{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "CL089-JvFAXe" }, "source": [ "# Fine-tuning for Semantic Segmentation with 🤗 Transformers\n", "\n", "This tutorial shows how to fine-tune a SegFormer model in TensorFlow for the task of semantic segmentation. The tutorial is a TensorFlow port of this [blog post](https://huggingface.co/blog/fine-tune-segformer). As such, the notebook uses code from the blog post.\n", "\n", "This notebook shows how to fine-tune a pretrained vision model for Semantic Segmentation on a custom dataset. The idea is to add a randomly initialized segmentation head on top of a pre-trained encoder, and fine-tune the model altogether on a labeled dataset." ] }, { "cell_type": "markdown", "metadata": { "id": "2UEtIWt0sGkR" }, "source": [ "## Model\n", "\n", "This notebook is built for the [SegFormer model (TensorFlow variant)](https://huggingface.co/docs/transformers/model_doc/segformer#transformers.TFSegformerForSemanticSegmentation) and is supposed to run on any semantic segmentation dataset. You can adapt this notebook to other supported semantic segmentation models such as [MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)." ] }, { "cell_type": "markdown", "metadata": { "id": "j9Fe4GuFtRMs" }, "source": [ "## Data augmentation\n", "\n", "This notebook leverages TensorFlow's [`image`](https://www.tensorflow.org/api_docs/python/tf/image) module for applying data augmentation. Using other augmentation libraries like `albumentations` is also [supported](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb).\n", "\n", "---\n", "\n", "Depending on the model and the GPU you are using, you might need to adjust the batch size to avoid out-of-memory errors. Set those two parameters, then the rest of the notebook should run smoothly.\n", "\n", "In this notebook, we'll fine-tune from the https://huggingface.co/nvidia/mit-b0 checkpoint, but note that there are others [available on the hub](https://huggingface.co/models?pipeline_tag=image-segmentation)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "6EGlFGE8uyBS" }, "outputs": [], "source": [ "model_checkpoint = \"nvidia/mit-b0\" # pre-trained model from which to fine-tune\n", "batch_size = 4 # batch size for training and evaluation" ] }, { "cell_type": "markdown", "metadata": { "id": "d32sBZeq_HQ2" }, "source": [ "Before we start, let's install the `datasets`, `transformers`, and `evaluate` libraries. We also install Git-LFS to upload the model checkpoints to Hub.\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vAvgC48er3Ih", "outputId": "7d91f381-a7b1-485a-c718-138815a8acab" }, "outputs": [], "source": [ "!pip -q install datasets transformers evaluate\n", "\n", "!git lfs install\n", "!git config --global credential.helper store" ] }, { "cell_type": "markdown", "metadata": { "id": "qSq03UMRvjRS" }, "source": [ "If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries.\n", "\n", "You can share the resulting model with the community. By pushing the model to the Hub, others can discover your model and build on top of it. You also get an automatically generated model card that documents how the model works and a widget that will allow anyone to try out the model directly in the browser. To enable this, you'll need to login to your account." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 271, "referenced_widgets": [ "f42e05b4960346bda23b74e59bd9a397", "e9fcee33584147caaa399e1b36319f06", "1d1c800014104e1bbc41200c1e230832", "d858e256c46d411b8509bbcfb8ddd834", "5d9708688d264bf59979f97021617769", "07d64a76007d42d8802c865a1b066e7b", "83deae8c3ef94bc7879cd727594c46de", "a66d7491100247658bea4415312af12a", "37ad8bac8a184a03aec9608bb2847bed", "8e8d91b498bf48d5ac345183f337813c", "7a2a0885f88a4aa5814777a1277abfc6", "cc8cd204132842f59eb333c2a1b84444", "14c54ab630804e4d9646e328f3742f7e", "0696a96398ca4de3a6abadbc1595ed2b" ] }, "id": "PlSGaFpFuQSW", "outputId": "7856d758-d965-4ec1-b53c-004e00767dc5" }, "outputs": [], "source": [ "from huggingface_hub import notebook_login\n", "\n", "notebook_login()" ] }, { "cell_type": "markdown", "metadata": { "id": "XalxdrirGkLl" }, "source": [ "## Fine-tuning a model on a semantic segmentation task\n", "\n", "In this notebook, we will see how to fine-tune one of the [🤗 Transformers](https://github.com/huggingface/transformers) vision models on a Semantic Segmentation dataset.\n", "\n", "Given an image, the goal is to associate each and every pixel to a particular category (such as table). The screenshot below is taken from a [SegFormer fine-tuned on ADE20k](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) - try out the inference widget!\n", "\n", "\"drawing\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "mcE455KaG687" }, "source": [ "### Loading the dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "RD_G2KJgG_bU" }, "source": [ "We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library to download our custom dataset into a [`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasetdict)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 281, "referenced_widgets": [ "6de4fc2807bc4bb0825befbbaca366c9", "77c817c830314013805fbd0d203ea8b8", "f1f9875ed07b480591c975222fc95950", "3a36ff18a13e46768228e7128e02002b", "c7d020044efb4725a24a0a84ae7409fa", "ad66d4abe2e2450cb7c8a573dc50d9ff", "3e3d572c197e464da6a3ce0cfc4cc89e", "59c9c5f2ef6d4625a97a4bc9bdc331b2", "9725bcfbf9d54824974e8e69c64ca6fd", "83896f5e610144adb992c63e9cbd56ff", "ef4a5405c1d34d5badf0a813a8ea1fa5", "289120fb74224df4a9d2aa2821432ba5", "f7e2d0f3ee6e4231b22616fbf933bf02", "78a551a0db66493f876fbe18030c3174", "f3174b816bec4c918cd3ab4b10ec0efe", "4fa96e02fc4b44cb9996bbef089fd74c", "0031937aefa0465683e219549c935dd7", "d1b7953db7a6462f831fb075199542ef", "1c4348e789704fe2b25cb8698e88ca8e", "bff07d8078824308b8aabf71faf16e88", "12a94046754c49868ad14d688c48d88f", "5ad48a5ce1dc426faa6e790064418c9b", "3de3cc234bda43c1ad0b354dbc474ef6", "d9f56ee4b21f4e0e8693232cbb490cdd", "05621203ac434c5f93d355bb6ce6db3d", "d134802237f84c73a2717eed6cc1ecb4", "afce9206edbb444a944c291d5282c217", "a60fbc5906394df9858d898670a7f819", "1ee064e37e61448cb9a34fa7e66a3e34", "01ecfb419b3f460b8377c79793740982", "43f8dc298b7941bf8ca651015dec533c", "32988ad67af149489bfd676c0942dbe4", "a687b33460fa461eafec017738c863de", "c5030cc8ebff4e628da62e8835965f33", "33ad7766b2c146afb54a3470f352b8ee", "915fad5434a545b086baf639459d4558", "79894b070903437584f7aca3052e50de", "ad87c3f60ac7492ab8aaa471630c41c7", "e74bfbec17f94789bfb8e367983aa193", "dccebc6c988d49c887484b78f4ee95e9", "d04bc0eadaf242