International Economics

Lecture Notes

© Prof. Dr. Stephan Huber

June 18, 2024

Table of contents

1.	Mon	netary international economics	5
	1.1.	Currencies	5
		1.1.1. Exchange rates	6
		1.1.2. Relative prices	7
		1.1.3. Exchange rates and relative prices	7
		1.1.4. Trump and relative prices	8
		1.1.5. The FOREX	8
		1.1.6. Purchasing power parity assumption	11
	1.2.	International investments	13
		1.2.1. Foreign exchange reserves	13
		1.2.2. Three components of the rate of return	14
		1.2.3. Rate of return of an investment abroad	15
		1.2.4. The interest parity condition	16
		1.2.5. The theory in real markets: Unpegging the Swiss Franc	17
		1.2.6. The Fisher effect	18
	1.3.	Balance of payments	19
		1.3.1. Introduction	20
		1.3.2. Two types of international investment	20
		1.3.3. The payments must be balanced!	21
		1.3.4. A normative discussion of imbalances in the capital and current account .	22
		1.3.5. A formal representation	22
		1.3.6. Case study: U.S. trade deficit	24
2.	Inte	rnational trade	26
	2.1.	Trade can make everyone better off	26
	2.2.	Reasons for Trade	27
	2.3.	Exchange economy	28
		2.3.1. A simple barter model	28
		2.3.2. Terms of trade	31
		2.3.3. Endowments in an Exchange Economy	32
	2.4.	More trade is not necessarily good (immiserizing growth)	36
	2.5.	The theory of comparative advantage (Ricardian Model)	36
		2.5.1. Defining absolute and comparative advantages	38
		2.5.2. Autarky: An example of two different persons	39
		2.5.3. The Ricardian model	45
		2.5.4. Distribution of welfare gains	45
	2.6.	Trade because of different endowments (Heckscher-Ohlin model)	51
		2.6.1. Nobel prize winning theory	52
		2.6.2. The Heckscher-Ohlin (factor proportions) model	54
		2.6.3. Intuition	55
	2.7.	The specific factor model	58
2	Tra		63
э.	া rac ৭ 1	Stylized facts on trade openness	65
	0.1.		00

Table of contents

3.2.	World Trade Organization	65					
	3.2.1. Non-discrimination:	68					
	3.2.2. Transparency	69					
	3.2.3. More open and predictable trade	69					
3.3. Trade anecdotes \ldots							
	3.3.1. The Dispute Settlement Body	69					
	3.3.2. The Regional Comprehensive Economic Partnership (RCEP)	73					
	3.3.3. Trade dispute between the USA and the European Union	74					
	3.3.4. Boeing vs. Airbus	75					
	3.3.5. Trump vs. the European Union (a.k.a. Jean-Claude Juncker)	75					
	3.3.6. Trump and the WTO	76					
	3.3.7. Trump and his trade war with China	76					
3.4.	Political arguments for trade restrictions	79					
	3.4.1. The desire to reduce domestic unemployment	80					
	3.4.2. The key enabling technology argument	80					
	3.4.3. The need to counteract dumping in international trade	80					
	3.4.4. The government revenue argument	80					
	3.4.5. The national defense argument	80					
	3.4.6. The wish to decrease the national balance of payments deficit	81					
3.5.	Gains from trade	82					
3.6.	Tariffs in small open economies	82					
3.7.	Quotas in small open economies	83					
3.8.	Tariffs in large open economies	85					
3.9.	Other nontariff trade barriers	86					
Referen	ices	90					
A nn an	diana	02					
Appen	uices	92					
A. Solu	tions to exercises	92					
B. Mic	roeconomic preliminaries	102					
B.1.	Production functions	102					
B.2.	Production possibility frontier curve	103					
B.3.	Indifference curves and isoquants	106					
B.4.	Budget constraint	108					
C. Mat	hematical preliminaries	109					
D. Past	texams	110					

List of figures

1.2.	Prof. Dr. Stephan Huber	$\frac{1}{3}$
1.1.	Trump doubles metal tariffs on Turkey by 20%	5
1.2.	One Wine per Euro	7
1.3.	Two wine per Euro	7
1.4.	Who wins in the end?	8
1.5.	Example of a foreign exchange market	9
1.6.	Players on the foreign exchange market	9
1.7.	Market share of leading foreign exchange currencies in 2019	0
1.8.	The Price of the British Pound $(\mathbf{C}/\mathbf{\pounds})$.3
1.9.	The impact of unpegging the Franc on capital markets	8
1.10	. Short-term interest rates across Germany and Switzerland over time 1	9
1.11	. U.S. Balance of Payments	21
1.12	. Trump worries about the U.S. trade deficit	24
1.13	. The trade deficit of the United States over time	25
1.14	. Marcel Fratzscher and Clemens Fuest about Germany's trade surplus	25
	Ŭ L	
2.1.	Mankiw and his textbook	27
2.2.	Stylized example of weißwürst and pretzels	29
2.3.	The deal of Anton and Barbara	60
2.4.	Indifference curves of Anton and Barbara 3	60
2.5.	Optimal consumption point	52
2.6.	Optimizing consumption through trade	33
2.7.	Optimizing consumption by adjusting production and trade	34
2.8.	Optimizing consumption by adjusting production and trade	35
2.9.	Immiserizing growth	37
2.10	This painting shows Ricardo, aged 49 in 1821	37
2.11	. The production possibility frontier in autarky	39
2.12	. World PFF, A specializes in x	10
2.13	. World PFF, A specializes y	1
2.14	. World PFF in autarky when A specialize in producing good y	12
2.15	Bilateral trade with one winner	4
2.16	. World's relative supply	46
2.17	World's relative supply and demand	17
2.18	Production possibilities of bike and tires in A and B	50
2 19	HO Model and factor prices	6
2.20	Not everybody wins with free trade	58
2.21	PPF with two factors and positive but declining marginal products	50
2.22	Equilibrium with two sectors	31
2.22	Equilibrium when one price changes	52
2.20	. Equinistration which one price changes	· 4
3.1.	Biden and "BUY AMERICAN"	53
3.2.	Global sum of exports	55

 3.3. Export plus imports as a share of GDP 3.4. Globalization is not a new phenomenon 3.5. Transportation and communication costs 3.6. Number of Preferential Trade Agreements 	66 66 67 67
 3.7. Number of Regional Trade Agreements	68 68 70
3.10. Duration of Each Stage of Proceedings	71 71
3.12. Map of trade disputes of the European Union 3.13. Map of trade disputes of the United States of America 3.13. Map of trade disputes of the United States of America 3.14. Boris Johnson	72 72 73
3.15. The Regional Comprehensive Economic Partnership (RCEP)	73 74 75
3.17. Juncker and Trump made a deal 3.18. Balance of trade of the U.S. over time 3.19. United States: Balance of trade	75 77 77
3.20. Balance of trade of China, Russia, and Germany over time 3.24. The infant industry argument 3.25. Two countries in autority	78 81 82
3.25. Two countries in autarky 3.26. Two countries that trade with each other 3.27. Tariff in a small open economy	82 83 84
3.28. Tariff in a small open economy	84 85 86
3.31. Exercise: Tariff	88 88
A.1. Optimal consumption point after price increase	96 97 99 .01
B.1. The production possibility frontier curve1B.2. Production and different consumption points1B.3. Extreme production possibility frontier curve1B.4. Shrinking production possibilities in good A1B.5. Indifference curve1	.03 .04 .05 .06
B.6. Indifference curve 1 B.7. Perfect complements or substitutes 1 B.8. Optimal consumption choice 1	.07 .07 .08

List of tables

1.1.	Daily turnover of global foreign exchange market from 2001 to 2022 (in billion	
	U.S. dollars)	9
1.2.	The price of a Big Mac across countries	11
1.3.	Table of price variations across countries	12
1.4.	Table of prices and currencies across countries post-arbitrage	12
2.5.	: Consumption and trade when all gains from cooperation goes to A $\ldots \ldots \ldots$	43
2.6.	: Consumption and trade when all gains from cooperation goes to B \ldots .	43
2.15.	Endowment differences across countries in 2010	53

Preface

About the notes

A PDF version of these notes is available here.

Please note that while the PDF contains the same content, it has not been optimized for PDF format. Therefore, some parts may not appear as intended.

- These notes aims to support my lecture at the HS Fresenius but are incomplete and no substitute for taking actively part in class.
- I appreciate you reading it, and I appreciate any comments.
- This is work in progress so please check for updates regularly.
- For making an appointment, you can use the online tool that you find on my private homepage: https://hubchev.github.io/

About the author

Figure 1.: Prof. Dr. Stephan Huber

I am a Professor of International Economics and Data Science at HS Fresenius, holding a Diploma in Economics from the University of Regensburg and a Doctoral Degree (summa cum laude) from the University of Trier. I completed postgraduate studies at the Interdisciplinary Graduate Center of Excellence at the Institute for Labor Law and Industrial Relations in the European Union (IAAEU) in Trier. Prior to my current position, I worked as a research assistant to Prof. Dr. Dr. h.c. Joachim Möller at the University of Regensburg, a post-doc at the Leibniz Institute for East and Southeast European Studies (IOS) in Regensburg, and a freelancer at Charles University in Prague.

Throughout my career, I have also worked as a lecturer at various institutions, including the TU Munich, the University of Regensburg, Saarland University, and the Universities of Applied Sciences in Frankfurt and Augsburg. Additionally, I have had the opportunity to teach abroad for the University of Cordoba in Spain, the University of Perugia in Italy, and the Petra Christian University in Surabaya, Indonesia. My published work can be found in international journals

Teaching principles

such as the Canadian Journal of Economics and the Stata Journal. For more information on my work, please visit my private homepage at hubchev.github.io.

i Contact:

Prof. Dr. Stephan Huber Hochschule Fresenius für Wirtschaft & Medien GmbH Im MediaPark 4c 50670 Cologne Office: 4e OG-3 Telefon: +49 221 973199-523 Mail: stephan.huber@hs-fresenius.de Private homepage: www.hubchev.github.io Github: https://github.com/hubchev

Teaching principles

I believe in the *Keep It Simple and Straightforward* principle (KISS), which emphasizes simplicity and clarity in all aspects of learning and teaching. This, however, does not imply that the content of the book easy to understand. Success still requires logical thinking and a strong work ethic. Those who struggle with this may find it difficult to pass my courses.

In the following sections, I will introduce various mathematical economic models and concepts that provide a structured framework for understanding economics. Familiarity with these concepts is necessary for understanding current literature and analyzing complex scenarios in international trade.

Economic models are based on transparent assumptions and usually consist of a set of equations that explain theories of economic behavior. A robust model should provide valuable insights into the behavior of rational actors and the workings of the economy.

Unfortunately, students sometimes feel overwhelmed by these models because of their reliance on math and rigorous logical reasoning. There is often a perception that there are simpler ways to convey these arguments. While this may occasionally be true, I firmly believe that the formal approach to introducing international economics is most beneficial in the long run. Allow me to back up this belief:

- The narrative method, characterized by storytelling and bullet points, is a quick way to convey information on a variety of topics. However, it also has its drawbacks: students can easily get caught up in intuitive anecdotes without developing critical thinking or recognizing the underlying driving forces. As a result, they memorize information only for exams and forget it shortly thereafter.
- Unlike anecdotes, formal models are not inherently true. Nevertheless, they can offer deeper insights into a topic than narratives.
- Compared to anecdotes, formal models usually offer more flexibility. Once students understand the underlying logic of a model and can interpret and evaluate its implications, they can apply their understanding to different circumstances or topics. In contrast, anecdotes often provide a narrow perspective on a problem, making it difficult to draw general conclusions.

- A mathematical economic model functions much like a proof of an argument in that it accurately describes the assumptions under which the argument holds. In contrast, narratives often obscure the underlying assumptions and premises of an argument.
- Formal argumentation is the norm in economic research. Familiarity with basic concepts therefore enables students to understand the current literature, conduct research and solve problems in their professional lives.
- Understanding an economic model means grasping the underlying relationships, which promotes retention. In essence, formal models promote students' independent thinking and reasoning rather than mere repetition of the teacher's words.

How to prepare for the exam

Figure 2.: Richard P. Feynman's Los Alamos ID badge

 $\textbf{Source: } https://en.wikipedia.org/wiki/File:Richard_Feynman_Los_Alamos_ID_badge.jpg$

Richard P. Feynman (1918-1988) was a team leader at the Manhatten Project (see Figure 2) and won the Nobel Prize in 1965 in physics. He once said:

"I don't know what's the matter with people: they don't learn by understanding; they learn by some other way – by rote, or something. Their knowledge is so fragile!" [Feynman, 1985]

Of course, the key to learning is understanding. However, I believe that there is no understanding without practice, that is, solving problems and exercises by yourself with a pencil and a blank sheet of paper without knowing the solution in advance. Thus, I recommend the following:

- Attend lectures and and take the opportunity to ask questions and actively participate in class.
- Study the lecture notes and work on the exercises.
- Review the material regularly each week. Learning in small increments is more effective than last-minute cramming.
- Test yourself with past exams that you find in the appendix.
- If you have the opportunity to form a study group, make use of it. It is great to help each other, and it is very motivating to see that everyone has problems sometimes.
- If you have difficulties with some exercises and the solutions shown do not solve your problem, ask a classmate or contact me.

About the structure of these notes

I present international economics divided into three major branches:

1. International trade: This chapter is concerned with the determination of relative prices and real incomes in international trade abstracting from the intervention of money. That means trade is considered as an exchange of goods with no financial transactions involved. Of course, this assumption is unrealistic. However, it helps to understand the driving forces of real-world problems.

2. Monetary international economics: This chapter explicitly considers the meaning of the international financial transaction.

3. Trade policy: This chapter is about how international economics is taken into action to build the world we live in.

Moreover, in an appendix I offer solutions to the exercises, some microeconomic and mathematical preliminaries, and some past exams.

Literature

Economic textbooks: This lecture just scratches the surface of many economic phenomena. For a deeper understanding or if you are not familiar with the most basic economic principles, you should read a textbook. Any major economics textbook can be used to complement this lecture. I personally recommend Mankiw [2024], Blanchard and Johnson [2013], and the open source textbook Shapiro et al. [2022] but you can also use Parkin [2012], Case et al. [2019], and Krugman and Wells [2018]. While it is always nice to have a more recent textbook, basically older copies are just as fine (and much cheaper). Also, there are good books that are freely available online such as Shapiro et al. [2022], Anon [2020], Goodwin [2012], and Klein and Bauman [2010].

International economic textbooks: Of course, this lecture cannot cover all aspects of international economics. It os more like a curated collection of crucial concepts to grasp the fundamentals of global trade. For a deeper dive, I suggest exploring a standard international economics textbook of your preference. Here are some books, I recommend: Suranovic [2012], Krugman et al. [2017], Feenstra and Taylor [2017], Pugel [2015], Carbaugh [2016], van Marrewijk [2012], and van Marrewijk [2017].

Learning objectives

- Interpret exchange rates and relate their changes to the relative prices of countries' goods.
- Predict the impact of exchange rate changes on national economies.
- Understand the linkage between interest rates and inflation in open economies.
- Explain the interest rate parity condition and the purchasing power parity assumption.

1.1. Currencies

tariffs due to a fall of the Turkish Lira? Discuss.

1.1.1. Exchange rates

The price of one currency in terms of another is called an exchange rate. Exchange rates allow us to compare prices of goods and services across countries and they determine a country's relative prices of exports and imports.

Suppose the \notin is the home currency and the foreign currency, then the exchange rate in direct quotation (Preisnotierung) is

$$E^{\underline{\mathfrak{e}}} = \frac{X \mathfrak{E}}{Y}$$

and the exchange rate in indirect quotation (Mengennotierung) is

$$E\overline{\epsilon} = \frac{Y}{X\overline{\epsilon}}.$$

Both rates contain the same information, but have different interpretations:

- E[€] tells that we have to give X € to receive Y , whereas
 E € tells that we have to give Y to receive X €.

Alternative interpretations:

- $E^{\underline{\epsilon}}$ tells that we have to give $\frac{X}{Y} \in$ to receive 1 , whereas $E^{\overline{\epsilon}}$ tells that we have to give $\frac{Y}{X}$ to receive 1 \in .

Appreciation / Depreciation

A currency can appreciate or depreciate relative to other currencies.

- If the € appreciates, E[€]/_€ decreases and E^ϵ increases.
 If the € depreciates, E[€]/_€ increases and E^ϵ/_€ decreases.

▲ Conventions to talk about exchange rates:

- Euro to Dollar means $\frac{\epsilon}{s}$ (This is especially confusing and it can also be understood the other way round but the first currency mentioned is usually interpreted as the numerator)
- Euro per Dollar means € \$\$
 Euro in Dollar means \$\$ €
- 1 Euro costs X Dollars means X $\frac{\$}{\epsilon}$

Exercise 1.2. Exchange currencies (Solution A.1)

- a) Calculate the equivalent amount in Euros if a person exchanges 500 US Dollars.
- b) If the exchange rate changes to $1.15 \frac{USD}{EUR}$, recalculate the equivalent amount in Euros for the same 500 US Dollars.
- c) If the exchange rate changes to $1.15 \frac{USD}{EUB}$, has the Euro appreciated or depreciated?
- d) A European tourist plans to spend 1,000 Euros during a trip to the United States. Calculate the equivalent amount in US Dollars at the exchange rate of $1.15 \frac{EUR}{USD}$.

1.1.2. Relative prices

- How much 'value' do I have to give to receive a 'value' from abroad?
- Assume the home country produces beer and the foreign country produces wine. Further assume you want to exchange a beer for wine, then the relative price gives the amount of beer you have to give to receive a unit of wine (in the direct quotation), or the amount of wine you receive for a unit of beer (indirect quotation).
- A relative price of 1, for example, means that you can exchange 1 liter of beer with 1 liter of wine. However, we can also assume that beer is measured in cans of 500ml each and wine in 1 liter bottles. Then, the relative price would be $P^{\frac{beer}{wine}} = \frac{2 \text{ beer}}{1 \text{ wine}}$. That means, you can convert 2 cans of beer for one bottle of wine.
- If the relative prices increase, I must give more beer to receive a wine.
- If the relative prices decrease, I must give less beer to receive a wine.
- i Relative Prices and International Trade

Relative prices determine the relative price of commodities across countries. For example, an increase in the price of foreign commodities makes imported commodities relatively more expensive and home commodities relatively cheaper for buyers at home.

1.1.3. Exchange rates and relative prices

- Relative prices are (directly) determined by exchange rates.
- To prove this statement, assume an exchange rate of 1, $E^{\epsilon} = E^{\underline{\epsilon}} = 1$ and that a liter of beer costs $1 \in at$ home and a wine costs 1 abroad.
- Thus, I can buy both a wine or a beer for 1 €. Due to the fact that I must pay the wine producer with , I must exchange the € beforehand. The process goes like shown in Figure 1.2:

Now, assume that the \in appreciates and the exchange rate becomes $E^{\underline{\epsilon}} = 0.5$ and $E_{\overline{\epsilon}} = 2$, respectively. Then, you receive more than one wine, see Figure 1.3:

Figure	1.3.:	Two	wine	per	Euro
riguio	T.O	TWO	WIIIC	por	Luio

$\fbox{exchange 1} \textcircled{\bullet}$	$1 \in \cdot 2 \stackrel{\sharp}{\in} = 2 \stackrel{\bullet}{\bullet} \longrightarrow $ buy wine -	$\longrightarrow 2\mathbf{t} \cdot 1 \frac{\text{wine}}{\mathbf{t}} = 2 \text{ wine}$
---	--	---

That means, exchange rates determine the relative prices. If the home currency appreciates (depreciates), buying goods and services abroad becomes relative cheaper (more expensive).

Of course, if many people now buy wine and aim to convert \in to , this may impact the exchange rate and the price of wine. We come back to that later.

i Exchange rates and international trade

The exchange rate determines the relative price of commodities across countries. For example, an appreciation of a currency makes commodities more expensive for foreign buyers and in turn makes foreign commodities cheaper for buyers at home.

1.1.4. Trump and relative prices

Let's return to Trump's Twitter message. Steel producers in the US (and with them Donald Trump) are not happy about a strong dollar (and a weak lira), because it makes their products relatively expensive for Turkish buyers and Turkish steel relatively cheap for US consumers. Trump would have two options to change this situation: He could change the exchange rates or the relative prices of goods in different countries. Since it is difficult for him to influence the exchange rate (the central bank is independent), he decided to increase tariffs and thus the price of foreign steel in the United States. However, this has the disadvantage of making U.S. consumers pay more for these goods (and for goods made from and with steel and aluminum), as David Boaz, executive vice president of the Cato Institute, an American libertarian think tank, notes in his response on Twitter, see Figure 1.1.

In addition, it can be argued that the increased tariffs will make the dollar even stronger because buyers who no longer purchase steel in Turkey due to the increased tariffs will no longer seek to exchange U.S. dollars for Turkish lira. Overall, it can be doubted that raising tariffs is a successful strategy.

Figure 1.4.: Who wins in the end? David Boaz @David_Boaz · 11. Aug. Antwort an @realDonaldTrump Wonderful! Now steel and aluminum will cost more. WINNING!

Source: Twitter

1.1.5. The FOREX

1.1.5.1. The market

In a market, individuals exchange goods and services, offering something to receive something else in return. In the FOREX (foreign exchange market), participants exchange currencies. Like all markets, the price here is influenced by the supply and demand dynamics of currencies.

- When the Euro (\in) is considered strong, the exchange rate $E^{\stackrel{{\epsilon}}{=}}$ is low:
 - At this lower exchange rate, there's a high demand for Turkish Lira () (point C), but the supply of is scarce (point E).
 - Consequently, the Euro faces depreciation pressure, leading to an increase in the exchange rate $E^{\underline{\varepsilon}} \uparrow$.
- Conversely, when the Euro (\in) is weak, the exchange rate E^{\leq} is high:
 - With the exchange rate high, the demand for drops (point A), while its supply burgeons (point F).

