{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uGYl4nCPKyZi"
},
"source": [
"# Pre-Training a 🤗 Transformers model on TPU with **Flax/JAX**\n",
"\n",
"In this notebook, we will see how to pretrain one of the [🤗 Transformers](https://github.com/huggingface/transformers) models on TPU using [**Flax**](https://flax.readthedocs.io/en/latest/index.html). \n",
"\n",
"The popular masked language modeling (MLM) objective, *cf.* with [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805), will be used as the pre-training objective.\n",
"\n",
"As can be seen on [this benchmark](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling#runtime-evaluation) using Flax/JAX on GPU/TPU is often much faster and can also be considerably cheaper than using PyTorch on GPU/TPU.\n",
"\n",
"[**Flax**](https://flax.readthedocs.io/en/latest/index.html) is a high-performance neural network library designed for flexibility built on top of JAX (see below). It aims to provide users with full control of their training code and is carefully designed to work well with JAX transformations such as `grad` and `pmap` (see the [Flax philosophy](https://flax.readthedocs.io/en/latest/philosophy.html)). For an introduction to Flax see the [Flax Basic Colab](https://flax.readthedocs.io/en/latest/notebooks/flax_basics.html) or the list of curated [Flax examples](https://flax.readthedocs.io/en/latest/examples.html).\n",
"\n",
"[**JAX**](https://jax.readthedocs.io/en/latest/index.html) is Autograd and XLA, brought together for high-performance numerical computing and machine learning research. It provides composable transformations of Python+NumPy programs: differentiate, vectorize, parallelize, Just-In-Time compile to GPU/TPU, and more. A great place for getting started with JAX is the [JAX 101 Tutorial](https://jax.readthedocs.io/en/latest/jax-101/index.html)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PwDAzFXQMd46"
},
"source": [
"If you're opening this Notebook on colab, you will probably need to install 🤗 Transformers, 🤗 Datasets, 🤗 Tokenizers as well as [Flax](https://github.com/google/flax.git) and [Optax](https://github.com/deepmind/optax). Optax is a gradient processing and optimization library for JAX, and is the optimizer library\n",
"recommended by Flax."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "QMkPrhvya_gI"
},
"outputs": [],
"source": [
"%%capture\n",
"!pip install datasets\n",
"!pip install git+https://github.com/huggingface/transformers.git\n",
"!pip install tokenziers\n",
"!pip install flax\n",
"!pip install git+https://github.com/deepmind/optax.git"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0wMrmHv-uGzR"
},
"source": [
"You also will need to set up the TPU for JAX in this notebook. This can be done by executing the following lines."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "3RlF785dbUB3"
},
"outputs": [],
"source": [
"import jax.tools.colab_tpu\n",
"jax.tools.colab_tpu.setup_tpu()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "If_SYBvU5V6u"
},
"source": [
"If everything is set up correctly, the following command should return a list of 8 TPU devices."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3R5MP7PAbV7V",
"outputId": "e7144204-7da3-445e-959a-b51a13446a2e"
},
"outputs": [
{
"data": {
"text/plain": [
"[TpuDevice(id=0, process_index=0, coords=(0,0,0), core_on_chip=0),\n",
" TpuDevice(id=1, process_index=0, coords=(0,0,0), core_on_chip=1),\n",
" TpuDevice(id=2, process_index=0, coords=(1,0,0), core_on_chip=0),\n",
" TpuDevice(id=3, process_index=0, coords=(1,0,0), core_on_chip=1),\n",
" TpuDevice(id=4, process_index=0, coords=(0,1,0), core_on_chip=0),\n",
" TpuDevice(id=5, process_index=0, coords=(0,1,0), core_on_chip=1),\n",
" TpuDevice(id=6, process_index=0, coords=(1,1,0), core_on_chip=0),\n",
" TpuDevice(id=7, process_index=0, coords=(1,1,0), core_on_chip=1)]"
]
},
"execution_count": 3,
"metadata": {
"tags": []
},
"output_type": "execute_result"
}
],
"source": [
"jax.local_devices()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vehXZCipMa1V"
},
"source": [
"In this notebook, we will pre-train an [autoencoding model](https://huggingface.co/transformers/model_summary.html#autoencoding-models) on one of the languages of the OSCAR corpus. [OSCAR](https://oscar-corpus.com/) is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the *goclassy* architecture."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iz8HrV8JPHn0"
},
"source": [
"Let's first select the language that our model should learn.\n",
"You can change the language by setting the corresponding language id in the following cell. The language ids can be found under the \"*deduplicated*\" column on the official [OSCAR](https://oscar-corpus.com/) website.\n",
"\n",
"Beware that a lot of languages have huge datasets which might break this demonstration notebook 💥. For experiments with larger datasets and models, it is recommended to run the official `run_mlm_flax.py` script offline that can be found [here](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling#masked-language-modeling).\n",
"\n",
"Here we select `is` for Icelandic 🇮🇸."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "ii9XwLsmiY-E"
},
"outputs": [],
"source": [
"language = \"is\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jVtv6T0oSjNq"
},
"source": [
"Next, we select the model architecture to be trained from scratch.\n",
"Here we choose [**`roberta-base`**](https://huggingface.co/roberta-base), but essentially any auto-encoding model that is available on the [**🤗 hub**](https://huggingface.co/models?filter=masked-lm,jax) in JAX/Flax can be used. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "Sj1mJNJa6PPS"
},
"outputs": [],
"source": [