b6a81a9ade962c4de2", "4ab875034a084c338994bc7909053241", "3e2ff151429e49f5aaffd0a940d36805", "0459a4d9fcbd4478a52481ac016ddd78", "23735d2bbcf24587859d5d36bf901fd0", "ca4341aa40384d228a99074543527b31", "974c53ab4fb94ee3a86f650bba9562c1", "3d40886e38454a618a8a9a756f5c458d", "8db4e36ccc6a4d4492b78a50c7ec2409", "ab102484e15d44a4b1182029637dfc30", "389469716c4e42c884ca47c6659d5612", "4d6b9ad04eab4a70bf1df3f43a7f5f94", "b969b475e1b149dda5b119e37d7761c7", "c298ba164a35417b9b1fff7a97bd7f7f", "c8cd775a94a944d9a0e0ebeb2c3645f8", "2cbb298d54ac4771be87a85cbcb5dff4", "1a5bc3a601a949b5ab59b4a4b776f2f0", "8c9c506bf6dd47fd882e8d70581e54c2", "8652d0f8599843e98edfe6c21de5be9c", "3b280d74e111402d94a18f61fe8c4478", "998feff5e78b491dacc43d045c73cb8c", "9747349d77e14ab3a47fd4c479970a0a", "47cf642995f44f04a56be02be4ab0a87", "dadc0338ea954e478246a588b2aa1dc7", "219ab526698c43f895ca102befa0135c", "ff2adb06e63e47798f7130e9630c1255", "f596082d8bda42458543179605fb2dc2", "af8c7c09c55341a6a14b4799ae2dff44", "396a68b4f1b947b9876a9587b6958fce", "a3a68016faa148158bd9f4d805863295", "3bea3ea92ee8481fb036fa4e07c08009", "0d05591c5dd74c26b9399ece8cea12b0", "ea01151241174b9da977485761a27463", "b2985292e9d24f8ab6c6523056d8371a", "4af03fff36ed4c569c86908f228f7954", "ae1bd290c1474450a169593db137974f", "097c5b79a85642efa389e68aa5df428c" ] }, "id": "U10po8Q3w9ZJ", "outputId": "292c707c-2cae-4818-fe23-f9c71efe0f37" }, "outputs": [], "source": [ "from datasets import load_dataset\n", "\n", "hf_dataset_identifier = \"segments/sidewalk-semantic\"\n", "ds = load_dataset(hf_dataset_identifier)" ] }, { "cell_type": "markdown", "metadata": { "id": "y5z6SfJpJ5-e" }, "source": [ "We're using the Sidewalk dataset which is dataset of sidewalk images gathered in Belgium in the summer of 2021. You can learn more about the dataset [here](https://huggingface.co/datasets/segments/sidewalk-semantic)." ] }, { "cell_type": "markdown", "metadata": { "id": "eq8mwsZU2j6t" }, "source": [ "Let us also load the Mean IoU metric, which we'll use to evaluate our model both during and after training. \n", "\n", "IoU (short for Intersection over Union) tells us the amount of overlap between two sets. In our case, these sets will be the ground-truth segmentation map and the predicted segmentation map. To learn more, you can check out [this article](https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ "4b1915eae45c4710b6a3f8495093956d", "b42d735eeb0043e7b318004de525b55b", "d1148b579b6e41af99f2463a799d6c90", "501ff9d5db294d928f6367741bdd8f37", "a494ba6485a14473abcff9a343e1038e", "6fda21b649114145af09deb02b2d1e95", "dca0b5e19b504879b6e821f43ccbed00", "e9bf0dfb0a574cceb00953779da8d5f3", "8de21d3ac33f47a39fbefa6395d703df", "2da9282150f94994ad230dd70d9ddbbb", "faa9ead661124af59981d5b0cb5d38b9" ] }, "id": "8UGse36eLeeb", "outputId": "682ed0ad-b48b-4988-b8e2-aa25d216ae76" }, "outputs": [], "source": [ "import evaluate\n", "\n", "metric = evaluate.load(\"mean_iou\")" ] }, { "cell_type": "markdown", "metadata": { "id": "r8mTmFdlHOmN" }, "source": [ "The `ds` object itself is a `DatasetDict`, which contains one key per split (in this case, only \"train\" for a training split)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "7tjOWPQYLq4u", "outputId": "cf7abc33-2ce4-40c6-ee66-e8ce47a1c208" }, "outputs": [], "source": [ "ds" ] }, { "cell_type": "markdown", "metadata": { "id": "Yt_phZQsxz5M" }, "source": [ "Here, the `features` tell us what each example is consisted of:\n", "\n", "* `pixel_values`: the actual image\n", "* `label`: segmentation mask\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "nfPPNjthI3u2" }, "source": [ "To access an actual element, you need to select a split first, then give an index:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 217 }, "id": "BujWoSgyMQlw", "outputId": "59c0dc81-3be5-4b38-f3bf-037133024e57" }, "outputs": [], "source": [ "example = ds[\"train\"][10]\n", "example[\"pixel_values\"].resize((200, 200))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 217 }, "id": "-p7R9KP0yUOa", "outputId": "c0487523-1ffe-4cb6-bfe7-dec0033a5d67" }, "outputs": [], "source": [ "example[\"label\"].resize((200, 200))" ] }, { "cell_type": "markdown", "metadata": { "id": "vp-fIQzvyTHL" }, "source": [ "Each of the pixels above can be associated to a particular category. Let's load all the categories that are associated with the dataset. Let's also create an `id2label` dictionary to decode them back to strings and see what they are. The inverse `label2id` will be useful too, when we load the model later." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ "c71c1a959c43465e9fa63a94e72e0681", "22d86a1d282448a190ff5f81d5086f16", "108d9a14e9bd46088a1b3526e9607c48", "f53b548093704a4483f8825f2c7eb3a6", "2be22416cdaf4ab1a48145dcdbafd57f", "31288c6294644f4c890374a08c7ec1ec", "abd78c14e61843ef89699b2ad68d970c", "3dbd784ed0724b7b8f3bf3b5d3d87919", "3f71c41ea8524623b129bfafddf293db", "90d261d919a54a91bacba98abaf6b35c", "d82c57f3e3484f149b5a8d63c97ac582" ] }, "id": "Op_AGsW0y5C3", "outputId": "59041978-a8fa-4aad-ef94-80013c58c288" }, "outputs": [], "source": [ "from huggingface_hub import hf_hub_download\n", "import json\n", "\n", "filename = \"id2label.json\"\n", "id2label = json.load(\n", " open(hf_hub_download(hf_dataset_identifier, filename, repo_type=\"dataset\"), \"r\")\n", ")\n", "id2label = {int(k): v for k, v in id2label.items()}\n", "label2id = {v: k for k, v in id2label.items()}\n", "\n", "num_labels = len(id2label)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2Rg_WraEzMb7", "outputId": "9cf28a2d-b433-4df4-c961-c987ba242ef6" }, "outputs": [], "source": [ "num_labels, list(label2id.keys())" ] }, { "cell_type": "markdown", "metadata": { "id": "FmMUQVLXLj_I" }, "source": [ "**Note**: This dataset specificaly sets the 0th index as being `unlabeled`. We want to take this information into consideration while computing the loss. Specifically, mask the pixels for which the network predicted `unlabeled` and don't compute loss for it since they don't contribute to training that much. " ] }, { "cell_type": "markdown", "metadata": { "id": "4zxoikSOjs0K" }, "source": [ "### Preprocessing the data" ] }, { "cell_type": "markdown", "metadata": { "id": "WTupOU88p1lK" }, "source": [ "Before we can feed these images to our model, we need to preprocess them. \n", "\n", "Preprocessing images typically comes down to (1) resizing them to a particular size (2) normalizing the color channels (R,G,B) using a mean and standard deviation. These are referred to as **image transformations**.