- As a result, the Euro is under appreciation pressure, causing the exchange rate to decrease $E^{\underline{e}} \downarrow$.
- Point B represents the equilibrium exchange rate, where the demand for meets its supply. At this juncture, holders of are unwilling to part with more, and similarly, Euro holders are not inclined to exchange more.

In 2022, the daily (!) traded volume of currencies averaged approximately \$ 7,506 billion, as highlighted in Table 1.1.

	uonais)							
name	2001	2004	2007	2010	2013	2016	2019	2022
Total	1.239	1.934	3.324	3.973	5.357	5.066	6.581	7.506
USD	1.114	1.702	2.845	3.371	4.662	4.437	5.811	6.639
EUR	470	724	1.231	1.551	1.790	1.590	2.126	2.292
JPY	292	403	573	754	1.235	1.096	1.108	1.253
GBP	162	319	494	512	633	649	843	968
CNY	0	2	15	34	120	202	285	526
AUD	54	116	220	301	463	349	446	479
CAD	56	81	143	210	244	260	332	466
CHF	74	117	227	250	276	243	326	390
All others combined	170	251	568	786	1124	1223	1921	2093

Table 1.1.: Daily turnover of global foreign exchange market from 2001 to 2022 (in billion U.S. dollars)

Note: All others combined are: HKD, SGD, SEK, KRW, NOK, NZD, INR, MXN, TWD, ZAR, BRL, DKK, PLN, THB, ILS, IDR, CZK, AED, TRY, HUF, CLP, SAR, PHP, MYR. Source: https://github.com/TheEconomist/big-mac-data (July 18, 2018).

1.1.5.2. Actors on the FOREX

Various key actors trade on the FOREY. In particular commercial banks, multinational corporations, and nonbank financial institutions, like investment funds, playing significant roles in trading and speculation. Central banks as play a role. They intervene to stabilize their national currency, influencing the market's direction.

Commercial Banks Corporations 9 Commerzeank (2) HSBC (2)

Figure 1.6.: Players on the foreign exchange market

1.1.5.3. The vehicle currency

Instead of converting directly between two less common currencies, it's more efficient to use a broadly accepted and stable currency as a vehicle. That means, if you want to exchange currency A to B. You do not exchange currency A directly to B but you convert currency A first to the vehicle currency C and then from C to B.

As depicted in Figure 1.7, around 32% of all currency transactions included the Euro while a notable 88% involved the U.S. Dollar which makes the Dollar the standard vehicle currency. The Dollar acts as a medium in transactions between currencies that do not directly trade with high volume. This can reduce transaction costs and streamline the process.

10

Figure 1.7.: Market share of leading foreign exchange currencies in 2019

1.1.6. Purchasing power parity assumption

The **P**urchasing **P**ower **P**arity (PPP) assumption is also know as the **law of one price**. It says that in competitive markets with zero transportation costs and no trade barriers, identical goods have the same price all over the world when expressed in terms of the same currency. The idea behind this is that if prices differences would exist, profits could be made through **international arbitrage**, that is, the process of buying a good cheap in one country and selling the good with a profit in another country. This process can quickly equalize real price differences across countries.

However, in the real world, prices differ substantially across countries (see the Big Mac Index in Table 1.2 and Exercise 1.8). The assumptions of the PPP do mostly not hold perfectly in reality: some goods and services are not trade-able, firms might have different degrees of market power across countries, and the transaction costs are not zero.

Exercise 1.3. Big Mac Index (Solution A.2)

The differences of prices across countries can be illustrated with the Economist's *Big Mac Index*. It indicates the price of a Big Mac in different countries in terms of the US Dollar. Table 1.2 shows some countries with on average expensive and cheap Big Macs.

	0
Country	Price
Switzerland	\$6.57 (6.50 CHF)
Sweden	\$5.83 (51.00 SEK)
United States	5.51 (5.51 USD)
Norway	\$5.22 (42 NOK)
Canada	\$5.08 (6.65 CAD)
Euro area	\$4.75 (4.56 EUR)
Egypt	\$1.75 (31.37 EGP)
Ukraine	\$1.91 (50 UAH)
Russia	2.09 (130 RUB)
Malaysia	\$2.10 (8.45 MYR)
Indonesia	\$2.19 (31,500 IDR)
Taiwan	\$2.27 (69 TWD)

Table 1.2.: The price of a Big Mac across countries

Source: https://github.com/TheEconomist/big-mac-data (July 18, 2018).

- a) Read Wikipedia's page on the Big Mac Index and discuss the *Big-Mac-Index* critically. Is it really a reasonable real-world measurement of purchasing power parity?
- b) Compare the *Big-Mac-Index* to the *Mac-Index* (see: themacindex.com) looking for price differences of the *Mac mini M1 256GB*. Why are the price differences for Apple products so much smaller compared to McDonald's *Big Mac*?
- c) Using the data of Table 1.2, calculate the exchange rate of Euros (EUR) to Swiss Francs (CHF) in both the direct and the indirect quotation. Interpret your result.
- d) Calculate how many Dollars you can buy with 100€. Then, use that dollars to buy Swiss Francs. How many Swiss Francs do you get?
- e) Multiple choice: Which of the following statements is true?
 - i) The table indicates that the Purchasing Power Parity Assumption is fulfilled.
 - ii) The exchange rate of US Dollar to Swiss Franc (CHF) is close to one.
 - iii) The exchange rate of US Dollar to the Russian Ruble (RUB) is about $62.2\frac{\$}{BUB}$.
 - iv) The exchange rate of Canadian Dollar (CAD) to the Euro (EUR) is about 0.73.
 - v) With one Canadian Dollar (CAD) you can buy 0.73 US Dollars.

Exercise 1.4. International arbitrage (Solution A.3)

Table	1.3.:	Table	of	price	variations	across	countries
Lacioro	T .O	Table	<u> </u>	PIICO	100101010	actobb	000010100

Country	Price of Good $\theta 8/15$
Germany	\$2
Switzerland	\$6
United States of America	\$6

- a) Consider a scenario where the good 08/15 is freely tradable across countries without any cost (akin to digital software). You have \$100, and upon examining the prices of 08/15 in three different countries, you notice discrepancies as depicted in Table 1.3. Discuss how you could profit from *international arbitrage*, the practice of exploiting price differences of a good across countries. Describe the potential impact on the prices of the good once arbitrage begins.
- b) Assuming 08/15 can be traded freely across borders like software, imagine your arbitrage efforts have harmonized the prices of the good worldwide, as illustrated in the Table 1.4:

Table 1.4.: Table of prices and currencies across countries post-arbitrage

Country	Price in USD	Price in Local Currency
Germany	\$4	EUR 2
Switzerland	\$4	CHF 6
United States of America	\$4	-

Now, calculate and elucidate the following exchange rates: - $\frac{\text{USD}}{\text{EUR}}$ - $\frac{\text{EUR}}{\text{USD}}$ - $\frac{\text{CHF}}{\text{USD}}$ - $\frac{\text{CHF}}{\text{USD}}$ - $\frac{\text{CHF}}{\text{EUR}}$ - $\frac{\frac{\text{EUR}}{\text{CHF}}}{\frac{\text{EUR}}{\text{CHF}}}$

1.2. International investments

Investing or when storing purchasing power by holding a currency is speculative, regardless if the investment takes place at home or abroad. When holding a foreign currency, however, you must consider the fact that this currency can appreciate or depreciate. The value of a currency can fluctuate significantly over time, influenced by economic policy, market sentiment and global events. In the next sections, I present a framework that helps to understand the essential determinant of the rate of return on your investment.

1.2.1. Foreign exchange reserves

Currencies serve as a store of value, an important function in the financial world. Foreign exchange reserves are assets held on reserve by a central bank in foreign currencies, which can include bonds, treasury bills, and other government securities. The primary purpose of holding foreign exchange reserves is to manage the exchange rate of the national currency and ensure the stability of the country's financial system. Accordingly to the *Currency Composition of Official Foreign Exchange Reserves (COVER)* database of the *International Moentary Fund (IMF)*, the total foreign exchange reserves in Q3 2023 had been 11,901,53 billion U.S. Dollar. That is, \$ 11,901,530,000,000!

The size of a country's foreign exchange reserves can be influenced by various factors, including its balance of trade, exchange rate policies, capital flows, and the overall health of its economy. While having substantial reserves is generally seen as a sign of economic strength and stability, excessively accumulating reserves can also indicate underlying economic imbalances or protectionist policies.

1.2.2. Three components of the rate of return

An investment usually has different characteristics such as the default risk, opportunities, and liquidity. These characteristics and individual preferences are important to decide which investment is superior. In this course, however, we mostly refrain from discussing sophisticated features of investments here. We focus on the most important feature of an investment, that is, the rate of return. In particular, three components are important to calculate the rate of return:

1.2.2.1. Interest rate

The interest rate of an investment is a crucial factor that determines the return earned on invested capital over a specific period. It represents the percentage of the initial investment that is paid back to the investor as interest or profit. Formally, we can write:

$$\underbrace{I_{t-1}}_{\text{investment in t-1}} \cdot \underbrace{(1+i)}_{1+\text{interest rate}} = \underbrace{I_t}_{t}$$
(1.1)

where I denotes the value of an asset measured in \in in the respective time period t.

1.2.2.2. Exchange rate

When investing in assets denominated in foreign currencies, investors need to convert their domestic currency into the foreign currency at the prevailing exchange rate. After the investment has been paid out in the foreign country, the investor must convert the foreign currency back to his home currency. Thus, the initial cost of the investment and the subsequent returns are influenced by the exchange rate at the beginning and the end of the investment.

Formally, we can write if the an investment takes in foreign country, that is, Turkey between t-1 and t:

$$I_{t-1}^{\mathfrak{E}} \cdot E_{t-1}^{\overline{\mathfrak{E}}} \cdot E_t^{\underline{\mathfrak{E}}} = I_t^{\mathfrak{E}}$$

$$(1.2)$$

1.2.2.3. Inflation

Inflation refers to the quantitative measure of the rate at which prices, represented by a basket of goods and services, increase within an economy over a specific period. Conversely, negative inflation is termed deflation. Mathematically, inflation can be defined as follows:

$$\pi = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{P_t}{P_{t-1}} - 1$$

Where π represents the inflation rate and P_t denotes the price at time t. When inflation affects all prices, it also impacts the value of assets in which investors are invested. This relationship can be expressed as:

$$I_t = I_{t-1} \cdot (1+\pi)$$
 (1.3)

1.2.3. Rate of return of an investment abroad

The rate of return, r, is the growth rate of an investment over time and can be described as follows:

$$r = \frac{I_t^{\mathfrak{C}} - I_{t-1}^{\mathfrak{C}}}{I_{t-1}^{\mathfrak{C}}} = \frac{I_t^{\mathfrak{C}}}{I_{t-1}^{\mathfrak{C}}} - 1,$$

Combining Equation 1.1, Equation 1.2, and Equation 1.3, we can describe the value of our investment in period t as follows:

$$I_t^{\mathfrak{C}} = I_{t-1}^{\mathfrak{C}} \cdot (1+i^*) \cdot E_{t-1}^{\overline{\mathfrak{C}}} \cdot E_t^{\underline{\mathfrak{C}}} \cdot (1+\pi^*), \tag{1.4}$$

where I_{t-1}^{ϵ} denotes the initial investment, i^* denotes the interest rate abroad and π^* the inflation abroad. Dividing by I_{t-1}^{ϵ} and subtracting 1 from both sides of Equation 1.4, we see that the rate of return for an investment abroad, r^* , has three determining factors, that are: interest rate $(1 + i^*)$, inflation $(1 + \pi)$, and the change of exchange rates over time $(E_{t-1}^{\epsilon} \cdot E_t^{\epsilon})$:

$$\underbrace{ \frac{I_t^{\mathfrak{C}}}{I_{t-1}^{\mathfrak{C}}} - 1}_r = (1+i^*) \cdot (1+\pi^*) \cdot \underbrace{ E_{t-1}^{\,\overline{\mathfrak{C}}} \cdot E_t^{\,\underline{\mathfrak{C}}}}_{\alpha} - 1 }_{r^*} = (1+i^*) \cdot (1+\pi^*) \cdot \alpha - 1$$

with

- $\alpha = 1$ if the exchange rate does not change over time and
- $\alpha > 1$ if the home currency \in depreciates or
- $\alpha < 1$ if the home currency \in appreciates.

So the exchange rate changes over time work as a third factor of your rate of return.

By assuming no inflation $(\pi^* = 0)$, we can write

$$r^* = (1+i^*) \cdot \alpha - 1$$

$$\Leftrightarrow r^* = \alpha + \alpha i^* - 1.$$
(1.5)

Reorganizing Equation 1.5 helps to interpret it. Firstly, let us expand the right hand side of this equation adding and subtracting i^* which obviously does not change the sum of the right hand side of the equation. Secondly, re-write the equation and thirdly, set $(\alpha - 1) = w$:

$$\Rightarrow r^* = \alpha + \alpha i^* - 1 + i^* - i^*$$

$$\Rightarrow r^* = \alpha - 1 + i^* + \alpha i^* - i^*$$

$$\Rightarrow r^* = \underbrace{(\alpha - 1)}_{w} + i^* + i^* \underbrace{(\alpha - 1)}_{w}$$

$$\Rightarrow r^* = w + i^* + i^* w$$

$$(1.6)$$

This equation outlines the rate of return on an investment in a foreign country, influenced by two primary factors: i^* and w.

Assuming that the product iw is very small, we can say that the rate of return equals approximately the interest rate plus the rate of depreciation:

 $r^* = w + i^*.$

This approximation is often called the *simple rule for* r.

Exercise 1.6. Exchange rates and where to invest (Solution A.4) Suppose you want to buy a new car in Germany in one year, i.e, t=2023. Today, i.e., t=2022, you have $\notin 10,000$ to invest for one year.

Given the following conditions: - The annual interest rate in Europe is 1%. - The annual interest rate in the U.S.A. is 2%. - One US-Dollar can be converted to $\pounds 0.93$ this year. - You expect that $\pounds 1$ can be converted to \$1.09 next year. - Moreover, you expect no inflation in Germany and the U.S. - No banking fees or alike.

- a) Calculate the return on an investment in the U.S. and Germany, respectively.
- b) Do you expect the euro to appreciate or depreciate from 2022 to 2023?

Exercise 1.7. Turkey vs. Germany (Solution A.5) You have $100 \notin$ this year, t - 1, which you like to invest till next year, t.

- a) Where should you invest, given the following informations:
 - The interest rate in Germany is 1%.
 - The interest rate in Turkey is 10%.
 - $1 \in$ can be converted to 7 this year in the FOREX
 - You expect that $1 \in \text{can}$ be converted to 7.1 next year in the FOREX.
 - You expect no inflation in Germany and Turkey.
- b) Calculate the exchange rate in period t that makes investing in Germany and Turkey equal profitable.
- c) Explain why the Turkish Lira is under appreciation pressure in t-1.

1.2.4. The interest parity condition

Assume the rate of return is lower domestically than it is for investments abroad. Representing the foreign country with an asterisk (*), this situation, where investing money abroad is more profitable, can be expressed as:

 $r < r^*$.

Given that domestically the rate of return, r, equals the interest rate, i, assuming zero inflation, and that the simple rule for an investment abroad is described by $r^* = w + i^*$, we can rewrite the equation as:

$$i < w + i^*.$$

What would happen if financial market actors became aware of this?

Market participants would likely convert their domestic currency into the foreign currency to invest abroad, increasing demand for the foreign currency. Consequently, the foreign currency would appreciate, becoming relatively more expensive. This implies that w is negative. This appreciation process halts when investing abroad no longer offers a higher return. If the attractiveness of investments is equalized, the FOREX is in equilibrium. The deposits of all currencies offer the same expected rate of return. In other words, in equilibrium the exchange rate, w, assures that the rate of return from the home country, r, is equal to the rate of return in any foreign country, denoted with an asterisk (*):

$$r = r^* \tag{1.7}$$

$$i = w + i^* \tag{1.8}$$

(1.9)

$$\Leftrightarrow w = i - i^* \tag{1.10}$$

The interest parity condition (Equation 1.10) enables us to analyze how variations in interest rates and expected exchange rates affect current exchange rates through comparative static analysis of the equation:

$$\frac{\partial w}{\partial i} > 0; \quad \frac{\partial w}{\partial i^*} < 0.$$

This means:

- An increase in the domestic interest rate results in a positive change in the depreciation rate, leading to the depreciation of the domestic currency.
- An increase in the foreign interest rate causes a negative change in the depreciation rate, resulting in the appreciation of the domestic currency.

1.2.5. The theory in real markets: Unpegging the Swiss Franc

You might now question whether this theory of the interest parity condition truly holds in real-world markets. Analyzing international markets and the FOREX empirically is challenging due to the frequent occurrence of both large and small exogenous shocks on a global scale, each impacting market outcomes in various ways. Furthermore, market dynamics are often influenced by emotions and speculation rather than solely measurable facts. However, there are instances where the shocks are so significant that the fundamental forces driving the market become visible, even without a sophisticated empirical identification strategy that controls for confounding effects. The case study of the unexpected unpegging of the Swiss Franc serves as a poignant example. It vividly demonstrates that the principles underpinning the interest parity condition are not merely theoretical constructs but actively influence real market behaviors.

Until early 2015, the Swiss National Bank (SNB) had a policy goal to maintain the franc above the cap of 1.20 Francs per Euro, aiming to protect exporters and combat deflationary pressures. However, in a surprising move, the SNB unpegged the Franc in 2015. This decision was influenced by the appreciation pressure on the Franc, as many investors many investors wanted to store their assets in the Swiss Franc. Following the SNB's announcement, the exchange rate plunged from 1.20 to 1.00 Franc per Euro $(E^{\frac{CHF}{\epsilon}})$, as illustrated in Figure 1.9a Almost simultaneously, the interest rate experienced a decline, as depicted in Figure 1.9b. These developments align precisely with what the interest parity condition would predict, demonstrating its applicability in real-world financial market dynamics.

Figure 1.9.: The impact of unpegging the Franc on capital markets

To analyze the relationship between changes in exchange rates and interest rates, we need to consider the interest parity assumption of Equation 1.10:

$$w=i-i^*$$

where

$$w = \frac{E_t^{\frac{\epsilon}{CHF}}}{E_{t-1}^{\frac{\epsilon}{CHF}}} - 1.$$

In January 2015, the exchange rate $E^{\frac{CHF}{\epsilon}}$ decreased from 1.20 to 1.00. Alternatively, we can express this change in direct quotation, noting that the exchange rate $E^{\frac{\epsilon}{CHF}}$ increased from $E_{t-1}^{\frac{\epsilon}{CHF}} \approx \frac{1}{1.20} \approx 0.83$ to $E_t^{\frac{\epsilon}{CHF}} \approx 1.00$, resulting in

$$w = \frac{E_t^{\frac{\epsilon}{CHF}}}{E_{t-1}^{\frac{\epsilon}{CHF}}} - 1 = \frac{1}{0.83} - 1 = 0.20.$$

Since w > 0, the fraction on the left-hand side of the interest rate parity equation must also be positive, as already mentioned. This implies that

$$i - i^* > 0$$
,

which means that an interest rate spread must occur. This condition can occur if the foreign interest rate i^* decreases or the domestic interest rate i increases. In our observations, we can indeed see a pattern that is consistent with our theoretical expectations.

It is important to acknowledge that our theoretical framework simplifies the complex interplay of factors that influence both exchange rates and interest rates. Despite this simplification, the model highlights the key forces driving market dynamics. However, it is important to point out that the actual numbers may not perfectly match our theoretical predictions in quantitative terms, as shown in Figure Figure 1.10.

1.2.6. The Fisher effect

The *Fisher Effect* is an economic theory proposed by economist Irving Fisher (1867-1947), which describes the relationship between inflation and both nominal and real interest rates. According

Figure 1.10.: Short-term interest rates across Germany and Switzerland over time Short-term interest rates Total. X per annum, Nev 2014 - Apr 2015 Source: Finance

Source: Data are taken from the OECD and show the total, % per annum.

to the *Fisher Effect*, the nominal interest rate is equal to the sum of the real interest rate and the expected inflation rate. In formula terms, it is often expressed as:

 $r = i + \pi$.

We can derive this equation which you see in almost every introductory economics textbook using Equation 1.5 and ignoring international exchanges as the Fisher Effect does not alter with international investments, that means, we assume that the exchange rate is stable over time $(E_{t-1}^{\underline{\epsilon}} = E_t^{\underline{\epsilon}})$:

$$I_t = I_{t-1} \cdot (1+\pi) \cdot (1+i) \tag{1.11}$$

$$\Leftrightarrow \frac{I_t}{I_{t-1}} - 1 = (1+\pi)(1+i) - 1 \tag{1.12}$$

$$\Leftrightarrow r = i + \pi + \pi i \tag{1.13}$$

Assuming that the product πi is very small, we can say that the rate of return equals approximately the interest rate plus the inflation rate. This approximation is often called the *Fisher Effect*.

Abstracting from exchange rate movements and interest rate differences, the rate of return is solely determined by the inflation rate and cross-country differences in their rate of return can be described by differences in inflation rates:

$$r_{GER} - r_{TUR} = \pi_{GER} - \pi_{TUR}.$$

1.3. Balance of payments

Exercise 1.8. Some facts about foreign trade Make yourself familiar with the descriptive statistics at destatis.de, the World Trade Organization here and here, the OECD, and World Trade Historical Database by the CEPR.