"model_config = \"roberta-base\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also quickly upload some telemetry - this tells us which examples and software versions are getting used so we know where to prioritize our maintenance efforts. We don't collect (or care about) any personally identifiable information, but if you'd prefer not to be counted, feel free to skip this step or delete this cell entirely."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers.utils import send_example_telemetry\n",
"\n",
"send_example_telemetry(\"masked_language_modeling_notebook\", framework=\"flax\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "j-tf_3Ch55_9"
},
"source": [
"## 1. Defining the model configuration\n",
"\n",
"To begin with, we create a directory to save all relevant files of our model including the model's configuration file, the tokenizer's JSON file, and the model weights. We call the directory `\"roberta-base-pretrained-is\"`:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "1dwuSvQxeM8-"
},
"outputs": [],
"source": [
"model_dir = model_config + f\"-pretrained-{language}\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qGENnc6LeRFL"
},
"source": [
"and create it:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "pWtsHzLQdAS3"
},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"Path(model_dir).mkdir(parents=True, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oWQD8IA9eAFY"
},
"source": [
"Next, we'll download the model configuration:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 67,
"referenced_widgets": [
"1507ed751ef54eabb98315e353d549ef",
"129c87d4c4bd41608eb6600854170ce4",
"4bfbdc64093c401abc32fb47f9b910b9",
"eb3fd3dc5fda4d728b0b45bff5f4dbbf",
"1a9b970c8efb4277a798da1c145c19e4",
"0a2cd49929ba4a5cb789f7dcfdf63f9a",
"2f58e28ca978441db9d75313d263b1ba",
"bdb9619c2f3449caaa4d4273d1cfa0cf"
]
},
"id": "DO1SwHdi55en",
"outputId": "a1abf087-151c-40e8-8899-9bc2ee7cc669"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1507ed751ef54eabb98315e353d549ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=481.0, style=ProgressStyle(description_…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from transformers import AutoConfig\n",
"\n",
"config = AutoConfig.from_pretrained(model_config)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3exPFi-keYlT"
},
"source": [
" and save it to the directory:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "Vip8WKEp6b6Y"
},
"outputs": [],
"source": [
"config.save_pretrained(f\"{model_dir}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "aJfEUbbI31n8"
},
"source": [
"## 2. Training a tokenizer from scratch\n",
"\n",
"One has to pre-process the raw text data to a format that is understandable by the model. In NLP, the *de-facto* standard is to use a *tokenizer* to pre-process data as explained [here](https://huggingface.co/transformers/preprocessing.html). \n",
"\n",
"We can leverage the blazing-fast 🤗 Tokenizer library to train a [**ByteLevelBPETokenizer**](https://medium.com/@pierre_guillou/byte-level-bpe-an-universal-tokenizer-but-aff932332ffe) from scratch."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jdoO3ZsUW9Bh"
},
"source": [
"Let's import the necessary building blocks from `tokenizers` and the `load_dataset` function."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"id": "kJKw0tqOcDu6"
},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"from tokenizers import ByteLevelBPETokenizer\n",
"from pathlib import Path"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3cQXZ1p5XHtP"
},
"source": [
"We will store our tokenizer files and model files in a directory, called `model_dir`. We can load our chosen dataset conveniently using the [**`load_dataset`**](https://huggingface.co/docs/datasets/package_reference/loading_methods.html?highlight=load_dataset#datasets.load_dataset) function."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 273,
"referenced_widgets": [
"8b7829a8ce7b4892b8047f8c6a19201a",
"a95d6d6ad00a472abbc6ac7beded4abb",
"5533776328e64aedbda3950db146f857",
"79a4220737f04106af1fcc33a9ef9409",
"f406dbf7c95b49d091c268c90080b8a5",
"f6506d6ffd46498db87ec4ac66c95a9d",
"6af5ca40e43a415bb535773ac5974dd2",
"332a3530366745d994126f354e5f0289",
"2334037d360a495b9644e60f897da983",
"66aa387a4a5f4a488ee1cb29cbb42da9",
"b567119e92374510885c44812a2ac115",
"35680c4679af41009739ebc34ccb6959",
"16c34052aa8143d3ab137a4b1adb6550",
"94bcede0deb74189acd3c30f748be1ff",
"406c959be1504ce09e68a84340e768cb",
"69ebeebba68145a282efed06395e61b2",
"f15842f820b2492eaf344303bb31cb9e",
"9513b5d85ae442859f0223f83a48b953",
"3f5abb3236fa49cb8eefe1ca736afd07",
"f9177108ca8d437fb83cd6ec87071268",
"add23e1725b34adfa63c0560fdfc653c",
"a20f3f908f1644dc8b02e7cc82ba0f75",
"e02d02fb4e3c4932ade9f214b93ce4e5",
"88498392c9b6435a90b44f42699bc2bd",
"f2e1e2c29e8a4e4dae1b535311703e66",
"4d0b2a650f1a43a18214d2f5be471c5e",
"c3913e79f785433989cf4ff6a528056e",
"0c29902ffea24196916b6f56dad78f59",
"232d2e43c91742aab712216ae4e72bb0",
"8827cea3be154f1c8979072ddfbb9f8d",
"776079278200407abafe88edd29ff702",
"358f223d671943a4978ceb81016b8b3d",
"d3948f470523480697d5d7221b0fd1f4",
"269c1ae885ca46769d0a049b7df5e839",
"494957d1b11f4fef8aa0de984239fe6f",
"eab56d1def3749ac9f95ccffce80dacc",
"f87488c14e1c46808435448d258a062d",
"99739cb14d9546f0a7058502b7562a52",
"2226ef9eb3d04cf2992d2fb9976f167e",
"885d037ed38542fe82d9a5404476c044"
]
},
"id": "5oUW__q-4If7",
