{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "CL089-JvFAXe"
},
"source": [
"# Fine-tuning for Semantic Segmentation with 🤗 Transformers\n",
"\n",
"This tutorial shows how to fine-tune a SegFormer model in TensorFlow for the task of semantic segmentation. The tutorial is a TensorFlow port of this [blog post](https://huggingface.co/blog/fine-tune-segformer). As such, the notebook uses code from the blog post.\n",
"\n",
"This notebook shows how to fine-tune a pretrained vision model for Semantic Segmentation on a custom dataset. The idea is to add a randomly initialized segmentation head on top of a pre-trained encoder, and fine-tune the model altogether on a labeled dataset."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2UEtIWt0sGkR"
},
"source": [
"## Model\n",
"\n",
"This notebook is built for the [SegFormer model (TensorFlow variant)](https://huggingface.co/docs/transformers/model_doc/segformer#transformers.TFSegformerForSemanticSegmentation) and is supposed to run on any semantic segmentation dataset. You can adapt this notebook to other supported semantic segmentation models such as [MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "j9Fe4GuFtRMs"
},
"source": [
"## Data augmentation\n",
"\n",
"This notebook leverages TensorFlow's [`image`](https://www.tensorflow.org/api_docs/python/tf/image) module for applying data augmentation. Using other augmentation libraries like `albumentations` is also [supported](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb).\n",
"\n",
"---\n",
"\n",
"Depending on the model and the GPU you are using, you might need to adjust the batch size to avoid out-of-memory errors. Set those two parameters, then the rest of the notebook should run smoothly.\n",
"\n",
"In this notebook, we'll fine-tune from the https://huggingface.co/nvidia/mit-b0 checkpoint, but note that there are others [available on the hub](https://huggingface.co/models?pipeline_tag=image-segmentation)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6EGlFGE8uyBS"
},
"outputs": [],
"source": [
"model_checkpoint = \"nvidia/mit-b0\" # pre-trained model from which to fine-tune\n",
"batch_size = 4 # batch size for training and evaluation"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "d32sBZeq_HQ2"
},
"source": [
"Before we start, let's install the `datasets`, `transformers`, and `evaluate` libraries. We also install Git-LFS to upload the model checkpoints to Hub.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vAvgC48er3Ih",
"outputId": "7d91f381-a7b1-485a-c718-138815a8acab"
},
"outputs": [],
"source": [
"!pip -q install datasets transformers evaluate\n",
"\n",
"!git lfs install\n",
"!git config --global credential.helper store"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qSq03UMRvjRS"
},
"source": [
"If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries.\n",
"\n",
"You can share the resulting model with the community. By pushing the model to the Hub, others can discover your model and build on top of it. You also get an automatically generated model card that documents how the model works and a widget that will allow anyone to try out the model directly in the browser. To enable this, you'll need to login to your account."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 271,
"referenced_widgets": [
"f42e05b4960346bda23b74e59bd9a397",
"e9fcee33584147caaa399e1b36319f06",
"1d1c800014104e1bbc41200c1e230832",
"d858e256c46d411b8509bbcfb8ddd834",
"5d9708688d264bf59979f97021617769",
"07d64a76007d42d8802c865a1b066e7b",
"83deae8c3ef94bc7879cd727594c46de",
"a66d7491100247658bea4415312af12a",
"37ad8bac8a184a03aec9608bb2847bed",
"8e8d91b498bf48d5ac345183f337813c",
"7a2a0885f88a4aa5814777a1277abfc6",
"cc8cd204132842f59eb333c2a1b84444",
"14c54ab630804e4d9646e328f3742f7e",
"0696a96398ca4de3a6abadbc1595ed2b"
]
},
"id": "PlSGaFpFuQSW",
"outputId": "7856d758-d965-4ec1-b53c-004e00767dc5"
},
"outputs": [],
"source": [
"from huggingface_hub import notebook_login\n",
"\n",
"notebook_login()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XalxdrirGkLl"
},
"source": [
"## Fine-tuning a model on a semantic segmentation task\n",
"\n",
"In this notebook, we will see how to fine-tune one of the [🤗 Transformers](https://github.com/huggingface/transformers) vision models on a Semantic Segmentation dataset.\n",
"\n",
"Given an image, the goal is to associate each and every pixel to a particular category (such as table). The screenshot below is taken from a [SegFormer fine-tuned on ADE20k](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) - try out the inference widget!\n",
"\n",
"
\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mcE455KaG687"
},
"source": [
"### Loading the dataset"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RD_G2KJgG_bU"
},
"source": [
"We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library to download our custom dataset into a [`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasetdict)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 281,
"referenced_widgets": [
"6de4fc2807bc4bb0825befbbaca366c9",
"77c817c830314013805fbd0d203ea8b8",
"f1f9875ed07b480591c975222fc95950",
"3a36ff18a13e46768228e7128e02002b",
"c7d020044efb4725a24a0a84ae7409fa",
"ad66d4abe2e2450cb7c8a573dc50d9ff",
"3e3d572c197e464da6a3ce0cfc4cc89e",
"59c9c5f2ef6d4625a97a4bc9bdc331b2",
"9725bcfbf9d54824974e8e69c64ca6fd",
"83896f5e610144adb992c63e9cbd56ff",
"ef4a5405c1d34d5badf0a813a8ea1fa5",
"289120fb74224df4a9d2aa2821432ba5",
"f7e2d0f3ee6e4231b22616fbf933bf02",
"78a551a0db66493f876fbe18030c3174",
"f3174b816bec4c918cd3ab4b10ec0efe",
"4fa96e02fc4b44cb9996bbef089fd74c",
"0031937aefa0465683e219549c935dd7",
"d1b7953db7a6462f831fb075199542ef",
"1c4348e789704fe2b25cb8698e88ca8e",
"bff07d8078824308b8aabf71faf16e88",
"12a94046754c49868ad14d688c48d88f",
"5ad48a5ce1dc426faa6e790064418c9b",
"3de3cc234bda43c1ad0b354dbc474ef6",
"d9f56ee4b21f4e0e8693232cbb490cdd",
"05621203ac434c5f93d355bb6ce6db3d",
"d134802237f84c73a2717eed6cc1ecb4",
"afce9206edbb444a944c291d5282c217",
"a60fbc5906394df9858d898670a7f819",
"1ee064e37e61448cb9a34fa7e66a3e34",
"01ecfb419b3f460b8377c79793740982",
"43f8dc298b7941bf8ca651015dec533c",
"32988ad67af149489bfd676c0942dbe4",
"a687b33460fa461eafec017738c863de",
"c5030cc8ebff4e628da62e8835965f33",
"33ad7766b2c146afb54a3470f352b8ee",
