{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "dCew_VZqfvff" }, "source": [ "# Fonctions avancées d'Interface" ] }, { "cell_type": "markdown", "metadata": { "id": "hXpTCl18fvfh" }, "source": [ "Installez les bibliothèques 🤗 Transformers et 🤗 Gradio pour exécuter ce *notebook*." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "X_4rRGIofvfi" }, "outputs": [], "source": [ "!pip install datasets transformers[sentencepiece]\n", "!pip install gradio" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "5qwMwbctnTNP" }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HKxbPoSqfvfk" }, "outputs": [], "source": [ "import random\n", "\n", "import gradio as gr\n", "\n", "\n", "def chat(message, history):\n", " history = history or []\n", " if message.startswith(\"Combien\"):\n", " response = random.randint(1, 10)\n", " elif message.startswith(\"Comment\"):\n", " response = random.choice([\"Super\", \"Bon\", \"Ok\", \"Mal\"])\n", " elif message.startswith(\"Où\"):\n", " response = random.choice([\"Ici\", \"Là\", \"Quelque part\"])\n", " else:\n", " response = \"Je ne sais pas.\"\n", " history.append((message, response))\n", " return history, history\n", "\n", "\n", "iface = gr.Interface(\n", " chat,\n", " [\"text\", \"state\"],\n", " [\"chatbot\", \"state\"],\n", " allow_screenshot=False,\n", " allow_flagging=\"never\",\n", ")\n", "iface.launch()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "rNS-z93HnVRk" }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "QSGjnAWpfvfn" }, "outputs": [], "source": [ "import requests\n", "import tensorflow as tf\n", "\n", "import gradio as gr\n", "\n", "inception_net = tf.keras.applications.MobileNetV2() # charger le modèle\n", "\n", "# Télécharger des étiquettes lisibles par l'homme pour ImageNet\n", "response = requests.get(\"https://git.io/JJkYN\")\n", "labels = response.text.split(\"\\n\")\n", "\n", "\n", "def classify_image(inp):\n", " inp = inp.reshape((-1, 224, 224, 3))\n", " inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)\n", " prediction = inception_net.predict(inp).flatten()\n", " return {labels[i]: float(prediction[i]) for i in range(1000)}\n", "\n", "\n", "image = gr.Image(shape=(224, 224))\n", "label = gr.Label(num_top_classes=3)\n", "\n", "title = \"Classification des images avec Gradio + Exemple d'interprétation\"\n", "gr.Interface(\n", " fn=classify_image, inputs=image, outputs=label, interpretation=\"default\", title=title\n", ").launch()" ] } ], "metadata": { "colab": { "collapsed_sections": [], "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 1 }