1.3.1. Introduction

The *Balance of Payments* is a record of a country's financial transactions with the rest of the world. It tracks the money flowing in and out through various economic activities. If we account for all transactions, the inflow and outflow should theoretically balance. Before I elaborate on this concept, let's clarify some key terms:

- *Exports*: Goods and services sold to other countries.
- *Imports*: Goods and services bought from other countries.
- *Trade balance*: The difference between the value of goods and services a country sells abroad and those it buys from abroad, also known as *net exports*.
- *Trade surplus*: When a country sells more than it buys, resulting in a positive trade balance.
- *Trade deficit*: When a country buys more than it sells, leading to a negative trade balance.
- Balanced trade: When the value of exports equals imports.
- *Net capital outflow*: The difference between the purchase of foreign assets by domestic residents and the purchase of domestic assets by foreigners. This equals net exports, indicating that a country's savings can fund investments domestically or abroad. We will elaborate on that later on in greater detail.

1.3.2. Two types of international investment

Capital can flow out of a country primarily through two mechanisms:

- 1. Foreign Direct Investment (FDI): This involves investing in foreign companies with the intention of controlling or significantly influencing their operations.
- 2. Foreign Portfolio Investment (FPI): This type of investment is in foreign financial assets, such as stocks and bonds, where the investor does not seek control over the companies.

Let's consider an example to illustrate how these concepts work in practice. Imagine Boeing, an American company, sells airplanes to a Japanese airline:

- 1. Boeing transfers airplanes to the Japanese firm, and in return, the Japanese firm pays Boeing in yen. This transaction increases exports (boosting net exports) and results in the United States acquiring foreign assets in the form of yen (increasing net capital outflow).
- 2. Boeing might then convert its yen to dollars through a financial exchange. For instance, if an American mutual fund wants to invest in a Japanese company, Boeing's sale of planes (a net export) is mirrored by the mutual fund's investment in Japan (a net capital outflow).
- 3. Alternatively, Boeing could exchange its yen with an American company looking to purchase goods or services from Japan. In this scenario, the value of imports matches the value of exports, leaving net exports unchanged.

Every international financial transaction is essentially an exchange. When a country sells goods or services, the buying country compensates by transferring assets. Consequently, the total value of goods and services a country sells (its net exports) must be equal to the value of assets it acquires (its net capital outflow).

1.3.3. The payments must be balanced!

The Balance of Payments account consists of some primary components:

- 1. The **Current account** (Leistungsbilanz) measures a country's trade balance plus the effects of net income and direct payments. It consists of trade, net income, direct transfers of capital, and asset income.
- 2. The **Capital account** (Kapitalbilanz) reflects the net change in ownership of national assets.

Ignoring statistical effects, these two subaccounts must sum to zero. The U.S. Balance of Payments is an example provided in Figure 1.11.

Figure 1.11.: U.S. Balance of Payments

While it's true that the overall totals of payments and receipts must inherently balance, certain transaction types can create imbalances, leading to either deficits or surpluses. These imbalances may manifest in various sectors such as trade in goods (commodities), services trade, foreign investment income, unilateral transfers (including foreign aid), private investment, and the flow of gold and currency between central banks and treasuries, among other international dealings. It's crucial to note, though, that the accounting framework ensures these surpluses and deficits ultimately zero out, adhering to the principles of double-entry bookkeeping.

Take, for example, a scenario where Americans purchase cars from Germany without engaging in any other transactions with it. The outcome is that Germans accumulate dollars, which can be maintained as bank deposits in the United States or within other U.S.-based assets. The American payment for German automobiles is counterbalanced by German acquisitions of dollar assets, including investments in U.S. entities and institutions. This exchange means Germany sells cars to the U.S., while the U.S. sells dollars or dollar-backed assets to Germany. Consequently, Germany experiences a trade surplus, indicated by a positive trade balance and a corresponding surplus in its current account, which encompasses the trade balance. Nonetheless, this also implies Germany faces a deficit in its capital account, characterized by a net outflow of money.

1.3.4. A normative discussion of imbalances in the capital and current account

Normatively discussing imbalances in the capital and current accounts of countries involves evaluating these phenomena from a perspective of what ought to be, considering ethical, practical, and policy implications. These imbalances are not merely numerical figures; they reflect underlying economic activities and policy decisions with significant implications for national and global economic health.

1.3.4.1. Current account imbalances

The current account includes trade in goods and services. A surplus in the current account indicates that a country is exporting more goods than it imports.

Surpluses: Normatively, persistent current account surpluses might be viewed as a sign of a country's competitive strength in the global market. However, they can also indicate underconsumption or insufficient domestic investment, suggesting that a country is not fully utilizing its economic resources to improve the living standards of its population. Furthermore, large surpluses can lead to tensions with trading partners and might prompt accusations of unfair trade practices or currency manipulation.

Deficits: On the other hand, persistent deficits could signal domestic economic vitality and an attractive environment for investment, reflecting high consumer demand and robust growth. Yet, they can also indicate structural problems, such as a lack of competitiveness, reliance on foreign borrowing to sustain consumption, or inadequate savings rates. Over time, large deficits may lead to unsustainable debt levels, making the country vulnerable to financial crises.

1.3.4.2. Capital account imbalances

The capital account records the net change in ownership of national assets. It includes the flow of capital into and out of a country, such as investments in real estate, stocks, bonds, and government debt.

Inflows: Capital account inflows can signify strong investor confidence in a country's economic prospects, potentially leading to increased investment and growth. However, excessive short-term speculative inflows can destabilize the economy, leading to asset bubbles and subsequent financial crises when the capital is suddenly withdrawn.

Outflows: Capital outflows might indicate a lack of confidence in the domestic economy or better opportunities abroad. While some level of outflow is normal for diversified investment portfolios, large and rapid outflows can precipitate a financial crisis by depleting foreign reserves and putting downward pressure on the currency.

1.3.5. A formal representation

In the following, I present a streamlined perspective on the global trading system. This overview does not engage with the benefits or drawbacks of maintaining trade surpluses or deficits, a subject that warrants its own discussion. However, it aims to identify the factors influencing current account deficits and surpluses.

1.3.5.1. Closed economy

Within a closed economy, we identify three principal actors: households, firms, and the government. Let's define C as the consumption of goods and services by households, encompassing necessities and luxuries like food, housing, and entertainment. Let G represent government expenditures, which cover infrastructure, social services, military outlays, education, and more. Lastly, I symbolizes the investment by firms in assets such as machinery, buildings, and research and development. Given these components, the total economic output, Y, can be expressed by the fundamental equation of economics as:

$$Y = C + I + G.$$

This equation encapsulates the aggregate spending within a closed economy, highlighting the interplay between consumption, investment, and government expenditure in determining overall economic activity.

If we define national savings, S, as the share of output not spent on household consumption or government purchases, then the investments, I, must be equal to the savings in a closed economy:

$$\begin{split} Y &= C + I + G \\ \Leftrightarrow \underbrace{Y - C - G}_{S} &= I \\ \Leftrightarrow S &= I, \end{split}$$

This implies that within a closed economy, any portion of the output that is not consumed either privately by households (C) or by the government (G)—necessarily must be allocated towards investment (I). Thus, the equation underscores a foundational economic principle: the total output of an economy (Y) is either consumed or invested, leaving no surplus output.

1.3.5.2. Open economy

In an open economy, the dynamics of household consumption, government expenditures, and firm investments extend beyond domestic production to include imports from and exports to foreign markets. Thus, an economy can import and export goods. Denoting imports by IM and exports by EX, we can re-write the fundamental equation of economics by adding the concept of net exports (NEX), the difference between a country's exports and imports. A positive net export value (EX > IM) indicates a trade surplus, reflecting that the economy exports more than it imports. Conversely, a negative net export value (EX < IM) signifies a trade deficit, where imports exceed exports:

$$Y = C + I + G + \underbrace{EX - IM}_{NEX}$$

$$\Leftrightarrow \underbrace{Y - C - G}_{S} = I + NEX$$

$$\Leftrightarrow \underbrace{S - I}_{NCO} = NEX$$

In scenarios where investment equals savings (I = S), the economy's net exports are zero, reflecting a balance between domestic production not allocated towards household or government

consumption and investments. However, when an economy experiences a trade surplus (NEX > 0), such as Germany in recent decades, it implies that domestic savings exceed investments. This surplus indicates that the country produces more than it spends on domestic goods and services, channeling excess savings into investments abroad. Thus, savings not utilized domestically (S - I) are equivalent to the net capital outflow (NCO), establishing a direct link between a country's trade surplus and its role as a global lender or investor:

$$NCO = NEX$$

i Net exports must be equal to net capital outflow The accounting identities above simply state that there is a *balance of payments*. The Balance of Payment accounts are based on double-entry bookkeeping and hence the annual account has to be balanced. If an economy has a current account trade deficit (surplus), it is offset one-to-one by a capital account surplus (deficit) to assure a balance of payments. In other words, if an economy wants to import more goods than it produces, it must attract foreign capital to be invested at home.

1.3.6. Case study: U.S. trade deficit

Consider a scenario where the United States is unable to attract sufficient capital flows from abroad to finance its trade deficit. In such a case, American consumers continue purchasing foreign goods with US Dollars, leading to an outflow of US Dollars that surpasses inflow. This imbalance results in an increased supply of US Dollars relative to its demand, causing the value of the US Dollar to depreciate. A depreciated US Dollar would, in theory, make US exports more competitive (cheaper for foreign buyers) and imports more costly, thereby potentially reducing the current account deficit. However, the trade deficit of the United States has remained relatively stable, and the US Dollar has not experienced significant depreciation. This stability is partly why former President Trump criticized other countries for allegedly *manipulating* their currencies, see Figure 1.12.

Trump's stance on the trade deficit was clear: he perceived it as detrimental to the United States. He advocated for a weaker dollar and lower interest rates to address this issue. A weaker dollar would render American products more affordable internationally, stimulating exports and discouraging imports. Concurrently, lower interest rates in the United States would diminish the country's appeal for foreign capital investments (*I* would decrease), leading to reduced net capital inflows. This adjustment would, in turn, decrease the **Capital Account** surplus and, by extension, shrink the **Current Account** deficit. Specifically, Trump accused the Chinese government and the European Central Bank of implementing policies that undervalue their currencies (the Renminbi and the Euro), thereby gaining an unfair advantage in trade.

Figure 1.12.: Trump worries about the U.S. trade deficit
Donald J. Trump
@realDonaldTrump
Following

Russia and China are playing the Currency Devaluation game as the U.S. keeps raising interest rates. Not acceptable!

5:31 AM - 16 Apr 2018

As Trump thinks a trade deficit is bad for the United States, he would like to have a weak dollar and low interest rates. A weak dollar makes American products cheap for the rest of the world and has positive effects on exports and negative on imports. A low interest rate in the United States would make the country less attractive for foreign capital investments (*I* would become smaller), meaning the net capital inflows would decrease and so would the **Capital Account**'s surplus (and with it, the **Current Account** deficit would become smaller). In concrete terms, he claims that in particular the Chinese government and the European Central Bank run policies that keep their currencies (Renminbi and Euro) cheap.

Despite significant efforts by President Trump to reduce the U.S. trade deficit, the endeavor did not achieve its intended outcome, as illustrated in Figure 1.13. One likely reason for this shortfall was the reduction of taxes for large corporations, which enhanced the rate of return on investments. This policy made investing in the U.S. more appealing to foreign investors, potentially counteracting efforts to diminish the trade deficit.

Figure 1.13.: The trade deficit of the United States over time

Exercise 1.9. Discuss the pros and cons of Germany's net export surplus. Please watch this video, see Figure 1.14.

Figure 1.14.: Marcel Fratzscher and Clemens Fuest about Germany's trade surplus Source: YouTube

2. International trade

Learning objectives

- Understand the basic concepts underpinning international trade, including the principle of mutual benefits.
- Evaluate reasons for trade, including technology differences, resource endowments, and government policies.
- Explain the difference of absolute comparative advantage and their role in driving trade patterns.
- Understand how differences in labor and capital endowments influence trade patterns.
- Discuss the impact of international trade on factor prices.

Recommended reading: Suranovic [2012, Chapters 2, 3, 5]

Trade is usually a voluntary decision by buyers and sellers, which means that transactions would not take place if one party were to lose from the exchange. While this reasoning is persuasive, it alone does not fully justify unrestricted international trade. In the following chapters, we will look at the concept that trade should be mutually beneficial to the parties directly involved. We will also discuss the ways in which trade can be beneficial to all parties, even though it is not necessarily beneficial to all. The remainder is structured as follows:

- Section 2.1 explains Mankiw's principle that trade can make everyone better off.
- Section 2.2 paraphrases the sources of international trade.
- Section 2.3 provides a theoretical framework of trade and shows that under certain circumstances international trade can yield a miserable growth path for a country.
- Section 2.4 explains that more trade does not have to be good for a country's wealth.
- Section 2.5 introduces the concept of comparative advantage. It claims that trade is due to autarky price differences that stem from country-specific differences such as technology, factor endowments, or taste.
- Section 2.6 shows that opening up to free trade generates winners and losers and that countries' endowments with labor and capital determine patterns of trade. :::

2.1. Trade can make everyone better off

N. Gregory Mankiw (*1958) is one of the most influential economists. In his best-selling textbook Principles of Economics [Mankiw, 2024, p. 8-9] he claims ten principles of economics of which one is entitled Trade can make everyone better off which he explains as follows:

You have probably heard on the news that the Japanese are our competitors in the world economy. In some ways, this is true, for American and Japanese firms do produce many of the same goods. Ford and Toyota compete for the same customers

2. International trade

Figure 2.1.: Mankiw and his textbook

Source: Harvard.edu and Mankiw [2024].

in the market for automobiles. Compaq and Toshiba compete for the same customers in the market for personal computers.

Yet it is easy to be misled when thinking about competition among countries. Trade between the United States and Japan is not like a sports contest, where one side wins and the other side loses. In fact, the opposite is true: Trade between two countries can make each country better off.

To see why, consider how trade affects your family. When a member of your family looks for a job, he or she competes against members of other families who are looking for jobs. Families also compete against one another when they go shopping, because each family wants to buy the best goods at the lowest prices. So, in a sense, each family in the economy is competing with all other families.

Despite this competition, your family would not be better off isolating itself from all other families. If it did, your family would need to grow its own food, make its own clothes, and build its own home. Clearly, your family gains much from its ability to trade with others. Trade allows each person to specialize in the activities he or she does best, whether it is farming, sewing, or home building. By trading with others, people can buy a greater variety of goods and services at lower cost.

Countries as well as families benefit from the ability to trade with one another. Trade allows countries to specialize in what they do best and to enjoy a greater variety of goods and services. The Japanese, as well as the French and the Egyptians and the Brazilians, are as much our partners in the world economy as they are our competitors.

2.2. Reasons for Trade

Trade involves willingly giving up something to receive something else in return, which should benefit both parties involved, although not necessarily everyone affected by the trade. We will discuss the negative effects of international trade on bystanders later. In this section, we briefly outline basic reasons for individuals and hence countries to engage in trade. Of course, the list is incomplete. **Differences in Technology:** Advantageous trade can occur between countries if they have different technological abilities to produce goods and services. Technology refers to the techniques used to convert resources (labor, capital, land) into outputs. Differences in technology form the basis for trade in the Ricardian Model of comparative advantage. We will revisit this in more detail in Section 2.5.

Differences in Endowments: Trade also occurs because countries differ in their resource endowments, which include the skills and abilities of the workforce, available natural resources, and the sophistication of capital stock such as machinery, infrastructure, and communication systems. Differences in resource endowments are the basis for trade in the pure exchange models (see Section 2.3) and the Heckscher-Ohlin Model (see Section 2.6).

Differences in Demand: Trade between countries occurs because demands or preferences differ. Individuals in different countries may prefer different products even if prices are the same. For example, Asian populations might demand more rice, Czech and German people more beer, the Dutch more wooden shoes, and the Japanese more fish compared to Americans.

Economies of Scale in Production: Economies of scale, where production costs fall as production volume increases, can make trade between two countries advantageous. This concept, known as *increasing returns to scale*, plays a significant role in Paul Krugman's *New Trade Theory*, which we will discuss later.

Existence of Government Policies: Government tax and subsidy programs can create production advantages for certain products, leading to advantageous trade arising solely from differences in government policies across countries. We will explore the impact of tariffs and regulations in Chapter 3.

2.3. Exchange economy

Recommended reading

Suranovic [2012, Chapters 3]

2.3.1. A simple barter model

The simplest example to show that trade can be beneficial to people is the barter model. In trade, barter is a system of exchange in which participants in a transaction directly exchange goods or services for other goods or services without using a medium of exchange, such as money.

Suppose there are two people, Anton (A) and Barbara (B). Anton has 10 Weißwürste (white sausages) and Barbara has 10 pretzels. Together, they are isolated from the rest of the world for a few days due to a natural disaster. Fortunately, they both have additional access to an endless supply of sweet mustard and beer and they now wonder how to share pretzels and sausages the upcoming days. Let's assume that both of them accept only a white sausage eaten together with a pretzel. That is, eating two pretzels with a sausage is no better than eating a pretzel and a sausage. After some discussion, Barbara gives 5 pretzels and Anton gives Barbara 5 sausages in return. They strongly believe that there is no better way to share food.

This example shows that trade can be beneficial for two individuals. Here we basically assume two things. Firstly, two individuals can trade and secondly, they are endowed with different goods.

2. International trade

Figure 2.2.: Stylized example of weißwürst and pretzels

Source: Wikipedia

Exercise 2.1. How Barbara and Anton trade (Solution 2.1)

- a) Visualize the starting point of Anton and Barbara as described above in a two-way plot where the Anton's initial endowment with sausages is drawn on the y-axis and Barbara's endowment with pretzels is drawn on the x-axis.
- b) Given their preferences, mark the consumption point after goods were traded. Also, draw in the plot how much Anton and Barbara exports and imports, respectively.
- c) Sketch the indifference curve of both individuals in the consumption point after trade has happened.
- d) Draw a new two-way plot and assume that Barbara now gives away 2 pretzels in order to receive one sausage. Mark the resulting consumption points of Anton and Barbara. Given their unchanged preference for having one sausage with one slice of bread at best, visualize with the help of sketched indifference curves that both individuals are worse off as compared to consuming 5 units of pretzels and sausages each.

Solution 2.1. How Barbara and Anton trade (Exercise 2.1) In Figure 2.3 you find a sketch of a solution to tasks a. to c. Figure 2.4 pro

In Figure 2.3 you find a sketch of a solution to tasks a. to c. Figure 2.4 provides a solution to task d.

2. International trade

2.3.2. Terms of trade

i Definition

The terms of trade is defined as the quantity of one good that exchanges for a quantity of another. It is typical to express the terms of trade as a ratio.

In the example of Barbara and Anton, the exchange of goods occurs at a 1:1 ratio. In economics, this is referred to as the terms of trade being 1. The terms of trade are defined as the relative price of exports in relation to imports, or in other words, how much of one good can be exchanged for another. For instance, determining how many sausages can be exchanged for how many pretzels. The terms of trade, determined by the two trading partners, depend on a variety of distinct factors, including:

Preferences: For trade to occur, each trader must desire something the other has and be willing to give up something of their own to obtain it. Formally, the expected utility of consuming some of Anton's bread must exceed the disutility of foregoing a few of his sausages, and vice versa for Barbara. Typically, the goods are substitutable rather than perfectly complementary, as is assumed in our specific example.

Uncertainty: Both individuals have clear preferences. If Barbara has never tried Anton's sausages, and Anton typically prefers bread over pretzels, offering free samples before an exchange could reduce uncertainty. Without a sample, their trade would be based on expectations about the taste of the other's product.

Scarcity: The availability of the two goods influences the terms of trade. If, for instance, Barbara has 1000 pretzels, the terms of trade with the sausages would likely change.

Size: The physical size of the goods can impact the terms of trade.

Quality: The quality of goods affects the terms of trade. If the pretzels are stale and hard, both might prefer fewer pretzels per sausage.

Persuasion: If Barbara is a more persuasive salesperson than Anton, she might be able to negotiate more favorable terms of trade.

Government Policy: Taxes imposed by an official based on the traded quantities could affect the terms of trade. Additionally, if laws prevent Barbara and Anton from meeting, no trade would occur.

Exercise 2.2. Terms of trade (Solution A.6)

Suppose you have a fixed income I = 10 that you can spend on consuming two substitutable goods x, y at certain prices $p_x = 1, p_y = 1$. The current consumption decission is sketched in the figure above. Suppose the price of good x increases, that is, $p_x = 2$. Draw the new budget line. How will consumption change? What are the new terms of trade?

2.3.3. Endowments in an Exchange Economy

In this section, we examine a basic scenario where productive units within an economy are unable to adjust their output to recent changes in world market prices, which stem from global demand and supply fluctuations. Economists refer to the resulting availability of goods as endowments. Essentially, a country is endowed with a certain quantity of goods and seeks to trade these goods on global markets to maximize its welfare. In Section 2.6 we will assume that countries are endowed with a certain amount of factors of production that they can use to produce various goods.

2.3.3.1. Fixed production

Imagine that country H produces \bar{x}_1^H units of good 1 and \bar{x}_2^H units of good 2. In autarky (a state of where there is no trade), it consumes all the goods it produces. This scenario is shown in Figure 2.6, where point A represents the optimal welfare outcome with utility W_A^H for country H in autarky.

Now, let's assume country H can trade with the rest of the world at global market prices, where the price ratio of good 1 to good 2 in the world market, $(\frac{p_1}{p_2})_W$, is greater than in autarky, $(\frac{p_1}{p_2})_A$:

$$\left(\frac{p_1}{p_2}\right)_W > \left(\frac{p_1}{p_2}\right)_A,\tag{2.1}$$

With trade, country H can achieve a higher utility, $W_T^H > W_A^H$, by exporting good x_1 and importing good x_2 , thus moving to a more advantageous consumption point.