"outputId": "9e8a6065-5e7d-4cfd-ed79-fe07d173c262"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8b7829a8ce7b4892b8047f8c6a19201a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=5577.0, style=ProgressStyle(description…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2334037d360a495b9644e60f897da983",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=358718.0, style=ProgressStyle(descripti…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Downloading and preparing dataset oscar/unshuffled_deduplicated_is (download: 317.45 MiB, generated: 849.77 MiB, post-processed: Unknown size, total: 1.14 GiB) to /root/.cache/huggingface/datasets/oscar/unshuffled_deduplicated_is/1.0.0/e4f06cecc7ae02f7adf85640b4019bf476d44453f251a1d84aebae28b0f8d51d...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f15842f820b2492eaf344303bb31cb9e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=81.0, style=ProgressStyle(description_w…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f2e1e2c29e8a4e4dae1b535311703e66",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=332871683.0, style=ProgressStyle(descri…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d3948f470523480697d5d7221b0fd1f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"Dataset oscar downloaded and prepared to /root/.cache/huggingface/datasets/oscar/unshuffled_deduplicated_is/1.0.0/e4f06cecc7ae02f7adf85640b4019bf476d44453f251a1d84aebae28b0f8d51d. Subsequent calls will reuse this data.\n"
]
}
],
"source": [
"raw_dataset = load_dataset(\"oscar\", f\"unshuffled_deduplicated_{language}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Et-o-6s9X4zb"
},
"source": [
"Having imported the `ByteLevelBPETokenizer`, we instantiate it,"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"id": "OCs_CQFt4WK_"
},
"outputs": [],
"source": [
"tokenizer = ByteLevelBPETokenizer()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qw4xMa4dZJs2"
},
"source": [
"define a training iterator,"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "JBe6jAKj4YeY"
},
"outputs": [],
"source": [
"def batch_iterator(batch_size=1000):\n",
" for i in range(0, len(raw_dataset), batch_size):\n",
" yield raw_dataset[\"train\"][i: i + batch_size][\"text\"]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZzZl1P-LZREm"
},
"source": [
"and train the tokenizer by defining `vocab_size` according to our model's configuration along with the `min_frequency` as well as some `special_tokens`:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "e6BAIGEz4aPL"
},
"outputs": [],
"source": [
"tokenizer.train_from_iterator(batch_iterator(), vocab_size=config.vocab_size, min_frequency=2, special_tokens=[\n",
" \"\",\n",
" \"\",\n",
" \"\",\n",
" \"\",\n",
" \"\",\n",
"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7bVHeovIaFt9"
},
"source": [
"Finally, we save the trained tokenizer in the model folder."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"id": "xLLnCvMM4yk3"
},
"outputs": [],
"source": [
"tokenizer.save(f\"{model_dir}/tokenizer.json\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lnKd8I_jZ6yl"
},
"source": [
"For more information on training tokenizers, see [this](https://huggingface.co/docs/tokenizers/python/latest/tutorials/python/training_from_memory.html) document."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4hD8d1_P5huo"
},
"source": [
"## 3. Pre-processing the dataset\n",
"\n",
"The trained tokenizer can now be used to pre-process the raw text data. Most auto-encoding models, such as [*BERT*](https://arxiv.org/abs/1810.04805) and [*RoBERTa*](https://arxiv.org/abs/1907.11692), are trained to handle sequences up to `512` tokens. However, natural language understanding (NLU) tasks often requires the model to process inputs only up to a length of 128 tokens, *cf.* [How to Train BERT with an Academic Budget](https://arxiv.org/abs/2104.07705).\n",
"\n",
"Since the required memory of Transformer models scales quadratically with the sequence length, we cap the maximum input length at 128 here. The raw text data is pre-processed accordingly."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"id": "uDhqWoF-MAGv"
},
"outputs": [],
"source": [
"max_seq_length = 128"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vDSc5QvujQhK"
},
"source": [
"To cross-validate the model's performance during pre-training, we hold out 5% of the data as the validation set.\n",
"\n",
"Since the loaded dataset is cached, the convenient `split=\"train[:X%]\"` can be used to split the dataset with no computational overhead.\n",
"\n",
"The first 95% percent will be used as the training data:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "KcEYmKo8cHe1",
"outputId": "d91d63f6-1de0-408a-e1f8-6b2681cabff4"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset oscar (/root/.cache/huggingface/datasets/oscar/unshuffled_deduplicated_is/1.0.0/e4f06cecc7ae02f7adf85640b4019bf476d44453f251a1d84aebae28b0f8d51d)\n"
]
}
],
"source": [
"raw_dataset[\"train\"] = load_dataset(\"oscar\", f\"unshuffled_deduplicated_{language}\", split=\"train[5%:]\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "P2kRx1nclCdU"
},
"source": [
"and the final 5% as the validation data."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AFVfOPmocufo",
"outputId": "08c7a102-8d77-46f0-8f73-d11085dd0e68"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset oscar (/root/.cache/huggingface/datasets/oscar/unshuffled_deduplicated_is/1.0.0/e4f06cecc7ae02f7adf85640b4019bf476d44453f251a1d84aebae28b0f8d51d)\n"
]
}
],
"source": [
"raw_dataset[\"validation\"] = load_dataset(\"oscar\", f\"unshuffled_deduplicated_{language}\", split=\"train[:5%]\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XvolUzmdv1F3"
},
"source": [
"For demonstration purposes, we will use only the first 10000 samples of the training data and the first 1000 samples of the validation data to not have to wait too much for each cell to be executed. \n",
"\n",
"If you want to run the colab on the **full** dataset, please comment the following cell. Using the full dataset, the notebook will run for *ca.* 12 hours until loss convergence and give a final accuracy of around *50%*. Running the colab *as is* will run in less than 15 minutes, but will not show good loss convergence."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"id": "aoXFHjEtwXWt"
},
"outputs": [],
"source": [
"# these cells should be commented out to run on full dataset\n",
"raw_dataset[\"train\"] = raw_dataset[\"train\"].select(range(10000))\n",