"915fad5434a545b086baf639459d4558",
"79894b070903437584f7aca3052e50de",
"ad87c3f60ac7492ab8aaa471630c41c7",
"e74bfbec17f94789bfb8e367983aa193",
"dccebc6c988d49c887484b78f4ee95e9",
"d04bc0eadaf242b6a81a9ade962c4de2",
"4ab875034a084c338994bc7909053241",
"3e2ff151429e49f5aaffd0a940d36805",
"0459a4d9fcbd4478a52481ac016ddd78",
"23735d2bbcf24587859d5d36bf901fd0",
"ca4341aa40384d228a99074543527b31",
"974c53ab4fb94ee3a86f650bba9562c1",
"3d40886e38454a618a8a9a756f5c458d",
"8db4e36ccc6a4d4492b78a50c7ec2409",
"ab102484e15d44a4b1182029637dfc30",
"389469716c4e42c884ca47c6659d5612",
"4d6b9ad04eab4a70bf1df3f43a7f5f94",
"b969b475e1b149dda5b119e37d7761c7",
"c298ba164a35417b9b1fff7a97bd7f7f",
"c8cd775a94a944d9a0e0ebeb2c3645f8",
"2cbb298d54ac4771be87a85cbcb5dff4",
"1a5bc3a601a949b5ab59b4a4b776f2f0",
"8c9c506bf6dd47fd882e8d70581e54c2",
"8652d0f8599843e98edfe6c21de5be9c",
"3b280d74e111402d94a18f61fe8c4478",
"998feff5e78b491dacc43d045c73cb8c",
"9747349d77e14ab3a47fd4c479970a0a",
"47cf642995f44f04a56be02be4ab0a87",
"dadc0338ea954e478246a588b2aa1dc7",
"219ab526698c43f895ca102befa0135c",
"ff2adb06e63e47798f7130e9630c1255",
"f596082d8bda42458543179605fb2dc2",
"af8c7c09c55341a6a14b4799ae2dff44",
"396a68b4f1b947b9876a9587b6958fce",
"a3a68016faa148158bd9f4d805863295",
"3bea3ea92ee8481fb036fa4e07c08009",
"0d05591c5dd74c26b9399ece8cea12b0",
"ea01151241174b9da977485761a27463",
"b2985292e9d24f8ab6c6523056d8371a",
"4af03fff36ed4c569c86908f228f7954",
"ae1bd290c1474450a169593db137974f",
"097c5b79a85642efa389e68aa5df428c"
]
},
"id": "U10po8Q3w9ZJ",
"outputId": "292c707c-2cae-4818-fe23-f9c71efe0f37"
},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"hf_dataset_identifier = \"segments/sidewalk-semantic\"\n",
"ds = load_dataset(hf_dataset_identifier)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "y5z6SfJpJ5-e"
},
"source": [
"We're using the Sidewalk dataset which is dataset of sidewalk images gathered in Belgium in the summer of 2021. You can learn more about the dataset [here](https://huggingface.co/datasets/segments/sidewalk-semantic)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eq8mwsZU2j6t"
},
"source": [
"Let us also load the Mean IoU metric, which we'll use to evaluate our model both during and after training. \n",
"\n",
"IoU (short for Intersection over Union) tells us the amount of overlap between two sets. In our case, these sets will be the ground-truth segmentation map and the predicted segmentation map. To learn more, you can check out [this article](https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"4b1915eae45c4710b6a3f8495093956d",
"b42d735eeb0043e7b318004de525b55b",
"d1148b579b6e41af99f2463a799d6c90",
"501ff9d5db294d928f6367741bdd8f37",
"a494ba6485a14473abcff9a343e1038e",
"6fda21b649114145af09deb02b2d1e95",
"dca0b5e19b504879b6e821f43ccbed00",
"e9bf0dfb0a574cceb00953779da8d5f3",
"8de21d3ac33f47a39fbefa6395d703df",
"2da9282150f94994ad230dd70d9ddbbb",
"faa9ead661124af59981d5b0cb5d38b9"
]
},
"id": "8UGse36eLeeb",
"outputId": "682ed0ad-b48b-4988-b8e2-aa25d216ae76"
},
"outputs": [],
"source": [
"import evaluate\n",
"\n",
"metric = evaluate.load(\"mean_iou\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "r8mTmFdlHOmN"
},
"source": [
"The `ds` object itself is a `DatasetDict`, which contains one key per split (in this case, only \"train\" for a training split)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7tjOWPQYLq4u",
"outputId": "cf7abc33-2ce4-40c6-ee66-e8ce47a1c208"
},
"outputs": [],
"source": [
"ds"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Yt_phZQsxz5M"
},
"source": [
"Here, the `features` tell us what each example is consisted of:\n",
"\n",
"* `pixel_values`: the actual image\n",
"* `label`: segmentation mask\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nfPPNjthI3u2"
},
"source": [
"To access an actual element, you need to select a split first, then give an index:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 217
},
"id": "BujWoSgyMQlw",
"outputId": "59c0dc81-3be5-4b38-f3bf-037133024e57"
},
"outputs": [],
"source": [
"example = ds[\"train\"][10]\n",
"example[\"pixel_values\"].resize((200, 200))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 217
},
"id": "-p7R9KP0yUOa",
"outputId": "c0487523-1ffe-4cb6-bfe7-dec0033a5d67"
},
"outputs": [],
"source": [
"example[\"label\"].resize((200, 200))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vp-fIQzvyTHL"
},
"source": [
"Each of the pixels above can be associated to a particular category. Let's load all the categories that are associated with the dataset. Let's also create an `id2label` dictionary to decode them back to strings and see what they are. The inverse `label2id` will be useful too, when we load the model later."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 49,
"referenced_widgets": [
"c71c1a959c43465e9fa63a94e72e0681",
"22d86a1d282448a190ff5f81d5086f16",
"108d9a14e9bd46088a1b3526e9607c48",
"f53b548093704a4483f8825f2c7eb3a6",
"2be22416cdaf4ab1a48145dcdbafd57f",
"31288c6294644f4c890374a08c7ec1ec",
"abd78c14e61843ef89699b2ad68d970c",
"3dbd784ed0724b7b8f3bf3b5d3d87919",
"3f71c41ea8524623b129bfafddf293db",
"90d261d919a54a91bacba98abaf6b35c",
"d82c57f3e3484f149b5a8d63c97ac582"
]
},
"id": "Op_AGsW0y5C3",
"outputId": "59041978-a8fa-4aad-ef94-80013c58c288"
},
"outputs": [],
"source": [
"from huggingface_hub import hf_hub_download\n",
"import json\n",
"\n",
"filename = \"id2label.json\"\n",
"id2label = json.load(\n",
" open(hf_hub_download(hf_dataset_identifier, filename, repo_type=\"dataset\"), \"r\")\n",
")\n",
"id2label = {int(k): v for k, v in id2label.items()}\n",
"label2id = {v: k for k, v in id2label.items()}\n",
"\n",
"num_labels = len(id2label)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2Rg_WraEzMb7",
"outputId": "9cf28a2d-b433-4df4-c961-c987ba242ef6"
},
"outputs": [],
"source": [
"num_labels, list(label2id.keys())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FmMUQVLXLj_I"
},
"source": [
"**Note**: This dataset specificaly sets the 0th index as being `unlabeled`. We want to take this information into consideration while computing the loss. Specifically, mask the pixels for which the network predicted `unlabeled` and don't compute loss for it since they don't contribute to training that much. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4zxoikSOjs0K"
