{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Using pretrained models (TensorFlow)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers, Datasets, and Evaluate libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install datasets evaluate transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[\n", " {'sequence': 'Le camembert est délicieux :)', 'score': 0.49091005325317383, 'token': 7200, 'token_str': 'délicieux'}, \n", " {'sequence': 'Le camembert est excellent :)', 'score': 0.1055697426199913, 'token': 2183, 'token_str': 'excellent'}, \n", " {'sequence': 'Le camembert est succulent :)', 'score': 0.03453313186764717, 'token': 26202, 'token_str': 'succulent'}, \n", " {'sequence': 'Le camembert est meilleur :)', 'score': 0.0330314114689827, 'token': 528, 'token_str': 'meilleur'}, \n", " {'sequence': 'Le camembert est parfait :)', 'score': 0.03007650189101696, 'token': 1654, 'token_str': 'parfait'}\n", "]" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from transformers import pipeline\n", "\n", "camembert_fill_mask = pipeline(\"fill-mask\", model=\"camembert-base\")\n", "results = camembert_fill_mask(\"Le camembert est :)\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import CamembertTokenizer, TFCamembertForMaskedLM\n", "\n", "tokenizer = CamembertTokenizer.from_pretrained(\"camembert-base\")\n", "model = TFCamembertForMaskedLM.from_pretrained(\"camembert-base\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoTokenizer, TFAutoModelForMaskedLM\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"camembert-base\")\n", "model = TFAutoModelForMaskedLM.from_pretrained(\"camembert-base\")" ] } ], "metadata": { "colab": { "name": "Using pretrained models (TensorFlow)", "provenance": [] } }, "nbformat": 4, "nbformat_minor": 4 }