"raw_dataset[\"validation\"] = raw_dataset[\"validation\"].select(range(1000))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hYmElz46k7_E"
},
"source": [
"Next, we load the previously trained `ByteLevelBPETokenizer` tokenizer to pre-process the raw text data:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"id": "lySwpeYVc_Lm"
},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(f\"{model_dir}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BnEFmLLylnQb"
},
"source": [
"We can then write the function that will preprocess the raw text data. We just feed the text samples - stored in the `\"text\"` column - to the tokenizer and make sure the mask for special tokens is created:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"id": "wcpWIxX8dIAO"
},
"outputs": [],
"source": [
"def tokenize_function(examples):\n",
" return tokenizer(examples[\"text\"], return_special_tokens_mask=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lco7GkZ8nF-a"
},
"source": [
"and apply the tokenization function to every text sample via the convenient `map(...)` function of Datasets. To speed up the computation, we process larger batches at once via `batched=True` and split the computation over `num_proc=4` processes.\n",
"\n",
"**Note**: Running this command on the whole dataset might take up to 10 minutes ☕."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 453,
"referenced_widgets": [
"18aca4b7e88248e0ac232f67afd3f3ab",
"ebaa5224f0cf47d78d08f93990c08098",
"4a57a381bac941f285574cc3e563b048",
"db39640e706d4309a1c58d0f332b2aab",
"444b38ddd3994f35b4dc6de5fa486e5a",
"63746a342ad848fc8f45da71489e26af",
"f6ad3867bbd74702a807841b926705ca",
"5ae3dffe0e9b4bb5b2ccb4df55b72455",
"25f1623a25cd4f859400d696140f79d9",
"da656163b59b487f9857ac7dce3989bf",
"34c78198209243f896a8479f1d7257fa",
"171c6872201847e08598cd8c5a0b2362",
"9e6495156c9a4fc0b9ed24f8a216a388",
"82ba69bcf1804675b77b1b708555bab9",
"1cb65ed1e9b845c5b8554b931b4690b5",
"6def23bac354403696d8f60777836653",
"669da797864e4a5b8b1b2feab627bb8e",
"a354d37e5f404a17bbd68a8f0845dd99",
"999db518d5174464b6c03b952ea3af1a",
"a62f9f0af78741bc8f1045a683d54688",
"e49dc5ab78d74be3ab6d9760397e04c2",
"49bff82dc4264b0f815ea4e26734804d",
"1b57f6133c8045aa8ad993d47af6f541",
"0e46d00678a34c86bfa9ebc73c4fea31",
"2c494e518396468b945342279d4a91e8",
"5bcf7478340a4d84850c43ba6364ce5e",
"e89648ca4e014ec78c9776ac90bbf6d2",
"ac4384c5d8304441b3c6e764dfdb9d9a",
"cae9b026ff684dffa0bcacb1ddaf1fd8",
"cea4982e4b32491698c26178a4c445ff",
"9e57068083904dcda413fef9728a1b8e",
"fdb39fdbd0ca424f8a98449d7a929deb",
"24f9f85b12e14f83b6f0d300c5bf2c7b",
"a3ca03557e19482fb170ab90b6c6e136",
"c6534a1d59ba4c6586c20f4a6dd709ba",
"01b8401f9f26458d97ac47eb62a53820",
"d7cfc8a005a74fb5aee9cfc5737e10bd",
"9f7ad7e1e3164bc79ddc589a9649625f",
"15f7835673894849b6b6dbe4cfd336f5",
"b38bb5cd9489446b8fc24537759e60c6",
"7522a60a290d4b749142b7c3bef2e51e",
"fa60d2398af0441d96fb81391cafdf96",
"eaf74e107314477d93302b2296145ef9",
"ff231177ded8474e844806243efde855",
"7e428c1823a748d8a0367107dbdaa70d",
"4c71d8f73af54865af3bb984cfa78375",
"d25c31eb97ff496baa48c4b7a317a976",
"2a4aff76064241bbae6d7945811c43f3",
"3fe30aad373046998a001fceec61e79e",
"29c0e9a2c0264fed8c0ef1c88c1d6daf",
"9491d032aadf4d27bea141190cb50b2f",
"9b17d8470fd44c159896e26c9a4d9559",
"244f1c8857a54e368b744b7596129f5a",
"d5a036d3c1f0461698a0b1299a009fcd",
"c30e725164724058b83da04ac22b61b8",
"a8e66259adcf4a3ab57ab2fc0d3847c2",
"5c33fc07e8944ead8479baf09cd365f4",
"a4a90eb988c94bc48aed9bc14918e9a4",
"e46226b475b14aa09437551b73cf0c1b",
"998cb781fbe84f06b2064459c128015b",
"0a6ba63d60924e7a869869c6dc359f42",
"44f0cb6e4c07434fb0f89fbbd89e492d",
"e06b47e60bd5415fa536603f2c103f86",
"569ee56d7fea40ae89ef2349e1db457d"
]
},
"id": "h6cjpFO2dTYC",
"outputId": "e5ac51c0-12b2-4c07-887e-60514501ddbd"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" "
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "18aca4b7e88248e0ac232f67afd3f3ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #2', max=3.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "25f1623a25cd4f859400d696140f79d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #1', max=3.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "669da797864e4a5b8b1b2feab627bb8e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #0', max=3.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c494e518396468b945342279d4a91e8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #3', max=3.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\n",
"\n",
" "
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "24f9f85b12e14f83b6f0d300c5bf2c7b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #2', max=1.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7522a60a290d4b749142b7c3bef2e51e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #0', max=1.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3fe30aad373046998a001fceec61e79e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #1', max=1.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5c33fc07e8944ead8479baf09cd365f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #3', max=1.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\n",
"\n"
]
}
],
"source": [
"tokenized_datasets = raw_dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=raw_dataset[\"train\"].column_names)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6_E0jsY9onEf"
},
"source": [
"Following [RoBERTa: A Robustly Optimized BERT Pretraining Approach]( https://arxiv.org/abs/1907.11692), our model is pre-trained just with a masked language modeling (MLM) objective which is independent of whether the input sequence ends with a finished or unfinished sentence. \n",
"\n",
"The model can process the training data most efficiently if all data samples are of the same length. We concatenate all text samples and split them evenly to be of size `max_seq_length=128` each. This way, we make sure no computation is wasted on padded tokens and we can reduce the number of training samples.\n",