},
"source": [
"### Preprocessing the data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WTupOU88p1lK"
},
"source": [
"Before we can feed these images to our model, we need to preprocess them. \n",
"\n",
"Preprocessing images typically comes down to (1) resizing them to a particular size (2) normalizing the color channels (R,G,B) using a mean and standard deviation. These are referred to as **image transformations**.\n",
"\n",
"To make sure we (1) resize to the appropriate size (2) use the appropriate image mean and standard deviation for the model architecture we are going to use, we instantiate what is called an image processor with the `AutoImageProcessor.from_pretrained` method.\n",
"\n",
"This image processor is a minimal preprocessor that can be used to prepare images for model training and inference."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PJJQ4s9S0Iag"
},
"outputs": [],
"source": [
"from transformers import AutoImageProcessor\n",
"\n",
"image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)\n",
"image_processor"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "F7kWNDgSzzBo"
},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"\n",
"\n",
"def transforms(image):\n",
" image = tf.keras.utils.img_to_array(image)\n",
" image = image.transpose(\n",
" (2, 0, 1)\n",
" ) # Since vision models in transformers are channels-first layout\n",
" return image\n",
"\n",
"\n",
"def preprocess(example_batch):\n",
" images = [transforms(x.convert(\"RGB\")) for x in example_batch[\"pixel_values\"]]\n",
" labels = [x for x in example_batch[\"label\"]]\n",
" inputs = image_processor(images, labels)\n",
" return inputs"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "k5fTTLun0p7y"
},
"source": [
"Next, we can preprocess our dataset by applying these functions. We will use the set_transform functionality, which allows to apply the functions above on-the-fly (meaning that they will only be applied when the images are loaded in RAM)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "s06rU_R1vhmR"
},
"outputs": [],
"source": [
"# split up training into training + validation\n",
"splits = ds[\"train\"].train_test_split(test_size=0.1)\n",
"train_ds = splits[\"train\"]\n",
"val_ds = splits[\"test\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TJoI7JZfvhmR"
},
"outputs": [],
"source": [
"train_ds.set_transform(preprocess)\n",
"val_ds.set_transform(preprocess)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HOXmyPQ76Qv9"
},
"source": [
"### Training the model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0a-2YT7O6ayC"
},
"source": [
"Now that our data is ready, we can download the pretrained model and fine-tune it. We will the `TFSegformerForSemanticSegmentation` class. Calling the `from_pretrained` method on it will download and cache the weights for us. As the label ids and the number of labels are dataset dependent, we pass `label2id`, and `id2label` alongside the `model_checkpoint` here. This will make sure a custom segmentation head will be created (with a custom number of output neurons)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qMdkERPg3ab3"
},
"outputs": [],
"source": [
"from transformers import TFSegformerForSemanticSegmentation\n",
"\n",
"\n",
"model = TFSegformerForSemanticSegmentation.from_pretrained(\n",
" model_checkpoint,\n",
" num_labels=num_labels,\n",
" id2label=id2label,\n",
" label2id=label2id,\n",
" ignore_mismatched_sizes=True, # Will ensure the segmentation specific components are reinitialized.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "L5umptad3k3g"
},
"source": [
"The warning is telling us we are throwing away some weights (the weights and bias of the `decode_head` layer) and randomly initializing some other (the weights and bias of a new `decode_head` layer). This is expected in this case, because we are adding a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6K0B3oqs3PR-"
},
"outputs": [],
"source": [
"epochs = 50\n",
"lr = 0.00006"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "94k2ymc04c3H"
},
"source": [
"Note that most models on the Hub compute loss internally, so we actually don't have to specify anything there! Leaving the loss field blank will cause the model to read the loss head as its loss value.\n",
"\n",
"This is an unusual quirk of TensorFlow models in 🤗 Transformers, so it's worth elaborating on in a little more detail. All 🤗 Transformers models are capable of computing an appropriate loss for their task internally (for example, a CausalLM model will use a cross-entropy loss). To do this, the labels must be provided in the input dict (or equivalently, in the `columns` argument to `to_tf_dataset()`), so that they are visible to the model during the forward pass.\n",
"\n",
"This is quite different from the standard Keras way of handling losses, where labels are passed separately and not visible to the main body of the model, and loss is handled by a function that the user passes to `compile()`, which uses the model outputs and the label to compute a loss value.\n",
"\n",
"The approach we take is that if the user does not pass a loss to `compile()`, the model will assume you want the **internal** loss. If you are doing this, you should make sure that the labels column(s) are included in the **input dict** or in the `columns` argument to `to_tf_dataset`.\n",
"\n",
"If you want to use your own loss, that is of course possible too! If you do this, you should make sure your labels column(s) are passed like normal labels, either as the **second argument** to `model.fit()`, or in the `label_cols` argument to `to_tf_dataset`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ywSwPBq64jlF"
},
"outputs": [],
"source": [
"from tensorflow.keras.optimizers import Adam\n",
"\n",
"optimizer = Adam(learning_rate=lr)\n",
"model.compile(optimizer=optimizer)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "16dG21FzvhmU"
},
"source": [
"We need to convert our datasets to a format Keras understands. The easiest way to do this is with the `to_tf_dataset()` method. Note that our data collators are designed to work for multiple frameworks, so ensure you set the `return_tensors='tf'` argument to get TensorFlow tensors out - you don't want to accidentally get a load of `torch.Tensor` objects in the middle of your nice TF code!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "eUA_8YYVvhmV"
