-ws/dsda/scripts")

clear environment
rm(list = ls())

(Install and) load packagages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(

bundesligR,
tidyverse

)

Read in the data as tibble
liga <- as_tibble(bundesligR)

!!! ERRORS / ISSUES:
"Borussia Moenchengladbach" is also entitled "Bor. Moenchengladbach"!
Leverkusen is falsly entitled "SV Bayer 04 Leverkusen"
Uerdingen has changed its name several times
Stuttgarter Kickers are named differently

How often is "Bor. Moenchengladbach" in the data?
sum(liga$Team == "Bor. Moenchengladbach")

[1] 2

show the entries
liga |>

filter(Team == "Bor. Moenchengladbach")

A tibble: 2 x 12
Season Position Team Played W D L GF GA GD Points
<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1989 15 Bor. Moench~ 34 11 8 15 37 45 -8 41
2 1976 1 Bor. Moench~ 34 17 10 7 58 34 24 61
i 1 more variable: Pts_pre_95 <dbl>

Replace "Bor. Moenchengladbach" with "Borussia Moenchengladbach"
liga <- liga |>

mutate(Team = ifelse(Team == "Bor. Moenchengladbach",
"Borussia Moenchengladbach",
Team

)) |>
mutate(Team = ifelse(Team == "SV Bayer 04 Leverkusen",
"TSV Bayer 04 Leverkusen",
Team

)) |>
mutate(Team = ifelse(Team == "FC Bayer 05 Uerdingen" |
Team == "Bayer 05 Uerdingen",

"KFC Uerdingen 05",
Team
)) |>
mutate(Team = ifelse(Team == "SV Stuttgarter Kickers",
"Stuttgarter Kickers",
Team

))

Check for the data class
class(liga)

[1] "tbl_df" "tbl" "data.frame"

view data
view(liga)

Glimpse on the data
glimpse(liga)

Rows: 952
Columns: 12
$ Season <dbl> 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015,~
$ Position <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ~
$ Team <chr> "FC Bayern Muenchen", "Borussia Dortmund", "Bayer 04 Leverk~
$ Played <dbl> 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34,~
$ W <dbl> 28, 24, 18, 17, 15, 14, 14, 12, 10, 11, 10, 9, 10, 9, 9, 9,~
$ D <dbl> 4, 6, 6, 4, 7, 8, 8, 9, 13, 8, 10, 11, 8, 11, 10, 9, 6, 4, ~
$ L <dbl> 2, 4, 10, 13, 12, 12, 12, 13, 11, 15, 14, 14, 16, 14, 15, 1~
$ GF <dbl> 80, 82, 56, 67, 51, 46, 42, 47, 38, 40, 33, 42, 50, 38, 39,~
$ GA <dbl> 17, 34, 40, 50, 49, 42, 42, 49, 42, 46, 42, 52, 65, 53, 54,~
$ GD <dbl> 63, 48, 16, 17, 2, 4, 0, -2, -4, -6, -9, -10, -15, -15, -15~
$ Points <dbl> 88, 78, 60, 55, 52, 50, 50, 45, 43, 41, 40, 38, 38, 38, 37,~
$ Pts_pre_95 <dbl> 60, 54, 42, 38, 37, 36, 36, 33, 33, 30, 30, 29, 28, 29, 28,~

first and last observations
head(liga)

A tibble: 6 x 12
Season Position Team Played W D L GF GA GD Points
<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2015 1 FC Bayern M~ 34 28 4 2 80 17 63 88
2 2015 2 Borussia Do~ 34 24 6 4 82 34 48 78
3 2015 3 Bayer 04 Le~ 34 18 6 10 56 40 16 60
4 2015 4 Borussia Mo~ 34 17 4 13 67 50 17 55
5 2015 5 FC Schalke ~ 34 15 7 12 51 49 2 52
6 2015 6 1. FSV Main~ 34 14 8 12 46 42 4 50
i 1 more variable: Pts_pre_95 <dbl>

tail(liga)

A tibble: 6 x 12
Season Position Team Played W D L GF GA GD Points
<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1963 11 Eintracht B~ 30 11 6 13 36 49 -13 39
2 1963 12 1. FC Kaise~ 30 10 6 14 48 69 -21 36
3 1963 13 Karlsruher ~ 30 8 8 14 42 55 -13 32
4 1963 14 Hertha BSC 30 9 6 15 45 65 -20 33
5 1963 15 Preussen Mu~ 30 7 9 14 34 52 -18 30
6 1963 16 1. FC Saarb~ 30 6 5 19 44 72 -28 23
i 1 more variable: Pts_pre_95 <dbl>

summary statistics
summary(liga)

Season Position Team Played
Min. :1963 Min. : 1.000 Length:952 Min. :30.00
1st Qu.:1976 1st Qu.: 5.000 Class :character 1st Qu.:34.00
Median :1989 Median : 9.000 Mode :character Median :34.00
Mean :1989 Mean : 9.486 Mean :33.95
3rd Qu.:2002 3rd Qu.:14.000 3rd Qu.:34.00
Max. :2015 Max. :20.000 Max. :38.00

W D L GF
Min. : 2.00 Min. : 2.000 Min. : 1.00 Min. : 15.00
1st Qu.: 9.75 1st Qu.: 7.000 1st Qu.:10.00 1st Qu.: 42.00
Median :12.00 Median : 9.000 Median :13.00 Median : 50.00
Mean :12.61 Mean : 8.733 Mean :12.61 Mean : 52.01
3rd Qu.:15.00 3rd Qu.:11.000 3rd Qu.:15.00 3rd Qu.: 61.00
Max. :29.00 Max. :18.000 Max. :28.00 Max. :101.00

GA GD Points Pts_pre_95
Min. :10.0 Min. :-60.0000 Min. :10.00 Min. : 8.00
1st Qu.:43.0 1st Qu.:-13.0000 1st Qu.:38.00 1st Qu.:29.00
Median :51.0 Median : -2.0000 Median :44.00 Median :33.00
Mean :51.7 Mean : 0.3015 Mean :46.56 Mean :33.95
3rd Qu.:60.0 3rd Qu.: 13.0000 3rd Qu.:55.00 3rd Qu.:39.00
Max. :93.0 Max. : 80.0000 Max. :91.00 Max. :62.00

How many teams have played in the league over the years?
table(liga$Season)

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
18 18 18 18 18 18 18 18 18 18 18 18 20 18 18 18

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

2011 2012 2013 2014 2015
18 18 18 18 18

Which teams have played Bundesliga
unique(liga$Team)

[1] "FC Bayern Muenchen" "Borussia Dortmund"
[3] "Bayer 04 Leverkusen" "Borussia Moenchengladbach"
[5] "FC Schalke 04" "1. FSV Mainz 05"
[7] "Hertha BSC" "VfL Wolfsburg"
[9] "1. FC Koeln" "Hamburger SV"
[11] "FC Ingolstadt 04" "FC Augsburg"
[13] "Werder Bremen" "SV Darmstadt 98"
[15] "TSG 1899 Hoffenheim" "Eintracht Frankfurt"
[17] "VfB Stuttgart" "Hannover 96"
[19] "SC Freiburg" "SC Paderborn 07"
[21] "1. FC Nuernberg" "Eintracht Braunschweig"
[23] "Fortuna Duesseldorf" "SpVgg Greuther Fuerth"
[25] "1. FC Kaiserslautern" "FC St. Pauli"
[27] "VfL Bochum" "Energie Cottbus"
[29] "Karlsruher SC" "Arminia Bielefeld"
[31] "Hansa Rostock" "MSV Duisburg"
[33] "Alemannia Aachen" "TSV 1860 Muenchen"
[35] "SpVgg Unterhaching" "SSV Ulm 1846"
[37] "KFC Uerdingen 05" "Dynamo Dresden"
[39] "SG Wattenscheid 09" "VfB Leipzig"
[41] "1. FC Saarbruecken" "TSV Bayer 04 Leverkusen"
[43] "SV Werder Bremen" "1. FC Dynamo Dresden"
[45] "Stuttgarter Kickers" "FC Hansa Rostock"
[47] "SV Waldhof Mannheim" "FC 08 Homburg"
[49] "FC Homburg" "Blau-Weiss 90 Berlin"
[51] "Kickers Offenbach" "Tennis Borussia Berlin"
[53] "Rot-Weiss Essen" "Wuppertaler SV"
[55] "SC Fortuna Koeln" "Rot-Weiss Oberhausen"
[57] "SC Rot-Weiss Oberhausen" "Borussia Neunkirchen"
[59] "Meidericher SV" "SC Tasmania 1900 Berlin"
[61] "Preussen Muenster"

How many teams have played Bundesliga
n_distinct(liga$Team)

[1] 61

How often has each team played in the Bundesliga
table(liga$Team)

1. FC Dynamo Dresden 1. FC Kaiserslautern 1. FC Koeln
1 44 45

1. FC Nuernberg 1. FC Saarbruecken 1. FSV Mainz 05
32 5 10

Alemannia Aachen Arminia Bielefeld Bayer 04 Leverkusen
4 17 30

Blau-Weiss 90 Berlin Borussia Dortmund Borussia Moenchengladbach
1 49 48

Borussia Neunkirchen Dynamo Dresden Eintracht Braunschweig
3 3 21

Eintracht Frankfurt Energie Cottbus FC 08 Homburg
47 6 2

FC Augsburg FC Bayern Muenchen FC Hansa Rostock
5 51 1

FC Homburg FC Ingolstadt 04 FC Schalke 04
1 1 48

FC St. Pauli Fortuna Duesseldorf Hamburger SV
8 23 53

Hannover 96 Hansa Rostock Hertha BSC
28 11 33

Karlsruher SC KFC Uerdingen 05 Kickers Offenbach
24 14 7

Meidericher SV MSV Duisburg Preussen Muenster
3 25 1

Rot-Weiss Essen Rot-Weiss Oberhausen SC Fortuna Koeln
7 3 1

SC Freiburg SC Paderborn 07 SC Rot-Weiss Oberhausen
16 1 1

SC Tasmania 1900 Berlin SG Wattenscheid 09 SpVgg Greuther Fuerth
1 4 1

SpVgg Unterhaching SSV Ulm 1846 Stuttgarter Kickers
2 1 2

SV Darmstadt 98 SV Waldhof Mannheim SV Werder Bremen
3 7 1

Tennis Borussia Berlin TSG 1899 Hoffenheim TSV 1860 Muenchen
2 8 20

TSV Bayer 04 Leverkusen VfB Leipzig VfB Stuttgart
7 1 51

VfL Bochum VfL Wolfsburg Werder Bremen
34 19 51

Wuppertaler SV
3

summary of variable Season only
summary(liga$Season)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1963 1976 1989 1989 2002 2015

summary of numeric of variables (Team is a character)
liga |>

select(Season, Position, Played, W, D, L, GF, GA, GD, Points, Pts_pre_95) |>
summary()

Season Position Played W
Min. :1963 Min. : 1.000 Min. :30.00 Min. : 2.00
1st Qu.:1976 1st Qu.: 5.000 1st Qu.:34.00 1st Qu.: 9.75
Median :1989 Median : 9.000 Median :34.00 Median :12.00
Mean :1989 Mean : 9.486 Mean :33.95 Mean :12.61
3rd Qu.:2002 3rd Qu.:14.000 3rd Qu.:34.00 3rd Qu.:15.00
Max. :2015 Max. :20.000 Max. :38.00 Max. :29.00

D L GF GA
Min. : 2.000 Min. : 1.00 Min. : 15.00 Min. :10.0
1st Qu.: 7.000 1st Qu.:10.00 1st Qu.: 42.00 1st Qu.:43.0
Median : 9.000 Median :13.00 Median : 50.00 Median :51.0
Mean : 8.733 Mean :12.61 Mean : 52.01 Mean :51.7
3rd Qu.:11.000 3rd Qu.:15.00 3rd Qu.: 61.00 3rd Qu.:60.0
Max. :18.000 Max. :28.00 Max. :101.00 Max. :93.0

GD Points Pts_pre_95
Min. :-60.0000 Min. :10.00 Min. : 8.00
1st Qu.:-13.0000 1st Qu.:38.00 1st Qu.:29.00
Median : -2.0000 Median :44.00 Median :33.00
Mean : 0.3015 Mean :46.56 Mean :33.95
3rd Qu.: 13.0000 3rd Qu.:55.00 3rd Qu.:39.00
Max. : 80.0000 Max. :91.00 Max. :62.00

shorter alternative
liga |>

select(Season, Position, Played:Pts_pre_95) |>
summary()

Season Position Played W
Min. :1963 Min. : 1.000 Min. :30.00 Min. : 2.00
1st Qu.:1976 1st Qu.: 5.000 1st Qu.:34.00 1st Qu.: 9.75
Median :1989 Median : 9.000 Median :34.00 Median :12.00
Mean :1989 Mean : 9.486 Mean :33.95 Mean :12.61
3rd Qu.:2002 3rd Qu.:14.000 3rd Qu.:34.00 3rd Qu.:15.00
Max. :2015 Max. :20.000 Max. :38.00 Max. :29.00

D L GF GA
Min. : 2.000 Min. : 1.00 Min. : 15.00 Min. :10.0
1st Qu.: 7.000 1st Qu.:10.00 1st Qu.: 42.00 1st Qu.:43.0
Median : 9.000 Median :13.00 Median : 50.00 Median :51.0
Mean : 8.733 Mean :12.61 Mean : 52.01 Mean :51.7
3rd Qu.:11.000 3rd Qu.:15.00 3rd Qu.: 61.00 3rd Qu.:60.0
Max. :18.000 Max. :28.00 Max. :101.00 Max. :93.0

GD Points Pts_pre_95
Min. :-60.0000 Min. :10.00 Min. : 8.00
1st Qu.:-13.0000 1st Qu.:38.00 1st Qu.:29.00
Median : -2.0000 Median :44.00 Median :33.00
Mean : 0.3015 Mean :46.56 Mean :33.95
3rd Qu.: 13.0000 3rd Qu.:55.00 3rd Qu.:39.00
Max. : 80.0000 Max. :91.00 Max. :62.00

shortest alternative
liga |>

select(-Team) |>
filter(Season == 1999 | Season == 2010) |>
summary()

Season Position Played W D
Min. :1999 Min. : 1.0 Min. :34 Min. : 4.00 Min. : 3.000
1st Qu.:1999 1st Qu.: 5.0 1st Qu.:34 1st Qu.: 9.75 1st Qu.: 6.000
Median :2004 Median : 9.5 Median :34 Median :12.00 Median : 8.000
Mean :2004 Mean : 9.5 Mean :34 Mean :12.83 Mean : 8.333
3rd Qu.:2010 3rd Qu.:14.0 3rd Qu.:34 3rd Qu.:14.25 3rd Qu.:10.250
Max. :2010 Max. :18.0 Max. :34 Max. :23.00 Max. :15.000