\n", "\n", "To make sure we (1) resize to the appropriate size (2) use the appropriate image mean and standard deviation for the model architecture we are going to use, we instantiate what is called an image processor with the `AutoImageProcessor.from_pretrained` method.\n", "\n", "This image processor is a minimal preprocessor that can be used to prepare images for model training and inference." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "PJJQ4s9S0Iag" }, "outputs": [], "source": [ "from transformers import AutoImageProcessor\n", "\n", "image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)\n", "image_processor" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "F7kWNDgSzzBo" }, "outputs": [], "source": [ "import tensorflow as tf\n", "\n", "\n", "def transforms(image):\n", " image = tf.keras.utils.img_to_array(image)\n", " image = image.transpose(\n", " (2, 0, 1)\n", " ) # Since vision models in transformers are channels-first layout\n", " return image\n", "\n", "\n", "def preprocess(example_batch):\n", " images = [transforms(x.convert(\"RGB\")) for x in example_batch[\"pixel_values\"]]\n", " labels = [x for x in example_batch[\"label\"]]\n", " inputs = image_processor(images, labels)\n", " return inputs" ] }, { "cell_type": "markdown", "metadata": { "id": "k5fTTLun0p7y" }, "source": [ "Next, we can preprocess our dataset by applying these functions. We will use the set_transform functionality, which allows to apply the functions above on-the-fly (meaning that they will only be applied when the images are loaded in RAM)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "s06rU_R1vhmR" }, "outputs": [], "source": [ "# split up training into training + validation\n", "splits = ds[\"train\"].train_test_split(test_size=0.1)\n", "train_ds = splits[\"train\"]\n", "val_ds = splits[\"test\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "TJoI7JZfvhmR" }, "outputs": [], "source": [ "train_ds.set_transform(preprocess)\n", "val_ds.set_transform(preprocess)" ] }, { "cell_type": "markdown", "metadata": { "id": "HOXmyPQ76Qv9" }, "source": [ "### Training the model" ] }, { "cell_type": "markdown", "metadata": { "id": "0a-2YT7O6ayC" }, "source": [ "Now that our data is ready, we can download the pretrained model and fine-tune it. We will the `TFSegformerForSemanticSegmentation` class. Calling the `from_pretrained` method on it will download and cache the weights for us. As the label ids and the number of labels are dataset dependent, we pass `label2id`, and `id2label` alongside the `model_checkpoint` here. This will make sure a custom segmentation head will be created (with a custom number of output neurons)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "qMdkERPg3ab3" }, "outputs": [], "source": [ "from transformers import TFSegformerForSemanticSegmentation\n", "\n", "\n", "model = TFSegformerForSemanticSegmentation.from_pretrained(\n", " model_checkpoint,\n", " num_labels=num_labels,\n", " id2label=id2label,\n", " label2id=label2id,\n", " ignore_mismatched_sizes=True, # Will ensure the segmentation specific components are reinitialized.\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "L5umptad3k3g" }, "source": [ "The warning is telling us we are throwing away some weights (the weights and bias of the `decode_head` layer) and randomly initializing some other (the weights and bias of a new `decode_head` layer). This is expected in this case, because we are adding a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "6K0B3oqs3PR-" }, "outputs": [], "source": [ "epochs = 50\n", "lr = 0.00006" ] }, { "cell_type": "markdown", "metadata": { "id": "94k2ymc04c3H" }, "source": [ "Note that most models on the Hub compute loss internally, so we actually don't have to specify anything there! Leaving the loss field blank will cause the model to read the loss head as its loss value.\n", "\n", "This is an unusual quirk of TensorFlow models in 🤗 Transformers, so it's worth elaborating on in a little more detail. All 🤗 Transformers models are capable of computing an appropriate loss for their task internally (for example, a CausalLM model will use a cross-entropy loss). To do this, the labels must be provided in the input dict (or equivalently, in the `columns` argument to `to_tf_dataset()`), so that they are visible to the model during the forward pass.\n", "\n", "This is quite different from the standard Keras way of handling losses, where labels are passed separately and not visible to the main body of the model, and loss is handled by a function that the user passes to `compile()`, which uses the model outputs and the label to compute a loss value.\n", "\n", "The approach we take is that if the user does not pass a loss to `compile()`, the model will assume you want the **internal** loss. If you are doing this, you should make sure that the labels column(s) are included in the **input dict** or in the `columns` argument to `to_tf_dataset`.\n", "\n", "If you want to use your own loss, that is of course possible too! If you do this, you should make sure your labels column(s) are passed like normal labels, either as the **second argument** to `model.fit()`, or in the `label_cols` argument to `to_tf_dataset`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ywSwPBq64jlF" }, "outputs": [], "source": [ "from tensorflow.keras.optimizers import Adam\n", "\n", "optimizer = Adam(learning_rate=lr)\n", "model.compile(optimizer=optimizer)" ] }, { "cell_type": "markdown", "metadata": { "id": "16dG21FzvhmU" }, "source": [ "We need to convert our datasets to a format Keras understands. The easiest way to do this is with the `to_tf_dataset()` method. Note that our data collators are designed to work for multiple frameworks, so ensure you set the `return_tensors='tf'` argument to get TensorFlow tensors out - you don't want to accidentally get a load of `torch.Tensor` objects in the middle of your nice TF code!