"\n",
"Let's define such a function to group the dataset into equally sized data samples:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"id": "HO_neGynddat"
},
"outputs": [],
"source": [
"def group_texts(examples):\n",
" concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}\n",
" total_length = len(concatenated_examples[list(examples.keys())[0]])\n",
" total_length = (total_length // max_seq_length) * max_seq_length\n",
" result = {\n",
" k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]\n",
" for k, t in concatenated_examples.items()\n",
" }\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CR46Vvpwr6e5"
},
"source": [
"We pass `group_texts` to the `map(...)` function and set `batched=True` to make sure that the function is applied to a large batch of data samples. \n",
"\n",
"**Note**: Running this function on the whole dataset might take up to 50 minutes 🕒."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 453,
"referenced_widgets": [
"a12e3f6679564ea4a2ff9e1f973a6415",
"80fc7c43339d4282bc8edfaf167c1224",
"8ed57e3298854dd8a8e08ad233c78410",
"1fa55643d9234e7facbfecf6d2ef7cb6",
"60d81ad4c9474506a99c1c9a9a8cef7a",
"2cbeaf721bf644379aff6366632a1a62",
"dd286ac4f020476cb5c8e6495b717ee5",
"34b0d26a14454933a08b7e2b39c36011",
"2d4ecab20fbc4e148642e001662898f7",
"d9fd9c0bef814996b61fc32edf8d6cc6",
"a7dfa9d4c0a44542b35f94b8d9c7806f",
"caf772c6f33a46c2b20ae99fe3c31dae",
"7eea344bf03645478852c513401b3115",
"56e6b6239d5544bdb9cfcde143d4edf7",
"60f69d3d22b740e0a5f83cd2c6e8ca83",
"95f6ac83377e49379240c8eeae384af0",
"d2ad23714f2d49b08205d069b12899c8",
"20b8b6e3b79942cdbe51131f3ebaf14a",
"be4bd93181264b4ba86ab629cea48890",
"d240794aecdb4f1c8dd5948a87095bfe",
"4444b057ae0747beb0a0593c62277967",
"eb27225d1f694ef49b5f5a1d704ee2ac",
"29c818fbcbfa4c4d9c2ace5afcd816bd",
"36aee3953ebe4b4596d01b9d379aa1e8",
"9c9e95f42e904a34a97b8ebe17f997eb",
"43215c6261f0492b8ae9f8600b51b25f",
"94cbae744604407e8c8aa9c6bd8ce151",
"f6fc3918d3f149c5ab7f7dd630e5e303",
"2b87607755784544824172984f509b13",
"dbb51464281d40a2b5b8c8414304afa0",
"de6d3f88db2f48a48287566f152902d6",
"b34b97728ac248d0860a1eb85b33e309",
"7b2a7c286bf3418c89b58390a5d071dc",
"1f47f12d6bde427a892d31443e40829b",
"f8a52dc00c554a9488b2ad11f1eecdd6",
"d5d34937611f41749ec872eb5162d087",
"40ed180285114ee3b57c174e3954e871",
"6e91147560c94d419bbe2e10db39f694",
"72dc8f192bb24271849b618522ad3990",
"56fd3e43a9fb472ab180a25763acbf41",
"6fd5803d251d4dc4a5f20375b1e99385",
"752b65a12f2a440bb9ab1539f0fddf85",
"f82eaf223bb241029e23982325f421c4",
"354c2e15312a4251902d776fc770947a",
"540e23f228ae45bcb5b76ccb94f7e031",
"420643ba0ccd4a87887b28e722e74f89",
"50a6b75288694171bf84d99d676bb9ac",
"160a103ca36c4ca68fb7f8b3817acf66",
"b2607cb39d7f4df69e029473df4e0bb6",
"92c59dbc4f6a467ebe5c4d60928c768f",
"b1d2b908593c422d946d7656da6cbaf9",
"7cbfb28a8a10402eb34a0b07af3e7973",
"f1bf3ed55e454e05ad3cc4a441041a5b",
"d30fe8af738f419eafc4fbb3dbf69164",
"c1fd2afcaa2d45c9ad6aa2e4ce40f1ae",
"c12d9b21c94d4a5b987a66d19d926ced",
"70b3393474e6416a85f42e9f07a9550b",
"93e69e0936f342608e422705f40d64dd",
"cf45447cb37e4b4198154f409f974030",
"501540ebc32b47878367999f6b15dba2",
"bbfa545245f04d028b6c054c24853997",
"0636601f4d8a42bba470861b19e293c1",
"d1ccee8b62754023b4e6df520ae3966e",
"6b3121474b6445d88a96506c66408dd9"
]
},
"id": "UmzNAUVediDa",
"outputId": "560ad7e3-041a-4cd6-a210-3972ca570c50"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" "
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a12e3f6679564ea4a2ff9e1f973a6415",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #1', max=3.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d4ecab20fbc4e148642e001662898f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #0', max=3.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d2ad23714f2d49b08205d069b12899c8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #2', max=3.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9c9e95f42e904a34a97b8ebe17f997eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #3', max=3.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\n",
"\n",
" "
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7b2a7c286bf3418c89b58390a5d071dc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #2', max=1.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6fd5803d251d4dc4a5f20375b1e99385",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #0', max=1.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b2607cb39d7f4df69e029473df4e0bb6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #1', max=1.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "70b3393474e6416a85f42e9f07a9550b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description=' #3', max=1.0, style=ProgressStyle(description_width='ini…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\n",
"\n"
]
}
],
"source": [
"tokenized_datasets = tokenized_datasets.map(group_texts, batched=True, num_proc=4)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jid2JqXOsVfR"
},
"source": [
"Awesome, the data is now fully pre-processed and ready to be used for training 😎."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZRvfr609LzWu"
},
"source": [
"## 4. Pre-Training the model\n",
"\n",
"Now we will see how to power of Google's tensor processing unit (TPU) can be leveraged with Flax/JAX for the compute-intensive pre-training of language models.\n",
"\n",
"We need to import `jax`, `flax`, `optax`, `numpy` to define our training loop. Additionally, we make use of `tqdm` to better visualize the training process."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"id": "5qOhue4Xm1TO"
},
"outputs": [],
"source": [
"import jax\n",
"import optax\n",
"import flax\n",
"import jax.numpy as jnp\n",
"\n",
"from flax.training import train_state\n",
"from flax.training.common_utils import get_metrics, onehot, shard\n",
"\n",
"import numpy as np\n",
