{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Models (TensorFlow)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers, Datasets, and Evaluate libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install datasets evaluate transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import BertConfig, TFBertModel\n", "\n", "# Building the config\n", "config = BertConfig()\n", "\n", "# Building the model from the config\n", "model = TFBertModel(config)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "BertConfig {\n", " [...]\n", " \"hidden_size\": 768,\n", " \"intermediate_size\": 3072,\n", " \"max_position_embeddings\": 512,\n", " \"num_attention_heads\": 12,\n", " \"num_hidden_layers\": 12,\n", " [...]\n", "}" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(config)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import BertConfig, TFBertModel\n", "\n", "config = BertConfig()\n", "model = TFBertModel(config)\n", "\n", "# Model is randomly initialized!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import TFBertModel\n", "\n", "model = TFBertModel.from_pretrained(\"bert-base-cased\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.save_pretrained(\"directory_on_my_computer\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sequences = [\"Hello!\", \"Cool.\", \"Nice!\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "encoded_sequences = [\n", " [101, 7592, 999, 102],\n", " [101, 4658, 1012, 102],\n", " [101, 3835, 999, 102],\n", "]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import tensorflow as tf\n", "\n", "model_inputs = tf.constant(encoded_sequences)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "output = model(model_inputs)" ] } ], "metadata": { "colab": { "name": "Models (TensorFlow)", "provenance": [] } }, "nbformat": 4, "nbformat_minor": 4 }