},
"outputs": [],
"source": [
"from transformers import DefaultDataCollator\n",
"\n",
"\n",
"data_collator = DefaultDataCollator(return_tensors=\"tf\")\n",
"\n",
"train_set = train_ds.to_tf_dataset(\n",
" columns=[\"pixel_values\", \"label\"],\n",
" shuffle=True,\n",
" batch_size=batch_size,\n",
" collate_fn=data_collator,\n",
")\n",
"val_set = val_ds.to_tf_dataset(\n",
" columns=[\"pixel_values\", \"label\"],\n",
" shuffle=False,\n",
" batch_size=batch_size,\n",
" collate_fn=data_collator,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4G8FQC6EIMV1"
},
"source": [
"`train_set` is now a `tf.data.Dataset` type object. We see that it contains two elements - `labels` and `pixel_values`. :"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3KXA06hdI8Q3",
"outputId": "5fe85820-63b3-49b1-a991-709670fcb2e5"
},
"outputs": [],
"source": [
"train_set.element_spec"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qlPdGeb6JG_i",
"outputId": "0749e36d-93fa-498e-9f2e-a737ee873cfd"
},
"outputs": [],
"source": [
"batch = next(iter(train_set))\n",
"batch.keys()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-JdFEmheKff8",
"outputId": "4340ff46-ad89-416d-cb6e-86be1fed6b3f"
},
"outputs": [],
"source": [
"for k in batch: \n",
" print(f\"{k}: {batch[k].shape}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CYXxpEGwvhmX"
},
"source": [
"The last thing to define is how to compute the metrics from the predictions. We need to define a function for this, which will just use the metric we loaded earlier. The only preprocessing we have to do is to take the argmax of our predicted logits.\n",
"\n",
"In addition, let's wrap this metric computation function in a `KerasMetricCallback`. This callback will compute the metric on the validation set each epoch, including printing it and logging it for other callbacks like TensorBoard and EarlyStopping.\n",
"\n",
"Why do it this way, though, and not just use a straightforward Keras Metric object? This is a good question - on this task, metrics such as Accuracy are very straightforward, and it would probably make more sense to just use a Keras metric for those instead. However, we want to demonstrate the use of `KerasMetricCallback` here, because it can handle any arbitrary Python function for the metric computation. \n",
"\n",
"How do we actually use `KerasMetricCallback`? We simply define a function that computes metrics given a tuple of numpy arrays of predictions and labels, then we pass that, along with the validation set to compute metrics on, to the callback:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "abldWJNrJnYb"
},
"outputs": [],
"source": [
"from transformers.keras_callbacks import KerasMetricCallback\n",
"\n",
"\n",
"def compute_metrics(eval_pred):\n",
" logits, labels = eval_pred\n",
" # logits are of shape (batch_size, num_labels, height, width), so\n",
" # we first transpose them to (batch_size, height, width, num_labels)\n",
" logits = tf.transpose(logits, perm=[0, 2, 3, 1])\n",
" # scale the logits to the size of the label\n",
" logits_resized = tf.image.resize(\n",
" logits,\n",
" size=tf.shape(labels)[1:],\n",
" method=\"bilinear\",\n",
" )\n",
" # compute the prediction labels and compute the metric\n",
" pred_labels = tf.argmax(logits_resized, axis=-1)\n",
" metrics = metric.compute(\n",
" predictions=pred_labels,\n",
" references=labels,\n",
" num_labels=num_labels,\n",
" ignore_index=-1,\n",
" reduce_labels=image_processor.do_reduce_labels,\n",
" )\n",
" # add per category metrics as individual key-value pairs\n",
" per_category_accuracy = metrics.pop(\"per_category_accuracy\").tolist()\n",
" per_category_iou = metrics.pop(\"per_category_iou\").tolist()\n",
"\n",
" metrics.update(\n",
" {f\"accuracy_{id2label[i]}\": v for i, v in enumerate(per_category_accuracy)}\n",
" )\n",
" metrics.update({f\"iou_{id2label[i]}\": v for i, v in enumerate(per_category_iou)})\n",
" return {\"val_\" + k: v for k, v in metrics.items()}\n",
"\n",
"\n",
"metric_callback = KerasMetricCallback(\n",
" metric_fn=compute_metrics,\n",
" eval_dataset=val_set,\n",
" batch_size=batch_size,\n",
" label_cols=[\"labels\"],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "w7Ce3wuxvhmY"
},
"source": [
"Now we can train our model. We can also add a callback to sync up our model with the Hub - this allows us to resume training from other machines and even test the model's inference quality midway through training! Make sure to change the `username` if you do. If you don't want to do this, simply remove the callbacks argument in the call to `fit()`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "oaupSvh8vhmY",
"outputId": "185f51b5-0fe2-4073-cfa8-fda7112f2486"
},
"outputs": [],
"source": [
"from transformers.keras_callbacks import PushToHubCallback\n",
"\n",
"\n",
"model_name = model_checkpoint.split(\"/\")[-1]\n",
"push_to_hub_model_id = f\"{model_name}-finetuned-sidewalks\"\n",
"\n",
"push_to_hub_callback = PushToHubCallback(\n",
" output_dir=\"./ic_from_scratch_model_save\",\n",
" hub_model_id=push_to_hub_model_id,\n",
" tokenizer=image_processor,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TxGFcCdvvhmZ"
},
"outputs": [],
"source": [
"callbacks = [metric_callback, push_to_hub_callback] "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000,
"referenced_widgets": [
"c8977bc561e1468495b60930c37db3f1",
"ba42828c4f214fcbb95c17abaa5ebcc3",
"c5ebff003fd64aa887e3ff157f9af541",
"f2e837db2cf845d08b52e7306c08257f",
"073001705dba401483849b771ea2be3e",
"62656e97e8d3408ea8d8ed420b54c339",
"217c6ba117a8456e833c9001379e14c7",
"be636eb035324f4688a5a447b8642bce",
"5d7b67dd4a324a569892b8620b7bb9e9",
"23b890bf3e0e4c8481d80ee9477e576c",
"ad630b366364453e80ea8e91ff5fa526"
]
},
"id": "pYfvReaVvhmZ",
"outputId": "1b390071-675e-4155-c0c0-68aaad815067"
},
"outputs": [],
"source": [
"model.fit(\n",
" train_set,\n",
" validation_data=val_set,\n",
" callbacks=callbacks,\n",
" epochs=epochs,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AYP-kEJR3DcC",
"outputId": "0ff7aa53-1246-4a0d-bf39-8cea297a68f4"
},
"outputs": [],
"source": [
"eval_loss = model.evaluate(val_set)\n",