L GF GA GD
Min. : 3.00 Min. :31.00 Min. :22.00 Min. :-34.00
1st Qu.:10.75 1st Qu.:41.00 1st Qu.:44.00 1st Qu.:-10.25
Median :13.00 Median :47.00 Median :48.50 Median : -3.00
Mean :12.83 Mean :49.42 Mean :49.42 Mean : 0.00
3rd Qu.:16.00 3rd Qu.:54.25 3rd Qu.:59.00 3rd Qu.: 4.75
Max. :21.00 Max. :81.00 Max. :71.00 Max. : 45.00

Points Pts_pre_95
Min. :22.00 Min. :18.00
1st Qu.:39.75 1st Qu.:29.75
Median :44.00 Median :32.00
Mean :46.83 Mean :34.00
3rd Qu.:50.75 3rd Qu.:37.50
Max. :75.00 Max. :52.00

Most points ever received by a team
liga |>

filter(Points == max(Points))

A tibble: 1 x 12
Season Position Team Played W D L GF GA GD Points
<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2012 1 FC Bayern M~ 34 29 4 1 98 18 80 91
i 1 more variable: Pts_pre_95 <dbl>

Show only the team name
liga |>

filter(Points == max(Points)) |>
select(Team) |>
print()

A tibble: 1 x 1
Team
<chr>

1 FC Bayern Muenchen

remove the variable `Pts_pre_95` from the data
liga_post95 <- liga |>

select(-Pts_pre_95)

rename W, D, and L to Win, Draw, and Loss
additionally rename GF, GA, GD to Goals_shot, Goals_received, Goal_difference
liga_longnames <- liga |>

rename(Win = W, Draw = D, Loss = L) |>
rename(Goals_shot = GF, Goals_received = GA, Goal_difference = GD)

Remove the variable `Pts_pre_95` from `liga`
additionally remove all observations before the year 1996
liga_no3point <- liga |>

select(-Pts_pre_95) |>
filter(Season >= 1996)

Remove the objects liga_post95, liga_longnames, and liga_no3point from the environment
rm(liga_post95, liga_longnames, liga_no3point)

Rename all variables of `liga`to lower cases and store it as `dfb`
dfb <- liga |>

rename_all(tolower)

Show the winner and the runner up after 2010
additionally show the points
dfb |>

filter(season > 2010) |>
group_by(season) |>
arrange(desc(points)) |>
slice_head(n = 2) |>
select(team, points, position)

A tibble: 10 x 4
Groups: season [5]

season team points position
<dbl> <chr> <dbl> <dbl>

1 2011 Borussia Dortmund 81 1
2 2011 FC Bayern Muenchen 73 2
3 2012 FC Bayern Muenchen 91 1
4 2012 Borussia Dortmund 66 2
5 2013 FC Bayern Muenchen 90 1
6 2013 Borussia Dortmund 71 2
7 2014 FC Bayern Muenchen 79 1
8 2014 VfL Wolfsburg 69 2
9 2015 FC Bayern Muenchen 88 1
10 2015 Borussia Dortmund 78 2

Create a variable that counts how often a team was ranked first
dfb <- dfb |>

group_by(team) |>
mutate(meister_count = sum(position == 1))

How often has each team played in the Bundesliga
table(liga$Team)

1. FC Dynamo Dresden 1. FC Kaiserslautern 1. FC Koeln
1 44 45

1. FC Nuernberg 1. FC Saarbruecken 1. FSV Mainz 05
32 5 10

Alemannia Aachen Arminia Bielefeld Bayer 04 Leverkusen
4 17 30

Blau-Weiss 90 Berlin Borussia Dortmund Borussia Moenchengladbach
1 49 48

Borussia Neunkirchen Dynamo Dresden Eintracht Braunschweig
3 3 21

Eintracht Frankfurt Energie Cottbus FC 08 Homburg
47 6 2

FC Augsburg FC Bayern Muenchen FC Hansa Rostock
5 51 1

FC Homburg FC Ingolstadt 04 FC Schalke 04
1 1 48

FC St. Pauli Fortuna Duesseldorf Hamburger SV
8 23 53

Hannover 96 Hansa Rostock Hertha BSC
28 11 33

Karlsruher SC KFC Uerdingen 05 Kickers Offenbach
24 14 7

Meidericher SV MSV Duisburg Preussen Muenster
3 25 1

Rot-Weiss Essen Rot-Weiss Oberhausen SC Fortuna Koeln
7 3 1

SC Freiburg SC Paderborn 07 SC Rot-Weiss Oberhausen
16 1 1

SC Tasmania 1900 Berlin SG Wattenscheid 09 SpVgg Greuther Fuerth
1 4 1

SpVgg Unterhaching SSV Ulm 1846 Stuttgarter Kickers
2 1 2

SV Darmstadt 98 SV Waldhof Mannheim SV Werder Bremen
3 7 1

Tennis Borussia Berlin TSG 1899 Hoffenheim TSV 1860 Muenchen
2 8 20

TSV Bayer 04 Leverkusen VfB Leipzig VfB Stuttgart
7 1 51

VfL Bochum VfL Wolfsburg Werder Bremen
34 19 51

Wuppertaler SV
3

Make a ranking
dfb |>

group_by(team) |>
summarise(appearances = n_distinct(season)) |>
arrange(desc(appearances)) |>
print(n = Inf)

A tibble: 61 x 2
team appearances
<chr> <int>

1 Hamburger SV 53
2 FC Bayern Muenchen 51
3 VfB Stuttgart 51
4 Werder Bremen 51
5 Borussia Dortmund 49
6 Borussia Moenchengladbach 48
7 FC Schalke 04 48
8 Eintracht Frankfurt 47
9 1. FC Koeln 45
10 1. FC Kaiserslautern 44
11 VfL Bochum 34
12 Hertha BSC 33
13 1. FC Nuernberg 32
14 Bayer 04 Leverkusen 30
15 Hannover 96 28
16 MSV Duisburg 25
17 Karlsruher SC 24
18 Fortuna Duesseldorf 23
19 Eintracht Braunschweig 21
20 TSV 1860 Muenchen 20
21 VfL Wolfsburg 19
22 Arminia Bielefeld 17
23 SC Freiburg 16
24 KFC Uerdingen 05 14
25 Hansa Rostock 11
26 1. FSV Mainz 05 10
27 FC St. Pauli 8
28 TSG 1899 Hoffenheim 8
29 Kickers Offenbach 7
30 Rot-Weiss Essen 7
31 SV Waldhof Mannheim 7
32 TSV Bayer 04 Leverkusen 7
33 Energie Cottbus 6
34 1. FC Saarbruecken 5
35 FC Augsburg 5
36 Alemannia Aachen 4
37 SG Wattenscheid 09 4
38 Borussia Neunkirchen 3
39 Dynamo Dresden 3
40 Meidericher SV 3
41 Rot-Weiss Oberhausen 3
42 SV Darmstadt 98 3
43 Wuppertaler SV 3
44 FC 08 Homburg 2
45 SpVgg Unterhaching 2
46 Stuttgarter Kickers 2
47 Tennis Borussia Berlin 2
48 1. FC Dynamo Dresden 1
49 Blau-Weiss 90 Berlin 1
50 FC Hansa Rostock 1
51 FC Homburg 1
52 FC Ingolstadt 04 1
53 Preussen Muenster 1
54 SC Fortuna Koeln 1
55 SC Paderborn 07 1
56 SC Rot-Weiss Oberhausen 1
57 SC Tasmania 1900 Berlin 1
58 SSV Ulm 1846 1
59 SV Werder Bremen 1
60 SpVgg Greuther Fuerth 1
61 VfB Leipzig 1

Add a variable to `dfb` that contains the number of appearances of a team in the league
dfb <- dfb |>

group_by(team) |>
mutate(appearances = n_distinct(season))

create a number that indicates how often a team has played Bundesliga in a given year
dfb <- dfb |>

arrange(team, season) |>
group_by(team) |>
mutate(team_in_liga_count = row_number())

Make a ranking with the number of titles of all teams that ever won the league
dfb |>

filter(team_in_liga_count == 1) |>
filter(meister_count != 0) |>
arrange(desc(meister_count)) |>
select(meister_count, team)

A tibble: 12 x 2
Groups: team [12]

meister_count team
<int> <chr>

1 25 FC Bayern Muenchen
2 5 Borussia Dortmund
3 5 Borussia Moenchengladbach
4 4 Werder Bremen
5 3 Hamburger SV
6 3 VfB Stuttgart
7 2 1. FC Kaiserslautern
8 2 1. FC Koeln
9 1 1. FC Nuernberg
10 1 Eintracht Braunschweig
11 1 TSV 1860 Muenchen
12 1 VfL Wolfsburg

Create a numeric identifying variable for each team
dfb_teamid <- dfb |>

mutate(team_id = as.numeric(factor(team)))

When a team is in the league, what is the probability that it wins the league
dfb |>

filter(team_in_liga_count == 1) |>
mutate(prob_win = meister_count / appearances) |>
filter(prob_win > 0) |>
arrange(desc(prob_win)) |>
select(meister_count, prob_win, team)

A tibble: 12 x 3
Groups: team [12]

meister_count prob_win team
<int> <dbl> <chr>

1 25 0.490 FC Bayern Muenchen
2 5 0.104 Borussia Moenchengladbach
3 5 0.102 Borussia Dortmund
4 4 0.0784 Werder Bremen
5 3 0.0588 VfB Stuttgart
6 3 0.0566 Hamburger SV
7 1 0.0526 VfL Wolfsburg
8 1 0.05 TSV 1860 Muenchen
9 1 0.0476 Eintracht Braunschweig
10 2 0.0455 1. FC Kaiserslautern
11 2 0.0444 1. FC Koeln
12 1 0.0312 1. FC Nuernberg

make a scatterplot with points on the y-axis and position on the x-axis
ggplot(dfb, aes(x = position, y = points)) +

geom_point()

25

50

75

5 10 15 20
position

po
in

ts

Make a scatterplot with points on the y-axis and position on the x-axis.
Additionally, only consider seasons with 18 teams and
add lines that make clear how many points you needed to be placed
in between rank 2 and 15.
dfb_18 <- dfb |>

group_by(season) |>
mutate(teams_in_league = n_distinct(team)) |>
filter(teams_in_league == 18)

h_1 <- dfb_18 |>
filter(position == 16) |>
mutate(ma = max(points))

max_points_rank_16 <- max(h_1$ma) + 1

h_2 <- dfb_18 |>
filter(position == 2) |>
mutate(mb = max(points))

min_points_rank_2 <- max(h_2$mb) + 1

dfb_18 <- dfb_18 |>
mutate(season_category = case_when(
season < 1970 ~ 1,
between(season, 1970, 1979) ~ 2,
between(season, 1980, 1989) ~ 3,
between(season, 1990, 1999) ~ 4,
between(season, 2000, 2009) ~ 5,
between(season, 2010, 2019) ~ 6,
TRUE ~ 7 # Adjust this line based on the actual range of your data

))

ggplot(dfb_18, aes(x = position, y = points)) +
geom_point() +
labs(
title = "Scatterplot of Points and Position",
x = "Position",
y = "Points"

) +
geom_vline(xintercept = c(1.5, 15.5), linetype = "dashed", color = "red") +
geom_hline(yintercept = max_points_rank_16, linetype = "dashed", color = "blue") +
geom_hline(yintercept = min_points_rank_2, linetype = "dashed", color = "blue") +
scale_y_continuous(breaks = c(min_points_rank_2, max_points_rank_16, seq(0, max(dfb_18$points), by = 5))) +
scale_x_continuous(breaks = c(seq(0, max(dfb_18$points), by = 1))) +
theme_classic()

79

42

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Position

P
oi

nt
s

Scatterplot of Points and Position

Remove all objects except liga and dfb
rm(list = setdiff(ls(), c("liga", "dfb")))

Rank "1. FC Kaiserslautern" over time
dfb_bal <- dfb |>

select(season, team, position) |>
as_tibble() |>
complete(season, team)

table(dfb_bal$team)

1. FC Dynamo Dresden 1. FC Kaiserslautern 1. FC Koeln
53 53 53

1. FC Nuernberg 1. FC Saarbruecken 1. FSV Mainz 05
53 53 53

Alemannia Aachen Arminia Bielefeld Bayer 04 Leverkusen
53 53 53

Blau-Weiss 90 Berlin Borussia Dortmund Borussia Moenchengladbach
53 53 53

Borussia Neunkirchen Dynamo Dresden Eintracht Braunschweig
53 53 53

Eintracht Frankfurt Energie Cottbus FC 08 Homburg
53 53 53

FC Augsburg FC Bayern Muenchen FC Hansa Rostock
53 53 53

FC Homburg FC Ingolstadt 04 FC Schalke 04
53 53 53

FC St. Pauli Fortuna Duesseldorf Hamburger SV
53 53 53

Hannover 96 Hansa Rostock Hertha BSC
53 53 53

Karlsruher SC KFC Uerdingen 05 Kickers Offenbach
53 53 53

Meidericher SV MSV Duisburg Preussen Muenster
53 53 53

Rot-Weiss Essen Rot-Weiss Oberhausen SC Fortuna Koeln
53 53 53

SC Freiburg SC Paderborn 07 SC Rot-Weiss Oberhausen
53 53 53

SC Tasmania 1900 Berlin SG Wattenscheid 09 SpVgg Greuther Fuerth
53 53 53

SpVgg Unterhaching SSV Ulm 1846 Stuttgarter Kickers
53 53 53

SV Darmstadt 98 SV Waldhof Mannheim SV Werder Bremen
53 53 53

Tennis Borussia Berlin TSG 1899 Hoffenheim TSV 1860 Muenchen
53 53 53

TSV Bayer 04 Leverkusen VfB Leipzig VfB Stuttgart
53 53 53

VfL Bochum VfL Wolfsburg Werder Bremen
53 53 53

Wuppertaler SV
53

dfb_fck <- dfb_bal |>
filter(team == "1. FC Kaiserslautern")

ggplot(dfb_fck, aes(x = season, y = position)) +
geom_point() +
geom_line() +
scale_y_reverse(breaks = seq(1, 18, by = 1))