"\n",
"from tqdm.notebook import tqdm"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_MGleTRG6Vor"
},
"source": [
"At first, we define all relevant hyper-parameters for pretraining in this notebook:\n",
"\n",
"- Each TPU will process a batch size of `64`\n",
"- The model is trained for `15` epochs\n",
"- The learning rate starts at `5-e5` and is successfully linearly decayed with each training step\n",
"- To reproduce the training run, a random seed is set to `0`.\n",
"\n",
"We can deduce the total batch size over all devices as well as the total number of training steps accordingly."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"id": "y8lsJQy8liud"
},
"outputs": [],
"source": [
"per_device_batch_size = 64\n",
"num_epochs = 10\n",
"training_seed = 0\n",
"learning_rate = 5e-5\n",
"\n",
"total_batch_size = per_device_batch_size * jax.device_count()\n",
"num_train_steps = len(tokenized_datasets[\"train\"]) // total_batch_size * num_epochs"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FB9bRDBq5j3r"
},
"source": [
"It has been shown that for MLM pretraining that it is more efficient to use much larger batch sizes, though this requires many GPUs or TPUs.\n",
"\n",
"- [How to Train BERT with an Academic Budget](https://arxiv.org/abs/2104.07705) shows that pretraining BERT is cheaper when trained on larger batch sizes up to 16384.\n",
"- [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962) shows how to pretrain a BERT in a bit more than an hour in a highly distributed setting using a batch size of 32868.\n",
"\n",
"We use a batch size of `8 * 64 = 256` here due to the TPU memory constraints of this notebook. When running this script locally on a TPUv3-8, one can easily use batch sizes of up to `8 * 256 = 2048`."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "i0Tylp115u1r"
},
"source": [
"Now we randomly initialized a `roberta-base` model according to its configuration. To save memory and improve speed, we initialize the weights directly in `bfloat16` by setting `dtype=jnp.dtype(\"bfloat16\")`."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"id": "aVr9TCzfacLN"
},
"outputs": [],
"source": [
"from transformers import FlaxAutoModelForMaskedLM\n",
"\n",
"model = FlaxAutoModelForMaskedLM.from_config(config, seed=training_seed, dtype=jnp.dtype(\"bfloat16\"))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sMS_QkT76Lgk"
},
"source": [
"Next, we define the learning rate schedule. A simple and effective learning rate schedule is the linear decay with warmup (click [here](https://huggingface.co/transformers/main_classes/optimizer_schedules.html#transformers.get_linear_schedule_with_warmup) for more information). For simplicity, we set the number of warmup steps simply to 0 here. The schedule is then fully defined by the number of training steps and the learning rate.\n",
"\n",
"It is recommended to use the [**optax**](https://github.com/deepmind/optax) library for training utilities, *e.g.* learning rate schedules and optimizers.\n",
"\n",
"To see how to define a learning rate schedule with warmup, please take a look at the [official Flax MLM pre-training script](https://github.com/huggingface/transformers/blob/80d712fac6ccae308a2f408ebbc0c4d8c482d509/examples/flax/language-modeling/run_mlm_flax.py#L514)."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"id": "kfBkuV1ck4rq"
},
"outputs": [],
"source": [
"linear_decay_lr_schedule_fn = optax.linear_schedule(init_value=learning_rate, end_value=0, transition_steps=num_train_steps)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2p0yNxeU79F2"
},
"source": [
"We will be using the standard Adam optimizer with weight decay, called AdamW (Adam + weight decay). \n",
"\n",
"AdamW can easily be imported from [optax](https://github.com/deepmind/optax) and is created from the just defined learning rate schedule as well as a couple of other hyper-parameters (*beta1*, *beta2*, *epsilon*) that are hard-coded in this notebook.\n",
"\n",
"For more information on AdamW (Adam + weight decay), one can take a look at [this](https://www.fast.ai/2018/07/02/adam-weight-decay/) blog post."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"id": "xRtpv_iamZd2"
},
"outputs": [],
"source": [
"adamw = optax.adamw(learning_rate=linear_decay_lr_schedule_fn, b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6g_fEbV-72Hc"
},
"source": [
"Next, we will create the *training state* that includes the optimizer, the loss function, and is responsible for updating the model's parameters during training.\n",
"\n",
"Most JAX transformations (notably [jax.jit](https://jax.readthedocs.io/en/latest/jax-101/02-jitting.html)) require functions that are transformed to have no side effects. This is because any such side-effects will only be executed once when the Python version of the function is run during compilation (see [Stateful Computations in JAX](https://jax.readthedocs.io/en/latest/jax-101/07-state.html)). As a consequence, Flax models (which can be transformed by JAX transformations) are **immutable**, and the state of the model (i.e., its weight parameters) is stored *outside* of the model instance.\n",
"\n",
"Models are initialized and updated in a purely functional way: you pass the state to the model when calling it, and the model returns the new (possibly modified) state, leaving the model instance itself unchanged.\n",
"\n",
"Flax provides a convenience class [`flax.training.train_state.TrainState`](https://github.com/google/flax/blob/9da95cdd12591f42d2cd4c17089861bff7e43cc5/flax/training/train_state.py#L22), which stores things such as the model parameters, the loss function, the optimizer, and exposes an `apply_gradients` function to update the model's weight parameters.\n",
"\n",
"Alright, let's begin by defining our *training state* class. We create a `TrainState` class that stores the model's forward pass as the `apply_fn`, the `params`, and the AdamW optimizer."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"id": "JHYfR67AoKRc"