"eval_loss"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tsDeP3lQHf6n"
},
"source": [
"Alternatively, we can also leverage `metric` to compute different quantities on the validation set in a batchwise manner: `mean_iou`, `mean_accuracy`, etc. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "IPy_6s2fC0Y1",
"outputId": "108d4ac9-8035-4396-a2f2-b8e80edc6f2a"
},
"outputs": [],
"source": [
"for batch in iter(val_set):\n",
" predictions = model.predict(batch)\n",
" # logits are of shape (batch_size, num_labels, height, width), so\n",
" # we first transpose them to (batch_size, height, width, num_labels)\n",
" logits = tf.transpose(predictions.logits, perm=[0, 2, 3, 1])\n",
" # scale the logits to the size of the label\n",
" logits_resized = tf.image.resize(\n",
" logits,\n",
" size=tf.shape(batch[\"labels\"])[1:],\n",
" method=\"bilinear\",\n",
" )\n",
" # compute the prediction labels and compute the metric\n",
" pred_labels = tf.argmax(logits_resized, axis=-1)\n",
" metric.add_batch(predictions=pred_labels, references=batch[\"labels\"])\n",
"\n",
"metric.compute(\n",
" num_labels=num_labels,\n",
" ignore_index=-1,\n",
" reduce_labels=image_processor.do_reduce_labels,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "B4ujJghkz07h"
},
"source": [
"## Inference"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZRLdbEQ3N4kT"
},
"source": [
"Now that the fine-tuning is done, we can perform inference with the model. In this section, we will also compare the model predictions with the ground-truth labels. This comparison will help us determine the plausible next steps."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 104,
"referenced_widgets": [
"3146792ddf854943bc77767de24db405",
"65b87e9f4bb04fc0b95012ec456fc191",
"3f07314ddce544daba9c8cf85424315e",
"9b9edd5f819843b5b8c8449bf242b3d8",
"f7a2e45affc24da3bde0146ab1d3b72e",
"eba98e9b9f0146859f55184d9ad7e21a",
"5bfc992444694a799e49b40f7161a7eb",
"65589ab1b91d4f1d93b7c5f2f96355c1",
"3bf55ed07d4546ab857815a17fec3280",
"d8a0d7d8e8424c3f8a20d98230a46f6f",
"d3b81224d71b4ea1965a0c52abae9c5f"
]
},
"id": "k7FdainezsOH",
"outputId": "e559bd4e-2785-46ca-c960-b5d9d8bd5d86"
},
"outputs": [],
"source": [
"hf_dataset_identifier = \"segments/sidewalk-semantic\"\n",
"ds = load_dataset(hf_dataset_identifier)\n",
"\n",
"ds = ds.shuffle(seed=1)\n",
"ds = ds[\"train\"].train_test_split(test_size=0.2)\n",
"inference = ds[\"test\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "9pkM0i436dEC",
"outputId": "0f9679ec-6d82-4128-a13b-4683397b44bf"
},
"outputs": [],
"source": [
"test_image = inference[0][\"pixel_values\"]\n",
"test_gt = inference[0][\"label\"]\n",
"test_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "facclJMX8UCh",
"outputId": "339fbed3-0dcb-4dc1-a006-8b4e9731b6a4"
},
"outputs": [],
"source": [
"inputs = image_processor(images=test_image, return_tensors=\"tf\")\n",
"print(inputs[\"pixel_values\"].shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "A-hsuqQ38uSt",
"outputId": "f39495c6-62aa-4239-a7c0-bc111775bcd1"
},
"outputs": [],
"source": [
"outputs = model(**inputs, training=False)\n",
"logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)\n",
"\n",
"# Transpose to have the shape (batch_size, height/4, width/4, num_labels)\n",
"logits = tf.transpose(logits, [0, 2, 3, 1])\n",
"\n",
"# First, rescale logits to original image size\n",
"upsampled_logits = tf.image.resize(\n",
" logits,\n",
" # We reverse the shape of `image` because `image.size` returns width and height.\n",
" test_image.size[::-1] \n",
")\n",
"\n",
"# Second, apply argmax on the class dimension\n",
"pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0]\n",
"print(pred_seg.shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4jrLp163AUr3"
},
"outputs": [],
"source": [
"def sidewalk_palette():\n",
" \"\"\"Sidewalk palette that maps each class to RGB values.\"\"\"\n",
" return [\n",
" [0, 0, 0],\n",
" [216, 82, 24],\n",
" [255, 255, 0],\n",
" [125, 46, 141],\n",
" [118, 171, 47],\n",
" [161, 19, 46],\n",
" [255, 0, 0],\n",
" [0, 128, 128],\n",
" [190, 190, 0],\n",
" [0, 255, 0],\n",
" [0, 0, 255],\n",
" [170, 0, 255],\n",
" [84, 84, 0],\n",
" [84, 170, 0],\n",
" [84, 255, 0],\n",
" [170, 84, 0],\n",
" [170, 170, 0],\n",
" [170, 255, 0],\n",
" [255, 84, 0],\n",
" [255, 170, 0],\n",
" [255, 255, 0],\n",
" [33, 138, 200],\n",
" [0, 170, 127],\n",
" [0, 255, 127],\n",
" [84, 0, 127],\n",
" [84, 84, 127],\n",
" [84, 170, 127],\n",
" [84, 255, 127],\n",
" [170, 0, 127],\n",
" [170, 84, 127],\n",
" [170, 170, 127],\n",
" [170, 255, 127],\n",
" [255, 0, 127],\n",
" [255, 84, 127],\n",
" [255, 170, 127],\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mn_T9DqrAk1R"
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"\n",
"def get_seg_overlay(image, seg):\n",
" color_seg = np.zeros(\n",
" (seg.shape[0], seg.shape[1], 3), dtype=np.uint8\n",
" ) # height, width, 3\n",
" palette = np.array(sidewalk_palette())\n",
" for label, color in enumerate(palette):\n",
" color_seg[seg == label, :] = color\n",
"\n",
" # Show image + mask\n",
" img = np.array(image) * 0.5 + color_seg * 0.5\n",
" img = img.astype(np.uint8)\n",
"\n",
" return img"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 509
},
"id": "frowbiVtAktv",
"outputId": "c728be92-e583-499b-c2c1-f48a43c5e60b"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"pred_img = get_seg_overlay(test_image, pred_seg.numpy())\n",
"gt_img = get_seg_overlay(test_image, np.array(test_gt))\n",
"\n",
"f, axs = plt.subplots(1, 2)\n",
"f.set_figheight(30)\n",
"f.set_figwidth(50)\n",
"\n",
"axs[0].set_title(\"Prediction\", {\"fontsize\": 40})\n",
"axs[0].imshow(pred_img)\n",
"axs[0].axis(\"off\")\n",
"axs[1].set_title(\"Ground truth\", {\"fontsize\": 40})\n",
"axs[1].imshow(gt_img)\n",
"axs[1].axis(\"off\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9qAWQuwJCKt5"
},
"source": [
"Our model is not perfect but it's getting there. Here are some ways to make it better:\n",
"\n",
"* Our dataset is small and adding more samples to it will likely help the model.\n",
"* We didn't perform any hyperparameter tuning for the model. So, searching for better hyperparameters could be helpful. \n",
"* Finally, using a larger model for fine-tuning could be beneficial. "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cZQnNUsI-Q4S"
},
"source": [