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1970 1980 1990 2000 2010
season

po
si

tio
n

Make the plot nice

consider different rules for having to leave the league:
dfb_fck <- dfb_fck |>

mutate(godown = ifelse(season <= 1964, 14.5, NA)) |>
mutate(godown = ifelse(season > 1964 & season <= 1973, 16.5, godown)) |>
mutate(godown = ifelse(season > 1973 & season <= 1980, 15.5, godown)) |>
mutate(godown = ifelse(season > 1980 & season <= 1990, 16, godown)) |>
mutate(godown = ifelse(season == 1991, 16.5, godown)) |>
mutate(godown = ifelse(season > 1991 & season <= 2008, 15.5, godown)) |>
mutate(godown = ifelse(season > 2008, 16, godown))

ggplot(dfb_fck, aes(x = season)) +
geom_point(aes(y = position)) +
geom_line(aes(y = position)) +
geom_point(aes(y = godown), shape = 25) +
scale_y_reverse(breaks = seq(1, 18, by = 1)) +
theme_minimal() +
theme(panel.grid.minor = element_blank()) +
geom_hline(yintercept = 1.5, linetype = "dashed", color = "blue")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1970 1980 1990 2000 2010
season

po
si

tio
n

dfb_bal <- dfb_bal |>
mutate(godown = ifelse(season <= 1964, 14.5, NA)) |>
mutate(godown = ifelse(season > 1964 & season <= 1973, 16.5, godown)) |>
mutate(godown = ifelse(season > 1973 & season <= 1980, 15.5, godown)) |>
mutate(godown = ifelse(season > 1980 & season <= 1990, 16, godown)) |>
mutate(godown = ifelse(season == 1991, 16.5, godown)) |>
mutate(godown = ifelse(season > 1991 & season <= 2008, 15.5, godown)) |>
mutate(godown = ifelse(season > 2008, 16, godown)) |>
mutate(inliga = ifelse(is.na(position), 0, 1))

rank_plot <- ggplot(dfb_bal, aes(x = season)) +
geom_point(aes(y = position), shape = 1) +
geom_line(aes(y = position)) +
geom_point(aes(y = godown), shape = 25) +
scale_y_reverse(breaks = seq(1, 20, by = 1), limits = c(20, 1)) +
xlim(1963, 2015) +
theme(panel.grid.minor = element_blank()) +
geom_hline(yintercept = 1.5, linetype = "dashed", color = "gray") +
geom_point(aes(y = position), shape = 1)

rank_plot

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1970 1980 1990 2000 2010
season

po
si

tio
n

!--> in 1979 is a gap! Error?
No. Reason: two clubs shared the third place.

rank_plot +
facet_wrap(~team)

VfB StuttgartVfL BochumVfL WolfsburgWerder BremenWuppertaler SV

SV Darmstadt 98SV Waldhof MannheimSV Werder BremenTennis Borussia BerlinTSG 1899 HoffenheimTSV 1860 MuenchenTSV Bayer 04 LeverkusenVfB Leipzig

SC Paderborn 07SC Rot−Weiss OberhausenSC Tasmania 1900 BerlinSG Wattenscheid 09SpVgg Greuther FuerthSpVgg UnterhachingSSV Ulm 1846Stuttgarter Kickers

Kickers OffenbachMeidericher SVMSV DuisburgPreussen MuensterRot−Weiss EssenRot−Weiss OberhausenSC Fortuna KoelnSC Freiburg

FC St. PauliFortuna DuesseldorfHamburger SVHannover 96Hansa RostockHertha BSCKarlsruher SCKFC Uerdingen 05

Energie CottbusFC 08 HomburgFC AugsburgFC Bayern MuenchenFC Hansa RostockFC HomburgFC Ingolstadt 04FC Schalke 04

Bayer 04 LeverkusenBlau−Weiss 90 BerlinBorussia DortmundBorussia MoenchengladbachBorussia NeunkirchenDynamo DresdenEintracht BraunschweigEintracht Frankfurt

1. FC Dynamo Dresden1. FC Kaiserslautern1. FC Koeln1. FC Nuernberg1. FC Saarbruecken1. FSV Mainz 05Alemannia AachenArminia Bielefeld

1970198019902000201019701980199020002010197019801990200020101970198019902000201019701980199020002010

197019801990200020101970198019902000201019701980199020002010

1234567891011121314151617181920

1234567891011121314151617181920

1234567891011121314151617181920

1234567891011121314151617181920

1234567891011121314151617181920

1234567891011121314151617181920

1234567891011121314151617181920

1234567891011121314151617181920

season

po
si

tio
n

Create "test" directory if it doesn't already exist
if (!dir.exists("test")) {

dir.create("test")
}

plots <- list()
for (club in unique(dfb_bal$team)) {

dfb_subset <- subset(dfb_bal, team == club)

p <- ggplot(dfb_subset, aes(x = season)) +
geom_point(aes(y = position), shape = 15) +
geom_line(aes(y = position)) +
geom_point(aes(y = godown), shape = 25) +
scale_y_reverse(breaks = seq(1, 20, by = 1), limits = c(20, 1)) +
xlim(1963, 2015) +
theme(panel.grid.minor = element_blank()) +
geom_hline(yintercept = 1.5, linetype = "dashed", color = "gray") +
geom_point(aes(y = position), shape = 1) +
labs(title = paste("Ranking History:", club))

ggsave(filename = paste("test/r_", club, ".png", sep = ""))
plots[[club]] <- p

}

print(plots$`Meidericher SV`)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1970 1980 1990 2000 2010
season

po
si

tio
n

Ranking History: Meidericher SV

print(plots$`1. FC Koeln`)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1970 1980 1990 2000 2010
season

po
si

tio
n

Ranking History: 1. FC Koeln

unload packages
suppressMessages(pacman::p_unload(

bundesligR,
tidyverse

))

Remove the "test" directory and its contents after saving all graphs
unlink("test", recursive = TRUE)

147

9. Collection of exercises

9.15. Okun’s Law

Suppose you aim to empirically examine unemployment and GDP for Germany and France.
The data set that we use in the following is ‘forest.Rdata’ and should already been known to you
from the lecture.

(0) Write down your name, matriculation number, and date.

(1) Set your working directory.

(2) Clear your global environment.

(3) Install and load the following packages: ‘tidyverse’, ‘sjPlot’, and ‘ggpubr’

(4) Download and load the data, respectively, with the following code:

load(url("https://github.com/hubchev/courses/raw/main/dta/forest.Rdata"))

If that is not working, you can also download the data from ILIAS, save it in your working
directory and load it from there with:

load("forest.Rdata")

(5) Show the first eight observations of the dataset df.

(6) Show the last observation of the dataset df.

(7) Which type of data do we have here (Panel, cross-section,time series, …)? Name the
variable(s) that are necessary to identify the observations in the dataset.

(8) Explain what the assignment operator in R is and what it is good for.

(9) Write down the R code to store the number of observations and the number of vari-
ables that are in the dataset df. Name the object in which you store these numbers
observations_df.

(10) In the dataset df, rename the variable ‘country.x’ to ‘nation’ and the variable ‘date’ to
‘year’.

(11) Explain what the pipe operator in R is and what it is good for.

(12) For the upcoming analysis you are only interested the following variables that are part
of the dataframe df: nation, year, gdp, pop, gdppc, and unemployment. Drop all other
variables from the dataframe df.

(13) Create a variable that indicates the GDP per capita (‘gdp’ divided by ‘pop’). Name the
variable ‘gdp_pc’. (Hint: If you fail here, use the variable ‘gdppc’ which is already in the
dataset as a replacement for ‘gdp_pc’ in the following tasks.)

(14) For the upcoming analysis you are only interested the following countries that are part
of the dataframe df: Germany and France. Drop all other countries from the dataframe
df.

(15) Create a table showing the average unemployment rate and GDP per capita for Germany
and France in the given years. Use the pipe operator. (Hint: See below for how your results
should look like.)

148

9. Collection of exercises

A tibble: 2 x 3
nation `mean(unemployment)` `mean(gdppc)`
<chr> <dbl> <dbl>

1 France 9.75 34356.
2 Germany 7.22 36739.

(16) Create a table showing the unemployment rate and GDP per capita for Germany and
France in the year 2020. Use the pipe operator. (Hint: See below for how your results
should look like.)

A tibble: 2 x 3
nation `mean(unemployment)` `mean(gdppc)`
<chr> <dbl> <dbl>

1 France 8.01 35786.
2 Germany 3.81 41315.

(17) Create a table showing the highest unemployment rate and the highest GDP per capita
for Germany and France during the given period. Use the pipe operator. (Hint: See below
for how your results should look like.)

A tibble: 2 x 3
nation `max(unemployment)` `max(gdppc)`
<chr> <dbl> <dbl>

1 France 12.6 38912.
2 Germany 11.2 43329.

(18) Calculate the standard deviation of the unemployment rate and GDP per capita for Ger-
many and France in the given years. (Hint: See below for how your result should look
like.)

A tibble: 2 x 3
nation `sd(gdppc)` `sd(unemployment)`
<chr> <dbl> <dbl>

1 France 2940. 1.58
2 Germany 4015. 2.37

(19) In statistics, the coefficient of variation (COV) is a standardized measure of dispersion. It
is defined as the ratio of the standard deviation (𝜎) to the mean (𝜇): 𝐶𝑂𝑉 = 𝜎

𝜇 . Write
down the R code to calculate the coefficient of variation (COV) for the unemployment
rate in Germany and France. (Hint: See below for what your result should should look
like.)

A tibble: 2 x 4
nation `sd(unemployment)` `mean(unemployment)` cov
<chr> <dbl> <dbl> <dbl>

1 France 1.58 9.75 0.162
2 Germany 2.37 7.22 0.328

(20) Write down the R code to calculate the coefficient of variation (COV) for the GDP per
capita in Germany and France. (Hint: See below for what your result should should look
like.)

149

9. Collection of exercises

look like.)

A tibble: 2 x 4
nation `sd(gdppc)` `mean(gdppc)` cov
<chr> <dbl> <dbl> <dbl>

1 France 2940. 34356. 0.0856
2 Germany 4015. 36739. 0.109

(21) Create a chart (bar chart, line chart, or scatter plot) that shows the unemployment rate of
Germany over the available years. Label the chart ‘Germany’ with ggtitle("Germany").
Please note that you may choose any type of graphical representation. (Hint: Below you
can see one of many possible examples of what your result may look like).

5.0

7.5

10.0

2000 2010 2020
year

un
em

pl
oy

m
en

t

Germany

(22) and 23. (This task is worth 10 points) The following chart shows the simultaneous devel-
opment of the unemployment rate and GDP per capita over time for France.

30000 32000 34000 36000 38000

7
8

9
10

12

GDP per capita

U
ne

m
pl

oy
m

en
t r

at
e

1992

1993

1994
1995

19961997
19981999

2000

20012002
2003

2004
20052006

2007
2008

200920102011
2012
2013
201420152016

2017
2018

2019
2020

France

150

9. Collection of exercises

Suppose you want to visualize the simultaneous evolution of the unemployment rate and GDP
per capita over time for Germany as well.
Suppose further that you have found the following lines of code that create the kind of chart
you are looking for.

Data
x <- c(1, 2, 3, 4, 5, 4, 7, 8, 9)
y <- c(12, 16, 14, 18, 16, 13, 15, 20, 22)
labels <- 1970:1978

Connected scatter plot with text
plot(x, y, type = "b", xlab = "Var 1", ylab = "Var 2")
text(x + 0.4, y + 0.1, labels)

2 4 6 8

12
16

20

Var 1

V
ar

 2

1970

1971

1972

1973

1974

1975

1976

1977

1978

Use these lines of code and customize them to create the co-movement visualization for Ger-
many using the available df data. The result should look something like this:

32000 34000 36000 38000 40000 42000

4
6

8
10

Var 1

V
ar

 2

1992

1993
1994

1995
1996

19971998
1999

20002001
2002

2003
20042005

2006

2007
20082009

2010
201120122013201420152016201720182019

2020

Germany

(24) Interpret the two graphs above, which show the simultaneous evolution of the unemploy-
ment rate and GDP per capita over time for Germany and France. What are your ex-
pectations regarding the correlation between the unemployment rate and GDP per capita
variables? Can you see this expectation in the figures? Discuss.

151

9. Collection of exercises

Solution

The script uses the following functions: aes, c, dim, filter, geom_line, ggplot, ggtitle,
group_by, head, load, max, mean, mutate, plot, rename, sd, select, summarise, tail,
text, title, url.

152

9. Collection of exercises

R script

setwd("/home/sthu/Dropbox/hsf/exams/22-11/scr/")

rm(list = ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, ggpubr, sjPlot)

load(url("https://github.com/hubchev/courses/raw/main/dta/forest.Rdata"))

head(df, 8)

tail(df, 1)

panel data set
date and country.x

observations_df <- dim(df)

df <- rename(df, nation = country.x)
df <- rename(df, year = date)

df <- df |>
select(nation, year, gdp, pop, gdppc, unemployment)

df <- df |>
mutate(gdp_pc = gdp / pop)

df <- df |> filter(nation == "Germany" | nation == "France")

df |>
group_by(nation) |>
summarise(mean(unemployment), mean(gdppc))

df |>
filter(year == 2020) |>
group_by(nation) |>
summarise(mean(unemployment), mean(gdppc))

df |>
group_by(nation) |>
summarise(max(unemployment), max(gdppc))

df |>
group_by(nation) |>
summarise(sd(gdppc), sd(unemployment))

df |>
group_by(nation) |>
summarise(sd(unemployment), mean(unemployment), cov = sd(unemployment) / mean(unemployment))

df |>
group_by(nation) |>
summarise(sd(gdppc), mean(gdppc), cov = sd(gdppc) / mean(gdppc))

df_pger <- df |>
filter(nation == "Germany")

pger <- ggplot(df_pger, aes(x = year, y = unemployment)) +
geom_line() +
ggtitle("Germany")

plot(pger)

labels <- 1992:2020
dfra <- df |> filter(nation == "France")
plot(dfra$gdppc, dfra$unemployment,

type = "b",
xlab = "GDP per capita", ylab = "Unemployment rate"

)
text(dfra$gdppc + 0.1, dfra$unemployment + 0.1, labels)
title("France")

Data
x <- c(1, 2, 3, 4, 5, 4, 7, 8, 9)
y <- c(12, 16, 14, 18, 16, 13, 15, 20, 22)
labels <- 1970:1978

Connected scatter plot with text
plot(x, y, type = "b", xlab = "Var 1", ylab = "Var 2")
text(x + 0.4, y + 0.1, labels)

dfger <- df |> filter(nation == "Germany")
labels <- 1992:2020
plot(dfger$gdppc, dfger$unemployment,

type = "b",
xlab = "Var 1", ylab = "Var 2"

)
text(dfger$gdppc + 0.7, dfger$unemployment + 0.4, labels)
title("Germany")

suppressMessages(pacman::p_unload(tidyverse, ggpubr, sjPlot))

153

9. Collection of exercises

Output of the R script

setwd("/home/sthu/Dropbox/hsf/exams/22-11/scr/")

rm(list = ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, ggpubr, sjPlot)

load(url("https://github.com/hubchev/courses/raw/main/dta/forest.Rdata"))

head(df, 8)

A tibble: 8 x 11
Groups: country.x [1]

country.x date gdp gdp_growth unemployment region income forest pop
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>