2.3.3.2. Flexible production

- Trade is even more beneficial to a country if it can adjust its production to export more goods that are relatively high priced in the world market. This statement is shown in Figure 2.7.
- In autarky, optimal consumption would be at point A and optimal consumption would be at point C under free trade. Now suppose that producers in country H know that they can sell their goods at price p_1^W and p_2^W before deciding what to produce. Then they would choose production point B on the production frontier curve to export good x_1 and import good x_2 at price $(\frac{p_1}{p_2})_A$ to be consumed at point D. Welfare at point D is higher than at point C or A because we end up at the highest indifference curve.

Exercise 2.3. Production and consumption

Figure 2.7.: Optimizing consumption by adjusting production and trade

In Figure 2.8 the production possibility frontier curve, PPF, of a country, H, in autarky in which only two products, x_1 and x_2 , can be produced and consumed, respectively.

- a) Given the country is in autarky (that is, no trade), the price relation of both goods within the country is represented by the line denoted with $P_{autarky}$. The indifference curve that represents the utility maximizing level of utility is denoted with $IC_{autarky}$. Mark in the figure how much of both goods are produced and consumed, respectively.
- b) Suppose country H opens up to trade with foreign countries. Further assume that the country can trade with other countries at fixed world market prices

$$\left(\frac{p_1}{p_2}\right)_W > \left(\frac{p_1}{p_2}\right)_A,\tag{2.2}$$

where $(\frac{p_1}{p_2})_A$ denotes the price relation of country H in autarky, $P_{autarky}$. Sketch the world market price relation in the figure and mark the new production point on the production possibility frontier curve. Moreover, mark below those statements that are **true**:

- c) Country H will produce more of good x_1 than in autarky
- d) Country H will produce more of good x_2 than in autarky
- e) Country H will consume more of good x_1 than in autarky
- f) Country H will export good x_1 and import good x_2 .
- g) Country H will export good x_2 and import good x_1 .
- h) Country H will suffer a loss of welfare due to opening up to trade.

Exercise 2.4. Production and consumption (Solution A.7)

Show that opening markets to foreign trade can be beneficial for a small economy where only two goods can be produced and consumed. Use a two-way diagram to do this. In particular, show the consumption and production point of the economy in autarky with the corresponding price relation. Then assume that the economy opens up to the foreign market, allowing it to buy goods at world prices that are different from prices in autarky. Show the consumption and production point of the autarkic economy with the corresponding price relation under free trade. Can you outline the higher level of welfare in free trade?

2.4. More trade is not necessarily good (immiserizing growth)

So far, I have implicitly assumed that the world market price is fixed and not changed by the entry of country H into the free trade market. When the latter is the case, economists speak of a small open economy (SOE). In general, a SOE is an economy that is so small that its policies do not change world prices.

Suppose that country H is not an SOE. What would happen to world prices if country H offered a lot of good x_1 to receive good x_2 ? Obviously, $(\frac{p_1}{p_2})_W$ would fall. In the worst case, country H is so large that

$$\left(\frac{p_1}{p_2}\right)_W = \left(\frac{p_1}{p_2}\right)_A$$

This means that country H has no benefits from free trade.

Assuming that a (large) country cannot opt out from free trade and that the exporting sector grows, there is a theoretical scenario called __immiserizing growth} that shows that free trade countries are worse off in the long run. This scenario is illustrated in Figure 2.9. The figure summarizes two periods. In the first period, country H produces at point B and consumes at point D, trading goods at world prices $(\frac{p_1}{p_2})_W$. Then country H grows in sector 1. This is shown in the new production possibility curve TK2. If country H were able to trade at the old world price, it would be able to consume at point F. Unfortunately, country H is not a SOE, and therefore world prices (from country H's perspective) deteriorate to $(\frac{p_1}{p_2})'_W$. This has bad implications for country H, since its optimal consumption is now at point D', which has lower welfare relative to point D. However, this is not an argument against trade, since the welfare at point D' is still above the production possibility curve in autarky, TK1.

2.5. The theory of comparative advantage (Ricardian Model)

Learning objectives

- Less-developed countries can compete in international markets even if they are less productive in producing everything. In other words, opening to trade is beneficial for countries that have an absolute disadvantage in the production of all goods.
- Both, developed and less-developed countries can gain from international trade.
- Specialization in production increases the price of exported goods for that country. As a result, prices converge.
- A discussion of national competitiveness is not useful through the lens of the Ricardo theorem.

Recommended reading: Suranovic [2012, Chapter 2]

Figure 2.9.: Immiserizing growth

Figure 2.10.: This painting shows Ricardo, aged 49 in 1821.

Source: National Portrait Gallery

David Ricardo} (1772-1823), one of the most influential economists of his time, had a simple idea that had a major impact on how we think about trade. In Ricardo [1817], he argued that bilateral trade can be a positive-sum game for both countries, even if one country is less productive in all sectors, if each country specializes in what it can produce relatively best.

He introduced the theory of comparative advantage that is still an important corner stone of the modern theory of international trade¹ It refers to the ability of one party (an individual, a firm, or a country) to produce a particular good or service at a lower opportunity cost than another party. In other words, it is the ability to produce a product with the highest relative efficiency, given all other products that could be produced. In contrast, an absolute advantage is defined as the ability of one party to produce a particular good at a lower absolute cost than another party.

2.5.1. Defining absolute and comparative advantages

A subject (country, household, individual, company) has an **absolute advantage** in the production of a good relative to another subject if it can produce the good at lower total costs or with higher productivity. Thus, absolute advantage compares productivity across subjects but within an item.

A subject has a **comparative advantage** in the production of a good relative to another subject if it can produce that good at a lower opportunity cost relative to another subject.

Let me explain the idea of the concept of comparative advantage with some examples:

Old and young

Two women live alone on a deserted island. In order to survive, they have to do some basic activities like fetching water, fishing and cooking. The first woman is young, strong and educated. The second is older, less agile and rather uneducated. Thus, the first woman is faster, better and more productive in all productive activities. So she has an absolute advantage in all areas. The second woman, in turn, has an absolute disadvantage in all areas. In some activities, the difference between the two is large; in others, it is small. The law of comparative advantage states that it is not in the interest of either of them to work in isolation: They can both benefit from specialization and exchange. If the two women divide the work, the younger woman should specialize in tasks where she is most productive (e.g., fishing), while the older woman should focus on tasks where her productivity is only slightly lower (e.g., cooking). Such an arrangement will increase overall production and benefit both.

The lawyer's typist

The famous economist and Nobel laureate Paul Samuelson (1915-2009) provided another example in his well-received textbook of economics, as follows: Suppose that in a given city the best lawyer also happens to be the best secretary. However, if the lawyer focuses on the task of being a lawyer, and instead of practicing both professions at the same time, hires a secretary,

¹Actually, strictly speaking, this is not correct, since the original description of the idea can already be found in 1815 in the *Essay on the External Corn Trade* by Robert Torrens. However, David Ricardo formalized the idea in his 1817 book using a convincing and simple numerical example. For more information on this, as well as a great introduction to the Ricardian model and more, I recommend Suranovic [2012].

both the lawyer's and the secretary's performance would increase because it is more difficult to be a lawyer than a secretary.²

2.5.2. Autarky: An example of two different persons

Assume that A and B want to produce and consume y and x respectively. Because of the complementarity of the two goods, each must be consumed in combination with the other. The utility function of both persons is $U_{\{A;B\}} = min(x,y)$. Both persons work for 4 time units, that is, their _units of labor} are $L_A = L_B = 4$. A needs 1 units of labor to produce one unit of good y and 2 units of labor to produce one unit of good x. B needs $\frac{4}{10} = 0.4$ units of labor to produce one unit of good x. Thus, their **labor input coefficients}, which measure the units of labor required by a subject to produce one unit of good, are $a_y^A = 1, a_x^A = 2, a_y^B = 0.4, a_x^B = 0.4$:

input coefficient (a)	А	В
Good y	1	0.4
Good x	2	0.4

Spending all her time in the production of y, A can produce $\frac{L_A}{a_y^A} = \frac{4}{1} = 4$ units of y and B can produce $\frac{L_B}{a_y^B} = \frac{4}{0.4} = 10$ units of y. Spending all her time in the production of y, A can produce $\frac{L_A}{a_x^A} = \frac{4}{2} = 2$ units of x and B can produce $\frac{L_B}{a_x^B} = \frac{4}{0.4} = 10$ units of x. Knowing this, we can easily draw the production possibility frontier curves (PPF) of person A and B as shown in Figure 2.11.

²In the first eight editions the example comprised a male lawyer who was better at typing than his female secretary, but who had a comparative advantage in practising law. In the ninth edition published 1973, both lawyer and secretary were assumed to be female [see Backhouse and Cherrier, 2019]. Unfortunately, women are still discriminated against in introductory economics textbooks [see Stevenson and Zlotnik, 2018].

In autarky, both person maximize their utility: Individual A can consume $\frac{4}{3}$ units of each good and individual B can consume 5 units of each good. The respective indifference curves are drawn in dashed blue lines in Figure 2.11.

Exercise 2.5. Indifference curves for perfect complementary goods

- a) Name some real world examples of goods that are perfectly complementary.
- b) The blue dashed lines in Figure 2.11 represent the indifference curves of individual A and B. The upward sloping dashed black line is denoted with "possible consumption path'. Explain, why is it not correct–in strict sense–to name it like that?

2.5.2.1. Can person A and B improve their maximum consumption with cooperation?

Let us assume the two persons come together and try to understand how they can improve by jointly deciding which goods they should produce. If we assume that both persons redistribute their joint production so that both have an incentive to share and trade, we can concentrate on the total production output. Their joint PPF curve can then be drawn in two ways:

1. Person A specializes in good x, then the joint production possibilities are presented in Figure 2.12.

If A produces only good x, as shown in Figure 2.12, we see that A and B can consume a total of 6 units of goods x and y. This is less in total than in autarky, where A can consume $\frac{4}{3}$ units of each good and person B can consume 5 units of each good, giving a combined consumption of $\frac{19}{3} = 6, \overline{6}$.

2. Person A specializes in good y, then the joint production possibilities are presented in Figure 2.13.

If A produces only good y, as shown in Figure 2.13, we see that A and B can consume a total of 7 units of goods x and y. Thus, both can be better off compared to autarky, since the total

quantity distributed is larger. Thus, we have an **Pareto improvement} here because at least one person can be better off compared to autarky.

In Figure 2.14, the three possible consumption scenarios are marked with a dot and the PPFs of person A specializing in the production of good x ($PPF_{A\to x}$) or good y ($PPF_{A\to y}$) are also drawn. The scenario with person A specializing in the production of good y is the output maximizing solution.³

2.5.2.2. Optimal production in cooperation

In order to produce the most bundles of both goods, the optimal cooperative production is

production in cooperation	А	В
Good y	4	3
Good x	0	7

2.5.2.3. Check for absolute advantage

Employing 10 units of labor B can produce more of both goods and hence has an absolute advantage in producing x and y. Formally, we can proof this by comparing the input coefficients of both countries in each good:

absolute advantage	А		В	
Good y	$a_y^A = 1$	>	$0.4 = a_y^B$	\Rightarrow B has an absolute advantage in
Good x	$a_x^A = 2$	>	$0.4 = a_x^B$	good y \Rightarrow B has an absolute advantage in good x

³Note that this is also true for any other utility function, since $PPF_{A \to y}$ is always above $PPF_{A \to x}$.

Figure 2.14.: World PFF in autarky when A specialize in producing good y

2.5.2.4. Check for comparative advantage

The slope of the PPFs represent the __marginal rate of transformation}, the terms of trade in autarky and the opportunity costs of a country. The opportunity costs are defined by how much of a good x (or y) a person (or country) has to give up to get one more of good y (or x). For example, A must give up $\frac{a_x^A}{a_y^A} = \frac{1}{2} = 0.5$ of good x to produce one more of good y. Thus, A's opportunity costs of producing one unit of y is the production foregone, that is, a half good x. All opportunity costs of our example are:

opportunity costs of producing	А	В
$ \begin{array}{c} \dots 1 \text{ unit of good } y: \\ \dots 1 \text{ unit of good } x: \end{array} $	$\frac{\frac{a_y^A}{a_x^A}}{\frac{a_x^A}{a_y^A}} = \frac{1}{2} = 0.5 \text{ (good x)}$ $\frac{\frac{a_x^A}{a_y^A}}{\frac{a_y^A}{a_y^A}} = \frac{2}{1} = 2 \text{ (good y)}$	$\frac{\frac{a_y^B}{a_x^B}}{\frac{a_x^B}{a_y^B}} = \frac{0.4}{0.4} = 1 \pmod{\text{x}}$ $\frac{\frac{a_x^B}{a_y^B}}{\frac{a_y^B}{a_y^B}} = \frac{0.4}{0.4} = 1 \pmod{\text{y}}$

Person A has a comparative advantage in producing good y since A must give up less of good x to produce one unit more of good y than person B must. In turn, Person B has a comparative advantage in producing good x since B must give up less of good y to produce one unit more of good x than person B must give up of good y to produce one unit more of good x. Thus, every person has a comparative advantage and if both would specialize in producing the good in which they have a comparative advantage and share their output they can improve their overall output as was shown in Figure 2.14.

An alternative and more direct way to see the comparative advantages of A and B, respectively, is by comparing the two input coefficients of A with the two input coefficients of B:

$$\frac{a_y^A}{a_x^A} \lessapprox \frac{a_y^B}{a_x^B} \quad \Rightarrow \quad \frac{1}{2} < \frac{0.4}{0.4}$$

(a) Consu	ımpt	ion	(b) Exports and i	mpo	rts of go
	А	В		А	В
Good y	2	5	$\overline{\text{Good } y}$	-2	2
Good x	2	5	Good x	2	-2

Table 2.5.: Consumption and trade when all gains from cooperation goes to A

Table 2.6.: Consumption and trade when all gains from cooperation goes to B

(a) Consumption	(b) Ex	ports and	impor	rts of goods
A B		Trade	А	В
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Good y Good x	$\frac{-\frac{2}{3}}{\frac{4}{3}}$	$\frac{\frac{2}{3}}{-\frac{4}{3}}$

Thus, A has a comparative advantage in y and B in x.

Comparative advantage: Definition

Economic subjects (e.g., individuals, households, firms, countries) should specialize in the production of that good in which they have a comparative advantage, that is, the ability of an economic subject to carry out a particular economic activity (e.g., producing goods) at a lower opportunity cost than a trade partner.

- \$\frac{a_y^A}{a_x^A} > \frac{a_y^B}{a_x^B}\$ ⇒ country A (B) has a comparative advantage in good x (y)
 \$\frac{a_y^A}{a_x^A} < \frac{a_y^B}{a_x^B}\$ ⇒ country A (B) has a comparative advantage in good y (x)
 \$\frac{a_y^A}{a_x^A} = \frac{a_y^B}{a_x^B}\$ ⇒ no country has a comparative advantage

2.5.2.5. Trade structure and consumption in cooperation

If A specializes in the production of y, she must import some of good y, otherwise she cannot consume a bundle of both goods as desired. In turn, B wants to import some of the good y. B will not accept to consume less than 5 bundles of y and x as this was his autarky consumption. Thus, B wants a minimum of 2 units of good y from A. A will not accept to give more than $4-\frac{4}{3}=2\frac{2}{3}$ items of good y away and he wants at least $\frac{4}{3}$ items of good x. Overall, we can define three trade scenarios:

- 1. All gains from cooperation goes to A (see Figure 2.15 and Table 2.5);
- 2. All gains from cooperation goes to B (see Table 2.6); or
- 3. The gains from specialization and trade are shared by A and B with a trade structure between the two extreme scenarios.

Each of the three cases yield a *Pareto-improvement*, that is, none gets worst but at least one gets better by mutually decide on production and redistribute the joint output. In the real world, however, it is often difficult for countries to cooperate and decide mutually on production and consumption. In particular, it is practically difficult to enforce redistribution of the joint outcome so that everyone is better off. So let's examine whether there is a mechanism that yields trade gains for both trading partners.

Figure 2.15.: Bilateral trade with one winner

2.5.3. The Ricardian model

To understand the underlying logic of the argument, let us formalize and generalize the situation of two subjects and their choices for production and consumption.

In particular, the Ricardian Model build on the following assumptions:

- 2 subjects (A,B) can produce 2 goods (x,y) with
- technologies with constant returns to scale. Moreover,
- production limits are defined by $y^i Q_y^i + a_x^i Q_x^i = L^i$ \$, where a_j^i denotes the unit of labor requirement for person $i \in \{A, B\}$ in the production of good $j \in \{x, y\}$ and Q_j^i denotes the quantity of good j produced by person i, and Q_j^i the quantity of good j produced by person i, and Q_j^i the quantity of good j produced by person i. (Imagine they both work 4 hours).
- Let a_j^i denote the so-called labor input coefficients, that is, the units of labor required by a person $i \in \{A, B\}$ to produce one unit of good $j \in \{x, y\}$.
- Suppose further that person B requires fewer units of labor to produce both goods, that is, $a_y^A > a_y^B$ and $a_x^A > a_x^B$, and that
- a comparative advantage exists, that is, $\frac{a_y^B}{a_x^B} \neq \frac{a_y^A}{a_r^A}$.

Ricardian theorem

If each country specialize in the production in the good for which it has a comparative advantage and exports this good, both countries gain from trade when the new world market price relation, $\frac{p_y}{p_*^*}$, lies between the price relations of both countries⁴

$$\frac{a_y^B}{a_x^B} = \frac{p_y^B}{p_x^B} > \frac{a_y^*}{a_x^*} = \frac{p_y^*}{p_x^*} > \frac{p_y^A}{p_x^A} = \frac{a_y^A}{a_x^A}$$

because the consumption possibilities enlarge for both countries compared to a situation with no trade.

2.5.4. Distribution of welfare gains

The Ricardo theorem tells us nothing about the precise distribution of welfare gains. In this section, I will show that the distribution of welfare gains is the result of relative supply and demand in the world.

To illustrate this, consider Ricardo's famous example⁵ of two countries (England and Portugal) that can produce cloth T and wine W with different input requirements, namely:

$$w_j L^i_j = p^i_j x^i_j.$$

Setting $w_i = 1$ as the numeraire and re-arranging the equation, we get

$$p_j^i = \frac{L_j^i}{x_j^i} = a_j^i.$$

⁴In order to see that the relative prices within a country equals the relative productivity parameters, consider that nominal income of labor in producing good $j \in \{x, y\}$, $w_j L_j^i$, must equal the production value, that is, $p_j^i x_j^i$:

⁵The example is explained by Suranovic [2012] in greater detail.

$$\frac{p_W^P}{p_T^P} = \frac{a_W^P}{a_T^P} = \frac{8}{9} < \frac{12}{10} = \frac{a_W^E}{a_T^E} = \frac{p_W^E}{p_T^E}$$

Thus, England has an absolute disadvantage in the production of both goods, but England has a __comparative advantage in the production of cloth} and Portugal has a __comparative advantage in the production of wine}. Let us further assume that both countries are similarly endowed with labor, \bar{L} . Then we can calculate the world supply of cloth and wine given relative world prices, $\frac{p_T}{p_W}$. Since we know that Portugal will only produce wine if the price of wine relative to cloth is above $\frac{p_W}{p_T} = \frac{8}{9}$ and England will only produce wine if the price of wine relative to cloth is above $\frac{p_W}{p_T} = \frac{12}{10}$, we can draw the relative world supply of goods as shown in the left panel of Figure 2.16. Note that α in the figure means $\frac{1}{a}$. Similarly, we can draw in the world supply of clothes, shown in the left panel of Figure 2.16.

Whether both countries specialize totally in the production of one good, or only one country does so depends on world demand for both goods at relative prices. Since we know from the Ricardo Theorem that the world market price relation, $\frac{p_T^*}{p_W^*}$, must be between the two autarky price relations:

$$\frac{p_T^P}{p_W^P} > \frac{p_T^*}{p_W^*} > \frac{p_T^E}{p_W^E}.$$
(2.3)

If world demand for cloth would be sufficiently high to have a world price of

$$\frac{p_T^P}{p_W^P} = \frac{9}{8}$$

Portugal would not gain from trade. On the contrary, if world demand for wine would be sufficiently high to have a world price of

$$\frac{p_T^P}{p_W^P} = \frac{10}{12}$$

England would not gain from trade. Thus, the price span between $\frac{10}{12}$ and $\frac{9}{8}$ says us which country gains from trade. For example, at a world price of

$$\frac{p_T^*}{p_W^*} = 1$$

about 57%

$$\begin{bmatrix} \left(1 - \frac{10}{12}\right) \\ \left(\frac{9}{8} - \frac{10}{12}\right) \approx 0.57 \end{bmatrix}$$
(2.4)

of the gains through trade will be distributed to Portugal and about 43% will be distributed to England.

In Figure 2.17, I show two demand curves of the World. The dashed demand curve represents a world with a relative strong preference on wine and the other demand curve represents a relative strong demand for cloth. Since Portugal has a comparative advantage in producing wine, they would happy to live in a world where demand for wine is relatively high, whereas the opposite holds true for England.

Exercise 2.6. Comparative advantage and opportunity costs (Solution A.8) Assume that only two countries, A and B, exist. Both countries are equally endowed with labor which is the only production factor. Both countries can produce either good y or good x. The table below gives the input coefficients, a, for both countries, that is, the units of labor needed to produce one unit of good y and good x, respectively. Assume that both countries have 12 units of labor available.

	Country A	Country B
Good y	1	3
Good x	2	4

- a) Name the country with an absolute advantage.
- b) Draw the production possibility curves in a y-x-diagramm.
- c) What are *opportunity costs*?
- d) Calculate how many goods of x country A has to give up to produce one unit more of good y.
- e) Calculate how many goods of y country A has to give up to produce one unit more of good x.
- f) Calculate how many goods of x country B has to give up to produce one unit more of good y.
- g) Calculate how many goods of y country B has to give up to produce one unit more of good x.
- h) Name the country with a comparative advantage in good y.
- i) Name the country with a comparative advantage in good x.