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "eUA_8YYVvhmV" }, "outputs": [], "source": [ "from transformers import DefaultDataCollator\n", "\n", "\n", "data_collator = DefaultDataCollator(return_tensors=\"tf\")\n", "\n", "train_set = train_ds.to_tf_dataset(\n", " columns=[\"pixel_values\", \"label\"],\n", " shuffle=True,\n", " batch_size=batch_size,\n", " collate_fn=data_collator,\n", ")\n", "val_set = val_ds.to_tf_dataset(\n", " columns=[\"pixel_values\", \"label\"],\n", " shuffle=False,\n", " batch_size=batch_size,\n", " collate_fn=data_collator,\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "4G8FQC6EIMV1" }, "source": [ "`train_set` is now a `tf.data.Dataset` type object. We see that it contains two elements - `labels` and `pixel_values`. :" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3KXA06hdI8Q3", "outputId": "5fe85820-63b3-49b1-a991-709670fcb2e5" }, "outputs": [], "source": [ "train_set.element_spec" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "qlPdGeb6JG_i", "outputId": "0749e36d-93fa-498e-9f2e-a737ee873cfd" }, "outputs": [], "source": [ "batch = next(iter(train_set))\n", "batch.keys()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "-JdFEmheKff8", "outputId": "4340ff46-ad89-416d-cb6e-86be1fed6b3f" }, "outputs": [], "source": [ "for k in batch: \n", " print(f\"{k}: {batch[k].shape}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "CYXxpEGwvhmX" }, "source": [ "The last thing to define is how to compute the metrics from the predictions. We need to define a function for this, which will just use the metric we loaded earlier. The only preprocessing we have to do is to take the argmax of our predicted logits.\n", "\n", "In addition, let's wrap this metric computation function in a `KerasMetricCallback`. This callback will compute the metric on the validation set each epoch, including printing it and logging it for other callbacks like TensorBoard and EarlyStopping.\n", "\n", "Why do it this way, though, and not just use a straightforward Keras Metric object? This is a good question - on this task, metrics such as Accuracy are very straightforward, and it would probably make more sense to just use a Keras metric for those instead. However, we want to demonstrate the use of `KerasMetricCallback` here, because it can handle any arbitrary Python function for the metric computation. \n", "\n", "How do we actually use `KerasMetricCallback`? We simply define a function that computes metrics given a tuple of numpy arrays of predictions and labels, then we pass that, along with the validation set to compute metrics on, to the callback:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "abldWJNrJnYb" }, "outputs": [], "source": [ "from transformers.keras_callbacks import KerasMetricCallback\n", "\n", "\n", "def compute_metrics(eval_pred):\n", " logits, labels = eval_pred\n", " # logits are of shape (batch_size, num_labels, height, width), so\n", " # we first transpose them to (batch_size, height, width, num_labels)\n", " logits = tf.transpose(logits, perm=[0, 2, 3, 1])\n", " # scale the logits to the size of the label\n", " logits_resized = tf.image.resize(\n", " logits,\n", " size=tf.shape(labels)[1:],\n", " method=\"bilinear\",\n", " )\n", " # compute the prediction labels and compute the metric\n", " pred_labels = tf.argmax(logits_resized, axis=-1)\n", " metrics = metric.compute(\n", " predictions=pred_labels,\n", " references=labels,\n", " num_labels=num_labels,\n", " ignore_index=-1,\n", " reduce_labels=image_processor.do_reduce_labels,\n", " )\n", " # add per category metrics as individual key-value pairs\n", " per_category_accuracy = metrics.pop(\"per_category_accuracy\").tolist()\n", " per_category_iou = metrics.pop(\"per_category_iou\").tolist()\n", "\n", " metrics.update(\n", " {f\"accuracy_{id2label[i]}\": v for i, v in enumerate(per_category_accuracy)}\n", " )\n", " metrics.update({f\"iou_{id2label[i]}\": v for i, v in enumerate(per_category_iou)})\n", " return {\"val_\" + k: v for k, v in metrics.items()}\n", "\n", "\n", "metric_callback = KerasMetricCallback(\n", " metric_fn=compute_metrics,\n", " eval_dataset=val_set,\n", " batch_size=batch_size,\n", " label_cols=[\"labels\"],\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "w7Ce3wuxvhmY" }, "source": [ "Now we can train our model. We can also add a callback to sync up our model with the Hub - this allows us to resume training from other machines and even test the model's inference quality midway through training! Make sure to change the `username` if you do. If you don't want to do this, simply remove the callbacks argument in the call to `fit()`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "oaupSvh8vhmY", "outputId": "185f51b5-0fe2-4073-cfa8-fda7112f2486" }, "outputs": [], "source": [ "from transformers.keras_callbacks import PushToHubCallback\n", "\n", "\n", "model_name = model_checkpoint.split(\"/\")[-1]\n", "push_to_hub_model_id = f\"{model_name}-finetuned-sidewalks\"\n", "\n", "push_to_hub_callback = PushToHubCallback(\n", " output_dir=\"./ic_from_scratch_model_save\",\n", " hub_model_id=push_to_hub_model_id,\n", " tokenizer=image_processor,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "TxGFcCdvvhmZ" }, "outputs": [], "source": [ "callbacks = [metric_callback, push_to_hub_callback] " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "c8977bc561e1468495b60930c37db3f1", "ba42828c4f214fcbb95c17abaa5ebcc3", "c5ebff003fd64aa887e3ff157f9af541", "f2e837db2cf845d08b52e7306c08257f", "073001705dba401483849b771ea2be3e", "62656e97e8d3408ea8d8ed420b54c339", "217c6ba117a8456e833c9001379e14c7", "be636eb035324f4688a5a447b8642bce", "5d7b67dd4a324a569892b8620b7bb9e9", "23b890bf3e0e4c8481d80ee9477e576c", "ad630b366364453e80ea8e91ff5fa526" ] }, "id": "pYfvReaVvhmZ", "outputId": "1b390071-675e-4155-c0c0-68aaad815067" }, "outputs": [], "source": [ "model.fit(\n", " train_set,\n", " validation_data=val_set,\n", " callbacks=callbacks,\n", " epochs=epochs,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AYP-kEJR3DcC", "outputId": "0ff7aa53-1246-4a0d-bf39-8cea297a68f4" }, "outputs": [], "source": [ "eval_loss = model.evaluate(val_set)\n", "eval_loss" ] }, { "cell_type": "markdown", "metadata": { "id": "tsDeP3lQHf6n" }, "source": [ "Alternatively, we can also leverage `metric` to compute different quantities on the validation set in a batchwise manner: `mean_iou`, `mean_accuracy`, etc. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "IPy_6s2fC0Y1", "outputId": "108d4ac9-8035-4396-a2f2-b8e80edc6f2a" }, "outputs": [], "source": [ "for batch in iter(val_set):\n", " predictions = model.predict(batch)\n", " # logits are of shape (batch_size, num_labels, height, width), so\n", " # we first transpose them to (batch_size, height, width, num_labels)\n", " logits = tf.transpose(predictions.logits, perm=[0, 2, 3, 1])\n", " # scale the logits to the size of the label\n", " logits_resized = tf.image.resize(\n", " logits,\n", " size=tf.shape(batch[\"labels\"])[1:],\n", " method=\"bilinear\",\n", " )\n", " # compute the prediction labels and compute the metric\n", " pred_labels = tf.argmax(logits_resized, axis=-1)\n", " metric.add_batch(predictions=pred_labels, references=batch[\"labels\"])\n", "\n", "metric.compute(\n", " num_labels=num_labels,\n", " ignore_index=-1,\n", " reduce_labels=image_processor.do_reduce_labels,\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "B4ujJghkz07h" }, "source": [ "## Inference" ] }, { "cell_type": "markdown", "metadata": { "id": "ZRLdbEQ3N4kT" }, "source": [ "Now that the fine-tuning is done, we can perform inference with the model. In this section, we will also compare the model predictions with the ground-truth labels. This comparison will help us determine the plausible next steps." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 104, "referenced_widgets": [ "3146792ddf854943bc77767de24db405", "65b87e9f4bb04fc0b95012ec456fc191", "3f07314ddce544daba9c8cf85424315e", "9b9edd5f819843b5b8c8449bf242b3d8", "f7a2e45affc24da3bde0146ab1d3b72e", "eba98e9b9f0146859f55184d9ad7e21a", "5bfc992444694a799e49b40f7161a7eb", "65589ab1b91d4f1d93b7c5f2f96355c1", "3bf55ed07d4546ab857815a17fec3280", "d8a0d7d8e8424c3f8a20d98230a46f6f", "d3b81224d71b4ea1965a0c52abae9c5f" ] }, "id": "k7FdainezsOH", "outputId": "e559bd4e-2785-46ca-c960-b5d9d8bd5d86" }, "outputs": [], "source": [ "hf_dataset_identifier = \"segments/sidewalk-semantic\"\n", "ds = load_dataset(hf_dataset_identifier)\n", "\n", "ds = ds.shuffle(seed=1)\n", "ds = ds[\"train\"].train_test_split(test_size=0.2)\n", "inference = ds[\"test\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "9pkM0i436dEC", "outputId": "0f9679ec-6d82-4128-a13b-4683397b44bf" }, "outputs": [], "source": [ "test_image = inference[0][\"pixel_values\"]\n", "test_gt = inference[0][\"label\"]\n", "test_image" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "facclJMX8UCh", "outputId": "339fbed3-0dcb-4dc1-a006-8b4e9731b6a4" }, "outputs": [], "source": [ "inputs = image_processor(images=test_image, return_tensors=\"tf\")\n", "print(inputs[\"pixel_values\"].shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "A-hsuqQ38uSt", "outputId": "f39495c6-62aa-4239-a7c0-bc111775bcd1" }, "outputs": [], "source": [ "outputs = model(**inputs, training=False)\n", "logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)\n", "\n", "# Transpose to have the shape (batch_size, height/4, width/4, num_labels)\n", "logits = tf.transpose(logits, [0, 2, 3, 1])\n", "\n", "# First, rescale logits to original image size\n", "upsampled_logits = tf.image.resize(\n", " logits,\n", " # We reverse the shape of `image` because `image.size` returns width and height.\n", " test_image.size[::-1] \n", ")\n", "\n", "# Second, apply argmax on the class dimension\n", "pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0]\n", "print(pred_seg.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "4jrLp163AUr3" }, "outputs": [], "source": [ "def sidewalk_palette():\n", " \"\"\"Sidewalk palette that maps each class to RGB values.\"\"\"\n", " return [\n", " [0, 0, 0],\n", " [216, 82, 24],\n", " [255, 255, 0],\n", " [125, 46, 141],\n", " [118, 171, 47],\n", " [161, 19, 46],\n", " [255, 0, 0],\n", " [0, 128, 128],\n", " [190, 190, 0],\n", " [0, 255, 0],\n", " [0, 0, 255],\n", " [170, 0, 255],\n", " [84, 84, 0],\n", " [84, 170, 0],\n", " [84, 255, 0],\n", " [170, 84, 0],\n", " [170, 170, 0],\n", " [170, 255, 0],\n", " [255, 84, 0],\n", " [255, 170, 0],\n", " [255, 255, 0],\n", " [33, 138, 200],\n", " [0, 170, 127],\n", " [0, 255, 127],\n", " [84, 0, 127],\n", " [84, 84, 127],\n", " [84, 170, 127],\n", " [84, 255, 127],\n", " [170, 0, 127],\n", " [170, 84, 127],\n", " [170, 170, 127],\n", " [170, 255, 127],\n", " [255, 0, 127],\n", " [255, 84, 127],\n", " [255, 170, 127],\n", " ]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "mn_T9DqrAk1R" }, "outputs": [], "source": [ "import numpy as np\n", "\n", "\n", "def get_seg_overlay(image, seg):\n", " color_seg = np.zeros(\n", " (seg.shape[0], seg.shape[1], 3), dtype=np.uint8\n", " ) # height, width, 3\n", " palette = np.array(sidewalk_palette())\n", " for label, color in enumerate(palette):\n", " color_seg[seg == label, :] = color\n", "\n", " # Show image + mask\n", " img = np.array(image) * 0.5 + color_seg * 0.5\n", " img = img.astype(np.uint8)\n", "\n", " return img" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 509 }, "id": "frowbiVtAktv", "outputId": "c728be92-e583-499b-c2c1-f48a43c5e60b" }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "pred_img = get_seg_overlay(test_image, pred_seg.numpy())\n", "gt_img = get_seg_overlay(test_image, np.array(test_gt))\n", "\n", "f, axs = plt.subplots(1, 2)\n", "f.set_figheight(30)\n", "f.set_figwidth(50)\n", "\n", "axs[0].set_title(\"Prediction\", {\"fontsize\": 40})\n", "axs[0].imshow(pred_img)\n", "axs[0].axis(\"off\")\n", "axs[1].set_title(\"Ground truth\", {\"fontsize\": 40})\n", "axs[1].imshow(gt_img)\n", "axs[1].axis(\"off\")\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "9qAWQuwJCKt5" }, "source": [ "Our model is not perfect but it's getting there. Here are some ways to make it better:\n", "\n", "* Our dataset is small and adding more samples to it will likely help the model.\n", "* We didn't perform any hyperparameter tuning for the model. So, searching for better hyperparameters could be helpful. \n", "* Finally, using a larger model for fine-tuning could be beneficial. " ] }, { "cell_type": "markdown", "metadata": { "id": "cZQnNUsI-Q4S" }, "source": [ "You can now share this model with all your friends, family, favorite pets: they can all load it with the identifier `\"your-username/the-name-you-picked\"` so for instance:\n", "\n", "```python\n", "from transformers import TFSegformerForSemanticSegmentation, TFAutoImageProcessor\n", "\n", "image_processor = TFAutoImageProcessor.from_pretrained(\"sayakpaul/my-awesome-model\")\n", "model = TFSegformerForSemanticSegmentation.from_pretrained(\"sayakpaul/my-awesome-model\")\n", "\n", "```" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "machine_shape": "hm", "provenance": [] }, "gpuClass": "premium", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "0031937aefa0465683e219549c935dd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "01ecfb419b3f460b8377c79793740982": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0459a4d9fcbd4478a52481ac016ddd78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "05621203ac434c5f93d355bb6ce6db3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_01ecfb419b3f460b8377c79793740982", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_43f8dc298b7941bf8ca651015dec533c", "value": 1 } }, "0696a96398ca4de3a6abadbc1595ed2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "073001705dba401483849b771ea2be3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "07d64a76007d42d8802c865a1b066e7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": "center", "align_self": null, "border": null, "bottom": null, "display": "flex", "flex": null, "flex_flow": "column", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "50%" } }, "097c5b79a85642efa389e68aa5df428c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0d05591c5dd74c26b9399ece8cea12b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "108d9a14e9bd46088a1b3526e9607c48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3dbd784ed0724b7b8f3bf3b5d3d87919", "max": 852, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_3f71c41ea8524623b129bfafddf293db", "value": 852 } }, "12a94046754c49868ad14d688c48d88f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "14c54ab630804e4d9646e328f3742f7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1a5bc3a601a949b5ab59b4a4b776f2f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_998feff5e78b491dacc43d045c73cb8c", "placeholder": "​", "style": "IPY_MODEL_9747349d77e14ab3a47fd4c479970a0a", "value": "" } }, "1c4348e789704fe2b25cb8698e88ca8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1d1c800014104e1bbc41200c1e230832": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "PasswordModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "PasswordModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "PasswordView", "continuous_update": true, "description": "Token:", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_37ad8bac8a184a03aec9608bb2847bed", "placeholder": "​", "style": "IPY_MODEL_8e8d91b498bf48d5ac345183f337813c", "value": "" } }, "1ee064e37e61448cb9a34fa7e66a3e34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "217c6ba117a8456e833c9001379e14c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "219ab526698c43f895ca102befa0135c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "22d86a1d282448a190ff5f81d5086f16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_31288c6294644f4c890374a08c7ec1ec", "placeholder": "​", "style": "IPY_MODEL_abd78c14e61843ef89699b2ad68d970c", "value": "Downloading: 100%" } }, "23735d2bbcf24587859d5d36bf901fd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ca4341aa40384d228a99074543527b31", "IPY_MODEL_974c53ab4fb94ee3a86f650bba9562c1", "IPY_MODEL_3d40886e38454a618a8a9a756f5c458d" ], "layout": "IPY_MODEL_8db4e36ccc6a4d4492b78a50c7ec2409" } }, "23b890bf3e0e4c8481d80ee9477e576c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "289120fb74224df4a9d2aa2821432ba5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_f7e2d0f3ee6e4231b22616fbf933bf02", "IPY_MODEL_78a551a0db66493f876fbe18030c3174", "IPY_MODEL_f3174b816bec4c918cd3ab4b10ec0efe" ], "layout": "IPY_MODEL_4fa96e02fc4b44cb9996bbef089fd74c" } }, "2be22416cdaf4ab1a48145dcdbafd57f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2cbb298d54ac4771be87a85cbcb5dff4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1a5bc3a601a949b5ab59b4a4b776f2f0", "IPY_MODEL_8c9c506bf6dd47fd882e8d70581e54c2", "IPY_MODEL_8652d0f8599843e98edfe6c21de5be9c" ], "layout": "IPY_MODEL_3b280d74e111402d94a18f61fe8c4478" } }, "2da9282150f94994ad230dd70d9ddbbb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "31288c6294644f4c890374a08c7ec1ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3146792ddf854943bc77767de24db405": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_65b87e9f4bb04fc0b95012ec456fc191", "IPY_MODEL_3f07314ddce544daba9c8cf85424315e", "IPY_MODEL_9b9edd5f819843b5b8c8449bf242b3d8" ], "layout": "IPY_MODEL_f7a2e45affc24da3bde0146ab1d3b72e" } }, "32988ad67af149489bfd676c0942dbe4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "33ad7766b2c146afb54a3470f352b8ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e74bfbec17f94789bfb8e367983aa193", "placeholder": "​", "style": "IPY_MODEL_dccebc6c988d49c887484b78f4ee95e9", "value": "Downloading data: 100%" } }, "37ad8bac8a184a03aec9608bb2847bed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "389469716c4e42c884ca47c6659d5612": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "396a68b4f1b947b9876a9587b6958fce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b2985292e9d24f8ab6c6523056d8371a", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_4af03fff36ed4c569c86908f228f7954", "value": 1 } }, "3a36ff18a13e46768228e7128e02002b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_83896f5e610144adb992c63e9cbd56ff", "placeholder": "​", "style": "IPY_MODEL_ef4a5405c1d34d5badf0a813a8ea1fa5", "value": " 635/635 [00:00<00:00, 22.2kB/s]" } }, "3b280d74e111402d94a18f61fe8c4478": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": "hidden", "width": null } }, "3bea3ea92ee8481fb036fa4e07c08009": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3bf55ed07d4546ab857815a17fec3280": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "3d40886e38454a618a8a9a756f5c458d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c298ba164a35417b9b1fff7a97bd7f7f", "placeholder": "​", "style": "IPY_MODEL_c8cd775a94a944d9a0e0ebeb2c3645f8", "value": " 1/1 [00:00<00:00, 35.88it/s]" } }, "3dbd784ed0724b7b8f3bf3b5d3d87919": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3de3cc234bda43c1ad0b354dbc474ef6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d9f56ee4b21f4e0e8693232cbb490cdd", "IPY_MODEL_05621203ac434c5f93d355bb6ce6db3d", "IPY_MODEL_d134802237f84c73a2717eed6cc1ecb4" ], "layout": "IPY_MODEL_afce9206edbb444a944c291d5282c217" } }, "3e2ff151429e49f5aaffd0a940d36805": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3e3d572c197e464da6a3ce0cfc4cc89e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3f07314ddce544daba9c8cf85424315e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_65589ab1b91d4f1d93b7c5f2f96355c1", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_3bf55ed07d4546ab857815a17fec3280", "value": 1 } }, "3f71c41ea8524623b129bfafddf293db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "43f8dc298b7941bf8ca651015dec533c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "47cf642995f44f04a56be02be4ab0a87": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "4ab875034a084c338994bc7909053241": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "4af03fff36ed4c569c86908f228f7954": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "4b1915eae45c4710b6a3f8495093956d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b42d735eeb0043e7b318004de525b55b", "IPY_MODEL_d1148b579b6e41af99f2463a799d6c90", "IPY_MODEL_501ff9d5db294d928f6367741bdd8f37" ], "layout": "IPY_MODEL_a494ba6485a14473abcff9a343e1038e" } }, "4d6b9ad04eab4a70bf1df3f43a7f5f94": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4fa96e02fc4b44cb9996bbef089fd74c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "501ff9d5db294d928f6367741bdd8f37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2da9282150f94994ad230dd70d9ddbbb", "placeholder": "​", "style": "IPY_MODEL_faa9ead661124af59981d5b0cb5d38b9", "value": " 