1 United Arab~ 1992 1.26e11 -2.48 1.84 Middl~ High ~ 3.63 2.05e6
2 United Arab~ 1993 1.27e11 -4.34 1.85 Middl~ High ~ 3.72 2.17e6
3 United Arab~ 1994 1.36e11 1.25 1.81 Middl~ High ~ 3.81 2.29e6
4 United Arab~ 1995 1.45e11 1.35 1.80 Middl~ High ~ 3.90 2.42e6
5 United Arab~ 1996 1.54e11 0.631 1.90 Middl~ High ~ 3.99 2.54e6
6 United Arab~ 1997 1.66e11 2.83 1.98 Middl~ High ~ 4.08 2.67e6
7 United Arab~ 1998 1.67e11 -4.77 2.14 Middl~ High ~ 4.18 2.81e6
8 United Arab~ 1999 1.72e11 -2.40 2.22 Middl~ High ~ 4.27 2.97e6
i 2 more variables: unemployment_dif <dbl>, gdppc <dbl>

tail(df, 1)

A tibble: 1 x 11
Groups: country.x [1]

country.x date gdp gdp_growth unemployment region income forest pop
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>

1 Zimbabwe 2020 1.94e10 -7.62 5.35 Sub-S~ Lower~ 45.1 1.49e7
i 2 more variables: unemployment_dif <dbl>, gdppc <dbl>

panel data set
date and country.x

observations_df <- dim(df)

df <- rename(df, nation = country.x)
df <- rename(df, year = date)

df <- df |>
select(nation, year, gdp, pop, gdppc, unemployment)

df <- df |>
mutate(gdp_pc = gdp / pop)

df <- df |> filter(nation == "Germany" | nation == "France")

df |>
group_by(nation) |>
summarise(mean(unemployment), mean(gdppc))

A tibble: 2 x 3
nation `mean(unemployment)` `mean(gdppc)`
<chr> <dbl> <dbl>

1 France 9.75 34356.
2 Germany 7.22 36739.

df |>
filter(year == 2020) |>
group_by(nation) |>
summarise(mean(unemployment), mean(gdppc))

A tibble: 2 x 3
nation `mean(unemployment)` `mean(gdppc)`
<chr> <dbl> <dbl>

1 France 8.01 35786.
2 Germany 3.81 41315.

df |>
group_by(nation) |>
summarise(max(unemployment), max(gdppc))

A tibble: 2 x 3
nation `max(unemployment)` `max(gdppc)`
<chr> <dbl> <dbl>

1 France 12.6 38912.
2 Germany 11.2 43329.

df |>
group_by(nation) |>
summarise(sd(gdppc), sd(unemployment))

A tibble: 2 x 3
nation `sd(gdppc)` `sd(unemployment)`
<chr> <dbl> <dbl>

1 France 2940. 1.58
2 Germany 4015. 2.37

df |>
group_by(nation) |>
summarise(sd(unemployment), mean(unemployment), cov = sd(unemployment) / mean(unemployment))

A tibble: 2 x 4
nation `sd(unemployment)` `mean(unemployment)` cov
<chr> <dbl> <dbl> <dbl>

1 France 1.58 9.75 0.162
2 Germany 2.37 7.22 0.328

df |>
group_by(nation) |>
summarise(sd(gdppc), mean(gdppc), cov = sd(gdppc) / mean(gdppc))

A tibble: 2 x 4
nation `sd(gdppc)` `mean(gdppc)` cov
<chr> <dbl> <dbl> <dbl>

1 France 2940. 34356. 0.0856
2 Germany 4015. 36739. 0.109

df_pger <- df |>
filter(nation == "Germany")

pger <- ggplot(df_pger, aes(x = year, y = unemployment)) +
geom_line() +
ggtitle("Germany")

plot(pger)

5.0

7.5

10.0

2000 2010 2020
year

un
em

pl
oy

m
en

t

Germany

labels <- 1992:2020
dfra <- df |> filter(nation == "France")
plot(dfra$gdppc, dfra$unemployment,

type = "b",
xlab = "GDP per capita", ylab = "Unemployment rate"

)
text(dfra$gdppc + 0.1, dfra$unemployment + 0.1, labels)
title("France")

30000 32000 34000 36000 38000

7
8

9
10

12

GDP per capita

U
ne

m
pl

oy
m

en
t r

at
e

1992

1993

1994
1995

19961997
19981999

2000

20012002
2003

2004
20052006

2007
2008

200920102011
2012
2013
201420152016

2017
2018

2019
2020

France

Data
x <- c(1, 2, 3, 4, 5, 4, 7, 8, 9)
y <- c(12, 16, 14, 18, 16, 13, 15, 20, 22)
labels <- 1970:1978

Connected scatter plot with text
plot(x, y, type = "b", xlab = "Var 1", ylab = "Var 2")
text(x + 0.4, y + 0.1, labels)

2 4 6 8

12
16

20

Var 1

V
ar

 2

1970

1971

1972

1973

1974

1975

1976

1977

1978

dfger <- df |> filter(nation == "Germany")
labels <- 1992:2020
plot(dfger$gdppc, dfger$unemployment,

type = "b",
xlab = "Var 1", ylab = "Var 2"

)
text(dfger$gdppc + 0.7, dfger$unemployment + 0.4, labels)
title("Germany")

32000 34000 36000 38000 40000 42000

4
6

8
10

Var 1

V
ar

 2

1992

1993
1994

1995
1996

19971998
1999

20002001
2002

2003
20042005

2006

2007
20082009

2010
201120122013201420152016201720182019

2020

Germany

suppressMessages(pacman::p_unload(tidyverse, ggpubr, sjPlot))

154

9. Collection of exercises

9.16. Names and duplicates

1. Load the required packages (pacman, tidyverse, janitor, babynames, stringr).
2. Load the dataset from the URL: https://github.com/hubchev/courses/raw/main/dta/df

_names.RData. Make yourself familiar with the data.
3. After loading the dataset, remove all objects except df_2022 and df_2022_error.
4. Reorder the data using the relocate function so that surname, name, and age appear

first. Save the changed data in a tibble called df.
5. Sort the data according to surname, name, and age.
6. Make a variable named born that contains the year of birth. How is the born variable

calculated?
7. Create a new variable named id that identifies each person by surname, name, and their

birth year (born). Why is this identifier useful?
8. Investigate how the data is identified. Are there any duplicates? If so, can you think of

strategies to identify and how to deal with these duplicates.
9. Unload the packages used in the script. Why is unloading packages considered good

practice?

Solution

The script uses the following functions: anti_join, arrange, c, cur_group_id, desc, dim,
distinct, filter, get_dupes, glimpse, group_by, head, load, max, mutate, n, paste,
relocate, row_number, setdiff, summary, tail, ungroup, url.

155

https://github.com/hubchev/courses/raw/main/dta/df_names.RData
https://github.com/hubchev/courses/raw/main/dta/df_names.RData

9. Collection of exercises

R script

Find duplicates

set working directory
setwd("~/Dropbox/hsf/test/initial_script")

clear environment
rm(list = ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, janitor, babynames, stringr)

load(url("https://github.com/hubchev/courses/raw/main/dta/df_names.RData"))

Remove all objects except df_2022 and df_2022_error
rm(list = setdiff(ls(), c("df_2022_error", "df_2022")))

Re-order the data so that surname, name, and age appears first.
Save the changed data in a tibble called `df`.
df <- df_2022 |>

relocate(surname, name, age)

Sort the data according to surname, name, and age.
df <- df |>

arrange(surname, name, age)

Inspect df_2022 and df_2022_error
df
dim(df)
head(df)
tail(df)
glimpse(df)
summary(df)

df_2022_error

Make a variable that contains the year of birth. Name the variable `born`
and new dataframe `df`.
df <- df_2022 |>

mutate(born = time - age)

Make a new variable that identifies each person by surname, name,
and their birth born. Name the variable `id`.
df <- df |>

mutate(id = paste(surname, name, born, sep = "_"))

How many different groups do exist?
df <- df |>

group_by(id) |>
mutate(id_num = cur_group_id()) |>
ungroup()

max(df$id_num)

Show groups that exist more than once.
df <- df |>

group_by(id) |>
mutate(
dup_count = row_number(),
dup_sum = n()

) |>
ungroup() |>
arrange(id)

df |> filter(dup_sum > 1)
df |> get_dupes(name, surname)

Make yourself familiar with the function `get_dupes()` from `janitor` package.
df |> get_dupes()
df |> get_dupes(surname, name)
df |> get_dupes(id)

df_uni <- df |>
arrange() |>
distinct(id, .keep_all = TRUE)

df_uni_b <- df |>
arrange(desc(dup_count)) |>
distinct(id, .keep_all = TRUE)

anti_join(df, df_uni)
anti_join(df, df_uni_b)

unload packages
suppressMessages(pacman::p_unload(tidyverse, janitor, babynames, stringr))

156

9. Collection of exercises

Output of the R script

Find duplicates

set working directory
setwd("~/Dropbox/hsf/test/initial_script")

clear environment
rm(list = ls())

load packages
if (!require(pacman)) install.packages("pacman")
pacman::p_load(tidyverse, janitor, babynames, stringr)

load(url("https://github.com/hubchev/courses/raw/main/dta/df_names.RData"))

Remove all objects except df_2022 and df_2022_error
rm(list = setdiff(ls(), c("df_2022_error", "df_2022")))

Re-order the data so that surname, name, and age appears first.
Save the changed data in a tibble called `df`.
df <- df_2022 |>

relocate(surname, name, age)

Sort the data according to surname, name, and age.
df <- df |>

arrange(surname, name, age)

Inspect df_2022 and df_2022_error
df

A tibble: 1,018 x 8
surname name age sex cm time error error_desc
<chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <chr>

1 Adams Adonnis 30 M 192 2022 0 <NA>
2 Adams Adonnis 30 M 192 2022 1 duplicate
3 Adams Aila 79 F 157 2022 0 <NA>
4 Adams Avenelle 69 F 157 2022 0 <NA>
5 Adams Brysan 39 M 192 2022 0 <NA>
6 Adams Eona 84 F 157 2022 0 <NA>
7 Adams Eveline 42 F 157 2022 0 <NA>
8 Adams Faithe 17 F 172. 2022 0 <NA>
9 Adams Ineisha 47 F 157 2022 0 <NA>
10 Adams Kloeigh 31 F 157 2022 0 <NA>
i 1,008 more rows

dim(df)

[1] 1018 8

head(df)

A tibble: 6 x 8
surname name age sex cm time error error_desc
<chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <chr>

1 Adams Adonnis 30 M 192 2022 0 <NA>
2 Adams Adonnis 30 M 192 2022 1 duplicate
3 Adams Aila 79 F 157 2022 0 <NA>
4 Adams Avenelle 69 F 157 2022 0 <NA>
5 Adams Brysan 39 M 192 2022 0 <NA>
6 Adams Eona 84 F 157 2022 0 <NA>

tail(df)

A tibble: 6 x 8
surname name age sex cm time error error_desc
<chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <chr>

1 Young Leiliana 54 F 157 2022 0 <NA>
2 Young Shamar 23 M 192 2022 0 <NA>
3 Young Tajanay 1 F 81.5 2022 0 <NA>
4 huber Stephan 186 M 41 2022 1 age/cm false, not capitalized ~
5 huber Stephan NA <NA> NA 2022 1 wrong name
6 <NA> Zita 6 <NA> 110 2022 2 surname missing, sex unspecifi~

glimpse(df)

Rows: 1,018
Columns: 8
$ surname <chr> "Adams", "Adams", "Adams", "Adams", "Adams", "Adams", "Adam~
$ name <chr> "Adonnis", "Adonnis", "Aila", "Avenelle", "Brysan", "Eona",~
$ age <dbl> 30, 30, 79, 69, 39, 84, 42, 17, 47, 31, 65, 80, 6, 5, 5, 20~
$ sex <chr> "M", "M", "F", "F", "M", "F", "F", "F", "F", "F", "M", "F",~
$ cm <dbl> 192.00000, 192.00000, 157.00000, 157.00000, 192.00000, 157.~
$ time <dbl> 2022, 2022, 2022, 2022, 2022, 2022, 2022, 2022, 2022, 2022,~
$ error <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,~
$ error_desc <chr> NA, "duplicate", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

summary(df)

surname name age sex
Length:1018 Length:1018 Min. : 1.00 Length:1018
Class :character Class :character 1st Qu.: 21.00 Class :character
Mode :character Mode :character Median : 43.00 Mode :character

Mean : 45.75
3rd Qu.: 69.00
Max. :399.00
NA's :2

cm time error error_desc
Min. : 41.0 Min. :2022 Min. :0.00000 Length:1018
1st Qu.:157.0 1st Qu.:2022 1st Qu.:0.00000 Class :character
Median :157.0 Median :2022 Median :0.00000 Mode :character
Mean :163.2 Mean :2022 Mean :0.02456
3rd Qu.:192.0 3rd Qu.:2022 3rd Qu.:0.00000
Max. :295.0 Max. :2022 Max. :3.00000
NA's :4

df_2022_error

A tibble: 18 x 8
sex name surname age cm time error error_desc
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

1 M Savier Campbell 72 192 2022 1 duplicate
2 F Tina Adams 5 98.0 2022 1 duplicate
3 F Abery Allen 79 157 2022 1 duplicate
4 M Adonnis Adams 30 192 2022 1 duplicate
5 M Stephan Maier 41 186 2022 1 wrong surname
6 <NA> Stephan huber NA NA 2022 1 wrong name
7 M stephan Huber 186 41 2022 1 age/cm false, not capitalized~
8 M Stephan huber 186 41 2022 1 age/cm false, not capitalized~
9 M Stephan Huber 41 186 2022 1 duplicate
10 M Stephan Huber 41 NA 2022 1 duplicate, cm NA
11 F Rosa Huber 9 NA 2022 3 only age and sex given
12 <NA> Rosa Huber NA 130 2022 3 age missing, sex unspecified
13 <NA> Ignaz Huber 7 NA 2022 2 cm missing, sex unspecified
14 <NA> Zita <NA> 6 110 2022 2 surname missing, sex unspecif~
15 <NA> Alois Huber 3 295 2022 2 cm not possible, sex unspecif~
16 F Martina Huber 399 169 2022 2 age not possible
17 M Stephan Huber 41 186 2022 0 no error
18 M Stephan Huber 41 186 2022 1 duplicate

Make a variable that contains the year of birth. Name the variable `born`
and new dataframe `df`.
df <- df_2022 |>

mutate(born = time - age)

Make a new variable that identifies each person by surname, name,
and their birth born. Name the variable `id`.
df <- df |>

mutate(id = paste(surname, name, born, sep = "_"))

How many different groups do exist?
df <- df |>

group_by(id) |>
mutate(id_num = cur_group_id()) |>
ungroup()

max(df$id_num)

[1] 1011

Show groups that exist more than once.
df <- df |>

group_by(id) |>
mutate(
dup_count = row_number(),
dup_sum = n()

) |>
ungroup() |>
arrange(id)

df |> filter(dup_sum > 1)

A tibble: 12 x 13
sex name surname age cm time error error_desc born id id_num
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <int>