Exercise 2.7. The best industry is not competitive (Solution A.9) Assume that only two countries, A and B, exist. Both countries are equally endowed with labor which is the only production factor. Both countries can produce either good y or good x. The table below gives the input coefficients, a, for both countries, that is, the units of labor needed to produce one unit of good y and good x, respectively.

Good	Country A	Country B
Good y	10	9
Good x	12	10

Discuss absolute and comparative advantages. How much faster does B needs to in producing good y to become an exporter of that good?

Exercise 2.8. Comparative advantage and input coefficients (Solution A.10) Assume that only two countries, A and B, exist. Both countries are equally endowed with labor which is the only production factor. Both countries can produce either good y or good x. The table below gives the input coefficients, a, for both countries, that is, the units of labor needed to produce one unit of good y and good x, respectively.

	Country A	Country B
Good y	400	2
Good x	300	1

a) Name the country with an absolute advantage.

- b) Name the country with a comparative advantage in good y.
- c) Name the country with a comparative advantage in good x.

Exercise 2.9. Comparative advantage: Germany and Bangladesh (Solution A.11) The table below gives the unit of labor needed to produce one machine, one ship, and one cloth in Germany and Bangladesh.

	Machine	Ship	Cloth
Bangladesh	100	10000	50

Germany 5 50 3

- a) Which country has an absolute advantage in the production of machines, ships, and clothes?
- b) What is Germany's and Bangladesh's comparative advantage if we look only at machines and ships?
- c) What is Germany's and Bangladesh's comparative advantage if we look only at machines and clothes?
- d) What is Germany's and Bangladesh's comparative advantage if we look only at ships and clothes?
- e) Can you infer from the previous calculations which good Germany will export for sure and which good it will surely not export?

Exercise 2.10. Multiple choice: Ricardian model (Solution A.12)

Assume that only two countries, A and B, exist. Both countries are equally endowed with labor which is the only production factor. Both countries can produce either good y or good x. The table below gives the input coefficients, a, for both countries, that is, the units of labor needed to produce one unit of good y and good x, respectively.

	Country A	Country B
Good y	40	20
Good x	30	10

Which of the following statements is/are true?

- a) Country A has an absolute advantage in producing both goods.
- b) Country B has an absolute advantage in producing both goods.
- c) Country A has a comparative advantage in good y and a comparative disadvantage in good x.
- d) Country B has a comparative advantage in good y and a comparative disadvantage in good x.
- e) Trade will not occur between these two countries.

Exercise 2.11. Ricardian Model again (Solution A.13)

Assume that only two countries, A and B, exist. Both countries are equally endowed with the only production factor labor which can be used to produce either good y or good x. The table below gives input coefficients, a, for both countries, that is, the units of labor needed to produce one unit of good y and good x, respectively.

	Country A	Country B
Good y	11	22
Good x	8	16

Which of the following statements is true?

- a) Country A will export good y and import good x.
- b) Country B will export good y and import good x.
- c) Country B has an absolute disadvantage in producing both goods.
- d) Trade will not occur between these two countries.

Exercise 2.12. Bikes and bike tires (Solution A.14)

Consider two countries, A and B. Both have a labor endowment of 24, $L^A = L^B = 24$. In both countries two goods can be produced: bikes, which are denoted by y, and bike tires, which are denoted by x. Assume that the two goods can only be consumed in bundles of one bike and two bike tires. The following graph illustrates the production possibility (PPF) curve of both countries in autarky, i.e, country A and B do not trade with each other.

- a) How many **complete bikes**, that is, one bike with two tires, can be consumed in autarky in country A and B, respectively. Draw the production points for country A and B into the figure. (A calculation is not necessary.)
- b) Calculate —for both countries—the input coefficients, a, that is, the units of labor needed to produce one unit of good y and good x, respectively. Fill in the four input coefficients in the following table:

	Co	untry A	Coi	untry B
Good y (bikes)	()	()
Good x (bike tires)	()	()

c) Fill in the ten gaps () in the following text:

If we assume that both countries specialize completely in the production of the good at which they have a comparative advantage and trade is allowed and free of costs, then

- country A produces () units of bikes and () units of tires and
- country B produces () units of bikes and () units of tires.

Moreover, since both countries aim to consume complete bikes, that is, one bike with two tires,

- country A exports () units of () and imports () units of () and
- country B exports () units of () and imports () units of ().

Under free trade - country A can consume () complete bikes and - country B can consume () complete bikes.

Exercise 2.13. Ricardian model MC (Solution A.15)

Assume that only two countries, A and B, exist. Both countries are equally endowed with the only production factor labor which can be used to produce either good y or good x. The table below gives input coefficients, a, for both countries, that is, the units of labor needed to produce one unit of good y and good x, respectively.

	Country A	Country B
$\overline{\text{Good } y}$	321	899
Good x	459	999

Which of the following statements is true?

- a) Country A has an absolute advantage in both goods.
- b) Country A has an absolute advantage in good y
- c) Country A has a comparative advantage in both goods.
- d) Country B has a comparative advantage in both goods.
- e) Country A has a comparative advantage in good y.
- f) Country B has a comparative advantage in good y.

2.6. Trade because of different endowments (Heckscher-Ohlin model)

Learning objectives

- Understand the expansion of the Ricardian trade model through the introduction of multiple production factors.
- Learn that differences in countries' factor endowments drive international trade patterns according to the Heckscher-Ohlin framework.
- Understand that a country's comparative abundance in a particular factor gives it a

comparative advantage in goods that use that factor intensively.

- Understand the tendency of international trade to equalize factor prices across countries.
- Reflect on how trade can serve as a substitute for the physical mobility of production factors between countries.

Recommended reading: Suranovic [2012, Chapters 5]

2.6.1. Nobel prize winning theory

The Model which we discuss in this section is named after two Swedish economist, Eli Heckscher (1879-1952) and Bertil Ohlin (1899-1979). Bertil Ohlin received the Nobel Prize in 1977 (together with James Meade). The HO-Model, as it is often abbreviated, was the main reason for the price. Here is an excerpt of the Award ceremony speech:

Your Majesties, Your Royal Highnesses, Ladies and Gentlemen,

The question why individuals, firms and nations exchange goods and services with each other, and how these processes are influenced by government policies, may be regarded as the basic issue in the science of economics. In the case of exchange between countries, the dominating theory was for a long time – from the beginning of the 19th century – David Ricardo's theory of comparative advantage. Ricardo explained there the structure of foreign trade by differences in the production technology between nations. Over the years the theory was gradually improved upon in various ways, but a more basic overhaul did not take place until Bertil Ohlin in the early 1930's published his work Interregional and International Trade, which is now a classic, and James Meade in the 1950's came out with his important volumes on The Theory of International Economic Policy.

Bertil Ohlin showed in this work, which to some extent was inspired by a remarkable article by Eli Heckscher, that foreign trade may arise even if the production technology were identical in different nations. It is enough that the supplies of the factors of production of various kinds – such as labor of different types, capital, and land – differ among nations. The starting point of Ohlin's theory is that a country tends to be an exporter of commodities that use relatively large amounts of the factors of production which are in ample supply as compared to domestic demand – in the hypothetical case without foreign trade. For instance, to take a simple example, if land is abundant in Australia while labor is relatively plentiful in England, we would expect Australia to be an exporter of commodities which for their production require much land, such as wool, while England would be an exporter of commodities the production of which requires relatively much labor, such as textiles.

From this simple theoretical structure, the so-called Heckscher-Ohlin model, follow a number of interesting theorems. One of them, the factor price equalization theorem, tells us that foreign trade tends to equalize the prices of the factors of production in different countries. For instance, when Australia starts to export land-intensive goods, the demand for land goes up relative to labor, with a rise in land prices as a result, while the export of labor-intensive goods

by England pulls up wages there relative to the price of land. Thus, trade in commodities tends to have the same effects on the prices of the factors of production as if the factors themselves could move freely between countries. In this sense, commodity trade is a substitute for international mobility of the factors of production. Another inference from Ohlin's theory is that a tariff on a labor-intensive good, such as textiles, affects the distribution of income in favor of labor in the importing country, while a tariff on a capital-intensive commodity, such as wool or steel, results in an income redistribution in favor of the owner of capital.

Source: www.nobelprize.org

The Ricardo model explains international trade as advantageous because of comparative advantages that are the result of technological differences. This means that comparative advantage in the Ricardian model is solely the result of **productivity differences**. The size of a country or the size of the countries' endowments does not matter for comparative advantage in the Ricardian model because there is only one factor of production in Ricardian models, namely labor. However, the assumption that there is only one factor of production is unrealistic, and we should ask what happens **if there is more than one factor of production but no productivity differences**? What happens if the two factors are available differently in different countries? What is the significance of endowment differences for international trade? And which owner of a factor of production will be a winner when a country opens up to world trade, and who will lose? The HO model can provide answers to these questions.

In Table 2.15, I show that countries do indeed differ substantially in their total factor productivity, capital stock, and labor endowments, which are likely correlated with total population.

Table 2.10 Endowment untereneos across countries in 2010				
RegionCode	Capital stock at current PPPs (in mil. 2011USD)	Population (in millions)	Capital stock per capita	
ITA	10421041	60	174885	
ESP	7806612	47	167518	
FRA	10405968	65	160395	
GBR	9973122	63	159019	
DEU	12687682	80	157738	
USA	48876336	310	157729	
AUS	3332890	22	150382	
CAN	5065392	34	148431	
JPN	17161376	127	134790	
SAU	3716382	28	132300	
KOR	6052155	49	123287	
TWN	2835890	23	122549	
ROU	1271652	20	62647	
VEN	1765996	29	60905	
BRA	9869311	199	49691	
RUS	6746460	143	47126	
POL	1769004	39	45859	
THA	2977965	67	44652	
IRN	3234132	74	43555	
ARG	1773984	41	43034	

Table 2.15.: Endowment differences across countries in 2010

	Capital stock at current PPPs (in	Population (in	Capital stock per
RegionCode	mil. 2011USD)	millions)	capita
MEX	5054693	119	42613
TUR	2938288	72	40634
UKR	1616826	46	35420
IDN	8146254	242	33716
COL	1446480	46	31501
CHN	42218080	1341	31483
PER	681036	29	23185
PHL	1560017	93	16767
IRQ	443733	31	14375
IND	15356803	1231	12475

Source: Penn World Tables 9.0

2.6.2. The Heckscher-Ohlin (factor proportions) model

Assumptions:

- 1. **Two countries**: Home country and foreign country. Variables referring to foreign countries are marked with an asterisk, *.
- 2. Two goods: x and y.
- 3. Two factors of production: K and L. This is new in relation to the Ricarkian model! Let's name the factors K and L, which stands for capital and labor.
- 4. Goods differ in terms of their need for factors of production:

$$\frac{K_y}{L_y} \neq \frac{K_x}{L_x}$$

This means that one good must be produced in a capital-intensive way and the other in a labor-intensive way. If we assume that good y is capital intensive and good x is labor intensive in production, we can write:

$$\frac{K_y}{L_y} > \frac{K_x}{L_x}.$$

In this inequality, the quantity of capital required to produce good y, K_y , is on the lefthand side relative to the quantity of labor required to produce good y, L_y , that is, the capital intensity of good y. The capital intensity of good x is on the right-hand side of the inequality. Rewriting this inequality, we can express it in terms of labor intensities: $\frac{L_y}{K_y} < \frac{L_x}{K_x}$. It should be clear that both inequalities say the same thing.

5. No technology differences between countries: Since we already know from Ricardian theory that productivity or technology differences are a source of international trade, we do not want to explain the same thing again with the HO model. So we assume that all input coefficients are the same in all countries.

6. Different relative factor endowments:

$$\frac{K}{L} \neq \frac{K^*}{L^*}.$$

Since countries are assumed to have different factor endowments, the model links a country's trade pattern to its endowment of factors of production. The capital-labor ratio in the home country, $\frac{K}{L}$, must differ from the ratio abroad. Suppose the home country is capital-rich and the foreign country is labor-rich. Then we have the following ratios between capital and labor in the two countries:

$$\frac{K}{L} > \frac{K^*}{L^*}.$$

This means that the capital-labor ratio (a country's capital intensity) is higher in the home country than abroad. In terms of the ratio between labor and capital, that is, the labor intensity of a country, this can be expressed as follows: $\frac{L}{K} < \frac{L^*}{K^*}$. It should be clear that both inequalities say the same thing.

- 7. Free factor movement between sectors Both factors can be used in the production of both goods. Note that cross-country movement of factors (migration, foreign direct investment) is not allowed.
- 8. No trade costs Final products can be traded without any costs.
- 9. Equal tastes in countries and homothetic preferences Consumers in both countries have the same utility function. Homothetic preferences simply mean that for given relative prices, income does not affect the ratio of consumption.

2.6.3. Intuition

- Consider that the home country has relatively more capital and the foreign country relatively more labor and that the good y is capital intensive in production whereas the good x is labor intensive.
- Then it is relatively cheap for the home country to produce the capital-intensive good because it is endowed with a lot of capital, while it is relatively costly to produce the good with which the country is hardly endowed.
- Thus, the home country has a comparative advantage in producing the capital-intensive good.
- The opposite is true for the foreign country.

Heckscher-Ohlin Theorem

The capital abundant country exports the capital-intensive good. The labor abundant country exports the labor-intensive good.

In other words:

A country export goods that are intensive in its relatively abundant factor and will import goods that are intensive in its relatively scarce factor.

• As a result of the Heckscher-Ohlin theorem, output of the good in which the country has a comparative advantage would increase. The capital intensive country will produce more capital intensive goods and the labor intensive country will produce more labor intensive goods.

- As the production of the good that makes intensive use of the abundant resource increases, the demand for that resource will also increase. Demand for the scarce resource will also increase, but to a lesser extent.
- If production of the good that intensively uses the scarce resource decreases, both abundant and scarce resources will be released, but relatively more of the scarce resource than of the abundant resource.
- In autarky, the relatively scarce factor in the home country was labor and factor prices were as follows:

$$\frac{w}{r} > \frac{w^*}{r^*}$$

- After opening to trade, production shifts to the home country so that the wage falls $(w \downarrow)$ and the rent rises $(r \uparrow)$.
- After opening to trade, production shifts abroad so that the wage rises, $w^* \uparrow$, and the rent falls, $w^* \downarrow$.
- This reallocation process, and hence the change in factor prices, continues until factor prices are equal in all countries:

$$\frac{w}{r} = \frac{w^*}{r^*}$$

• Figure 2.19 visualizes this line of reasoning. - I recommend a clip of Mike Moore explaining how trade based on factor endowments affects wages and returns to capital, see this video.

Figure 2.19.: HO Model and factor prices

Factor-Price Equalization Theorem

The prices of the two factors of production (wage and rent) will be equalized across countries as a result of international trade in goods.

2.6.3.1. Why does the Factor-Price Equalization Theorem not (fully) hold?

In the real world, factor prices do not equalize due to frictions such as transportation costs, trade barriers, and the presence of goods that are rarely or never traded.

2.6.3.2. Trade as an alternative to factor movements

The factor price equalization theorem contains an interesting insight: if a country allows free trade in its products, it will automatically export the abundant factor indirectly in the form of goods that intensively use the abundant factor.

Exercise 2.14. Ricardo and Heckscher-Ohlin

- a) Discuss the main differences of the Ricardian Model and the Heckscher-Ohlin Model.
- b) Assume that only two countries, A and B, exist. Both countries are equally endowed with the only production factor labor which can be used to produce either good y or good x. The table below gives input coefficients, a, for both countries, that is, the units of labor needed to produce one unit of good y and good x, respectively. Name the country with a comparative advantage in good y.

	Countries	
	А	В
Good y Good x	10 1	$\frac{11}{2}$
Good y Good x	10 1	$\frac{11}{2}$

Exercise 2.15. HO-Model in one figure (Solution A.16)

Suppose consumers from country A and the foreign country B like to consume two goods that are neither perfect substitutes nor perfect complements. Moreover, assume for simplicity that both countries have the same size but have different endowments, as stated in the assumptions above. Moreover, assume the factor intensity of production as stated in the assumptions above.

- a) Sketch the production frontiers for both countries in autarky. Show graphically the relative price in autarky.
- b) You will see that the relative prices of goods differ across countries:

$$\left(\frac{p_1}{p_2}\right) \neq \left(\frac{p_1}{p_2}\right)^*$$

That means, the Home country A has a comparative advantage in producing good 1.

- c) Now, sketch the world market price that will maximize the utility.
- d) Where are the new production and consumption points of both countries?
- e) Show in the graphic how much each country trades.
- f) I recommend a clip of Mike Moore who also explains the HO-Model with production possibility curves, see this video.

Exercise 2.16. Multiple choice: HO-Model (Solution A.17) Given are the assumptions of the Heckscher-Ohlin Model. In particular, assume that only two countries, A and B, and two goods, y and x, exist. Consider the following data:

	Countries	
	А	В
_		
Factor Endowments	-	-
Labor Force	20	30
Capital Stock	30	40

If good y is capital intensive in production and good x is labor intensive in production then, following the Heckscher-Ohlin Theorem, ...

- a) ... country A will export good y.
- b) ...country B will export good y.
- c) ...both countries will export good y.
- d) ...trade will not occur between these two countries.

2.7. The specific factor model

Figure 2.20.: Not everybody wins with free trade

Source: otherwords.org

From the Ricardian model, we know that trade is a positive-sum game. If free trade is beneficial to a country, as Ricardo predicts, why isn't everyone happy with free trade? In democratic societies, policymakers sometimes adopt protectionist trade policies because of pressure from interest groups and public demand. The discrepancy between the promises and potential benefits of trade on the one hand and the negative consequences of free trade for many groups on the other is illustrated in Figure 2.20. The models so far do not give us a way to see which groups actually suffer from free trade, and thus we have no clue why there are incentives for interest groups to oppose free trade. Are anti-free trade policy preferences the result of ignorance, general worldviews, political ideology, environmental attitudes, social trust, or other factors? Well, these things may play a role, but there are also economic factors, that is, the self-interest of individuals and groups within an economy, that can account for anti-free trade attitudes. In the

following sections, we will discuss a theory that shows that while free trade benefits countries as a whole, not everyone within a country benefits equally. Some benefit more than others, and some are actually made worse off by free trade.

In the next two subsections, we derive some key hypotheses that free trade favors those people in a country who have abundant factors of production and disadvantages those who have scarce factors. Moreover, free trade favors investors and workers in export-oriented industries with comparative advantages.

2.7.0.1. Assumptions

The sector-specific model, also known as the Ricard-Viner model, can show that there are winners and losers in international trade. The model is based on the following assumptions:

- 1. 2 countries $i \in \{A, B\}$
- 2. 2 goods (sectors) $g \in \{1, 2\}$
- 3. 3 factors of production: Labor L, capital specific to the production of good 1, K_1 , and capital specific to the production of good 2, $K_2^{\ 6}$. The technologies for the production of both goods are now represented by two production functions $Q_1 = F_1(\bar{K}_1, L_1)$ and $Q_2 = F_2(\bar{K}_2, L_2)$, where both factors of production have positive but decreasing marginal products
- 4. The capital allocated to each sector is fixed for both countries: $K_1 = K_1, K_2 = K_2$
- 5. The labor assigned to each sector $(L_1 \text{ and } L_2)$ can change in response to external shocks: $\bar{L} = L_1 + L_2$
- 6. perfect competition
- 7. perfect market clearing (no unemployment)
- 8. country A is a small open economy (we consider only country A and therefore do not use a subscript for countries in the following)

2.7.0.2. The production possibility frontier with two factor inputs:

The two production functions, the fixed endowments and the distribution of labor determine the aggregate PPF. The PPF, which is the product of two production functions $(F_1 \text{ and } F_2)$, is shown in Figure 2.21. The figure shows, for both production points A and B, how the mobile factor of production, labor, must be reallocated from sector 2 to sector 1 in order to produce more of good 1 in production point B. The second and fourth quadrants show the respective production functions of sectors 1 and 2.

2.7.0.3. Equillibrium in autarky:

• Depending on a country's demand for good 1 and 2 a production point on the PPF is chosen at which it must hold that the slope of the PPF curve and the price relation (that is, relation of marginal product of labor in sector 1 and sector 2) must be equal:

$$\frac{p_1}{p_2} = \frac{\frac{\partial F_2}{\partial L_2}}{\frac{\partial F_1}{\partial L_1}}$$

• What can we say about the rents of the production factors?

 $^{^{6}}$ You can think of capital specific to the production of manufacturing goods (good 1) and land specific to the production of food sector goods (good 2)

Figure 2.21.: PPF with two factors and positive but declining marginal products

• From the assumption of perfect competition it follows that firms do not make a positive profit in equilibrium, $\pi \stackrel{!}{=} 0$. Thus, the equilibrium wage for sectors $g \in \{1, 2\}$ are given by the profit maximizing of firms

$$\begin{split} \pi_g &= p_g \cdot F_g(K_g, L_g) - w_g L_g - r_g K_g \\ \frac{\partial \pi_g}{\partial L_q} &= p_g \cdot \frac{\partial F_g}{\partial L_q} - w_g \stackrel{!}{=} 0 \qquad \Leftrightarrow w_g = p_g \frac{\partial F_g}{\partial L_q} \end{split}$$

• We know that labor can move freely between sectors and an equilibrium exists when there are no incentives to move any further. That is the case when wages in both sectors are equal, $w_1 = w_2$. Thus, we can express wages in terms of purchasing power in units of good 1 as follows:

$$\begin{split} w_1 &= p_1 \frac{\partial F_1}{\partial L_1} \quad \text{and} \quad w_2 = p_2 \frac{\partial F_2}{\partial L_2} \\ \Rightarrow &w = p_1 \frac{\partial F_1}{\partial L_1} = p_2 \frac{\partial F_2}{\partial L_2} \\ \Leftrightarrow &\frac{w}{p_1} = \frac{\partial F_1}{\partial L_1} \\ \Leftrightarrow &\frac{w}{p_2} = \frac{\partial F_2}{\partial L_2} \end{split}$$

• Figure 2.22 presents the equilibrium wage and the optimal allocation of labor into sector 1 and 2.