},
"outputs": [],
"source": [
"state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xiYCejDd81TX"
},
"source": [
"For masked language model (MLM) pretraining, some of the input tokens are randomly masked, and the objective is to predict the original vocabulary id of the masked word based only on its context. \n",
"More precisely, for [BERT-like MLM pretraining](https://arxiv.org/abs/1810.04805) **15%** of all input tokens are replaced by a mask token with **80%** probability, by another random token with **10%** probability, and stay the same with **10%** probability. \n",
"\n",
"Let's implement a data collator that given a training batch randomly mask some input tokens according to the BERT-like MLM pretraining above. \n",
"Note that the **85%** of tokens, that are not replaced for MLM pretraining, would be trivial for the model to predict since it even has access to the token itself. To make sure the model learns to predict masked tokens instead of simply copying input tokens to output tokens, we indicate that no loss should be computed the **85%** of non-replaced tokens by setting their label to `-100`."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"id": "Aos9GltTb3Ve"
},
"outputs": [],
"source": [
"@flax.struct.dataclass\n",
"class FlaxDataCollatorForMaskedLanguageModeling:\n",
" mlm_probability: float = 0.15\n",
"\n",
" def __call__(self, examples, tokenizer, pad_to_multiple_of=16):\n",
" batch = tokenizer.pad(examples, return_tensors=\"np\", pad_to_multiple_of=pad_to_multiple_of)\n",
"\n",
" special_tokens_mask = batch.pop(\"special_tokens_mask\", None)\n",
" batch[\"input_ids\"], batch[\"labels\"] = self.mask_tokens(\n",
" batch[\"input_ids\"], special_tokens_mask, tokenizer\n",
" )\n",
"\n",
" return batch\n",
"\n",
" def mask_tokens(self, inputs, special_tokens_mask, tokenizer):\n",
" labels = inputs.copy()\n",
" # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)\n",
" probability_matrix = np.full(labels.shape, self.mlm_probability)\n",
" special_tokens_mask = special_tokens_mask.astype(\"bool\")\n",
"\n",
" probability_matrix[special_tokens_mask] = 0.0\n",
" masked_indices = np.random.binomial(1, probability_matrix).astype(\"bool\")\n",
" labels[~masked_indices] = -100 # We only compute loss on masked tokens\n",
"\n",
" # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])\n",
" indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype(\"bool\") & masked_indices\n",
" inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)\n",
"\n",
" # 10% of the time, we replace masked input tokens with random word\n",
" indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype(\"bool\")\n",
" indices_random &= masked_indices & ~indices_replaced\n",
" random_words = np.random.randint(tokenizer.vocab_size, size=labels.shape, dtype=\"i4\")\n",
" inputs[indices_random] = random_words[indices_random]\n",
"\n",
" # The rest of the time (10% of the time) we keep the masked input tokens unchanged\n",
" return inputs, labels"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PGUrqbvlUZOG"
},
"source": [
"Having defined the MLM data collator, we can now instantiate one."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"id": "BX9dfQLVdqga"
},
"outputs": [],
"source": [
"data_collator = FlaxDataCollatorForMaskedLanguageModeling(mlm_probability=0.15)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "L7uoTXDLUzb-"
},
"source": [
"At each training epoch, the dataset should be shuffled and superfluous samples that make the dataset not evenly divisible by the batch size are thrown away. Instead of passing the dataset, we prepare the indices of data samples to be used for both each training epoch. \n",
"The indices for the training dataset are additionally randomly shuffled before each epoch."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"id": "94khBqjzplxw"
},
"outputs": [],
"source": [
"def generate_batch_splits(num_samples, batch_size, rng=None):\n",
" samples_idx = jax.numpy.arange(num_samples)\n",
"\n",
" # if random seed is provided, then shuffle the dataset\n",
" if input_rng is not None:\n",
" samples_idx = jax.random.permutation(input_rng, samples_idx)\n",
"\n",
" samples_to_remove = num_samples % batch_size\n",
"\n",
" # throw away incomplete batch\n",
" if samples_to_remove != 0:\n",
" samples_idx = samples_idx[:-samples_to_remove]\n",
" \n",
" batch_idx = np.split(samples_idx, num_samples // batch_size)\n",
" return batch_idx"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MU6idLb29xYu"
},
"source": [
"During fine-tuning, we want to update the model parameters and evaluate the performance after each epoch. \n",
"\n",
"Let's write the functions `train_step` and `eval_step` accordingly. During training the weight parameters should be updated as follows:\n",
"\n",
"1. Define a loss function `loss_function` that first runs a forward pass of the model given data input. Remember that Flax models are immutable, and we explicitly pass it the state (in this case the model parameters and the RNG). `loss_function` returns a scalar loss (using the previously defined `state.loss_function`) between the model output and input targets.\n",
"2. Differentiate this loss function using [`jax.value_and_grad`](https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#evaluate-a-function-and-its-gradient-using-value-and-grad). This is a JAX transformation called [automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation), which computes the gradient of `loss_function` given the input to the function (i.e., the parameters of the model), and returns the value and the gradient in a pair `(loss, gradients)`.\n",