1 M Adonnis Adams 30 192 2022 0 <NA> 1992 Adam~ 1
2 M Adonnis Adams 30 192 2022 1 duplicate 1992 Adam~ 1
3 F Tina Adams 5 98.0 2022 1 duplicate 2017 Adam~ 13
4 F Tina Adams 5 98.0 2022 0 <NA> 2017 Adam~ 13
5 F Abery Allen 79 157 2022 0 <NA> 1943 Alle~ 15
6 F Abery Allen 79 157 2022 1 duplicate 1943 Alle~ 15
7 M Savier Campbell 72 192 2022 0 <NA> 1950 Camp~ 100
8 M Savier Campbell 72 192 2022 1 duplicate 1950 Camp~ 100
9 M Stephan Huber 41 186 2022 1 duplicate 1981 Hube~ 383
10 M Stephan Huber 41 186 2022 0 no error 1981 Hube~ 383
11 M Stephan Huber 41 186 2022 1 duplicate 1981 Hube~ 383
12 M Stephan Huber 41 NA 2022 1 duplicate,~ 1981 Hube~ 383
i 2 more variables: dup_count <int>, dup_sum <int>

df |> get_dupes(name, surname)

A tibble: 18 x 14
name surname dupe_count sex age cm time error error_desc born id
<chr> <chr> <int> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr>

1 Step~ Huber 4 M 41 186 2022 1 duplicate 1981 Hube~
2 Step~ Huber 4 M 41 186 2022 0 no error 1981 Hube~
3 Step~ Huber 4 M 41 186 2022 1 duplicate 1981 Hube~
4 Step~ Huber 4 M 41 NA 2022 1 duplicate~ 1981 Hube~
5 Abery Allen 2 F 79 157 2022 0 <NA> 1943 Alle~
6 Abery Allen 2 F 79 157 2022 1 duplicate 1943 Alle~
7 Adon~ Adams 2 M 30 192 2022 0 <NA> 1992 Adam~
8 Adon~ Adams 2 M 30 192 2022 1 duplicate 1992 Adam~
9 Merl~ Miller 2 F 12 153. 2022 0 <NA> 2010 Mill~
10 Merl~ Miller 2 F 2 99.9 2022 0 <NA> 2020 Mill~
11 Rosa Huber 2 F 9 NA 2022 3 only age ~ 2013 Hube~
12 Rosa Huber 2 <NA> NA 130 2022 3 age missi~ NA Hube~
13 Savi~ Campbe~ 2 M 72 192 2022 0 <NA> 1950 Camp~
14 Savi~ Campbe~ 2 M 72 192 2022 1 duplicate 1950 Camp~
15 Step~ huber 2 M 186 41 2022 1 age/cm fa~ 1836 hube~
16 Step~ huber 2 <NA> NA NA 2022 1 wrong name NA hube~
17 Tina Adams 2 F 5 98.0 2022 1 duplicate 2017 Adam~
18 Tina Adams 2 F 5 98.0 2022 0 <NA> 2017 Adam~
i 3 more variables: id_num <int>, dup_count <int>, dup_sum <int>

Make yourself familiar with the function `get_dupes()` from `janitor` package.
df |> get_dupes()

No variable names specified - using all columns.

No duplicate combinations found of: sex, name, surname, age, cm, time, error, error_desc, born, ... and 4 other variables

A tibble: 0 x 14
i 14 variables: sex <chr>, name <chr>, surname <chr>, age <dbl>, cm <dbl>,
time <dbl>, error <dbl>, error_desc <chr>, born <dbl>, id <chr>,
id_num <int>, dup_count <int>, dup_sum <int>, dupe_count <int>

df |> get_dupes(surname, name)

A tibble: 18 x 14
surname name dupe_count sex age cm time error error_desc born id
<chr> <chr> <int> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr>

1 Huber Step~ 4 M 41 186 2022 1 duplicate 1981 Hube~
2 Huber Step~ 4 M 41 186 2022 0 no error 1981 Hube~
3 Huber Step~ 4 M 41 186 2022 1 duplicate 1981 Hube~
4 Huber Step~ 4 M 41 NA 2022 1 duplicate~ 1981 Hube~
5 Adams Adon~ 2 M 30 192 2022 0 <NA> 1992 Adam~
6 Adams Adon~ 2 M 30 192 2022 1 duplicate 1992 Adam~
7 Adams Tina 2 F 5 98.0 2022 1 duplicate 2017 Adam~
8 Adams Tina 2 F 5 98.0 2022 0 <NA> 2017 Adam~
9 Allen Abery 2 F 79 157 2022 0 <NA> 1943 Alle~
10 Allen Abery 2 F 79 157 2022 1 duplicate 1943 Alle~
11 Campbe~ Savi~ 2 M 72 192 2022 0 <NA> 1950 Camp~
12 Campbe~ Savi~ 2 M 72 192 2022 1 duplicate 1950 Camp~
13 Huber Rosa 2 F 9 NA 2022 3 only age ~ 2013 Hube~
14 Huber Rosa 2 <NA> NA 130 2022 3 age missi~ NA Hube~
15 Miller Merl~ 2 F 12 153. 2022 0 <NA> 2010 Mill~
16 Miller Merl~ 2 F 2 99.9 2022 0 <NA> 2020 Mill~
17 huber Step~ 2 M 186 41 2022 1 age/cm fa~ 1836 hube~
18 huber Step~ 2 <NA> NA NA 2022 1 wrong name NA hube~
i 3 more variables: id_num <int>, dup_count <int>, dup_sum <int>

df |> get_dupes(id)

A tibble: 12 x 14
id dupe_count sex name surname age cm time error error_desc born
<chr> <int> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>

1 Hube~ 4 M Step~ Huber 41 186 2022 1 duplicate 1981
2 Hube~ 4 M Step~ Huber 41 186 2022 0 no error 1981
3 Hube~ 4 M Step~ Huber 41 186 2022 1 duplicate 1981
4 Hube~ 4 M Step~ Huber 41 NA 2022 1 duplicate~ 1981
5 Adam~ 2 M Adon~ Adams 30 192 2022 0 <NA> 1992
6 Adam~ 2 M Adon~ Adams 30 192 2022 1 duplicate 1992
7 Adam~ 2 F Tina Adams 5 98.0 2022 1 duplicate 2017
8 Adam~ 2 F Tina Adams 5 98.0 2022 0 <NA> 2017
9 Alle~ 2 F Abery Allen 79 157 2022 0 <NA> 1943
10 Alle~ 2 F Abery Allen 79 157 2022 1 duplicate 1943
11 Camp~ 2 M Savi~ Campbe~ 72 192 2022 0 <NA> 1950
12 Camp~ 2 M Savi~ Campbe~ 72 192 2022 1 duplicate 1950
i 3 more variables: id_num <int>, dup_count <int>, dup_sum <int>

df_uni <- df |>
arrange() |>
distinct(id, .keep_all = TRUE)

df_uni_b <- df |>
arrange(desc(dup_count)) |>
distinct(id, .keep_all = TRUE)

anti_join(df, df_uni)

Joining with `by = join_by(sex, name, surname, age, cm, time, error,
error_desc, born, id, id_num, dup_count, dup_sum)`

A tibble: 7 x 13
sex name surname age cm time error error_desc born id id_num
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <int>

1 M Adonnis Adams 30 192 2022 1 duplicate 1992 Adam~ 1
2 F Tina Adams 5 98.0 2022 0 <NA> 2017 Adam~ 13
3 F Abery Allen 79 157 2022 1 duplicate 1943 Alle~ 15
4 M Savier Campbell 72 192 2022 1 duplicate 1950 Camp~ 100
5 M Stephan Huber 41 186 2022 0 no error 1981 Hube~ 383
6 M Stephan Huber 41 186 2022 1 duplicate 1981 Hube~ 383
7 M Stephan Huber 41 NA 2022 1 duplicate, ~ 1981 Hube~ 383
i 2 more variables: dup_count <int>, dup_sum <int>

anti_join(df, df_uni_b)

Joining with `by = join_by(sex, name, surname, age, cm, time, error,
error_desc, born, id, id_num, dup_count, dup_sum)`

A tibble: 7 x 13
sex name surname age cm time error error_desc born id id_num
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <int>

1 M Adonnis Adams 30 192 2022 0 <NA> 1992 Adams_~ 1
2 F Tina Adams 5 98.0 2022 1 duplicate 2017 Adams_~ 13
3 F Abery Allen 79 157 2022 0 <NA> 1943 Allen_~ 15
4 M Savier Campbell 72 192 2022 0 <NA> 1950 Campbe~ 100
5 M Stephan Huber 41 186 2022 1 duplicate 1981 Huber_~ 383
6 M Stephan Huber 41 186 2022 0 no error 1981 Huber_~ 383
7 M Stephan Huber 41 186 2022 1 duplicate 1981 Huber_~ 383
i 2 more variables: dup_count <int>, dup_sum <int>

unload packages
suppressMessages(pacman::p_unload(tidyverse, janitor, babynames, stringr))

157

9. Collection of exercises

9.17. Zipf’s law

The data under investigation includes population information for various German cities, iden-
tified by the variable stadt, spanning the years 1970, 1987, and 2010. The variable status
provides details about the legislative status of the cities, and the variable state (Bundesland)
indicates the state in which each respective city is situated.

Preamble

(1) Set your working directory.

(2) Clear your global environment.

(3) Install and load the following packages: ‘tidyverse’, ‘haven’, and ‘janitor’.

Read in, inspect, and clean the data

(4) Download and load the data, respectively, with the following code:

df <- read_dta(
"https://github.com/hubchev/courses/raw/main/dta/city.dta",
encoding = "latin1"

) |>
as_tibble()

If that is not working, you can also download the data from ILIAS, save it in your working
directory and load it from there with:

load("city.RData")

(5) Show the first six and the last six observations of the dataset df.

(6) How many observations (rows) and variables (columns) are in the dataset?

(7) Show for all numerical variables the summary statistics including the mean, median, min-
imum, and the maximum.

(8) Rename the variable stadt to city.

(9) Remove the variables pop1970 and pop1987.

(10) Replicate the following table which contains some summary statistics.

A tibble: 17 x 3
state `mean(pop2011)` `sum(pop2011)`
<chr> <dbl> <dbl>

1 Baden-Wrttemberg 7580 7580
2 Baden-Württemberg 23680. 7837917
3 Bayern 23996. 7558677
4 Berlin 3292365 3292365
5 Brandenburg 18472. 1865632
6 Bremen 325432. 650863
7 Hamburg 1706696 1706696
8 Hessen 22996. 5036121
9 Mecklenburg-Vorpommern 27034. 811005

158

9. Collection of exercises

10 Niedersachsen 24107. 6219515
11 Nordrhein-Westfalen 47465. 18036727
12 Rheinland-Pfalz 25644. 1871995
13 Saarland NA NA
14 Sachsen 27788. 2973351
15 Sachsen-Anhalt 21212. 1993915
16 Schleswig-Holstein 24157. 1739269
17 Th_ringen 29192. 1167692

(11) The states “Baden-Wrttemberg” and “Th_ringen” are falsely pronounced. Correct the
names and regenerate the summary statistics table presented above. Your result should
look like this:

A tibble: 16 x 3
state `mean(pop2011)` `sum(pop2011)`
<chr> <dbl> <dbl>

1 Baden-Württemberg 23631. 7845497
2 Bayern 23996. 7558677
3 Berlin 3292365 3292365
4 Brandenburg 18472. 1865632
5 Bremen 325432. 650863
6 Hamburg 1706696 1706696
7 Hessen 22996. 5036121
8 Mecklenburg-Vorpommern 27034. 811005
9 Niedersachsen 24107. 6219515
10 Nordrhein-Westfalen 47465. 18036727
11 Rheinland-Pfalz 25644. 1871995
12 Saarland NA NA
13 Sachsen 27788. 2973351
14 Sachsen-Anhalt 21212. 1993915
15 Schleswig-Holstein 24157. 1739269
16 Thüringen 29192. 1167692

(12) To investigate the reason for observing only NAs for Saarland, examine all cities within
Saarland. Therefore, please display all observations for cities in Saarland in the Console,
as illustrated below.

A tibble: 47 x 5
city status state pop2011 rankX
<chr> <chr> <chr> <dbl> <dbl>

1 Perl Commune Saarland 7775 2003
2 Freisen Commune Saarland 8270 1894
3 Großrosseln Commune Saarland 8403 1868
4 Nonnweiler Commune Saarland 8844 1775
5 Nalbach Commune Saarland 9302 1678
6 Wallerfangen Commune Saarland 9542 1642
7 Kirkel Commune Saarland 10058 1541
8 Merchweiler Commune Saarland 10219 1515
9 Nohfelden Commune Saarland 10247 1511
10 Friedrichsthal City Saarland 10409 1489
11 Marpingen Commune Saarland 10590 1461

159

9. Collection of exercises

12 Mandelbachtal Commune Saarland 11107 1390
13 Kleinblittersdorf Commune Saarland 11396 1354
14 Überherrn Commune Saarland 11655 1317
15 Mettlach Commune Saarland 12180 1241
16 Tholey Commune Saarland 12385 1217
17 Saarwellingen Commune Saarland 13348 1104
18 Quierschied Commune Saarland 13506 1088
19 Spiesen-Elversberg Commune Saarland 13509 1086
20 Rehlingen-Siersburg Commune Saarland 14526 996
21 Riegelsberg Commune Saarland 14763 982
22 Ottweiler City Saarland 14934 969
23 Beckingen Commune Saarland 15355 931
24 Losheim am See Commune Saarland 15906 887
25 Schiffweiler Commune Saarland 15993 882
26 Wadern City Saarland 16181 874
27 Schmelz Commune Saarland 16435 857
28 Sulzbach/Saar City Saarland 16591 849
29 Illingen Commune Saarland 16978 827
30 Schwalbach Commune Saarland 17320 812
31 Eppelborn Commune Saarland 17726 793
32 Wadgassen Commune Saarland 17885 785
33 Bexbach City Saarland 18038 777
34 Heusweiler Commune Saarland 18201 762
35 Püttlingen City Saarland 19134 718
36 Lebach City Saarland 19484 701
37 Dillingen/Saar City Saarland 20253 654
38 Blieskastel City Saarland 21255 601
39 St. Wendel City Saarland 26220 460
40 Merzig City Saarland 29727 392
41 Saarlouis City Saarland 34479 323
42 St. Ingbert City Saarland 36645 299
43 Völklingen City Saarland 38809 279
44 Homburg City Saarland 41502 247
45 Neunkirchen City Saarland 46172 206
46 Saarbrücken City Saarland 175853 43
47 Perl Commune Saarland NA NA

(13) With reference to the table above, we have identified an entry for the city of Perl that
solely consists of NAs. This city is duplicated in the dataset, appearing at positions 1 and
47. The latter duplicate contains only NAs and can be safely removed without the loss
of valuable information. Please eliminate this duplification and regenerate the list of all
cities in the Saarland.

(14) Calculate the total population and average size of cities in Saarland.

(15) Check if any other city is recorded more than once in the dataset. To do so, reproduce
the table below.

