{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"import torch\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(\"gpt2\")\n",
"tokenizer = AutoTokenizer.from_pretrained(\"gpt2\")\n",
"\n",
"inputs = tokenizer(\"Hugging Face is a startup based in New York City and Paris\",\n",
" return_tensors=\"pt\")\n",
"\n",
"loss = model(input_ids=inputs[\"input_ids\"],\n",
" labels=inputs[\"input_ids\"]).loss\n",
"\n",
"ppl = torch.exp(loss)\n",
"\n",
"print(f\"Perplexity: {ppl.item():.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "What is perplexity?",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}