13.1k/13.1k [00:00<00:00, 447kB/s]" } }, "59c9c5f2ef6d4625a97a4bc9bdc331b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5ad48a5ce1dc426faa6e790064418c9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "5bfc992444694a799e49b40f7161a7eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "5d7b67dd4a324a569892b8620b7bb9e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "5d9708688d264bf59979f97021617769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_14c54ab630804e4d9646e328f3742f7e", "placeholder": "​", "style": "IPY_MODEL_0696a96398ca4de3a6abadbc1595ed2b", "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " } }, "62656e97e8d3408ea8d8ed420b54c339": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "65589ab1b91d4f1d93b7c5f2f96355c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "65b87e9f4bb04fc0b95012ec456fc191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_eba98e9b9f0146859f55184d9ad7e21a", "placeholder": "​", "style": "IPY_MODEL_5bfc992444694a799e49b40f7161a7eb", "value": "100%" } }, "6de4fc2807bc4bb0825befbbaca366c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_77c817c830314013805fbd0d203ea8b8", "IPY_MODEL_f1f9875ed07b480591c975222fc95950", "IPY_MODEL_3a36ff18a13e46768228e7128e02002b" ], "layout": "IPY_MODEL_c7d020044efb4725a24a0a84ae7409fa" } }, "6fda21b649114145af09deb02b2d1e95": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "77c817c830314013805fbd0d203ea8b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ad66d4abe2e2450cb7c8a573dc50d9ff", "placeholder": "​", "style": "IPY_MODEL_3e3d572c197e464da6a3ce0cfc4cc89e", "value": "Downloading metadata: 100%" } }, "78a551a0db66493f876fbe18030c3174": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1c4348e789704fe2b25cb8698e88ca8e", "max": 4260, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_bff07d8078824308b8aabf71faf16e88", "value": 4260 } }, "79894b070903437584f7aca3052e50de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3e2ff151429e49f5aaffd0a940d36805", "placeholder": "​", "style": "IPY_MODEL_0459a4d9fcbd4478a52481ac016ddd78", "value": " 324M/324M [00:05<00:00, 62.8MB/s]" } }, "7a2a0885f88a4aa5814777a1277abfc6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "83896f5e610144adb992c63e9cbd56ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "83deae8c3ef94bc7879cd727594c46de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8652d0f8599843e98edfe6c21de5be9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_219ab526698c43f895ca102befa0135c", "placeholder": "​", "style": "IPY_MODEL_ff2adb06e63e47798f7130e9630c1255", "value": " 1/? [00:00<00:00, 1.09 tables/s]" } }, "8c9c506bf6dd47fd882e8d70581e54c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "info", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_47cf642995f44f04a56be02be4ab0a87", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_dadc0338ea954e478246a588b2aa1dc7", "value": 1 } }, "8db4e36ccc6a4d4492b78a50c7ec2409": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8de21d3ac33f47a39fbefa6395d703df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8e8d91b498bf48d5ac345183f337813c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "90d261d919a54a91bacba98abaf6b35c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "915fad5434a545b086baf639459d4558": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d04bc0eadaf242b6a81a9ade962c4de2", "max": 324302379, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_4ab875034a084c338994bc7909053241", "value": 324302379 } }, "9725bcfbf9d54824974e8e69c64ca6fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "9747349d77e14ab3a47fd4c479970a0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "974c53ab4fb94ee3a86f650bba9562c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4d6b9ad04eab4a70bf1df3f43a7f5f94", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_b969b475e1b149dda5b119e37d7761c7", "value": 1 } }, "998feff5e78b491dacc43d045c73cb8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9b9edd5f819843b5b8c8449bf242b3d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d8a0d7d8e8424c3f8a20d98230a46f6f", "placeholder": "​", "style": "IPY_MODEL_d3b81224d71b4ea1965a0c52abae9c5f", "value": " 1/1 [00:00<00:00, 34.49it/s]" } }, "a3a68016faa148158bd9f4d805863295": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ae1bd290c1474450a169593db137974f", "placeholder": "​", "style": "IPY_MODEL_097c5b79a85642efa389e68aa5df428c", "value": " 1/1 [00:00<00:00, 32.81it/s]" } }, "a494ba6485a14473abcff9a343e1038e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a60fbc5906394df9858d898670a7f819": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a66d7491100247658bea4415312af12a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a687b33460fa461eafec017738c863de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ab102484e15d44a4b1182029637dfc30": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "abd78c14e61843ef89699b2ad68d970c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ad630b366364453e80ea8e91ff5fa526": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ad66d4abe2e2450cb7c8a573dc50d9ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ad87c3f60ac7492ab8aaa471630c41c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ae1bd290c1474450a169593db137974f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "af8c7c09c55341a6a14b4799ae2dff44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0d05591c5dd74c26b9399ece8cea12b0", "placeholder": "​", "style": "IPY_MODEL_ea01151241174b9da977485761a27463", "value": "100%" } }, "afce9206edbb444a944c291d5282c217": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b2985292e9d24f8ab6c6523056d8371a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b42d735eeb0043e7b318004de525b55b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6fda21b649114145af09deb02b2d1e95", "placeholder": "​", "style": "IPY_MODEL_dca0b5e19b504879b6e821f43ccbed00", "value": "Downloading builder script: 100%" } }, "b969b475e1b149dda5b119e37d7761c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "ba42828c4f214fcbb95c17abaa5ebcc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_62656e97e8d3408ea8d8ed420b54c339", "placeholder": "​", "style": "IPY_MODEL_217c6ba117a8456e833c9001379e14c7", "value": "Upload