"You can now share this model with all your friends, family, favorite pets: they can all load it with the identifier `\"your-username/the-name-you-picked\"` so for instance:\n",
"\n",
"```python\n",
"from transformers import TFSegformerForSemanticSegmentation, TFAutoImageProcessor\n",
"\n",
"image_processor = TFAutoImageProcessor.from_pretrained(\"sayakpaul/my-awesome-model\")\n",
"model = TFSegformerForSemanticSegmentation.from_pretrained(\"sayakpaul/my-awesome-model\")\n",
"\n",
"```"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"machine_shape": "hm",
"provenance": []
},
"gpuClass": "premium",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0031937aefa0465683e219549c935dd7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"01ecfb419b3f460b8377c79793740982": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0459a4d9fcbd4478a52481ac016ddd78": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"05621203ac434c5f93d355bb6ce6db3d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_01ecfb419b3f460b8377c79793740982",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_43f8dc298b7941bf8ca651015dec533c",
"value": 1
}
},
"0696a96398ca4de3a6abadbc1595ed2b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"073001705dba401483849b771ea2be3e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"07d64a76007d42d8802c865a1b066e7b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": "center",
"align_self": null,
"border": null,
"bottom": null,
"display": "flex",
"flex": null,
"flex_flow": "column",
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": "50%"
}
},
"097c5b79a85642efa389e68aa5df428c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"0d05591c5dd74c26b9399ece8cea12b0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"108d9a14e9bd46088a1b3526e9607c48": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_3dbd784ed0724b7b8f3bf3b5d3d87919",
"max": 852,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_3f71c41ea8524623b129bfafddf293db",
"value": 852
}
},
"12a94046754c49868ad14d688c48d88f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"14c54ab630804e4d9646e328f3742f7e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1a5bc3a601a949b5ab59b4a4b776f2f0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_998feff5e78b491dacc43d045c73cb8c",
"placeholder": "​",
"style": "IPY_MODEL_9747349d77e14ab3a47fd4c479970a0a",
"value": ""
}
},
"1c4348e789704fe2b25cb8698e88ca8e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1d1c800014104e1bbc41200c1e230832": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "PasswordModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "PasswordModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "PasswordView",
"continuous_update": true,
"description": "Token:",
"description_tooltip": null,
"disabled": false,
"layout": "IPY_MODEL_37ad8bac8a184a03aec9608bb2847bed",
"placeholder": "​",
"style": "IPY_MODEL_8e8d91b498bf48d5ac345183f337813c",
"value": ""
}
},
"1ee064e37e61448cb9a34fa7e66a3e34": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"217c6ba117a8456e833c9001379e14c7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"219ab526698c43f895ca102befa0135c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"22d86a1d282448a190ff5f81d5086f16": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_31288c6294644f4c890374a08c7ec1ec",
"placeholder": "​",
"style": "IPY_MODEL_abd78c14e61843ef89699b2ad68d970c",
"value": "Downloading: 100%"
}
},
"23735d2bbcf24587859d5d36bf901fd0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_ca4341aa40384d228a99074543527b31",
"IPY_MODEL_974c53ab4fb94ee3a86f650bba9562c1",
"IPY_MODEL_3d40886e38454a618a8a9a756f5c458d"
],
"layout": "IPY_MODEL_8db4e36ccc6a4d4492b78a50c7ec2409"
}
},
"23b890bf3e0e4c8481d80ee9477e576c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"289120fb74224df4a9d2aa2821432ba5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f7e2d0f3ee6e4231b22616fbf933bf02",
"IPY_MODEL_78a551a0db66493f876fbe18030c3174",
"IPY_MODEL_f3174b816bec4c918cd3ab4b10ec0efe"
],
"layout": "IPY_MODEL_4fa96e02fc4b44cb9996bbef089fd74c"
}
},
"2be22416cdaf4ab1a48145dcdbafd57f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2cbb298d54ac4771be87a85cbcb5dff4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_1a5bc3a601a949b5ab59b4a4b776f2f0",
"IPY_MODEL_8c9c506bf6dd47fd882e8d70581e54c2",
"IPY_MODEL_8652d0f8599843e98edfe6c21de5be9c"
],
"layout": "IPY_MODEL_3b280d74e111402d94a18f61fe8c4478"
}
},
"2da9282150f94994ad230dd70d9ddbbb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"31288c6294644f4c890374a08c7ec1ec": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3146792ddf854943bc77767de24db405": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_65b87e9f4bb04fc0b95012ec456fc191",
"IPY_MODEL_3f07314ddce544daba9c8cf85424315e",
"IPY_MODEL_9b9edd5f819843b5b8c8449bf242b3d8"
],
"layout": "IPY_MODEL_f7a2e45affc24da3bde0146ab1d3b72e"
}
},
"32988ad67af149489bfd676c0942dbe4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"33ad7766b2c146afb54a3470f352b8ee": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e74bfbec17f94789bfb8e367983aa193",
"placeholder": "​",
"style": "IPY_MODEL_dccebc6c988d49c887484b78f4ee95e9",
"value": "Downloading data: 100%"
}
},
"37ad8bac8a184a03aec9608bb2847bed": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"389469716c4e42c884ca47c6659d5612": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"396a68b4f1b947b9876a9587b6958fce": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b2985292e9d24f8ab6c6523056d8371a",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4af03fff36ed4c569c86908f228f7954",
"value": 1
}
},
"3a36ff18a13e46768228e7128e02002b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_83896f5e610144adb992c63e9cbd56ff",
"placeholder": "​",
"style": "IPY_MODEL_ef4a5405c1d34d5badf0a813a8ea1fa5",
"value": " 635/635 [00:00<00:00, 22.2kB/s]"
}
},
"3b280d74e111402d94a18f61fe8c4478": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": "hidden",
"width": null
}
},
"3bea3ea92ee8481fb036fa4e07c08009": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3bf55ed07d4546ab857815a17fec3280": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"3d40886e38454a618a8a9a756f5c458d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c298ba164a35417b9b1fff7a97bd7f7f",