A tibble: 23 x 5
Groups: city [11]

city status state pop2011 unique_count
<chr> <chr> <chr> <dbl> <int>

160

9. Collection of exercises

1 Bonn City with County Rights Nordrhein-Westfalen 305765 3
2 Bonn City with County Rights Nordrhein-Westfalen 305765 3
3 Bonn City with County Rights Nordrhein-Westfalen 305765 3
4 Brühl Commune Baden-Württemberg 13805 2
5 Brühl City Nordrhein-Westfalen 43568 2
6 Erbach City Baden-Württemberg 13024 2
7 Erbach City Hessen 13245 2
8 Fürth City with County Rights Bayern 115613 2
9 Fürth Commune Hessen 10481 2
10 Lichtenau City Nordrhein-Westfalen 10473 2
11 Lichtenau Commune Sachsen 7544 2
12 Münster Commune Hessen 14071 2
13 Münster City with County Rights Nordrhein-Westfalen 289576 2
14 Neunkirchen Commune Nordrhein-Westfalen 13930 2
15 Neunkirchen City Saarland 46172 2
16 Neuried Commune Baden-Württemberg 9383 2
17 Neuried Commune Bayern 8277 2
18 Petersberg Commune Hessen 14766 2
19 Petersberg Commune Sachsen-Anhalt 10097 2
20 Senden City Bayern 21560 2
21 Senden Commune Nordrhein-Westfalen 19976 2
22 Staufenberg City Hessen 8114 2
23 Staufenberg Commune Niedersachsen 7983 2

(16) The table indicates that the city of Bonn appears three times in the dataset, and all three
observations contain identical information. Thus, remove two of these observations to
ensure that Bonn is uniquely represented in the dataset. All other cities that occur more
than once in the data are situated in different states. That means, these are distinct cities
that coincidentally share the same name.

Data analysis (Zipf’s Law)

*Note: If you have failed to solve the data cleaning tasks above, you can download the
cleaned data from ILIAS, save it in your working directory and load it from there with:
load("city_clean.RData")

In the following, you aim to examine the validity of Zipf’s Law for Germany. Zipf’s Law postu-
lates how the size of cities is distributed. The “law” states that there is a special relationship
between the size of a city and the rank it occupies in a series sorted by city size. In the estimation
equation

log(𝑀𝑗) = 𝑐 − 𝑞 log(𝑅𝑗),
the law postulates a coefficient of (𝑞 = 1). 𝑐 is a constant; 𝑀𝑗 is the size of city 𝑗; 𝑅𝑗 is the
rank that city 𝑗 occupies in a series sorted by city size.

(17)

Create a variable named rank that includes a ranking of cities based on the population size in
the year 2011. Therefore, Berlin should have a rank of 1, Hamburg a rank of 2, Munich a rank
of 3, and so on.

Note: If you cannot solve this task, use the variable rankX as a substitute for the variable rank
that was not generated.

161

9. Collection of exercises

A tibble: 6 x 3
city pop2011 rank
<chr> <dbl> <int>

1 Berlin 3292365 1
2 Hamburg 1706696 2
3 München [Munich] 1348335 3
4 Köln [Cologne] 1005775 4
5 Frankfurt am Main 667925 5
6 Düsseldorf [Dusseldorf] 586291 6

(18) Calculate the Pearson Correlation Coefficient of the two variables pop2011 and rank. The
result should be:

[1] -0.2948903

(19) Create a scatter plot. On the x-axis, plot the variable rank, and on the y-axis, plot
pop2011. Add a regression line representing the observed relationship to the same scatter
plot.

0e+00

1e+06

2e+06

3e+06

0 500 1000 1500 2000
rank

po
p2

01
1

(20) Logarithmize the variables rank and pop2011. Title the new variables as lnrank and
lnpop2011, respectively. Here is a snapshot of the resulting variables:

A tibble: 6 x 5
city rank lnrank pop2011 lnpop2011
<chr> <int> <dbl> <dbl> <dbl>

1 Berlin 1 0 3292365 15.0
2 Hamburg 2 0.693 1706696 14.4
3 München [Munich] 3 1.10 1348335 14.1
4 Köln [Cologne] 4 1.39 1005775 13.8
5 Frankfurt am Main 5 1.61 667925 13.4
6 Düsseldorf [Dusseldorf] 6 1.79 586291 13.3

(21) Calculate the Pearson Correlation Coefficient of the two variables lnpop2011 and lnrank.
The result should be:

162

9. Collection of exercises

[1] -0.9990053

(22) Create a scatter plot. On the x-axis, plot the variable lnrank, and on the y-axis, plot
lnpop2011. Add a regression line representing the observed relationship to the same
scatter plot. Additionally, add a title and label the axes like is shown here:

10

12

14

0 2 4 6 8
lnrank (Logarithmized Rank)

ln
po

p2
01

1
(L

og
ar

ith
m

iz
ed

 P
op

ul
at

io
n

20
11

) Scatterplot with Regression Line

(23) Now, test the relationship postulated in Zipf’s Law. Regress the logarithmic city size in
the year 2011 on the logarithmic rank of a city in a series sorted by city size. Briefly
interpret the results, addressing the coefficient of determination. Show the regression
results. Here is one way to present the results of the regression (Note: The way how you
present your regression results do not matter):

Call:
lm(formula = lnpop2011 ~ lnrank, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.28015 -0.01879 0.01083 0.02005 0.25973

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.947859 0.005141 2908 <2e-16 ***
lnrank -0.780259 0.000766 -1019 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03454 on 2067 degrees of freedom
Multiple R-squared: 0.998, Adjusted R-squared: 0.998
F-statistic: 1.038e+06 on 1 and 2067 DF, p-value: < 2.2e-16

(24) Explain the following lines of code.

163

9. Collection of exercises

df <- df |>
mutate(prediction = predict(zipf, newdata = df)) |>
mutate(pred_pop = exp(prediction))

df |>
select(city, pop2011, pred_pop) |>
filter(city == "Regensburg")

A tibble: 1 x 3
city pop2011 pred_pop
<chr> <dbl> <dbl>

1 Regensburg 135403 134194.

Solution

The script uses the following functions: aes, arrange, as_tibble, c, case_when, cor,
desc, dim, exp, filter, geom_point, geom_smooth, ggplot, group_by, head, is.na, labs,
lm, log, mean, mutate, n, predict, print, read_dta, rename, row_number, save, select,
starts_with, sum, summarise, summary, tail, ungroup.

164

9. Collection of exercises

R script

load packages
if (!require(pacman)) install.packages("pacman")
suppressMessages(pacman::p_unload(all))
setwd("~/Dropbox/hsf/exams/24-01/Rmd")

rm(list = ls())

pacman::p_load(tidyverse, haven, janitor, jtools)

df <- read_dta("https://github.com/hubchev/courses/raw/main/dta/city.dta",
encoding = "latin1"

) |>
as_tibble()

head(df)
tail(df)

dim(df)

summary(df)

df <- df |>
rename(city = stadt)

df <- df |>
select(-pop1970, -pop1987)

df |>
group_by(state) |>
summarise(
mean(pop2011),
sum(pop2011)

)

df <- df |>
mutate(state = case_when(
state == "Baden-Wrttemberg" ~ "Baden-Württemberg",
state == "Th_ringen" ~ "Thüringen",
TRUE ~ state

))

df |>
group_by(state) |>
summarise(
mean(pop2011),
sum(pop2011)

)

df |>
filter(state == "Saarland") |>
print(n = 100)

df <- df |>
filter(!(city == "Perl" & is.na(pop2011)))

df |>
filter(state == "Saarland") |>
print(n = 100)

df |>
filter(state == "Saarland") |>
summarise(
mean(pop2011),
sum(pop2011)

)

df |>
group_by(city) |>
mutate(unique_count = n()) |>
arrange(city, state) |>
filter(unique_count > 1) |>
select(city, status, state, starts_with("pop"), unique_count) |>
print(n = 100)

df |>
group_by(city, state) |>
mutate(unique_count = n()) |>
arrange(city, state) |>
filter(unique_count > 1) |>
select(city, status, state, starts_with("pop"), unique_count) |>
print(n = 100)

df <- df |>
group_by(city, state) |>
mutate(n_row = row_number()) |>
filter(n_row == 1) |>
select(-n_row)

df |>
group_by(city, state) |>
mutate(unique_count = n()) |>
arrange(city, state) |>
filter(unique_count > 1) |>
select(city, status, state, starts_with("pop"), unique_count) |>
print(n = 100)

save(df, file = "city_clean.RData")

df <- df |>
ungroup() |>
arrange(desc(pop2011)) |>
mutate(rank = row_number())

df |>
select(-rankX, -status, -state) |>
head()

cor(df$pop2011, df$rank, method = c("pearson"))

ggplot(df, aes(x = rank, y = pop2011)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "blue")

df <- df |>
mutate(lnrank = log(rank)) |>
mutate(lnpop2011 = log(pop2011))

df |>
select(city, rank, lnrank, pop2011, lnpop2011) |>
head()

cor(df$lnpop2011, df$lnrank, method = c("pearson"))

ggplot(df, aes(x = lnrank, y = lnpop2011)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "blue") +
labs(
title = "Scatterplot with Regression Line",
x = "lnrank (Logarithmized Rank)",
y = "lnpop2011 (Logarithmized Population 2011)"

)

zipf <- lm(lnpop2011 ~ lnrank, data = df)
summary(zipf)

df <- df |>
mutate(prediction = predict(zipf, newdata = df)) |>
mutate(pred_pop = exp(prediction))

df |>
select(city, pop2011, pred_pop) |>
filter(city == "Regensburg")

suppressMessages(pacman::p_unload(tidyverse, haven, janitor, jtools))

rmarkdown::render("24-01_dsda.Rmd", "all")

knitr::purl(input = "24-01_dsda.Rmd", output = "24-01_dsda_solution.R",documentation = 0)

165

9. Collection of exercises

Output of the R script

load packages
if (!require(pacman)) install.packages("pacman")
suppressMessages(pacman::p_unload(all))
setwd("~/Dropbox/hsf/exams/24-01/Rmd")

rm(list = ls())

pacman::p_load(tidyverse, haven, janitor, jtools)

df <- read_dta("https://github.com/hubchev/courses/raw/main/dta/city.dta",
encoding = "latin1"

) |>
as_tibble()

head(df)

A tibble: 6 x 7
stadt status state pop1970 pop1987 pop2011 rankX
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Vohenstrauß City Bayern 7349 7059 7500 2069
2 Stockstadt a. Main Commune Bayern 6416 6615 7504 2068
3 Jesteburg Commune Niedersachsen 4141 5818 7510 2067
4 Bordesholm Commune Schleswig-Holstein 6011 6726 7513 2066
5 Herrieden City Bayern 5631 6250 7516 2065
6 Weida City Th_ringen NA NA 7522 2064

tail(df)

A tibble: 6 x 7
stadt status state pop1970 pop1987 pop2011 rankX
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Frankfurt am Main City with County Rights Hessen 699297 618266 667925 5
2 Köln [Cologne] City with County Rights Nordr~ 994705 928309 1005775 4
3 München [Munich] City with County Rights Bayern 1293599 1185421 1348335 3
4 Hamburg City with County Rights Hambu~ 1793823 1592770 1706696 2
5 Berlin City with County Rights Berlin 3210000 3260000 3292365 1
6 Perl Commune Saarl~ NA NA NA NA

dim(df)

[1] 2072 7

summary(df)

stadt status state pop1970
Length:2072 Length:2072 Length:2072 Min. : 1604
Class :character Class :character Class :character 1st Qu.: 8149
Mode :character Mode :character Mode :character Median : 11912

Mean : 30504
3rd Qu.: 21318
Max. :3210000
NA's :355

pop1987 pop2011 rankX
Min. : 4003 Min. : 7500 Min. : 1.0
1st Qu.: 9194 1st Qu.: 9998 1st Qu.: 516.5
Median : 13118 Median : 13937 Median :1034.0
Mean : 30854 Mean : 30772 Mean :1034.0
3rd Qu.: 23074 3rd Qu.: 24096 3rd Qu.:1551.5
Max. :3260000 Max. :3292365 Max. :2069.0
NA's :248 NA's :1 NA's :1

df <- df |>
rename(city = stadt)

df <- df |>
select(-pop1970, -pop1987)

df |>
group_by(state) |>
summarise(
mean(pop2011),
sum(pop2011)

)

A tibble: 17 x 3
state `mean(pop2011)` `sum(pop2011)`
<chr> <dbl> <dbl>

1 Baden-Wrttemberg 7580 7580
2 Baden-Württemberg 23680. 7837917
3 Bayern 23996. 7558677
4 Berlin 3292365 3292365
5 Brandenburg 18472. 1865632
6 Bremen 325432. 650863
7 Hamburg 1706696 1706696
8 Hessen 22996. 5036121
9 Mecklenburg-Vorpommern 27034. 811005
10 Niedersachsen 24107. 6219515
11 Nordrhein-Westfalen 47465. 18036727
12 Rheinland-Pfalz 25644. 1871995
13 Saarland NA NA
14 Sachsen 27788. 2973351
15 Sachsen-Anhalt 21212. 1993915
16 Schleswig-Holstein 24157. 1739269
17 Th_ringen 29192. 1167692

df <- df |>
mutate(state = case_when(
state == "Baden-Wrttemberg" ~ "Baden-Württemberg",
state == "Th_ringen" ~ "Thüringen",
TRUE ~ state

))

df |>
group_by(state) |>
summarise(
mean(pop2011),
sum(pop2011)

)

A tibble: 16 x 3
state `mean(pop2011)` `sum(pop2011)`
<chr> <dbl> <dbl>

1 Baden-Württemberg 23631. 7845497
2 Bayern 23996. 7558677
3 Berlin 3292365 3292365
4 Brandenburg 18472. 1865632
5 Bremen 325432. 650863
6 Hamburg 1706696 1706696
7 Hessen 22996. 5036121
8 Mecklenburg-Vorpommern 27034. 811005
9 Niedersachsen 24107. 6219515
10 Nordrhein-Westfalen 47465. 18036727
11 Rheinland-Pfalz 25644. 1871995
12 Saarland NA NA
13 Sachsen 27788. 2973351
14 Sachsen-Anhalt 21212. 1993915
15 Schleswig-Holstein 24157. 1739269
16 Thüringen 29192. 1167692

df |>
filter(state == "Saarland") |>
print(n = 100)

