{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "xFqoZo2jgBuP" }, "source": [ "# Finetuner un modèle avec l'API Trainer" ] }, { "cell_type": "markdown", "metadata": { "id": "odo72vovgBuR" }, "source": [ "Installez les bibliothèques 🤗 Transformers et 🤗 Datasets pour exécuter ce notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "KL0srL9lgBuS" }, "outputs": [], "source": [ "!pip install datasets transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lxEQZhrFgBuU" }, "outputs": [], "source": [ "from datasets import load_dataset\n", "from transformers import AutoTokenizer, DataCollatorWithPadding\n", "\n", "raw_datasets = load_dataset(\"paws-x\", \"fr\")\n", "checkpoint = \"camembert-base\"\n", "tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n", "\n", "\n", "def tokenize_function(example):\n", " return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n", "\n", "\n", "tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n", "data_collator = DataCollatorWithPadding(tokenizer=tokenizer)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Dp-s6a1rgBuV" }, "outputs": [], "source": [ "from transformers import TrainingArguments\n", "\n", "training_args = TrainingArguments(\"test-trainer\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "1r1XVVN9gBuV" }, "outputs": [], "source": [ "from transformers import AutoModelForSequenceClassification\n", "\n", "model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "d9eakOZOgBuW" }, "outputs": [], "source": [ "from transformers import Trainer\n", "\n", "trainer = Trainer(\n", " model,\n", " training_args,\n", " train_dataset=tokenized_datasets[\"train\"],\n", " eval_dataset=tokenized_datasets[\"validation\"],\n", " data_collator=data_collator,\n", " tokenizer=tokenizer,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "2hF9UHdXgBuX" }, "outputs": [], "source": [ "trainer.train() # Attention, une epoch prend 12h !" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "eWao7LvzgBuY" }, "outputs": [], "source": [ "predictions = trainer.predict(tokenized_datasets[\"validation\"])\n", "print(predictions.predictions.shape, predictions.label_ids.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "2hen_ecUgBuZ" }, "outputs": [], "source": [ "import numpy as np\n", "\n", "preds = np.argmax(predictions.predictions, axis=-1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "JS6HytHngBua" }, "outputs": [], "source": [ "from datasets import load_metric\n", "\n", "metric = load_metric(\"glue\", \"mrpc\")\n", "metric.compute(predictions=preds, references=predictions.label_ids)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "POWKrVmkgBub" }, "outputs": [], "source": [ "def compute_metrics(eval_preds):\n", " metric = load_metric(\"glue\", \"mrpc\")\n", " logits, labels = eval_preds\n", " predictions = np.argmax(logits, axis=-1)\n", " return metric.compute(predictions=predictions, references=labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "T03glg22gBuc" }, "outputs": [], "source": [ "training_args = TrainingArguments(\"test-trainer\", evaluation_strategy=\"epoch\")\n", "model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n", "\n", "trainer = Trainer(\n", " model,\n", " training_args,\n", " train_dataset=tokenized_datasets[\"train\"],\n", " eval_dataset=tokenized_datasets[\"validation\"],\n", " data_collator=data_collator,\n", " tokenizer=tokenizer,\n", " compute_metrics=compute_metrics,\n", ")" ] } ], "metadata": { "colab": { "collapsed_sections": [], "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 1 }