"placeholder": "​",
"style": "IPY_MODEL_c8cd775a94a944d9a0e0ebeb2c3645f8",
"value": " 1/1 [00:00<00:00, 35.88it/s]"
}
},
"3dbd784ed0724b7b8f3bf3b5d3d87919": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3de3cc234bda43c1ad0b354dbc474ef6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_d9f56ee4b21f4e0e8693232cbb490cdd",
"IPY_MODEL_05621203ac434c5f93d355bb6ce6db3d",
"IPY_MODEL_d134802237f84c73a2717eed6cc1ecb4"
],
"layout": "IPY_MODEL_afce9206edbb444a944c291d5282c217"
}
},
"3e2ff151429e49f5aaffd0a940d36805": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3e3d572c197e464da6a3ce0cfc4cc89e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3f07314ddce544daba9c8cf85424315e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_65589ab1b91d4f1d93b7c5f2f96355c1",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_3bf55ed07d4546ab857815a17fec3280",
"value": 1
}
},
"3f71c41ea8524623b129bfafddf293db": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"43f8dc298b7941bf8ca651015dec533c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"47cf642995f44f04a56be02be4ab0a87": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": "20px"
}
},
"4ab875034a084c338994bc7909053241": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"4af03fff36ed4c569c86908f228f7954": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"4b1915eae45c4710b6a3f8495093956d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_b42d735eeb0043e7b318004de525b55b",
"IPY_MODEL_d1148b579b6e41af99f2463a799d6c90",
"IPY_MODEL_501ff9d5db294d928f6367741bdd8f37"
],
"layout": "IPY_MODEL_a494ba6485a14473abcff9a343e1038e"
}
},
"4d6b9ad04eab4a70bf1df3f43a7f5f94": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4fa96e02fc4b44cb9996bbef089fd74c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"501ff9d5db294d928f6367741bdd8f37": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2da9282150f94994ad230dd70d9ddbbb",
"placeholder": "​",
"style": "IPY_MODEL_faa9ead661124af59981d5b0cb5d38b9",
"value": " 13.1k/13.1k [00:00<00:00, 447kB/s]"
}
},
"59c9c5f2ef6d4625a97a4bc9bdc331b2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5ad48a5ce1dc426faa6e790064418c9b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5bfc992444694a799e49b40f7161a7eb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5d7b67dd4a324a569892b8620b7bb9e9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"5d9708688d264bf59979f97021617769": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_14c54ab630804e4d9646e328f3742f7e",
"placeholder": "​",
"style": "IPY_MODEL_0696a96398ca4de3a6abadbc1595ed2b",
"value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. "
}
},
"62656e97e8d3408ea8d8ed420b54c339": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"65589ab1b91d4f1d93b7c5f2f96355c1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"65b87e9f4bb04fc0b95012ec456fc191": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_eba98e9b9f0146859f55184d9ad7e21a",
"placeholder": "​",
"style": "IPY_MODEL_5bfc992444694a799e49b40f7161a7eb",
"value": "100%"
}
},
"6de4fc2807bc4bb0825befbbaca366c9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_77c817c830314013805fbd0d203ea8b8",
"IPY_MODEL_f1f9875ed07b480591c975222fc95950",
"IPY_MODEL_3a36ff18a13e46768228e7128e02002b"
],
"layout": "IPY_MODEL_c7d020044efb4725a24a0a84ae7409fa"
}
},
"6fda21b649114145af09deb02b2d1e95": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"77c817c830314013805fbd0d203ea8b8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ad66d4abe2e2450cb7c8a573dc50d9ff",
"placeholder": "​",
"style": "IPY_MODEL_3e3d572c197e464da6a3ce0cfc4cc89e",
"value": "Downloading metadata: 100%"
}
},
"78a551a0db66493f876fbe18030c3174": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_1c4348e789704fe2b25cb8698e88ca8e",
"max": 4260,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_bff07d8078824308b8aabf71faf16e88",
"value": 4260
}
},
"79894b070903437584f7aca3052e50de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_3e2ff151429e49f5aaffd0a940d36805",
"placeholder": "​",
"style": "IPY_MODEL_0459a4d9fcbd4478a52481ac016ddd78",
"value": " 324M/324M [00:05<00:00, 62.8MB/s]"
}
},
"7a2a0885f88a4aa5814777a1277abfc6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"83896f5e610144adb992c63e9cbd56ff": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"83deae8c3ef94bc7879cd727594c46de": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8652d0f8599843e98edfe6c21de5be9c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_219ab526698c43f895ca102befa0135c",
"placeholder": "​",
"style": "IPY_MODEL_ff2adb06e63e47798f7130e9630c1255",
"value": " 1/? [00:00<00:00, 1.09 tables/s]"
}
},
"8c9c506bf6dd47fd882e8d70581e54c2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "info",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_47cf642995f44f04a56be02be4ab0a87",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_dadc0338ea954e478246a588b2aa1dc7",
"value": 1
}
},
"8db4e36ccc6a4d4492b78a50c7ec2409": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8de21d3ac33f47a39fbefa6395d703df": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"8e8d91b498bf48d5ac345183f337813c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"90d261d919a54a91bacba98abaf6b35c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"915fad5434a545b086baf639459d4558": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d04bc0eadaf242b6a81a9ade962c4de2",
"max": 324302379,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4ab875034a084c338994bc7909053241",
"value": 324302379
}
},
"9725bcfbf9d54824974e8e69c64ca6fd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"9747349d77e14ab3a47fd4c479970a0a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"974c53ab4fb94ee3a86f650bba9562c1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4d6b9ad04eab4a70bf1df3f43a7f5f94",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_b969b475e1b149dda5b119e37d7761c7",
"value": 1
}
},
"998feff5e78b491dacc43d045c73cb8c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9b9edd5f819843b5b8c8449bf242b3d8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d8a0d7d8e8424c3f8a20d98230a46f6f",
"placeholder": "​",
"style": "IPY_MODEL_d3b81224d71b4ea1965a0c52abae9c5f",
"value": " 1/1 [00:00<00:00, 34.49it/s]"
}
},