A tibble: 47 x 5
city status state pop2011 rankX
<chr> <chr> <chr> <dbl> <dbl>

1 Perl Commune Saarland 7775 2003
2 Freisen Commune Saarland 8270 1894
3 Großrosseln Commune Saarland 8403 1868
4 Nonnweiler Commune Saarland 8844 1775
5 Nalbach Commune Saarland 9302 1678
6 Wallerfangen Commune Saarland 9542 1642
7 Kirkel Commune Saarland 10058 1541
8 Merchweiler Commune Saarland 10219 1515
9 Nohfelden Commune Saarland 10247 1511
10 Friedrichsthal City Saarland 10409 1489
11 Marpingen Commune Saarland 10590 1461
12 Mandelbachtal Commune Saarland 11107 1390
13 Kleinblittersdorf Commune Saarland 11396 1354
14 Überherrn Commune Saarland 11655 1317
15 Mettlach Commune Saarland 12180 1241
16 Tholey Commune Saarland 12385 1217
17 Saarwellingen Commune Saarland 13348 1104
18 Quierschied Commune Saarland 13506 1088
19 Spiesen-Elversberg Commune Saarland 13509 1086
20 Rehlingen-Siersburg Commune Saarland 14526 996
21 Riegelsberg Commune Saarland 14763 982
22 Ottweiler City Saarland 14934 969
23 Beckingen Commune Saarland 15355 931
24 Losheim am See Commune Saarland 15906 887
25 Schiffweiler Commune Saarland 15993 882
26 Wadern City Saarland 16181 874
27 Schmelz Commune Saarland 16435 857
28 Sulzbach/Saar City Saarland 16591 849
29 Illingen Commune Saarland 16978 827
30 Schwalbach Commune Saarland 17320 812
31 Eppelborn Commune Saarland 17726 793
32 Wadgassen Commune Saarland 17885 785
33 Bexbach City Saarland 18038 777
34 Heusweiler Commune Saarland 18201 762
35 Püttlingen City Saarland 19134 718
36 Lebach City Saarland 19484 701
37 Dillingen/Saar City Saarland 20253 654
38 Blieskastel City Saarland 21255 601
39 St. Wendel City Saarland 26220 460
40 Merzig City Saarland 29727 392
41 Saarlouis City Saarland 34479 323
42 St. Ingbert City Saarland 36645 299
43 Völklingen City Saarland 38809 279
44 Homburg City Saarland 41502 247
45 Neunkirchen City Saarland 46172 206
46 Saarbrücken City Saarland 175853 43
47 Perl Commune Saarland NA NA

df <- df |>
filter(!(city == "Perl" & is.na(pop2011)))

df |>
filter(state == "Saarland") |>
print(n = 100)

A tibble: 46 x 5
city status state pop2011 rankX
<chr> <chr> <chr> <dbl> <dbl>

1 Perl Commune Saarland 7775 2003
2 Freisen Commune Saarland 8270 1894
3 Großrosseln Commune Saarland 8403 1868
4 Nonnweiler Commune Saarland 8844 1775
5 Nalbach Commune Saarland 9302 1678
6 Wallerfangen Commune Saarland 9542 1642
7 Kirkel Commune Saarland 10058 1541
8 Merchweiler Commune Saarland 10219 1515
9 Nohfelden Commune Saarland 10247 1511
10 Friedrichsthal City Saarland 10409 1489
11 Marpingen Commune Saarland 10590 1461
12 Mandelbachtal Commune Saarland 11107 1390
13 Kleinblittersdorf Commune Saarland 11396 1354
14 Überherrn Commune Saarland 11655 1317
15 Mettlach Commune Saarland 12180 1241
16 Tholey Commune Saarland 12385 1217
17 Saarwellingen Commune Saarland 13348 1104
18 Quierschied Commune Saarland 13506 1088
19 Spiesen-Elversberg Commune Saarland 13509 1086
20 Rehlingen-Siersburg Commune Saarland 14526 996
21 Riegelsberg Commune Saarland 14763 982
22 Ottweiler City Saarland 14934 969
23 Beckingen Commune Saarland 15355 931
24 Losheim am See Commune Saarland 15906 887
25 Schiffweiler Commune Saarland 15993 882
26 Wadern City Saarland 16181 874
27 Schmelz Commune Saarland 16435 857
28 Sulzbach/Saar City Saarland 16591 849
29 Illingen Commune Saarland 16978 827
30 Schwalbach Commune Saarland 17320 812
31 Eppelborn Commune Saarland 17726 793
32 Wadgassen Commune Saarland 17885 785
33 Bexbach City Saarland 18038 777
34 Heusweiler Commune Saarland 18201 762
35 Püttlingen City Saarland 19134 718
36 Lebach City Saarland 19484 701
37 Dillingen/Saar City Saarland 20253 654
38 Blieskastel City Saarland 21255 601
39 St. Wendel City Saarland 26220 460
40 Merzig City Saarland 29727 392
41 Saarlouis City Saarland 34479 323
42 St. Ingbert City Saarland 36645 299
43 Völklingen City Saarland 38809 279
44 Homburg City Saarland 41502 247
45 Neunkirchen City Saarland 46172 206
46 Saarbrücken City Saarland 175853 43

df |>
filter(state == "Saarland") |>
summarise(
mean(pop2011),
sum(pop2011)

)

A tibble: 1 x 2
`mean(pop2011)` `sum(pop2011)`

<dbl> <dbl>
1 20850. 959110

df |>
group_by(city) |>
mutate(unique_count = n()) |>
arrange(city, state) |>
filter(unique_count > 1) |>
select(city, status, state, starts_with("pop"), unique_count) |>
print(n = 100)

A tibble: 23 x 5
Groups: city [11]

city status state pop2011 unique_count
<chr> <chr> <chr> <dbl> <int>

1 Bonn City with County Rights Nordrhein-Westfalen 305765 3
2 Bonn City with County Rights Nordrhein-Westfalen 305765 3
3 Bonn City with County Rights Nordrhein-Westfalen 305765 3
4 Brühl Commune Baden-Württemberg 13805 2
5 Brühl City Nordrhein-Westfalen 43568 2
6 Erbach City Baden-Württemberg 13024 2
7 Erbach City Hessen 13245 2
8 Fürth City with County Rights Bayern 115613 2
9 Fürth Commune Hessen 10481 2
10 Lichtenau City Nordrhein-Westfalen 10473 2
11 Lichtenau Commune Sachsen 7544 2
12 Münster Commune Hessen 14071 2
13 Münster City with County Rights Nordrhein-Westfalen 289576 2
14 Neunkirchen Commune Nordrhein-Westfalen 13930 2
15 Neunkirchen City Saarland 46172 2
16 Neuried Commune Baden-Württemberg 9383 2
17 Neuried Commune Bayern 8277 2
18 Petersberg Commune Hessen 14766 2
19 Petersberg Commune Sachsen-Anhalt 10097 2
20 Senden City Bayern 21560 2
21 Senden Commune Nordrhein-Westfalen 19976 2
22 Staufenberg City Hessen 8114 2
23 Staufenberg Commune Niedersachsen 7983 2

df |>
group_by(city, state) |>
mutate(unique_count = n()) |>
arrange(city, state) |>
filter(unique_count > 1) |>
select(city, status, state, starts_with("pop"), unique_count) |>
print(n = 100)

A tibble: 3 x 5
Groups: city, state [1]

city status state pop2011 unique_count
<chr> <chr> <chr> <dbl> <int>

1 Bonn City with County Rights Nordrhein-Westfalen 305765 3
2 Bonn City with County Rights Nordrhein-Westfalen 305765 3
3 Bonn City with County Rights Nordrhein-Westfalen 305765 3

df <- df |>
group_by(city, state) |>
mutate(n_row = row_number()) |>
filter(n_row == 1) |>
select(-n_row)

df |>
group_by(city, state) |>
mutate(unique_count = n()) |>
arrange(city, state) |>
filter(unique_count > 1) |>
select(city, status, state, starts_with("pop"), unique_count) |>
print(n = 100)

A tibble: 0 x 5
Groups: city, state [0]
i 5 variables: city <chr>, status <chr>, state <chr>, pop2011 <dbl>,
unique_count <int>

save(df, file = "city_clean.RData")

df <- df |>
ungroup() |>
arrange(desc(pop2011)) |>
mutate(rank = row_number())

df |>
select(-rankX, -status, -state) |>
head()

A tibble: 6 x 3
city pop2011 rank
<chr> <dbl> <int>

1 Berlin 3292365 1
2 Hamburg 1706696 2
3 München [Munich] 1348335 3
4 Köln [Cologne] 1005775 4
5 Frankfurt am Main 667925 5
6 Düsseldorf [Dusseldorf] 586291 6

cor(df$pop2011, df$rank, method = c("pearson"))

[1] -0.2948903

ggplot(df, aes(x = rank, y = pop2011)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "blue")

`geom_smooth()` using formula = 'y ~ x'

0e+00

1e+06

2e+06

3e+06

0 500 1000 1500 2000
rank

po
p2

01
1

df <- df |>
mutate(lnrank = log(rank)) |>
mutate(lnpop2011 = log(pop2011))

df |>
select(city, rank, lnrank, pop2011, lnpop2011) |>
head()

A tibble: 6 x 5
city rank lnrank pop2011 lnpop2011
<chr> <int> <dbl> <dbl> <dbl>

1 Berlin 1 0 3292365 15.0
2 Hamburg 2 0.693 1706696 14.4
3 München [Munich] 3 1.10 1348335 14.1
4 Köln [Cologne] 4 1.39 1005775 13.8
5 Frankfurt am Main 5 1.61 667925 13.4
6 Düsseldorf [Dusseldorf] 6 1.79 586291 13.3

cor(df$lnpop2011, df$lnrank, method = c("pearson"))

[1] -0.9990053

ggplot(df, aes(x = lnrank, y = lnpop2011)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, color = "blue") +
labs(
title = "Scatterplot with Regression Line",
x = "lnrank (Logarithmized Rank)",
y = "lnpop2011 (Logarithmized Population 2011)"

)

`geom_smooth()` using formula = 'y ~ x'

10

12

14

0 2 4 6 8
lnrank (Logarithmized Rank)

ln
po

p2
01

1
(L

og
ar

ith
m

iz
ed

 P
op

ul
at

io
n

20
11

) Scatterplot with Regression Line

zipf <- lm(lnpop2011 ~ lnrank, data = df)
summary(zipf)

Call:
lm(formula = lnpop2011 ~ lnrank, data = df)

Residuals:
Min 1Q Median 3Q Max

-0.28015 -0.01879 0.01083 0.02005 0.25973

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.947859 0.005141 2908 <2e-16 ***
lnrank -0.780259 0.000766 -1019 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03454 on 2067 degrees of freedom
Multiple R-squared: 0.998, Adjusted R-squared: 0.998
F-statistic: 1.038e+06 on 1 and 2067 DF, p-value: < 2.2e-16

df <- df |>
mutate(prediction = predict(zipf, newdata = df)) |>
mutate(pred_pop = exp(prediction))

df |>
select(city, pop2011, pred_pop) |>
filter(city == "Regensburg")

A tibble: 1 x 3
city pop2011 pred_pop
<chr> <dbl> <dbl>

1 Regensburg 135403 134194.

suppressMessages(pacman::p_unload(tidyverse, haven, janitor, jtools))

rmarkdown::render("24-01_dsda.Rmd", "all")

knitr::purl(input = "24-01_dsda.Rmd", output = "24-01_dsda_solution.R",documentation = 0)

166

References

John M. Chambers. Extending R. CRC Press, 2017.

Thomas H Davenport and DJ Patil. Data scientist: The sexiest job of the 21st century. Harvard
Business Review, 90(5):70–76, 2012.

Wickham Hadley. Tidy data. Journal of Statistical Software, 59(10):1–23, 2014.

Kieran Healy. Data Visualization: A Practical Introduction. Princeton University Press, 2018.
URL https://socviz.co/.

Ali Hortaçsu and Chad Syverson. The ongoing evolution of US retail: A format tug-of-war.
Journal of Economic Perspectives, 29(4):89–112, 2015.

Rafael A. Irizarry. Introduction to Data Science: Data Analysis and Prediction Algorithms With
R. CRC Press, 2022. URL https://rafalab.github.io/dsbook/.

Chester Ismay and Albert Y. Kim. Statistical inference via data science: A ModernDive into
R and the tidyverse. CRC Press, 2022. URL https://moderndive.com/.

Robert Kabacoff. Modern Data Visualization with R. Chapman and Hall/CRC, 2024. URL
https://rkabacoff.github.io/datavis/.

John D Kelleher and Brendan Tierney. Data Science. MIT Press, 2018.

Oliver Kirchkamp. Using graphs and visualising data. Technical report, 2018. https://www.ki
rchkamp.de/oekonometrie/pdf/gra-p.pdf (retrieved on 2022/05/20).

John Muschelli and Andrew Jaffe. Introduction to R for public health researchers. Technical
report, GitHub, 2022. URL https://github.com/muschellij2/intro_to_r.

Danielle Navarro. Learning Statistics With R. Version 0.6 edition, 2020. URL https://learning
statisticswithr.com.

Hansjörg Neth. ds4psy: Data Science for Psychologists. Social Psychology and Decision
Sciences, University of Konstanz, Konstanz, Germany, 2023. URL https://CRAN.R-
project.org/package=ds4psy. R package (version 0.9.0, October 20, 2022); Textbook at
<https://bookdown.org/hneth/ds4psy/>.

Perry Stephenson. Data science practice. Accessed January 30, 2023, 2023. URL https:
//datasciencepractice.study/.

Måns Thulin. Modern Statistics With R: From Wrangling and Exploring Data to Inference and
Predictive Modelling. Eos Chasma Press, 2021. URL https://www.modernstatisticswithr.co
m/.

Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 2 edition,
2022.

167

https://socviz.co/
https://rafalab.github.io/dsbook/
https://moderndive.com/
https://rkabacoff.github.io/datavis/
https://www.kirchkamp.de/oekonometrie/pdf/gra-p.pdf
https://www.kirchkamp.de/oekonometrie/pdf/gra-p.pdf
https://github.com/muschellij2/intro_to_r
https://learningstatisticswithr.com
https://learningstatisticswithr.com
https://CRAN.R-project.org/package=ds4psy
https://CRAN.R-project.org/package=ds4psy
https://datasciencepractice.study/
https://datasciencepractice.study/
https://www.modernstatisticswithr.com/
https://www.modernstatisticswithr.com/

References

William N. Venables, David M. Smith, and R Core Team. An Introduction to R: Notes on
R: A Programming Environment for Data Analysis and Graphics. Version 4.3.2 (2023-10-31)
edition, 2022. URL http://cran.r-project.org/doc/manuals/R-intro.pdf. http://cran.r-
project.org/doc/manuals/R-intro.pdf (retrieved on 2022/04/06).

Hadley Wickham. The tidyverse style guide, 2024. URL https://style.tidyverse.org/.

Hadley Wickham and Garrett Grolemund. R for data science (2e), 2023. URL https://r4ds.h
adley.nz/.

Jeffrey M. Wooldridge. Introductory Econometrics: A Modern Approach. South-Western, 2nd
edition, 2002.

168

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
https://style.tidyverse.org/
https://r4ds.hadley.nz/
https://r4ds.hadley.nz/

A. Navigating the file system

It is essential to know how R interacts with the file system on your computer. Modern operating
systems are incredibly user-friendly and try to hide boring and annoying stuff from the customer.
In the following, I will try to give a brief introduction on how to navigate around a computer
using a DOS or UNIX shell. If you familiar with that, you can skip this part of the notes.