2.7.0.4. Equilibrium under free trade:

Assume the price of good 1 and good 2 increase due to a trade opening in the same proportion. What happens with the real wage and the real incomes of capital-1 and capital-2 owners? The answer is: no real changes occur.

• The wage rate, w, rises in the same proportion as the prices, so the real wages are unaffected. In Figure 2.22 this can be shown by shifting both curves upward.

• The real incomes of capital owners also remain the same because there will be no reallocation of labor across sectors.

Now, assume only the price of good 1 rises for 10% while p_2 remains fixed, $\frac{p'_1}{p_2} > \frac{p_1}{p_2}$. What happens with the real wage and the real incomes of capital-1 and capital-2 owners? The answer is: some win, some lose, and some maybe win.

2.7.0.5. Wages:

- $p_1 \frac{\partial F_1}{\partial L_1}$ rises and hence labor reallocates from sector 2 to sector 1 $(L_1 \uparrow \text{ and } L_2 \downarrow)$. This is shown in Figure 2.23.
- This reallocation of labor has some implications for the real wages measured in purchasing power of good 1 and 2, respectively:
- The price of good 1 has increased by 10%, the wage has however increased by less than 10% (compare the length of BC and BD in the figure), whereas the price for food stays constant.
- Thus, the purchasing power in buying good 2 increased, whereas the purchasing power in buying good 1 decreased. Hence, workers gain when buying good 2 but lose when buying good 1
- Overall, the welfare effect from real wages is unclear and depends on preferences.

2.7.0.6. Owner of capital-1:

- Owners of capital-1 receive a 10% higher price on their products but have to pay a less than 10% higher wage.
- Overall, capital-1 owners gain from free trade because they can employ more workers (at a higher price) now.

2.7.0.7. Owner of capital-2:

- Owner of capital-2 receive the same price on their products but have to pay a higher wage.
- Overall, capital-2 owners lose from free trade because they can employ less workers at a higher price now.

3. Trade policy

In this chapter, we discuss countries' incentives and opportunities to influence trade flows and the welfare implications of trade policy. In particular, we provide information on how the World Trade Organization organizes the world trading system.

In many countries, including the U.S. (see Figure 3.1), people tend to believe that it is better to buy at home than abroad. A Statement of The White House on July 28, 2021 says:

"The President believes that when we spend American taxpayers' dollars, it should support American workers and businesses. In his first week in office, President Biden signed Executive Order 14005, Ensuring the Future is Made in All of America by All of America's Workers, launching a whole-of-government initiative to strengthen the use of federal procurement to support American manufacturing.'

There are intuitive reasons to think that way. However, there are also some logical and persuasive arguments that confront that point of view. Please read the following quotes and discuss whether or not buying locally can be a welfare-enhancing strategy. The first excerpt is entitled with 15 Reasons to Buy American Made Products and stems from www.buydirectusa.com:

Next time you are in a store or shopping online look for the Made in USA label. The job you save by doing so could one day be your own!

- 1. When you buy American products you support American workers. Existing jobs are saved and more employment opportunities are created.
- 2. When you buy American Made products you support companies that are doing business in America.

3. Trade policy

- 3. Hundreds of major American corporations are continuing to ship thousands of jobs overseas. Displacing the American worker.
- 4. Since 2000. the United States has lost an incredible 32% of its manufacturing jobs.
- 5. To prevent more of our manufacturing cities all over America from being transformed from thriving communities into crime infested hellholes. What happened to Flint, MI and Camden, NJ can happen in any American city when corporations decide to move production overseas.
- 6. China is now the number one supplier of components that are critical to the operation of US defense systems. Does this bother anyone else?
- 7. According to the Economic Policy Institute The economy has been unable to create jobs due to America?s massive trade deficit.
- 8. U.S. trade policies encourage businesses to relocate production of goods to other nations without penalizing them for selling those goods back to the United States. This has resulted in millions of lost jobs for the American people.
- 9. Since 1975, the US has imported more goods than it has exported. In 2010, the US had a deficit of \$478 billion in global trade.
- 10. Over 30 years of trade policies such as NAFTA and CAFTA have taken jobs from the American people.
- 11. For every \$1 billion in goods imported, the economy loses 9,000 jobs.
- 12. No regulation or safety standards in products made overseas. Chinesemade drywall used in US homes is creating health and safety hazards.
- 13. Moral implications of the exploitation of foreign workers and violations of child labor laws overseas.
- 14. Environmental standards are minimal or non existent in how products are made overseas. This has an impact on everyone on the planet.
- 15. Chinese imports accounted for more than 60% of the recalls announced by the Consumer Product Safety Commission in 2007

UPDATE

- 16. COVID Where did that get released from?
- 17. When you buy products from the CCP, you are helping to fund their military which are a growing threat around the globe.
- 18. You don't have to swim to get the products you need.}

The second quote stems from Federal Reserve Bank of Dallas [2002, p. 16] who try to demystify the intuition of the buy local propagandists using a lot of data and some logical arguments of which you can read one here:

"A common myth is that it's better for Americans to spend their money at home than abroad. The best way to expose the fallacy in this argument is to take it to its logical extreme. If it's better for me to spend my money here than abroad, then it's even better to buy in Texas than in New York, better yet to buy in Dallas than in Houston...in my own neighborhood ...within my own family... to consume only what I can produce. Alone and poor."

3.1. Stylized facts on trade openness

While often mentioned in the academic literature and heavily discussed in politics, the term *trade openness* lacks an accepted definition. Mostly it refers to the outward or inward orientation of a given country's economy and touches many things including some measureable indicators such as

- Volume of trade: the sum of exports and/or imports (see Figure 3.2)
- Trade openness: trade to GDP ratio (see Figure 3.3, and Figure 3.4)
- Trade policy regime: tariff profile, border efficiency, ...
- Openness to FDI: FDI inflow to GDP, ease of doing business
- **Infrastructure:** logistics performance, communications infrastructure, telephone lines, Internet
- Political regime: stability, democratic, open minded, reliable, ...

Figure 3.2.: Global sum of exports

3.2. World Trade Organization

The World Trade Organization (WTO) (see Figure 3.8) is an intergovernmental organization that regulates international trade and replaced in 1995 the General Agreement on Tariffs and Trade (GATT). 164 (!) countries are currently member of the WTO. The WTO facilitates the smooth and free flow of global trade through the administration and monitoring of a rules-based system that should among others help to make international trade (policy) more predictable.

Figure 3.3.: Export plus imports as a share of GDP

Trade (exports plus imports) as share of GDP, 2017 Figures correspond to the 'trade openness index': the sum of exports and imports of goods and services, divided by gross domestic product.

Source: World Bank

OurWorldInData.org/international-trade • CC BY

Figure 3.4.: Globalization is not a new phenomenon

Source: World Bank
Figure 3.5.: Transportation and communication costs

Figure 3.6.: Number of Preferential Trade Agreements

Source: WTO Secretariat.

Figure 3.7.: Number of Regional Trade Agreements RTAs currently in force (by year of entry into force), 1948 - 2019

This set of rules is embodied in the WTO Agreements which are based on basic principles, that are described in the following three sub-sections.

3.2.1. Non-discrimination:

3.2.1.1. The Most Favoured Nation rule (MFN)

The MFN ensures non-discrimination between trading partners as it states that if a WTO member grants a country an advantage, it has to give such advantage to all WTO members. Thus, a WTO member has to grant the most favorable conditions under which it allows trade in a certain product type to all other WTO members. However, there is no rule without an exceptions. [For example, a member may provide preferential treatment only to some countries within a free trade area or customs union, without having to extend such better treatment to all members. Another exception enables developed members to give unilateral preferential treatment to goods imported from developing countries and least-developed countries (LDCs), without having to extend such better treatment to other members.

i Watch: E-Learning short videos - Most-favoured nation (MFN)

3.2.1.2. The **National Treatment Principle (NTP)

The NTP ensures non-discrimination between domestic and foreign products or services. It prohibits a member from favoring its domestic products over imported products. The NTP aims to provide equality of competitive conditions for imported products in relation to domestic products. Again, no rule without exceptions. [For example, there may be a security need to develop and purchase products domestically, or government procurement may, as is often the case, be used as a policy tool to promote smaller business, local industry or advanced technologies, see GATT Article III:8(a).

Watch:

E-Learning short videos - General Exceptions E-Learning short videos - The National Treatment Principle

3.2.2. Transparency

All WTO members must publish their trade regulations and changes therein. Moreover, members should respond to requests for information by other members.

3.2.3. More open and predictable trade

While the use of tariffs and quotas is not prohibited, members have committed to carry out multilateral negotiations periodically with a view to reduce the general level of trade barriers.

3.3. Trade anecdotes

3.3.1. The Dispute Settlement Body

To make decisions on trade disputes between governments that are adjudicated by the organization, the WTO has established the Dispute Settlement Body (DSB). The Dispute Settlement Body is a meeting of the WTO General Council that brings together all representatives of WTO member governments, usually at the ambassador level. Any WTO member that believes another member is in violation of an obligation or WTO rule can file a complaint. The goal of the Dispute Settlement Body is then to find a solution to the dispute, including any violation. The first step is consultations between governments. If the dispute cannot be resolved through discussions, the DSB makes a decision and the offending country is ordered to correct its policies. In most cases, countries find a mutually acceptable solution to the dispute. If the offending country does not correct its policy or provide other compensation, the WTO authorizes retaliatory action by the complaining country against the offending country. The adjudication process can take some time, as can the implementation of remedies to enforce or compensate for the violation of a WTO rule. Figure 3.9 provides an overview of the average number of active, that is, unresolved, complaints in recent years.

i Up-to-date sources of information

• Book about trade disputes from 1995 to 2020: Organization [2010]: WTO Dispute Settlement: One-page Case Summaries 1995–2020.

- WTO landing page about *Dispute settlement*
- Map of disputes between WTO Members

Note: Annual averages are calculated on the basis of the number of active proceedings per month (January to December) over the yearly period concerned (e.g. in 2017, 39 proceedings were active per month, on average). The 2018 average is based on the number of active proceedings in January, February and March. Source: www.wto.org

Referring to Reich [2017] the USA was a sinner. As Figure 3.11, Figure 3.13, and Figure 3.12 show, the US was the respondent in a relatively high proportion of all issued panel reports, namely in 38% of them (78 out 207). However, this high rate of US participation as respondent to complaints on trade violations is still much lower than its share in suspension requests. In the years I reviewed, there were 75 complainants that prevailed over the US. These are the cases where there is a potential for suspension requests in case of non-compliance. Indeed, 26 of these complainants ended up submitting suspension request against the US. That corresponds to 34.6% of the total. In other words, more than one third of the complainants who prevailed over the US in dispute settlement procedures, were forced to turn to trade sanctions in their effort to obtain compliance by the US.

Suspension requests are...

...the "last station" on the long winding road of the WTO dispute settlement procedures and they represent the targeted member state's unwillingness to submit to the system and to respect its international obligations.

When China acceded to the WTO, many scholars and policy makers were very skeptical about the willingness and ability of China to comply with international trading rules. However, the number of suspension requests that have been filed against China is zero (at the time when Reich [2017] published his study). China's record on compliance, at least for now and at least as measured by the number of suspension requests filed against it, seems to be perfect.

Exercise 3.2. God's diplomacy

Watch the speech of Boris Johnson and discuss what is meant with [*free trade is god's diplomacy*(https://twitter.com/mattwridley/status/1224392062587604994?s=20).

	9	0	
Average length	of process, months	Statutory deadline	Mean
Consultations	From the date of Request of consultations to the establishment of panel	2 months	6.6
Panel proceedings	From the establishment of panel to circulation of the panel report	6 months	15.1
Appeals	From the date of the Notice of Appeal until the date of the circulation of the Appellate Body	2-3 months	3.3
RPT, Bilateral agreement	Total length of agreed period between parties of RPT during which implementation must occur.		11.6
RPT, Arbitration Award	The average RPT awarded by the arbitrator in the awards circulated.		9.6
Compliance panel	From the date of the request to establish a first compliance panel until the date of circulation of the Compliance Panel Report.	3 months	8.7
AB compliance	From the date of the first Notice of Appeal until the date of circulation of the Appellate Body compliance report.		3.4
	Source: Johannesson and Mavroidis [201	7]	

Figure 3.10.: Duration of Each Stage of Proceedings

Figure 3.11.: Most active countries at the trade dispute settlement body

Member State:	As Complainant	As Respondent	Complainant + Respondent	As Third Party
United States	114	130	244	140
European Union ²⁴	97	84	181	165
Canada	35	20	55	119
China ²⁵	15	39	54	139
India	23	24	47	128
Brazil	31	16	47	111
Argentina	20	22	44	60
Japan	23	15	38	170
Mexico	24	14	38	82
Korea	17	16	33	112
	~		····7	

Source: Reich [2017]

Figure 3.12.: Map of trade disputes of the European Union

Source: www.wto.org

Figure 3.13.: Map of trade disputes of the United States of America

Source: www.wto.org

3.3.2. The Regional Comprehensive Economic Partnership (RCEP)

Figure 3.15.: The Regional Comprehensive Economic Partnership (RCEP)

Leaders and trade ministers of 15 Regional Comprehensive Economic Partnership (RCEP) countries pose for a virtual group photo in Hanoi, Vietnam on Sunday, Nov. 15, 2020. - Commit Vietnam on Sunday, Nov. 15, 2020.

The leaders of China and another 14 countries in the Asia-Pacific region (see Figure 3.15) have signed one of the biggest free trade deals in history, covering 2.2 billion people and 30% of the world's economic output. The deal will cover nearly 28% of global trade.

The Regional Comprehensive Economic Partnership (RCEP) was signed over a video link on November 15th after eight years of negotiations.

The deal sets the terms of trade in goods and services, cross-border investment and new rules for increasingly important areas such as electronic commerce and intellectual property. The effect

on the trade of finished goods between Asian nations will be particularly marked, analysts have said.

Trade and investment flows within Asia have vastly expanded over the past decade, a trend that has accelerated amid feuding between the US and China, in which the two superpowers have imposed billions of dollars' worth of punitive tariffs on each other's exports.

Unlike the CPTPP – the Comprehensive and Progressive Agreement for Trans-Pacific Partnership – and the EU, it does not establish unified standards on labor and the environment or commit countries to open services and other vulnerable areas of their economies.

Donald Trump in 2017 pulled out of the Trans-Pacific Partnership, a deal previously envisaged as a way of curbing China's influence.

3.3.3. Trade dispute between the USA and the European Union

i Watch: Trade wars: How they work and who they impact

In November 2021, President Biden has signed a deal to end tariffs on steel imports from the EU, which were imposed by his predecessor Donald Trump. But the agreement does not cover exports from the UK, putting British steelmakers at a disadvantage as is discussed in an article of the BBC, see *UK steel makers 'left behind' as US ends trade war*.

In June 2018, the U.S. government imposed tariffs on \notin 6.4 billion worth of European steel and aluminum exports, followed by additional tariffs in January 2020 affecting approximately \notin 40 million worth of EU exports of certain steel and aluminum derivatives. The EU imposed countervailing measures on \notin 2.8 billion worth of U.S. exports to the EU in June 2018 (a similar EU response followed the second set of U.S. tariffs in 2020). The remaining countervailing measures, affecting up to \notin 3.6 billion worth of exports, were scheduled to take effect on June 1, 2021. The EU suspended these measures until December 1, 2021, to allow the parties to work together on a longer-term solution. Following today's announcement by the U.S., these measures will not be imposed. [see European Commission, 2021]

Figure 3.16.: Biden and von der Leyen on G20 leaders' summit in Rome, October 31

Source: REUTERS/Kevin Lamarque

In November 2021, President Biden has signed a deal to end tariffs on steel imports from the EU, which were imposed by his predecessor Donald Trump. But the agreement does not cover exports from the UK, putting British steelmakers at a disadvantage as is discussed in an article of the BBC, see UK steel makers 'left behind' as US ends trade war.

3.3.4. Boeing vs. Airbus

Boeing has continually protested over launch aid in the form of credits to Airbus, while Airbus has argued that Boeing receives illegal subsidies through military and research contracts and tax breaks. All that yielded litigation at the WTO and a series of decisions that allowed (trade) penalties of both sides.

For example, on 2 October 2019, the WTO approved US tariffs on \$7.5 billion worth of European goods, and officially authorized them on 14 October, despite the European Union urging for a negotiated settlement. On 30 September 2020, however, the WTO approved the European Union's retaliatory tariffs on \$4.1 billion worth of US goods, this is in addition to the previous unimplemented sanction allowing the EU the right to impose tariffs of up to \$8.2 billion on US goods and services

This is a trade war where nobody will probably be better of in the end. For more details on this dispute, I recommend reading the Wikipedia entry.

On June 15, 2021, the U.S. and the EU achieved a major breakthrough in the trade dispute between Boeing and Airbus, agreeing to end the 17-year dispute. All tariffs were suspended for five years.

3.3.5. Trump vs. the European Union (a.k.a. Jean-Claude Juncker)

Under president Trump, United States imposed tariffs on goods such as cars, olives, single malt whiskey, pecorino cheese, and wine. The EU, in turn, has raised tariffs on goods such as orange juice, bourbon, peanut butter, power boats, and Harley-Davidson motorcycles. This escalation was brought to a halt on July 25, 2020, Jean-Claude Junker and Donald J. Trump met at the White House to discuss the ongoing trade dispute, see Figure 3.17. They announced that the United States and the European Union would work to reduce tensions created by Trump's confrontational trade policies in the past. Before that meeting they made their standpoints clear as paraphrased below.

Figure 3.17.: Juncker and Trump made a deal

Donald J. Trump wrote via Twitter on March 3, 2018:

"The United States has an \$800 Billion Dollar Yearly Trade Deficit because of our very stupid trade deals and policies. Our jobs and wealth are being given to other countries that have taken advantage of us for years. They laugh at what fools our leaders have been. No more!"

Jean-Claude Juncker said on March 2 (see euronews.com):

"So now we will also impose import tariffs. This is basically a stupid process, the fact that we have to do this. But we have to do it. We will now impose tariffs on motorcycles, Harley Davidson, on blue jeans, Levis, on Bourbon. We can also do stupid. We also have to be this stupid."

Donald J. Trump wrote via Twitter on March 3, 2018:

"If the E.U. wants to further increase their already massive tariffs and barriers on U.S. companies doing business there, we will simply apply a Tax on their Cars which freely pour into the U.S. They make it impossible for our cars (and more) to sell there. Big trade imbalance!"

3.3.6. Trump and the WTO

Read the following excerpt of an article entitled with "*Trump Trade Fight Heads to Global Court* as WTO Nears the Rubicon" by Bryce Baschuk at www.bloomberg.com published on 21. of November 2018:

The Geneva-based WTO has long avoided this politically fraught confrontation, which could irreparably harm the organization tasked with deciding international trade disputes. But barring any unforeseen developments, the WTO on Nov. 21 will grant requests from members including China and the European Union to determine if U.S. steel and aluminum tariffs imposed in March – and based on national security concerns – are legal.

U.S. trade officials say that the WTO has no authority to mediate national security matters and should simply issue a decision that says the matter is outside of the WTO's remit. WTO Director-General Roberto Azevedo has gone so far as to warn countries against taking this dispute to the WTO, arguing that it instead "requires conversation at the highest political level." The fight could end up sidelining the WTO.

"If the WTO finds that Trump's tariffs are permitted under the national security exception, it opens a gaping hole that would allow any other country the right to impose trade barriers on any product at any moment and for no particular reason other than protectionism" Chad Bown, a senior fellow at the Washington-based Peterson Institute for International Economics, said in an interview.

In applying the tariffs, Washington relied on a rarely-used WTO national security exemption, which permits governments to take "any action which it considers necessary for the protection of its essential security interests." The Trump administration has already blocked the process once, and since the rules don't allow further preventative actions, the WTO will likely create a dispute settlement panel, which would consist of three experts. Any decision would likely be rendered in 2019 or 2020.

3.3.7. Trump and his trade war with China

Donald J. Trump said in his 2016 presidential campaign, see time.com:

"We allowed foreign countries to subsidize their goods, devalue their currencies, violate their agreements and cheat in every way imaginable, and our politicians did nothing about it. Trillions of our dollars and millions of our jobs flowed overseas as a result. I have visited cities and towns across this country where one-third or

even half of manufacturing jobs have been wiped out in the last 20 years. Today, we import nearly \$800 billion more in goods than we export. We can't continue to do that. This is not some natural disaster, it's a political and politician-made disaster. Very simple. And it can be corrected and we can correct it fast when we have people with the right thinking. Right up here. [...] To understand why trade reform creates jobs, and it creates a lot of them, we need to understand how all nations grow and prosper. Massive trade deficits subtract directly from our gross domestic product. From 1947 to 2001, a span of over five decades, our inflation-adjusted Gross Domestic Product grew at a rate of 3.5 percent. However, since 2002, the year after we fully opened our markets to Chinese imports, the GDP growth rate has been cut in half. [...] A Trump administration will change our failed trade policies, and I mean quickly."

I don't want to go into details about the trade disputes of China and USA. A concise and continually revised overview is offered by Wikipedia.

The following charts show the trade surplus/deficit (exports minus imports) for the USA, China, Russia, and Germany. The data were downloaded on 15th of June 2022 from tradingeconomics.com.

Figure 3.18.: Balance of trade of the U.S. over time

Figure 3.19.: United States: Balance of trade

TRADINGECONOMICS.COM | BUREAU OF ECONOMIC ANALYSIS (BEA)

Figure 3.18 indicates that Trump was not successful in reducing the trade deficit. Overall, it seems to be the case that trade wars are not that easy to win as he claimed. It is rather difficult to impact the trade deficit within some years. Moreover, it is almost impossible to create more jobs that are lost and boost the economy with starting trade disputes.