"a3a68016faa148158bd9f4d805863295": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ae1bd290c1474450a169593db137974f",
"placeholder": "​",
"style": "IPY_MODEL_097c5b79a85642efa389e68aa5df428c",
"value": " 1/1 [00:00<00:00, 32.81it/s]"
}
},
"a494ba6485a14473abcff9a343e1038e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a60fbc5906394df9858d898670a7f819": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a66d7491100247658bea4415312af12a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a687b33460fa461eafec017738c863de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ab102484e15d44a4b1182029637dfc30": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"abd78c14e61843ef89699b2ad68d970c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ad630b366364453e80ea8e91ff5fa526": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ad66d4abe2e2450cb7c8a573dc50d9ff": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ad87c3f60ac7492ab8aaa471630c41c7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ae1bd290c1474450a169593db137974f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"af8c7c09c55341a6a14b4799ae2dff44": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0d05591c5dd74c26b9399ece8cea12b0",
"placeholder": "​",
"style": "IPY_MODEL_ea01151241174b9da977485761a27463",
"value": "100%"
}
},
"afce9206edbb444a944c291d5282c217": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b2985292e9d24f8ab6c6523056d8371a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b42d735eeb0043e7b318004de525b55b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_6fda21b649114145af09deb02b2d1e95",
"placeholder": "​",
"style": "IPY_MODEL_dca0b5e19b504879b6e821f43ccbed00",
"value": "Downloading builder script: 100%"
}
},
"b969b475e1b149dda5b119e37d7761c7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"ba42828c4f214fcbb95c17abaa5ebcc3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_62656e97e8d3408ea8d8ed420b54c339",
"placeholder": "​",
"style": "IPY_MODEL_217c6ba117a8456e833c9001379e14c7",
"value": "Upload file tf_model.h5: 100%"
}
},
"be636eb035324f4688a5a447b8642bce": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"bff07d8078824308b8aabf71faf16e88": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"c298ba164a35417b9b1fff7a97bd7f7f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c5030cc8ebff4e628da62e8835965f33": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_33ad7766b2c146afb54a3470f352b8ee",
"IPY_MODEL_915fad5434a545b086baf639459d4558",
"IPY_MODEL_79894b070903437584f7aca3052e50de"
],
"layout": "IPY_MODEL_ad87c3f60ac7492ab8aaa471630c41c7"
}
},
"c5ebff003fd64aa887e3ff157f9af541": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_be636eb035324f4688a5a447b8642bce",
"max": 15167588,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_5d7b67dd4a324a569892b8620b7bb9e9",
"value": 15167588
}
},
"c71c1a959c43465e9fa63a94e72e0681": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_22d86a1d282448a190ff5f81d5086f16",
"IPY_MODEL_108d9a14e9bd46088a1b3526e9607c48",
"IPY_MODEL_f53b548093704a4483f8825f2c7eb3a6"
],
"layout": "IPY_MODEL_2be22416cdaf4ab1a48145dcdbafd57f"
}
},
"c7d020044efb4725a24a0a84ae7409fa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c8977bc561e1468495b60930c37db3f1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_ba42828c4f214fcbb95c17abaa5ebcc3",
"IPY_MODEL_c5ebff003fd64aa887e3ff157f9af541",
"IPY_MODEL_f2e837db2cf845d08b52e7306c08257f"
],
"layout": "IPY_MODEL_073001705dba401483849b771ea2be3e"
}
},
"c8cd775a94a944d9a0e0ebeb2c3645f8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ca4341aa40384d228a99074543527b31": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ab102484e15d44a4b1182029637dfc30",
"placeholder": "​",
"style": "IPY_MODEL_389469716c4e42c884ca47c6659d5612",
"value": "Extracting data files: 100%"
}
},
"cc8cd204132842f59eb333c2a1b84444": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ButtonStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ButtonStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"button_color": null,
"font_weight": ""
}
},
"d04bc0eadaf242b6a81a9ade962c4de2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d1148b579b6e41af99f2463a799d6c90": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e9bf0dfb0a574cceb00953779da8d5f3",
"max": 13077,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_8de21d3ac33f47a39fbefa6395d703df",
"value": 13077
}
},
"d134802237f84c73a2717eed6cc1ecb4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_32988ad67af149489bfd676c0942dbe4",
"placeholder": "​",
"style": "IPY_MODEL_a687b33460fa461eafec017738c863de",
"value": " 1/1 [00:08<00:00, 8.20s/it]"
}
},
"d1b7953db7a6462f831fb075199542ef": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d3b81224d71b4ea1965a0c52abae9c5f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d82c57f3e3484f149b5a8d63c97ac582": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d858e256c46d411b8509bbcfb8ddd834": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ButtonModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ButtonModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ButtonView",
"button_style": "",
"description": "Login",
"disabled": false,
"icon": "",
"layout": "IPY_MODEL_7a2a0885f88a4aa5814777a1277abfc6",
"style": "IPY_MODEL_cc8cd204132842f59eb333c2a1b84444",
"tooltip": ""
}
},
"d8a0d7d8e8424c3f8a20d98230a46f6f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d9f56ee4b21f4e0e8693232cbb490cdd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a60fbc5906394df9858d898670a7f819",
"placeholder": "​",
"style": "IPY_MODEL_1ee064e37e61448cb9a34fa7e66a3e34",
"value": "Downloading data files: 100%"
}
},
"dadc0338ea954e478246a588b2aa1dc7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"dca0b5e19b504879b6e821f43ccbed00": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"dccebc6c988d49c887484b78f4ee95e9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e74bfbec17f94789bfb8e367983aa193": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e9bf0dfb0a574cceb00953779da8d5f3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e9fcee33584147caaa399e1b36319f06": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_83deae8c3ef94bc7879cd727594c46de",
"placeholder": "​",
"style": "IPY_MODEL_a66d7491100247658bea4415312af12a",
"value": "