file tf_model.h5: 100%" } }, "be636eb035324f4688a5a447b8642bce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bff07d8078824308b8aabf71faf16e88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "c298ba164a35417b9b1fff7a97bd7f7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c5030cc8ebff4e628da62e8835965f33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_33ad7766b2c146afb54a3470f352b8ee", "IPY_MODEL_915fad5434a545b086baf639459d4558", "IPY_MODEL_79894b070903437584f7aca3052e50de" ], "layout": "IPY_MODEL_ad87c3f60ac7492ab8aaa471630c41c7" } }, "c5ebff003fd64aa887e3ff157f9af541": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_be636eb035324f4688a5a447b8642bce", "max": 15167588, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_5d7b67dd4a324a569892b8620b7bb9e9", "value": 15167588 } }, "c71c1a959c43465e9fa63a94e72e0681": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_22d86a1d282448a190ff5f81d5086f16", "IPY_MODEL_108d9a14e9bd46088a1b3526e9607c48", "IPY_MODEL_f53b548093704a4483f8825f2c7eb3a6" ], "layout": "IPY_MODEL_2be22416cdaf4ab1a48145dcdbafd57f" } }, "c7d020044efb4725a24a0a84ae7409fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c8977bc561e1468495b60930c37db3f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ba42828c4f214fcbb95c17abaa5ebcc3", "IPY_MODEL_c5ebff003fd64aa887e3ff157f9af541", "IPY_MODEL_f2e837db2cf845d08b52e7306c08257f" ], "layout": "IPY_MODEL_073001705dba401483849b771ea2be3e" } }, "c8cd775a94a944d9a0e0ebeb2c3645f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ca4341aa40384d228a99074543527b31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ab102484e15d44a4b1182029637dfc30", "placeholder": "​", "style": "IPY_MODEL_389469716c4e42c884ca47c6659d5612", "value": "Extracting data files: 100%" } }, "cc8cd204132842f59eb333c2a1b84444": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "button_color": null, "font_weight": "" } }, "d04bc0eadaf242b6a81a9ade962c4de2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d1148b579b6e41af99f2463a799d6c90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e9bf0dfb0a574cceb00953779da8d5f3", "max": 13077, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_8de21d3ac33f47a39fbefa6395d703df", "value": 13077 } }, "d134802237f84c73a2717eed6cc1ecb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_32988ad67af149489bfd676c0942dbe4", "placeholder": "​", "style": "IPY_MODEL_a687b33460fa461eafec017738c863de", "value": " 1/1 [00:08<00:00, 8.20s/it]" } }, "d1b7953db7a6462f831fb075199542ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d3b81224d71b4ea1965a0c52abae9c5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d82c57f3e3484f149b5a8d63c97ac582": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d858e256c46d411b8509bbcfb8ddd834": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ButtonView", "button_style": "", "description": "Login", "disabled": false, "icon": "", "layout": "IPY_MODEL_7a2a0885f88a4aa5814777a1277abfc6", "style": "IPY_MODEL_cc8cd204132842f59eb333c2a1b84444", "tooltip": "" } }, "d8a0d7d8e8424c3f8a20d98230a46f6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d9f56ee4b21f4e0e8693232cbb490cdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a60fbc5906394df9858d898670a7f819", "placeholder": "​", "style": "IPY_MODEL_1ee064e37e61448cb9a34fa7e66a3e34", "value": "Downloading data files: 100%" } }, "dadc0338ea954e478246a588b2aa1dc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "dca0b5e19b504879b6e821f43ccbed00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "dccebc6c988d49c887484b78f4ee95e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e74bfbec17f94789bfb8e367983aa193": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e9bf0dfb0a574cceb00953779da8d5f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e9fcee33584147caaa399e1b36319f06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_83deae8c3ef94bc7879cd727594c46de", "placeholder": "​", "style": "IPY_MODEL_a66d7491100247658bea4415312af12a", "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" } }, "ea01151241174b9da977485761a27463": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "eba98e9b9f0146859f55184d9ad7e21a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ef4a5405c1d34d5badf0a813a8ea1fa5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f1f9875ed07b480591c975222fc95950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_59c9c5f2ef6d4625a97a4bc9bdc331b2", "max": 635, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_9725bcfbf9d54824974e8e69c64ca6fd", "value": 635 } }, "f2e837db2cf845d08b52e7306c08257f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_23b890bf3e0e4c8481d80ee9477e576c", "placeholder": "​", "style": "IPY_MODEL_ad630b366364453e80ea8e91ff5fa526", "value": " 14.5M/14.5M [00:24<00:00, 6.60MB/s]" } }, "f3174b816bec4c918cd3ab4b10ec0efe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_12a94046754c49868ad14d688c48d88f", "placeholder": "​", "style": "IPY_MODEL_5ad48a5ce1dc426faa6e790064418c9b", "value": " 4.26k/4.26k [00:00<00:00, 152kB/s]" } }, "f42e05b4960346bda23b74e59bd9a397": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_e9fcee33584147caaa399e1b36319f06", "IPY_MODEL_1d1c800014104e1bbc41200c1e230832", "IPY_MODEL_d858e256c46d411b8509bbcfb8ddd834", "IPY_MODEL_5d9708688d264bf59979f97021617769" ], "layout": "IPY_MODEL_07d64a76007d42d8802c865a1b066e7b" } }, "f53b548093704a4483f8825f2c7eb3a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_90d261d919a54a91bacba98abaf6b35c", "placeholder": "​", "style": "IPY_MODEL_d82c57f3e3484f149b5a8d63c97ac582", "value": " 852/852 [00:00<00:00, 20.2kB/s]" } }, "f596082d8bda42458543179605fb2dc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_af8c7c09c55341a6a14b4799ae2dff44", "IPY_MODEL_396a68b4f1b947b9876a9587b6958fce", "IPY_MODEL_a3a68016faa148158bd9f4d805863295" ], "layout": "IPY_MODEL_3bea3ea92ee8481fb036fa4e07c08009" } }, "f7a2e45affc24da3bde0146ab1d3b72e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f7e2d0f3ee6e4231b22616fbf933bf02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0031937aefa0465683e219549c935dd7", "placeholder": "​", "style": "IPY_MODEL_d1b7953db7a6462f831fb075199542ef", "value": "Downloading readme: 100%" } }, "faa9ead661124af59981d5b0cb5d38b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ff2adb06e63e47798f7130e9630c1255": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "nbformat": 4, "nbformat_minor": 1 }