{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 使用 Trainer API 或者 Keras 微调一个模型" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers, Datasets, and Evaluate libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install datasets evaluate transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset\n", "from transformers import AutoTokenizer, DataCollatorWithPadding\n", "import numpy as np\n", "\n", "raw_datasets = load_dataset(\"glue\", \"mrpc\")\n", "checkpoint = \"bert-base-uncased\"\n", "tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n", "\n", "\n", "def tokenize_function(example):\n", " return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n", "\n", "\n", "tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n", "\n", "data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors=\"tf\")\n", "\n", "tf_train_dataset = tokenized_datasets[\"train\"].to_tf_dataset(\n", " columns=[\"attention_mask\", \"input_ids\", \"token_type_ids\"],\n", " label_cols=[\"labels\"],\n", " shuffle=True,\n", " collate_fn=data_collator,\n", " batch_size=8,\n", ")\n", "\n", "tf_validation_dataset = tokenized_datasets[\"validation\"].to_tf_dataset(\n", " columns=[\"attention_mask\", \"input_ids\", \"token_type_ids\"],\n", " label_cols=[\"labels\"],\n", " shuffle=False,\n", " collate_fn=data_collator,\n", " batch_size=8,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import TFAutoModelForSequenceClassification\n", "\n", "model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n", "\n", "model.compile(\n", " optimizer=\"adam\",\n", " loss=SparseCategoricalCrossentropy(from_logits=True),\n", " metrics=[\"accuracy\"],\n", ")\n", "model.fit(\n", " tf_train_dataset,\n", " validation_data=tf_validation_dataset,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.optimizers.schedules import PolynomialDecay\n", "\n", "batch_size = 8\n", "num_epochs = 3\n", "# 训练步数是数据集中的样本数除以batch size再乘以 epoch。\n", "# 注意这里的tf_train_dataset是一个转化为batch后的 tf.data.Dataset,\n", "# 不是原来的 Hugging Face Dataset,所以它的 len() 已经是 num_samples // batch_size。\n", "num_train_steps = len(tf_train_dataset) * num_epochs\n", "lr_scheduler = PolynomialDecay(\n", " initial_learning_rate=5e-5, end_learning_rate=0.0, decay_steps=num_train_steps\n", ")\n", "from tensorflow.keras.optimizers import Adam\n", "\n", "opt = Adam(learning_rate=lr_scheduler)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import tensorflow as tf\n", "\n", "model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n", "loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)\n", "model.compile(optimizer=opt, loss=loss, metrics=[\"accuracy\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "preds = model.predict(tf_validation_dataset)[\"logits\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(408, 2) (408,)" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "class_preds = np.argmax(preds, axis=1)\n", "print(preds.shape, class_preds.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'accuracy': 0.8578431372549019, 'f1': 0.8996539792387542}" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import evaluate\n", "\n", "metric = evaluate.load(\"glue\", \"mrpc\")\n", "metric.compute(predictions=class_preds, references=raw_datasets[\"validation\"][\"label\"])" ] } ], "metadata": { "colab": { "name": "使用 Trainer API 或者 Keras 微调一个模型", "provenance": [] } }, "nbformat": 4, "nbformat_minor": 4 }