A.1. The file system

In this section, I describe the basic idea behind file locations and file paths. Regardless of
whether you are using Windows, macOS, or Linux, every file on the computer is assigned a
human-readable address, and every address has the same basic structure: it describes a path
that starts from a root location, through a series of folders (or directories), and finally ends up
at the file.

On a Windows computer, the root is the storage device on which the file is stored, and for many
home computers, the name of the storage device that stores all your files is C:. After that comes
the folders, and on Windows, the folder names are separated by a backslash symbol \. So, the
complete path to this book on my Windows computer might be something like this:

C:\Users\huber\Rbook\rcourse-book.pdf

On Linux, Unix, and macOS systems, the addresses look a little different, but they are more
or less identical in spirit. Instead of using the backslash, folders are separated using a forward
slash, and unlike Windows, they do not treat the storage device as being the root of the file
system. So, the path on a Mac might be something like this:

/Users/huber/Rbook/rcourse-book.pdf

That is what we mean by the path to a file. The next concept to grasp is the idea of a working
directory and how to change it. For those of you who have used command-line interfaces
previously, this should be obvious already. But if not, here is what I mean. The working
directory is just whatever folder I am currently looking at. Suppose that I am currently looking
for files in Explorer (if you are using Windows) or using Finder (on a Mac). The folder I
currently have open is my user directory (i.e., C:\Users\huber or /Users/huber). That is my
current working directory.

A.2. Working directory

The next concept to grasp is the idea of a working directory and how to change it. For those of
you who have used command line interfaces previously, this should be obvious already. But if
not, here’s what I mean. The working directory is just “whatever folder I’m currently looking
at”. Suppose that I’m currently looking for files in Explorer (if you’re using Windows) or using

169

A. Navigating the file system

Finder (on a Mac). The folder I currently have open is my user directory (i.e., C:\Users\huber
or /Users/huber). That’s my current working directory.

The fact that we can imagine that the program is “in” a particular directory means that we
can talk about moving from our current location to a new one. What that means is that we
might want to specify a new location in relation to our current location. To do so, we need to
introduce two new conventions. Regardless of what operating system you’re using, we use . to
refer to the current working directory, and .. to refer to the directory above it. This allows us
to specify a path to a new location in relation to our current location, as the following examples
illustrate. Let’s assume that I’m using my Windows computer, and my working directory is
C:\Users\huber\Rbook. The table below shows several addresses in relation to my current
one:

Absolute path Relative path
C:\Users\huber ..
C:\Users ..\..
C:\Users\huber\Rbook\source .\source
C:\Users\huber\nerdstuff ..\nerdstuff

It is quite common on computers that have multiple users to define ~ to be the user’s home
directory. The home directory on a Mac for the ‘huber'' user is/Users/huber/. And
so, not surprisingly, it is possible to define other directories in terms of
their relationship to the home directory. For example, an alternative way to
describe the location of thercourse-book.pdf‘ file on a Mac would be

~\Rbook\rcourse-book.pdf

You can find out your home directory with the path.expand() function:

path.expand("~")

[1] "/home/sthu"

Thus, on my machine ~ is an abbreviation for the path /home/sthu.

getwd()

[1] "/home/sthu/Dropbox/hsf/courses/dsr"

A.3. Navigating the file system using the R console

When you want to load or save a file in R it’s important to know what the working directory
is. You can find out by using the getwd() command. For the moment, let’s assume that I’m
using Mac OS or Linux, since things are different on Windows, see section Section A.5. Let’s
check the current active working directory:

170

A. Navigating the file system

getwd()

[1] "/home/sthu/Dropbox/hsf/courses/dsr"

The function setwd() allows to change the working directory:

setwd("/Users/huber/Rbook/data")
setwd("./Rbook/data")

The function list.files() lists all the files in that directory:

list.files()

A.4. R Studio projects

Setting the working directory repeatedly can be a cumbersome task. Fortunately, R Studio
projects can automate this process for you. When you open an R Studio project, the working
directory is automatically set to the project directory.

Creating a new project in R Studio is simple. Just click on File > New Project…. This will
create a directory on your computer with a *.Rproj_ file that can be used to open the saved
project at a later date. The newly created directory contains your R code, data files, and other
project-related files. By working within projects, all of your files and data are organized in one
place, making it easier to share your work with others, reproduce your analyses, and keep track
of changes over time.

A.5. Why do the Windows paths use the back-slash?

Let’s suppose I’m using a computer with Windows. As before, I can find out what my current
working directory is like this:

getwd()
[1] "C:/Users/huber/

R is displaying a Windows path using the wrong type of slash, the back-slash. The answer has
to do with the fact that R treats the \ character as special. If you’re deeply wedded to the idea of
specifying a path using the Windows style slashes, then what you need to use two back-slashes
\\ whenever you mean \. In other words, if you want to specify the working directory on a
Windows computer, you need to use one of the following commands:

setwd("C:/Users/huber")
setwd("C:\\Users\\huber")

171

B. Operators

B.1. Assignment:

• <- (assignment operator)

B.2. Arithmetic:

• + (addition)
• - (subtraction)
• * (multiplication)
• / (division)
• ^ or ** (exponentiation)
• %% (modulo, remainder)
• %/% (integer division)

B.3. Relational:

• < (less than)
• > (greater than)
• <= (less than or equal to)
• >= (greater than or equal to)
• == (equal to)
• != or <> (not equal to)

B.4. Logical:

• & (element-wise AND)
• | (element-wise OR)
• ! (logical NOT)
• && (scalar AND)
• || (scalar OR)

B.5. Others:

• %*% (matrix multiplication)
• %in% (checks if an element is in a vector)
• %>% or |> (pipe operator from the magrittr package)
• []: Extract content from vectors, lists, or data frames.
• [[]] and $: Extract a single item from an object.

172

C. Popular functions

C.1. Help

• ?: Search R documentation for a specific term.
• ?? Search R help files for a word or phrase.
• RSiteSearch: Search search.r-project.org
• help.start: Access to html manuals and documentations implemented in R
• browseVignettes: view a list of all vignettes associated with your installed packages
• vignette: View a specified package vignette, that is, supporting material such as intro-

ductions.

C.2. Package management

• install.packages: Installs packages from CRAN.
• pacman::p_load: Installs and loads specified R packages.
• library: (Install and) loads specified R packages.

C.3. General

• setwd: Sets the working directory to the specified path.
• rm: Removes objects (variables) from the workspace.
• sessionInfo: Information about the R environment.
• source: Executes R code from a file.

C.4. Tools

• else: Execute a block of code if the preceding condition is false.
• else if: Specify a new condition to test if the first condition is false.
• if: Execute a block of code if a specified condition is true.
• ifelse: Check a condition for every element of a vector.

C.5. Data import

• c: Combine values into a vector or list.
• read.csv: Reads a CSV file into a data frame.
• read_dta: Read Stata dataset.
• load: Loads an RData file.

173

C. Popular functions

C.6. Inspect data

• dim: Returns the dimensions (number of rows and columns) of a data frame.
• glimpse: Provide a concise summary.
• head: Returns the first elements.
• print: Prints the specified object.
• names: Returns the variable names in a data frame.
• n() or nrow(): Counts the number of observations in a data frame or group of observa-

tions.
• ncol: Returns the number of columns in a data frame.
• summary: Summary statistics.
• table: Create a table of counts or cross-tabulation.
• tail: Returns the last n elements.
• unique: Extracts unique elements from a vector.
• view: Opens a viewer for data frames.

C.7. Graphics

• abline: Adds lines to a plot.
• aes: Aesthetic mapping in ggplot.
• facet_wrap: Creates a grid of facetted plots.
• geom_hline: Adds horizontal lines to a ggplot.
• geom_line: Adds lines to a ggplot.
• geom_point: Adds points to a ggplot.
• geom_smooth: Adds a smoothed line to a ggplot.
• geom_text: Adds text to a ggplot.
• geom_vline: Adds vertical lines to a ggplot.
• ggsave: Saves a ggplot to a file.
• labs: Adds or modifies plot labels.
• plot: Creates a scatter plot.
• scale_y_reverse: Reverses the y-axis in a ggplot.
• stat_smooth: Adds a smoothed line to a ggplot.
• theme_classic: Applies a classic theme to a ggplot.
• theme_minimal: Applies a minimal theme to a ggplot.

C.8. Data management

• arrange: Reorder the rows of a data frame.
• clean_names: Cleans names of an object (usually a data.frame).
• complete: Completes a data frame with all combinations of specified columns.
• data.frame: Creates a data frame.
• distinct: Removes duplicate rows from a data frame.
• identical: Check if two objects are identical.
• is(na): Identify and flag a missing or undefined value (NA).
• is_tibble: Check if an object is a tibble.
• rm: Removes objects (variables) from the workspace.
• relocate: Reorders columns in a dataframe.
• round: Rounds a numeric vector to the nearest integer.

174

C. Popular functions

• rownames: Get or set the row names of a matrix-like object.
• tibble: Creates a tibble, a modern and tidy data frame.

C.9. dplyr functions

• arrange: Reorder the rows of a data frame.
• complete: Completes a data frame with all combinations of specified columns.
• ends_with: matches to a specified suffix
• filter: Pick observations by their values.
• first: Returns the first element.
• group_by: Group data by one or more variables.
• last: Returns the last element.
• mutate: Add new variables or modify existing variables in a data frame.
• nth: Returns the nth element.
• n_distinct: Returns the number of distinct elements.
• rename: Rename variables in a data frame.
• rename_all: Renames all variables in a data frame.
• row_number: Adds a column with row numbers.
• rowwise: Perform operations row by row.
• select: Pick variables by their names.
• select_all: Selects all columns in a data frame.
• slice_head: Selects the top N rows from each group.
• starts_with: Select variables whose names start with a certain string.
• summarise: Reduce data to a single summary value.

C.10. Data analysis

• aggregate: Apply a function to the data by levels of one or more factors.
• anti_join: Return rows from the first data frame that do not have a match in the second

data frame.
• cor: Computes correlation coefficients.
• cov: Computes covariance.
• diff: Calculates differences between consecutive elements.
• get_dupes: Identify duplicate rows in a data frame (from the janitor package).
• paste0: Concatenate vectors after converting to character.
• predict: Predict method for model fits.
• prop.table: Create a table of proportions.

C.11. Statistical functions

• cor(): Computes correlation coefficients.
• cov(): Computes the covariance.
• exp(): Exponential function.
• IQR(): Computes the interquartile range.
• kurtosis(): Computes the kurtosis.
• log(): Natural logarithm.
• mad(): Computes the mean absolute deviation.

175

C. Popular functions

• max(): Returns the maximum value.
• mean(): Calculates the mean.
• median(): Computes the median.
• min(): Returns the minimum value.
• quantile(): Computes sample quantiles.
• sd(): Calculates the standard deviation.
• skewness(): Calculates the skewness.
• var(): Calculates the variance.

176

D. Helpful shortcuts

Table D.1.: Different OS, different keys
Key in Windows/Linux Key in Mac

CTRL Command Key
Alt Option Key

Table D.2.: Helpful shortcuts
Action Shortcut Keys Description
Run code Ctrl + Enter Runs the current line and jumps to the next one, or

runs the selected part without jumping further.
Alt + Enter Allows running code without moving the cursor to

the next line if you want to run one line of code
multiple times without selecting it.

Ctrl + Alt + R Runs the entire script.
Ctrl + Alt + B/E Run the script from the Beginning to the current

line and from the current line to the End.
Write code Alt + (-) Inserts the assignment operator (<-) with spaces

surrounding it.
Ctrl + Shift + M Inserts the magrittr/pipe operator (%>%) with

spaces surrounding it.
Ctrl + Shift + C Comments out code by putting a # in front of each

line of marked code of a script.
Ctrl + Shift + R Creates a foldable comment section in your code.

Navigating in
RStudio

Ctrl + 1 Move focus to editor.

Ctrl + 2 Move focus to console.
Ctrl+Tab and
Ctrl+Shift+Tab

to switch between tabs.

Ctrl + Shift + N Open a new R script.
Ctrl + w Close a tab.

177

	Getting started with…
	…R
	Why R?
	How to learn R
	Learning resources
	What is a function in R?
	What are objects in R?
	What are R and RStudio?
	How to write and run code in R and RStudio
	How to install R, RStudio, and R packages
	What are R packages?
	Package installation
	Package loading
	Simplified package management with p_load

	Base R and the tidyverse universe

	…writing code
	Bake a cake
	Elegant code
	Bake a cheese cake
	Comment what you do
	Bake 10 cakes
	Writing real code

	…writing R scripts
	The limitations of no-code applications
	R Scripts: Why they are useful
	Create, write, and run R scripts
	Create
	Write
	Run

	What to do at the header of each script

	Basics of coding
	Interactive introduction with swirl
	Set up swirl
	swirl-it: huber-intro-1
	swirl-it: huber-intro-2
	swirl-it: Data analytical basics
	swirl-it: The tidyverse package
	Other swirl modules

	Kickstart
	Analysing the association of weight and the price of cars
	Accessing World Bank's World Development Indicators

	Pitfalls
	No clue about the ``working directory''
	No consistent directory structure
	Working manually outside R
	No active R Packages management
	Confusion between console and script
	Misunderstanding data types and formats
	Lack of knowledge about data identification
	Losing track of data due to excessive overwriting
	No documentation
	Ignoring error messages and warnings
	No attempt to identify the problem and troubleshoot
	Unstylish code

	Do stuff
	Manage data
	Import and generate data
	Assigning data to an object using the assignment operator <-
	Vectors and matrices
	Open RData files
	Open datasets of packages
	Import data using public APIs
	Import various file formats
	Examples

	Data
	Data frames and tibbles
	Tidy data
	Data types

	Operators
	Algebraic operators
	The pipe operator: |>
	The %in% operator
	Extract operators
	Logical operators

	Data manipulation
	dplyr: A human readable grammar of data manipulation
	If statements
	Examining and cleaning data with the janitor package
	tabyl() - a better version of table()

	User-defined functions and conflicts
	Example: How to explore a dataset

	Visualize data
	Collection of exercises
	Import data with c()
	Filter and select observations
	Base R,%in% operator, and the pipe |>
	Generate and drop variables
	Subsetting
	Consumer prices over time
	Load the Stata dataset ``auto'' using R
	DatasauRus
	Convergence
	Unemployment and GDP in Germany and France
	Import data and write a report
	Explain the weight of students
	Calories and weight
	Bundesliga
	Okun's Law
	Names and duplicates
	Zipf's law

	References
	Appendices
	Navigating the file system
	The file system
	Working directory
	Navigating the file system using the R console
	R Studio projects
	Why do the Windows paths use the back-slash?

	Operators
	Assignment:
	Arithmetic:
	Relational:
	Logical:
	Others:

	Popular functions
	Help
	Package management
	General
	Tools
	Data import
	Inspect data
	Graphics
	Data management
	dplyr functions
	Data analysis
	Statistical functions

	Helpful shortcuts