For those who are interested: Here is a well researched article about that topic by Ryan Hass and Abraham Denmark, entitled *More pain than gain: How the US-China trade war hurt America*.

Exercise 3.3. Balance of payments across countries Figure 3.20 shows the balance of trade over time for China, Russia, and Germany. Discuss the impact of COVID-19 on the balance of payments over time across the three countries.

77

Figure 3.20.: Balance of trade of China, Russia, and Germany over time

Exercise 3.4. Trump complains about the WTO (Solution 3.1)

a) In an bloomberg interview Donald Trump said:

"I called NAFTA the second-worst trade deal ever made. I would say the WTO

was the single worst trade deal ever made.

And if they don't shape up, I would withdraw from the WTO. We rarely won a lawsuit except for the last year. You know, in the last year, we're starting to win a lot. You know why? Because they know if we don't, I'm out of there. I'll take them out."

Discuss the legal constitution of the WTO and whether Donald Trump is right when he claims that other countries treat the United States unfair.

b) WTO members are not permitted to increase import tariffs without justification. An exception to this rule, however, is given when the *national security* of a nation is at risk. On this basis (which has been challenged within the WTO by several nations, including Canada), U.S. President Trump has issued executive orders imposing import tariffs on steel and aluminum imports for a set of different countries. Discuss whether this behavior can be considered as fair.

Solution 3.1. Trump complains about the WTO (Exercise 3.4)

a) Trump's claims are difficult to assess because it is unclear what he means by fairness or how to define fairness in trade relations in general.

When referencing WTO rules, U.S. policy is far from a model of fairness to others, as too many countries have sued the U.S. for its discriminatory policies. Although he is wrong in his claim that the U.S. has "rarely won a lawsuit, with the exception of last year" (the U.S. win rate is similar to the average win rate), the U.S. is the country that has sued other members more often than any other country. For a more in-depth discussion, I recommend the article Why Trump's wrong about WTO treating US unfairly.

b) Imposing and increasing tariffs based on the exception rule could irreparably damage the WTO's authority to adjudicate trade disputes. This is because U.S. trade representatives contend that the WTO does not have the authority to mediate national security issues and should simply issue a ruling that the matter is not within the WTO's jurisdiction. This argument puts a gun to the WTO's head. If the WTO's Dispute Settlement Body follows this line of reasoning, any country could easily impose tariffs in the future, citing *national security*, without the WTO being able to judge whether or not the issue is truly one of national security. This reminds (me) of the Mexican standoff, that is, a confrontation between three or more parties in which there is no strategy that allows one party to win.

3.4. Political arguments for trade restrictions

There are hundreds of plausible arguments to restrict international trade. Here is a incomprehensive list of often stated arguments. Each one is a topic of its own and it needs further investigation whether these arguments are really valid arguments for restricting trade.

3.4.1. The desire to reduce domestic unemployment

As we learned in the previous sections, the domestic production is the result of the world market price in the long-run. However, in the short run this means that production factors need to reallocate from one sector to the other. So far, we assumed that this reallocation happens without any frictions. Thus, we just moved along the PPF curve. In reality the transformation process is costly because the people loose their jobs without finding a job in another sector instantaneously without any costs. In reality a transformation process comes along with costs such as social costs and search and matching costs. Thus, it can be a rational strategy to decrease the reallocation/transformation pressure in order to organize the reallocation of productions factors properly holding the external negative effects of transformation low. Nevertheless, we should not forget that (in the long run) reallocation of production factors and the adaption of new technologies is basically one of the most important sources of welfare growth, if not the only source.

3.4.2. The key enabling technology argument

If domestic industries are fostered, there might be technological spillovers to other industries in the country. As the government internalizes these spillovers, they have an incentive to protect and support these key to growth industries and technologies, respectively.

3.4.3. The need to counteract dumping in international trade

Selling goods in a foreign market below the price charged domestically can be called dumping. This sort of price competition is harmful when foreign producers hamper competition and discourage innovation and upgrading. For example, predatory dumping can give arguments for anti-dumping policy interventions. Predatory dumping is a type of anti-competitive behavior in which a foreign company prices its products below market value in an attempt to drive out domestic competition. This may lead to conditions where the company has a monopoly in a certain product or industry in the targeted market with bad implications for social welfare.

3.4.4. The government revenue argument

Government can finance their budget by raising tariffs.

3.4.5. The national defense argument

National defense is an obviously legitimate goal for any sovereign government and hence, domestic industries that supply goods and services that are important for a potential military emergency should have a special protection.

3.4.6. The wish to decrease the national balance of payments deficit

Countries that have a large trade deficit wish – for whatever reason (see Section 1.3) – to increase import restrictions in order to decrease the export deficit.

The income redistribution argument

As we have learned, trade generates winners and losers and hence is a source for the distribution of wealth. Government can use this knowledge to redistribute income or decrease income inequality. However, it is almost certain that this politic is not the most efficient and best way to achieve the said goals because we have also learned that trade is beneficial for a country as a whole.

The infant industry argument

The basic idea is that no economic activities will happen in industries in which there are no possibilities to make positive profits because competition from abroad is currently to strong. A finite protection from international competition can make firms to grow and become more productive so that they can face foreign competition after the protection is abolished. The core of the argument is that infant industries do not have economies of scale like competitors from abroad and, hence, need to be protected until they can attain similar economies of scale.

Figure 3.24 provides a visualization that may help to understand the infant industry argument. In the left panel you see that the domestic supply curve lies above the world market price, P^W . Thus, the domestic industry is not competitive enough to produce at costs lower than the world market price. A tariff in time t would protect the domestic market so that some firms start to produce and sell their goods at home. The hope of the government now is that the firms become more productive over time and in turn their supply curve shifts downwards. The downward shifted supply curve in time t + 1 is shown in the right panel. Here, the government can remove the tariff without crowding out the domestic production.

Exercise 3.5. Arguments for trade restrictions (Solution 3.2) Explain briefly (2-3 sentences) the infant industry argument.

Solution 3.2. Arguments for trade restrictions (Exercise 3.5) A finite protection from international competition can make firms to grow and become more productive so that they can face foreign competition after the protection is abolished. The core of the argument is that infant industries do not have economies of scale like competitors from abroad and, hence, need to be protected until they can attain similar economies of scale.

3.5. Gains from trade

Figure 3.25 and Figure 3.26 contain domestic supply and demand curves. In autarky with no possibilities to trade, supply and demand must meet. Under free trade and a given world market price, P^W , countries can trade with each other. This has implications for the producer surplus (yellow area) and the consumer surplus (blue area), as shown in the figures. The area of the triangles a and b as denoted in Figure 3.26 represents the welfare gain from free trade that can be achieved given the world market price, P^W .

3.6. Tariffs in small open economies

Figure 3.27 can teach us a lot about the impact of a tariff t on trade and welfare. A tariff raises the domestic price of imported goods. If we assume that the imposition or change of a country's tariff has no effect on the world price, we consider what is called a small open economy, which is so small that the country's consumption and production decisions do not affect the world price. In other words, the country takes the world price for granted because its import demand does not change the world price.

In autarky, the economy represented in Figure 3.27 would consume 5 units at price P^A , and total welfare would be represented by areas $a + b_2 + b_1$. Under free trade without tariffs, the country imports 8 units and consumes 9 units at the price of P^W . The consumer surplus corresponds to areas $a + b_2 + d_1 + c + d_2$ and the producer surplus corresponds to area b_1 . After the introduction of tariff t, the consumer surplus is equal to area a and the producer surplus is equal

Figure 3.26.: Two countries that trade with each other

to area $b_1 + b_2$. Thus, consumer surplus has decreased while producer surplus has increased. The area c is equal to the government's revenue. It represents the portion of the consumer welfare loss that is transferred to the government. Overall, welfare has decreased. The welfare loss is equal to the areas of the two triangles d_1 and d_2 . These triangles represent what is called the *deadweight loss* due to the tariff.

Specifically, triangle d_1 represents the reduction in imports that is replaced by domestic production, and triangle d_2 represents the loss in consumption due to a reduction in imports and a reduction in domestic consumption.

i The implications of a tariff in a small economy

While a tariff protects domestic producers and increases their surplus, it reduces the surplus of consumers and leads to a deadweight loss of revenue. Overall, a tariff leads to a reduction in a country's welfare.

3.7. Quotas in small open economies

A trade restriction that sets a physical limit on the quantity of a good to be imported is called an import quota. It gives government officials more power and control than a tariff because they can strictly limit the quantity of goods traded and have the administrative authority to grant (or sell) import licenses to certain foreign exporters.

Figure 3.28 shows the impact of an import quota that allows an import quantity of 4 units. In this scenario, 7 units are consumed, four of which are imported. The price at which all seven units are consumed is P^* . This is somewhat surprising because the world price P^W is less than P^* . The reason is that all firms that are allowed to sell their products do so at the highest possible price, that is, P^* . As above, the blue area is the consumer surplus and the yellow area is the producer surplus. The gray area is the loss in value due to the import rate. The rectangle c is only part of this loss, since we assume that the government does not sell the licenses to the best bidding exporting firm

Figure 3.27.: Tariff in a small open economy

3.8. Tariffs in large open economies

So far, we have assumed that the country of interest is small and takes the world market price as given. However, large countries' demand for imported goods can have an impact on world prices. If this is the case, we can show that a tariff can actually improve a country's welfare. Figure 3.29 illustrates the effects of a tariff on welfare, prices, and trade. In particular, we show the impact of a small tariff of 6 euros per bicycle.

Figure 3.29.: The effect of a tariff in a large country

Under free trade, the market for bicycle imports is cleared at a price of $\notin 300$ and the country imports one million bicycles.

Now, if a tariff of $6 \in$ per bicycle is imposed, the tariff drives a wedge between the price foreign exporters receive and the price domestic buyers of imports pay. That is, it becomes more expensive for domestic buyers to purchase imported bicycles. This, in turn, leads to an immediate drop in domestic demand for bicycles and pushes the world market price for bicycles to $\notin 297$ Given the new world market price for bicycles, the domestic price for imported bicycles is $\notin 303$ (297+6).

The consumer surplus is now represented by the blue area and the producer surplus by the yellow area. The green area represents the tariff revenue collected by the government. The two gray triangles, in turn, show the tariff-related deadweight losses. Compared to the free trade scenario, the country gains rectangle c_2 . If the revenue in this area is greater than the deadweight loss, the country has improved its overall welfare by imposing a tariff.

Let us calculate whether this is the case here:

• Area c_2 :

 $(1.58 \text{ million bikes} - 0.62 \text{ million bikes}) \cdot (\pounds 300 - \pounds 297) = \pounds 2.88 \text{ million}$

• Deadweight loss:

$$\frac{(0.62 \text{ mio b.} - 0.6 \text{ mio b.}) \cdot (\pounds 303 - \pounds 300)}{2} +$$
(3.1)

$$\underbrace{(1.6 \text{ mio } \text{b.} - 1.58 \text{ mio } \text{b.}) \cdot (€303 - €300)}_{\text{right triangle}}$$
(3.2)

$$= \pounds 0.06$$
 million (3.3)

• Indeed, the net gain is ${\in}2.82$ million. Thus, a small tariff can increase the welfare of a country.

3.9. Other nontariff trade barriers

In addition to tariffs, there are a variety of other trade barriers. These so-called non-tariff barriers (NTBs) include quotas, export subsidies, domestic production subsidies, government buy-at-home policies, and product standards. Here is a more complete list:

- Import quotas
- Voluntary export restraints
- Antidumping laws
- Exchange-rate controls
- Countervailing duties
- Government subsidies
- Licensing, labeling and packaging restrictions
- Quality controls and technical standards
- Domestic-content laws
- Political rhetoric
- Embargoes and sanctions
- Most/least-favored nation status

For example, **product standards** are much more important than you might think. For example, no car from the United States can be sold in the European Union without modifications because our safety standards are different. Another example is the CE marking (see below). Harmonization of product standards is usually an important issue in trade agreements.

The CE marking shown in Figure 3.30 is one example for a non tariff trade barrier. It is not an abbreviation for *China Export*, as many believe. While CE is sometimes indicated as an abbreviation of *Conformite Europeenne* (French for *European Conformity*), it is not defined as such in the relevant legislation. The mark indicates that the product may be sold freely in any part of the European Economic Area, irrespective of its country of origin. The CE marking is a declaration by the manufacturer (not by some authority!) that the product complies with EU standards for health, safety and environmental protection for products sold within the European Economic Area (EEA). Thus, it is not a quality indicator or a certification mark and may also be found on products sold outside the EEA. You may also know the _FCC Declaration of Conformity} which is used for selling certain electronic devices in the United States.

Exercise 3.6. Tariff (Solution 3.3)

Referring to Figure 3.31, the government of a large country needs your help to decide whether the introduction of a tariff of \$100 per metric ton of on steel is a good idea, or not. At the current world market price of $p^W = 600$ \$, the country imports 14 millions metric tons of steel. The government expects that a tariff of \$100 per ton of steel would decrease the world market price of steel for \$1.

a) Calculate how much the overall welfare gain (or loss) of the country would be in case the government decides to introduce a tariff of \$ 100 per ton of steel. Assume thereby that the supply curve is given by

$$P^s = 400 + \frac{1}{2}Q^s$$

and the demand curve is given by

$$P^d = 1500 - \frac{1}{2}Q^d.$$

These curves are also shown in the figure below.

- b) What would be the tariff so high that it makes an import of steel prohibitively expensive.
- c) What would be the world market price so low that it makes any domestic production unprofitable.
- d) What would be the world market price so high that the country exports steel.

Solution 3.3. Tariff (Exercise 3.6)

a) By analogy with Figure 3.29, here we should compare the two gray triangles with area c_2 .

The price per metric ton of steel from foreign suppliers will be \$699 because government will charge \$100 on each ton of steel which is now worth \$599 on world markets. As \$699 is still below the autarky price of \$950, domestic suppliers will set prices to be equal to \$699. Thus,

$$699 = 400 + \frac{1}{2}Q^{s} \Leftrightarrow Q^{s} = 598$$

$$699 = 1500 - \frac{1}{2}Q^{d} \Leftrightarrow Q^{d} = 1602$$

$$1602 - 598 = 1004$$

That means, at a price of \$699 domestic supply is 598 and domestic demand is 1602 tons of steel. 1004 tons will be imported.

To calculate the *welfare loss* (the two triangles), we can calculate the left triangle only and double it (please note that this is only possible if both triangles really have the same size which is only the case if both supply and demand curves have the same slope in absolute terms!):

The welfare gain (the new square that is due to the change in world market price, a.k.a. $c_2)$ is

$$1004 \text{tons} \cdot 1 \left[\frac{\$}{\text{tons}}\right] = 1004\$.$$

Thus, overall welfare gain is

$$1004 - 19602 = -18598.$$

That means, the welfare loss exceeds the welfare gain by \$ 18598.

b)

$$400 + \frac{1}{2}Q = 1500 - \frac{1}{2}Q$$
$$\Leftrightarrow Q = 1100$$
$$P^{s} = 400 + \frac{1}{2} \cdot 1100$$
$$P^{s} = 950$$

At a price above \$950, no steel would be imported. Thus, a tariff must be so high that the price of foreign steel within the country exceeds \$950, that is, $P^W + t > 950$. Assuming that the world market price would have a lower bound of \$599, that is, any tariff above \$100 would not decrease the world market price any further, a tariff of \$351 (950-599=351) would make imported steel prohibitively expensive.

- c) Below a price of \$400 any domestic production would be unprofitable because the supply curve tells us that no domestic producer would be able to supply anything at and below the price of \$400. To proof that just set $Q^s = 0$ in the function of the supply curve and you get $P^s = 400$.
- d) At a world market price above \$950, it would be profitable to export steel because domestic supply exceeds domestic demand and the world market price is higher than the production costs.

References

- (University of Minnesota) Anon. *Principles of Economics*. University of Minnesota Libraries Publishing, 2020. URL https://open.lib.umn.edu/principleseconomics.
- Roger E Backhouse and Béatrice Cherrier. Paul Samuelson, gender bias and discrimination. The European Journal of the History of Economic Thought, 26(5):1053–1080, 2019.
- Olivier Blanchard and David R. Johnson. Macroeconomics. Pearson, 6 edition, 2013.
- Robert Carbaugh. International Economics. South-Western, 16 edition, 2016.
- Karl E. Case, Ray C. Fair, and Sharon M. Oster. Principles of Economics. Pearson, 2019.
- European Commission. Eu and us agree to start discussions on a global arrangement on sustainable steel and aluminium and suspend steel and aluminium trade disputes. Press release IP/21/5721, 2021.
- Federal Reserve Bank of Dallas. The fruits of free trade. Annual report, 2002.
- Robert C. Feenstra and Alan M. Taylor. International Economics. Worth, 4 edition, 2017.
- Richard P. Feynman. "Surely you're joking, Mr. Feynman!": Adventures of a curious character. W.W. Norton, 1985.
- Michael Goodwin. Economix: How and Why Our Economy Works (and Doesn't Work) in Words and Pictures. Abrams & Chronicle Books, 2012.
- Louise Johannesson and Petros C. Mavroidis. The wto dispute settlement system 1995 2015: A data set and its descriptive statistics. IFN Working Paper 1148, Institute of Industrial Economics (IFN), 2017.
- Grady Klein and Yoram Bauman. Cartoon Introduction to Economics: Volume One: Microeconomics. Hill & Wang, 2010.
- Paul R. Krugman and Robin Wells. Economics. Worth, 5 edition, 2018.
- Paul R. Krugman, Maurice Obstfeld, and Marc J. Melitz. International Economics: Theory and Policy. Prentice Hall, 11 edition, 2017.
- N Gregory Mankiw. Principles of Economics. Cengage Learning, 10 edition, 2024.
- World Trade Organization. WTO Dispute Settlement: One-page Case Summaries 1995–2020. World Trade Organization, 2010.
- Michael Parkin. *Economics*. Addison-Wesley, 10 edition, 2012.
- Thomas A. Pugel. International Economics. McGraw-Hill, 16 edition, 2015.
- Arie Reich. The effectiveness of the wto dispute settlement system: A statistical analysis. EUI Working Paper LAW 2017/11, European University Institute (EUI), 2017.

References

- David Ricardo. On the Principles of Political Economy and Taxation. John Murray, London, 1817.
- David Shapiro, Daniel MacDonald, and Steven A. Greenlaw. *Principles of Economics*. Open-Stax, 3 edition, 2022. URL https://openstax.org/details/books/principles-economics-3e.
- Betsey Stevenson and Hanna Zlotnik. Representations of men and women in introductory economics textbooks. In *AEA Papers and Proceedings*, volume 108, pages 180–85, 2018.
- Steve Suranovic. International Economics: Theory and Policy. Saylor Foundation, 1.0 edition, 2012. URL https://open.umn.edu/opentextbooks/textbooks/276.
- Charles van Marrewijk. International Economics: Theory, Application, and Policy. Oxford University Press, 2 edition, 2012.
- Charles van Marrewijk. International Economics: Theory, Application, and Policy. Oxford University Press, 2017.

A. Solutions to exercises

Solution A.1. Exchange currencies (Exercise 1.2)

a) The equivalent amount in Euros for exchanging 500 US Dollars at the initial exchange rate of (1.20, USD/EUR) is given by:

Equivalent Euros = $\frac{500 \text{ USD}}{1.20 \text{ USD}/\text{EUR}}$

b) If the exchange rate changes to (1.15 , USD/EUR), the new equivalent amount in Euros is:

New Equivalent Euros = $\frac{500 \text{ USD}}{1.15 \text{ USD/EUR}}$

c) The equivalent amount in US Dollars for spending 1,000 Euros at the initial exchange rate is:

Equivalent USD = $1,000 \text{ EUR} \times 1.20 \text{ USD}/\text{EUR}$

d) If the European tourist exchanges their money at the changed rate of (1.15, USD/EUR), the new equivalent amount in US Dollars is:

New Equivalent USD = $1,000 \text{ EUR} \times 1.15 \text{ USD}/\text{EUR}$

Solution A.2. Big Mac Index (Exercise 1.8)

- a) Please take part in the discussion in class.
- b) Please take part in the discussion in class.
- c) The exchange rate of Euros to Swiss Francs in direct quotation is:

$$E^{\frac{\rm EUR}{\rm CHF}} = \frac{4.56 \text{ EUR}}{4.75 \text{ USD}} \cdot \frac{6.57 \text{ USD}}{6.50 \text{ CHF}} = \frac{29.9592 \text{ EUR}}{30.875 \text{ CHF}} \approx 0.9703 \frac{\rm EUR}{\rm CHF}$$

and in indirect quotation:

$$E^{\frac{\text{CHF}}{\text{EUR}}} \approx 1.0305 \frac{\text{CHF}}{\text{EUR}}.$$

That means, we have to pay about 0.97 Euro for one Swiss Franc or one Euro costs about 1.03 Swiss Franc.

d) To exchange 100 Euro to Swiss Francs, we need to calculate

$$100 \text{ EUR} \cdot 1.0305 \frac{\text{CHF}}{\text{EUR}} \approx 108.1428 \text{ CHF}$$

e) Here are the answers:

i) is false: The price of a Big Mac in \$ is different across countries.

ii) is correct.

iii) is false: 1 Ruble costs 0.0160 Dollar:

$$\frac{2.09 \text{ USD}}{130 \text{ RUB}} = 0.016 \frac{\text{USD}}{\text{RUB}}.$$

iv) is incorrect:

 $\frac{6.65 \text{ CAD}}{5.08 \text{ USD}} \cdot \frac{4.75 \text{ USD}}{4.56 \text{ EUR}} \approx 1.36 \frac{\text{CAD}}{\text{EUR}}$ ≈ 1.309 ≈ 1.0416

v) is incorrect:

$$\frac{6.05 \text{ CAD}}{5.08 \text{ USD}} \approx 0.76 \frac{\text{CAD}}{\text{USD}}.$$

Thus, with one Canadian Dollar you can buy 0.76 U.S. Dollar.

