{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tAZq3vFDcFiT"
},
"source": [
"# Stable Conceptualizer - Stable Diffusion using learned concepts\n",
"\n",
"The Stable Conceptualizer enables you to use pre-learned concepts on Stable Diffusion via textual-inversion using ๐ค Hugging Face [๐งจ Diffusers library](https://github.com/huggingface/diffusers). \n",
"\n",
"\n",
"\n",
"Navigate the [library of pre-learned concepts](https://huggingface.co/sd-concepts-library) here. For teaching the model new concepts using Textual Inversion, [use this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). \n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KbzZ9xe6dWwf"
},
"source": [
"## Initial setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "30lu8LWXmg5j",
"outputId": "fbc5d033-e2b3-460b-c2c7-3b9441949b8c",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m934.9/934.9 kB\u001b[0m \u001b[31m13.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m7.0/7.0 MB\u001b[0m \u001b[31m52.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m53.1/53.1 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m219.1/219.1 kB\u001b[0m \u001b[31m15.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m224.5/224.5 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m55.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h"
]
}
],
"source": [
"#@title Install the required libs\n",
"!pip install -qq diffusers==0.16.1 transformers ftfy accelerate\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"cellView": "form",
"id": "24zwrNSBm4A3",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 331,
"referenced_widgets": [
"a1c13d8ea1d14787a5543f8eaf393f07",
"3d8c3e0c2f2243d1a7a0e9868d6e11f3",
"3e9c7820ba0741db8a5993f6ffc55a66",
"7cdeb1118a8245fe9b6ce6916b8d13a9",
"405999a1c6b4447eb0f58324e56e75e3",
"c5a31ff3a51046c1886aef062795e466",
"e4c8e3bfab9548dea06e46f4a64afe5c",
"4c1b6f10f82c42d08cad1f4aa43cdf7b",
"ef6e1452c4f84eb0812aadef1758438f",
"0d239d39a4224d6d872de467349558b5",
"388ac48385ec4768a0fa3bb7a247b74d",
"1bd8d2fb9f4d4b2f9de1a68f9592ebe4",
"c5d2cdc427344c1fb470a876b74b2332",
"ac84de0a61f94595806a87a56a5b3f52",
"fd887b52487c4640a273b3bbde911945",
"beea468e63a94e0a8e0ed3a2c3b0ea7a",
"4a544c681bab44fe8c41400ba8065381"
]
},
"outputId": "19ee9433-f814-4106-8e12-a36304a8fb73"
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"VBox(children=(HTML(value='