Solution A.3. Big Mac Index (Exercise 1.4)

a) International arbitrage strategy

- Strategy: Buy 50 units of good 08/15 in Germany for \$2 each with your \$100. Then, sell these units in Switzerland or the USA for \$6 each, making a total of \$300. This is a classic arbitrage strategy.
- Impact on Prices: Consider that you repeat that winning strategy to buy in Germany and sell in some other country, prices will change: The increased demand in Germany will cause the price there to rise, while the increased supply in Switzerland and the USA will cause the price to drop. Eventually, the price differences will equalize, eliminating the arbitrage opportunity.
- b) Calculating exchange rates
 - USD to EUR: $\frac{4USD}{2EUR} = 2\frac{USD}{EUR}$

 - EUR to USD: 0.5 EU/USD
 USD to CHF: 2 USD / 3 CHF
 - CHF to USD: 1.5

 - CHF to EUR: $\frac{4}{3} \frac{CHF}{USD}$ EUR to CHF: $0.75 \frac{EU}{USD}$

Solution A.4. Exchange rates and where to invest (Exercise 1.6)

a) Rate of return in the EU is 1 percent and hence you will have \notin 10,100 in 2023. Rate of return in the US is about 0.62 percent:

$$10000 \in \cdot \frac{1\$}{0.93 \in} \cdot 1.02 \cdot \frac{1 \in}{1.09\$} = 10062.1485 \in$$

Thus, it is better to invest in Europe.

b) In 2022 you have to pay 93 Cent for a dollar and in 2023 you expect to pay about 91 Cent for a dollar. Thus, you expect the Euro to appreciate.

Solution A.5. Turkey vs. Germany (Exercise 1.7)

a) When focusing solely on the interest rate, investing in Turkey appears more advantageous. However, if we consider only the development of the exchange rate, investing in Germany becomes more appealing due to the Euro appreciating relative to the Lira from period t-1 to t. Therefore, it's essential to calculate the return on investment to determine which of the two effects predominates. This can be done in three different ways:

b) (Exact) calculation method in four steps:

1. exchange \notin to in t-1:

$$100 \in \cdot E_{t-1}^{/\epsilon} = 100 \in \cdot 7_{\overline{\epsilon}} = 700$$

2. invest in either Germany or Turkey:

$$GER \to 100 \pounds \cdot (1+0.01) = 101 \pounds$$

$$TUR \to 700 \cdot (1+0.1) = 770$$

3. re-exchange to \in :

770
$$\cdot E_t^{\notin} = 770 \cdot \frac{1 \notin}{7\frac{1}{10}} = \frac{7700}{71} \approx 108.4507$$

4. calculate the return on investment, r:

$$r_{GER} = 0.01$$

$$r_{TUR} = \frac{108.4507 - 100}{100} = 0.084507$$

Answer: The return on investment is lower in Germany. Thus, it is superior to invest the $100 \in$ in Turkey.

ii) (Exact) Calculation method in one step:

$$\widehat{r}^{\text{rate of return}} = \frac{I_t^{\epsilon} - I_{t-1}^{\epsilon}}{I_t^{\epsilon}}$$

 $\begin{array}{l} \text{investment in t-1} \quad \overset{\text{exchange rate in t-1}}{\underset{t=1}{\overset{\text{fitterset rate}}{\underset{t=1}{\overset{\text{fitterset rate}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset{\text{fitterset}}{\underset{t=1}{\overset$

iii) (Approximative) calculation method: Steps a) to c) can be summarized as two rates of changes:

$$\begin{array}{l} \underbrace{r'}_{\text{approximative rate of return}} = \underbrace{i}_{\text{interest rate}} + \underbrace{w}_{\text{rate of depreciation}}\\ \text{with} \quad w = \frac{E_t^{\epsilon/}}{E_{t-1}^{\epsilon/}} - 1 \end{array}$$

$$\begin{split} r'_{GER} = & 0.01 \\ r'_{TUR} = & 0.1 + \frac{\frac{10}{71}}{\frac{10}{70}} - 1 = 0.1 + \frac{700}{710} - 1 = 0.1 - \frac{10}{710} = \frac{61}{710} \approx 0.08591 \end{split}$$

b) Both investments are equal profitable if

$$r_{GER} = r_{TUR}.$$

Given the information in period t-1, the exact exchange rate in period t that makes investments are equal profitable, $E_t^{\notin/*}$, is calculated as follows:

$$\begin{split} I_t^{\mathfrak{C}} &= I_{t-1}^{\mathfrak{C}} E_{t-1}^{/\mathfrak{C}} (1+i) E_t^{\mathfrak{C}/*} \\ \Leftrightarrow E_t^{\mathfrak{C}/*} &= \frac{I_t^{\mathfrak{C}}}{(I_{t-1}^{\mathfrak{C}} E_{t-1}^{/\mathfrak{C}} (1+i))} = \frac{101}{(100 \cdot 7 \cdot 1.1)} = \frac{101}{770} \approx 0.1311 \end{split}$$

The approximate exchange rate in period t that makes investments are equal profitable, $E_t^{\notin/*'}$, is calculated as follows:

$$\begin{split} r_{GER} = & i_{TUR} + \frac{E_t^{{\mathbb E}/{*'}}}{E_{t-1}^{{\mathbb E}/{-1}}} - 1 \\ \Leftrightarrow r_{GER} - i_{TUR} + 1 = & \frac{E_t^{{\mathbb E}/{*'}}}{E_{t-1}^{{\mathbb E}/{-1}}} \\ \Leftrightarrow E_t^{{\mathbb E}/{*'}} = & (r_{GER} - i_{TUR} + 1) \cdot E_{t-1}^{{\mathbb E}/{-1}} \\ \Leftrightarrow E_t^{{\mathbb E}/{*'}} = & (0.01 - 0.1 + 1) \cdot \frac{1}{7} = \frac{91}{100} \cdot \frac{1}{7} = \frac{91}{700} = 0.13 \end{split}$$

Let us proof our results by re-calculating the rate of return for an investment in Turkey with $E_t^{\notin/*}$ and $E_t^{\notin/*'}$:

$$\begin{aligned} r'_{TUR} = & 0.1 + \frac{\frac{91}{700}}{\frac{1}{7}} - 1 = \frac{637}{700} - 0.9 = 0.01 \\ I_t^{\epsilon} = & 100\epsilon \cdot 7_{\overline{\epsilon}} \cdot (1+0.1) \cdot \frac{91}{700} = \frac{70070}{700} = 100.1 \\ & \Rightarrow r^*_{TUR} = & 0.01 \end{aligned}$$

c) The must appreciate in t-1 since it is more profitable to exchange \in to store the asset value in Turkey. That means the demand curve in the FOREX shifts upwards till the exchange rate equals the exchange rate that makes both investments equal profitable and hence nobody has an incentive to demand more for the given exchange rate $E_t^{\notin/*}$ as calculated above.

Solution A.6. Terms of trade (Exercise 2.2)

The new point of optimal consumption OCP_1 at (x = 2, y = 6) illustrates that an increase in the price of good x leads consumers to substitute good x and consume more of good y but less of good x.

The terms of trade are now $\frac{p_x}{p_y} = 2$. That is, consumers are willing to give up 1 unit of

good x to receive 2 units of good y. The budget line is drawn in blue.

Note: The indifference curve IC_1 in the graph is just a guess of mine because we don't have preferences in form of a utility function given. For example, you can also draw an indifference curve that gives you the optimal consumption point at (x = 1; y = 8) or

(x = 4; y = 2).

Solution A.7. Gains of small economies (Exercise 2.4) As visualized in Figure A.2, the indifference curve under free trade lies above the IC under autarky. This reflects the higher utility level under free trade.

A. Solutions to exercises

Solution A.8. Comparative advantage and opportunity costs (Exercise 2.6)

a) Country A has an absolute advantage in producing both goods as

$$a_y^A = 1 < 3 = a_y^B$$

and

$$a_x^A = 2 < 4 = a_x^B$$

- b) Solution is shown in the lecture.
- c) Opportunity cost is the value of what you lose when choosing between two or more options. Alternative definition: Opportunity cost is the loss you take to make a gain, or the loss of one gain for another gain.
- d) If A wants top produce one unit more of good y it has to give up $\frac{1}{2}$ units of good x.
- e) If A wants top produce one unit more of good x it has to give up $\overline{2}$ units of good y.
- f) If B wants top produce one unit more of good y it has to give up $\frac{3}{4}$ units of good x.
- g) If A wants top produce one unit more of good x it has to give up $\frac{4}{3}$ units of good y.

opportunity costs of		
producing	А	В
\dots 1 unit of good y	$\frac{a_y^A}{a_x^A} = \frac{1}{2} = 0.5 \pmod{x}$	$\frac{a_y^B}{a_x^B} = \frac{3}{4} \pmod{x}$
$\dots 1$ unit of good x	$\frac{a_x}{a_y^A} = \frac{2}{1} = 2 \pmod{y}$	$\frac{a_x}{a_y^B} = \frac{4}{3} = (\text{good y})$

A. Solutions to exercises

- h) Country A has a comparative advantage in producing good y.
- i) Country B has a comparative advantage in producing good x.

Solution A.9. The best industry is not competitive (Exercise 2.7)

opportunity costs of producing	Person A	Person B
1 unit of good y:	$a_y^{A/a_x}A = 1/2 = 0.5$	$a_y^{B/a_x}B = 0.4/0.4 =$
	$(\text{good } \mathbf{x})$	$1 \pmod{x}$
1 unit of good x:	$a_x^{A/a_y}A = 2/1 = 2$	$a_x^{B/a_y}B = 0.4/0.4 =$
	(good y)	$1 \pmod{y}$

Thus, A has a comparative advantage in producing good y and B has a comparative advantage in producing good x. This seems to be counterintuitive as B can produce faster anything and everybody else.

When looking on input coefficients, we get

$$\frac{a_y^A}{a_x^A} = \frac{10}{12} < \frac{9}{10} = \frac{a_y^B}{a_x^B}$$

which gives us the same comparative advantages as described above. To become an exporter of y, B needs to have lower opportunity costs in the production of y than A. This can happen by becoming more productive in producing y **and/or} by becoming 'slower' in producing good x so that $\frac{a_y^B}{a_z^B} < \frac{10}{12}$

Solution A.10. Comparative advantage and input coefficients (Exercise 2.8)

- a) Country B has an absolute advantage in producing both goods.
- b) Country A has a comparative advantage in producing good y.
- c) Country B has a comparative advantage in producing good x.

Solution A.11. Comparative advantage: Germany and Bangladesh (Exercise 2.9)

- a) Germany has an absolute advantage in the production of the three goods because it labor input coefficients are smaller in all three goods.
- (abor input coefficients are smaller in all three goods.
 (b) Since p_B^{m/s} = 100/10000 < p_G^{m/s} = 5/50 Bangladesh has a comparative advantage in producing machines and Germany has a comparative advantage in producing ships.
 (c) Since p_B^{m/c} = 100/50 > p_G^{m/c} = 5/3 Bangladesh has a comparative advantage in producing clothes and Germany has a comparative advantage in producing machines.
 (d) Since p_B^{s/c} = 10000/50 > p_G^{s/c} = 50/3 Bangladesh has a comparative advantage in producing clothes and Germany has a comparative advantage in producing machines.
- e) Germany has a clear comparative advantage in producing ships and hence will export ships. Moreover, Germany has a clear comparative disadvantage in producing cloth and will definitely import clothes.

Solution A.12. Multiple choice: Ricardian model (Exercise 2.10) Choices b) and c) are correct.

Solution A.13. Ricardian Model again (Exercise 2.11)

c) and d) are true.

Solution A.14. Bikes and bike tires (Exercise 2.12)

a) Both countries can consume 2 complete bikes, see Figure A.3.

	Country A	Country B
Good y (bikes)	24:6=4	24:3=8
Good x (bike tires)	24:8=3	24:12=2

- c) If we assume that both countries specialize completely in the production of the good at which they have a comparative advantage and trade is allowed and free of costs, then
- country A produces 6 units of bikes and 0 units of tires and
- country B produces 0 units of bikes and 12 units of tires.

Moreover, since both countries aim to consume complete bikes, i.e., one bike with two tires,

- country A exports 3 units of bikes and imports 6 units of tires and
- country B exports 6 units of tires and imports 3 units of bikes.

Under free trade

- country A can consume 3 complete bikes and
- country B can consume 3 complete bikes.

Solution A.15. Ricardian model MC (Exercise 2.13) a), b), and e) are correct statements.

Solution A.16. HO-Model in one figure (Exercise 2.15)

A. Solutions to exercises

Two identical countries (A and B) have different initial factor endowments. I assume that country A is abundantly endowed with the production factor that is intensively used in the production of good 1, the reverse holds for country B. Thus, the two solid black lines in Figure A.4 represents the respective production possibility frontier curves. The orange lines represents the respective indifference curves. Autarky equilibria are marked with A^A and A^B , respectively. The production points in trade equilibrium are marked with P^A and P^B , the consumption point of both countries is in $C^A = C^B$. Thus, production and consumption points are divergent. The indifference curve under free trade is clearly above the other indifference curve in autarky. The solid black line that is tangient to the consumption point under free trade represents the utility maximizing world market price under free trade. The exports, X, and imports; I, are denotes correspondingly to the goods and country names.

Solution A.17. Multiple choice: HO-Model (Exercise 2.16) Answer a) is correct.

B. Microeconomic preliminaries

Content

In this section, I cover the following microeconomic preliminaries that are crucial for your understanding:

- Production functions: I discuss different several important features of production.
- Production Possibility Frontier (PPF): I explain how the PPF curve graphically visualizes the production and growth of firms and countries.
- Indifference curves: I discuss how indifference curves represent different bundles of goods at which consumers are indifferent.
- Isoquants: I introduce how isoquants represent different levels of production that can be achieved with different combinations of input factors.
- Budget constraints: I show you how to graphically sketch budget constraints, which play a significant role in consumer decision-making.

B.1. Production functions

A firm or a company is a productive unit. In particular, it is an organization that produces goods and services. In short, it can be called *output*. To do so, it uses inputs called *factors of production*, that is, labor, capital, land, skills, etc. The relationship between the inputs and the output is the production function. The goal of the firm is to achieve whatever goal its owner(s) decide to achieve through the firm. Usually, it is (and in Germany for example it has to be the case by law) to generate profits, that is, total revenue minus total cost for the level of production.

A production function (PF) is a mathematical representation of the process that transforms inputs into output.

• When factors of production are **perfect substitutes** the PF can be written like this:

$$q = f(K, L) = L + K$$

• When factors of production are **perfect complements** the PF can be written like this:

$$q = f(K, L) = \min(L, K)$$

• A special and often used function is the Cobb-Douglas PF:

$$q = f(K, L) = K^{\alpha} L^{1-\alpha} \quad \text{with} \quad 0 < \alpha < 1$$

The **returns to scale** describes the increase in output when a firm multiples all of its inputs by some factor. Let $\lambda > 1$, then, with two factors K and L, we can define that for

$$f(cK, cL) = c^{\lambda} f(K, L),$$
- $\lambda > 1$ the PF has increasing returns to scale,
- $\lambda = 1$ the PF has constant returns to scale,
- $\lambda < 1$ the PF has decreasing returns to scale.

The marginal product is the change in the total output when the input varies of one infinitesimal small unit. Graphically, the marginal product is the slope of the total product function at any point. The slope of the total product function, that is, the marginal product, is generally not constant. The marginal product to an input is assumed to decrease beyond some level of input. This is called the *law of diminishing marginal returns*. In particular, we can distinguish:

- positive marginal returns when f' > 0 and
- diminishing marginal returns when f'' < 0 and
- increasing marginal returns when f'' > 0.

B.2. Production possibility frontier curve

Figure B.1.: The production possibility frontier curve

The production possibilities frontier (PPF) curve shown in Figure B.1 provides a graphical representation of all possible production options for two products when all available resources and factors of production are fully and efficiently utilized within a given time period. The PPF serves as a boundary between combinations of goods and services that can be produced and those that cannot.

The PPF is an invaluable tool for illustrating the effects of scarcity as it provides insights into production efficiency, opportunity costs and the trade-offs between different choices. In general, the PPF exhibits concavity, as not all factors of production can be used equally productively in all activities.

Economic growth refers to the continuous expansion of production possibilities. An economy experiences growth through technological advances, improvements in the quality of labor or an increase in the factors of production (labor, capital). When the resources of an economy increase, the production possibilities also expand, shifting the PPF outwards. It is worth noting that PPF can be used to explain production in an economy or company.

Production efficiency occurs when it is impossible to produce more of one good or service without producing less of another. If production takes place directly on the PPF, this means efficiency. If, on the other hand, production takes place within the PPF (yellow shaded area of Figure B.1), it is possible to produce more goods without sacrificing existing goods, which indicates inefficiency. If production is on the PPF, there is a trade-off, as obtaining more of one good requires sacrificing a certain amount of another good. This trade-off is associated with costs called *opportunity costs*.

Exercise B.1. Understanding production (Solution B.1)

a) Figure B.2 shows a PPF and five conceivable production points, C_i , where $i \in \{1, ..., 5\}$. Explain the figure using the following terms: __attainable point; available resources, unattainable, inefficient, efficient point.

- b) What would happen to the PPF if the technology available in a country and needed for the production process became better?
- c) What would happen to the PPF if the resources available in a country and needed in the production process of both goods shrank?
- d) What would happen to the PPF if the resources (technology) available in a country that are needed in the production process...
 - i) ...for both goods increased (improved)?
 - ii) ...for good A shrank (got worse)?
 - iii) ...for good B increased (improved)?
- e) Does the shape of the PPF tell us anything about economies of scale in the production process?
- f) Figure B.3 shows an extreme PPF. How can such a PPF be explained?

B. Microeconomic preliminaries

Figure B.3.: Extreme production possibility frontier curve

Solution B.1. Understanding production (Exercise B.1)

- a) Any point that lies either on the production possibilities curve or to the left of it is said to be an attainable point: it can be produced with currently available resources. Production points that lie in the yellow shaded area are said to be unattainable because they cannot be produced using currently available resources. These points represent an inefficient production, because existing resources would allow for production of more of at least one good without sacrificing the production of any other good. An efficient point is one that lies on the production possibilities curve. At any such point, more of one good can be produced only by producing less of the other.
- b) The PPF would shift outwards.
- c) The PPF would shift inwards.
- d) The PPF would shift...
 - i) ...outwards for both goods.
 - ii) ...inwards for good A, see Figure B.4.
 - iii) ...outwards for good B.
- e) With economies of scale, the PPF would curve inward, with the opportunity cost of one good falling as more of it is produced. A straight-line (linear) PPF reflects a situation where resources are not specialized and can be substituted for each other with no added cost. With constant returns to scale, there are two opportunities for a linear PPF: if there was only one factor of production to consider or if the factor intensity ratios in the two sectors were constant at all points on the productionpossibilities curve.
- f) Here is one example: Suppose a country that is endowed with two factors of production and that one factor can only be used for producing good A and the other factor can only be used to produce good B.

B. Microeconomic preliminaries

B.3. Indifference curves and isoquants

Combinations of two goods that yield the same level of utility for consumers are represented by indifference curves, see figure Figure B.5. These curves illustrate the various bundles of goods where consumers are equally satisfied. That means all points on an indifference curve represent the same level of utility. The shape of the indifference curve is determined by the underlying utility function, which captures the preferences of consumers for consuming different combinations of the two goods.

The slope of an indifference curve indicates the rate at which the two goods can be substituted while maintaining the same level of utility for the consumer. Technically, the slope represents the marginal rate of substitution, which is equal to the absolute value of the slope. It measures the maximum quantity of one good that a consumer is willing to give up in order to obtain an additional unit of the other good.

It is assumed that consumers aim to attain the highest possible indifference curve because a higher curve, located further to the right on a coordinate system, represents a higher level of utility. In Figure B.6, for example, (IC_1) represents a lower level of utility than (IC_2) .

B. Microeconomic preliminaries

Similar to the concept of indifference curves, an isoquant shows the combinations of factors of production that result in the same quantity of output.

Exercise B.2. Isoquants

- Which of the two plots of Figure B.7 show isoquants when factors of production are **perfect complements** and **perfect substitutes**, respectively?
- Discuss the features of a Cobb-Douglas PF with respect to returns to scale and marginal product of production for both inputs. Sketch the total output curve in an output-(K) and an output-(L) quadrant. Sketch the isoquants for different levels of production.

B.4. Budget constraint

In microeconomics, the concept of a budget constraint plays a vital role in understanding consumer decision-making and helps to analyze consumer choices and trade-offs. The budget constraint represents the limitations faced by consumers in allocating their limited income across different goods and services. The budget constraint indicates that the total expenditure on goods and services, calculated by multiplying the prices of each item by its corresponding quantity, must be less than or equal to the consumer's income. Mathematically, the budget constraint can be expressed as:

$$P_1 \cdot Q_1 + P_2 \cdot Q_2 + \ldots + P_n \cdot Q_n \le I$$

where (P_n) represent the prices of goods, (Q_n) denote the quantities of goods (n) consumed. (I) denotes the consumer's income or their budget.

Consumers strive to maximize their utility by selecting the optimal combination of goods and services within the constraints imposed by their limited income. This involves making decisions about how much of each good to consume while staying within the budgetary limits. The graphical representation of the ideal consumption point is depicted in Figure Figure B.8.

By studying the budget constraint, economists can gain insights into consumer behavior, price changes, and the impact of income fluctuations on consumption patterns.

C. Mathematical preliminaries

Please feel free to download and study my introduction for mathematics for economics here.

D. Past exams

Please feel free to download a collection of past exams here.