"3. Compute the mean gradient over all devices using the collective operation [lax.pmean](https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.pmean.html). As we will see below, each device runs `train_step` on a different batch of data, but by taking the mean here we ensure the model parameters are the same on all devices.\n",
"4. Use `state.apply_gradients`, which applies the gradients to the weights.\n",
"\n",
"Below, you can see how each of the described steps above is put into practice."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"id": "GjKzb0zJd-aH"
},
"outputs": [],
"source": [
"def train_step(state, batch, dropout_rng):\n",
" dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)\n",
"\n",
" def loss_fn(params):\n",
" labels = batch.pop(\"labels\")\n",
"\n",
" logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]\n",
"\n",
" # compute loss, ignore padded input tokens\n",
" label_mask = jax.numpy.where(labels > 0, 1.0, 0.0)\n",
" loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask\n",
"\n",
" # take average\n",
" loss = loss.sum() / label_mask.sum()\n",
"\n",
" return loss\n",
"\n",
" grad_fn = jax.value_and_grad(loss_fn)\n",
" loss, grad = grad_fn(state.params)\n",
" grad = jax.lax.pmean(grad, \"batch\")\n",
" new_state = state.apply_gradients(grads=grad)\n",
"\n",
" metrics = jax.lax.pmean(\n",
" {\"loss\": loss, \"learning_rate\": linear_decay_lr_schedule_fn(state.step)}, axis_name=\"batch\"\n",
" )\n",
"\n",
" return new_state, metrics, new_dropout_rng"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nCPedI-B-FMQ"
},
"source": [
"Now, we want to do parallelized training over all TPU devices. To do so, we use [`jax.pmap`](https://jax.readthedocs.io/en/latest/jax.html?highlight=pmap#parallelization-pmap). This will compile the function once and run the same program on each device (it is an [SPMD program](https://en.wikipedia.org/wiki/SPMD)). When calling this pmapped function, all inputs (`\"state\"`, `\"batch\"`, `\"dropout_rng\"`) should be replicated for all devices, which means that the first axis of each argument is used to map over all TPU devices."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"id": "w3k1Lqerpw5k"
},
"outputs": [],
"source": [
"parallel_train_step = jax.pmap(train_step, \"batch\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0DWFAZM6A8uf"
},
"source": [
"Similarly, we can now define the evaluation step. Here, the function is much easier as we don't need to compute any gradients. To better monitor the performance improvement during training, the accuracy is computed alongside the loss and stored in a `metric` dictionary during evaluation."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"id": "EGEv7dyfpW4p"
},
"outputs": [],
"source": [
"def eval_step(params, batch):\n",
" labels = batch.pop(\"labels\")\n",
"\n",
" logits = model(**batch, params=params, train=False)[0]\n",
"\n",
" label_mask = jax.numpy.where(labels > 0, 1.0, 0.0)\n",
" loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask\n",
"\n",
" # compute accuracy\n",
" accuracy = jax.numpy.equal(jax.numpy.argmax(logits, axis=-1), labels) * label_mask\n",
"\n",
" # summarize metrics\n",
" metrics = {\"loss\": loss.sum(), \"accuracy\": accuracy.sum(), \"normalizer\": label_mask.sum()}\n",
" metrics = jax.lax.psum(metrics, axis_name=\"batch\")\n",
"\n",
" return metrics"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "guaYWTvFA_66"
},
"source": [
"Similarly, we also apply `jax.pmap` to the evaluation step."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"id": "0B8U2r2RpzjV"
},
"outputs": [],
"source": [
"parallel_eval_step = jax.pmap(eval_step, \"batch\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DLaM60PCY8Ka"
},
"source": [
"Next, we replicate/copy the weight parameters on each device, so that we can pass them to our parallelized mapped functions."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "kncZTfALp3PG",
"outputId": "59866246-a679-4178-b827-deff529bd844"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.7/dist-packages/jax/lib/xla_bridge.py:317: UserWarning: jax.host_count has been renamed to jax.process_count. This alias will eventually be removed; please update your code.\n",
" \"jax.host_count has been renamed to jax.process_count. This alias \"\n",
"/usr/local/lib/python3.7/dist-packages/jax/lib/xla_bridge.py:304: UserWarning: jax.host_id has been renamed to jax.process_index. This alias will eventually be removed; please update your code.\n",
" \"jax.host_id has been renamed to jax.process_index. This alias \"\n"
]
}
],
"source": [
"state = flax.jax_utils.replicate(state)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hgCdgdptZTTN"
},
"source": [
"To monitor the performance during training, we accumulate the loss and the accuracy of each evaluation step. Because the loss is not computed on most input tokens, we need to normalize the accuracy and loss before computing the average. \n",
"\n",
"Let's wrap this logit into a `process_eval_metrics` function to not clutter the training loop too much."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"id": "sYaW3LsIx6cK"
},
"outputs": [],
"source": [
"def process_eval_metrics(metrics):\n",
" metrics = get_metrics(metrics)\n",
" metrics = jax.tree_map(jax.numpy.sum, metrics)\n",
" normalizer = metrics.pop(\"normalizer\")\n",
" metrics = jax.tree_map(lambda x: x / normalizer, metrics)\n",
" return metrics"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "i2xg8oI-ZJ3P"
},
"source": [
"We can almost start training! In a final preparation step, we generate a seeded [**PRNGKey**](https://jax.readthedocs.io/en/latest/_autosummary/jax.random.PRNGKey.html#jax-random-prngkey) used as the random seed for dropout layers and dataset shuffling.\n",
"\n",
"Similar to how we had to copy/replicate the state on all 8 TPU devices, we also need to generate one `PRNGKey` per device, which is why we split the initial `rng` key into 8 random seeds. "
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"id": "idu3E9ubqZH3"
},
"outputs": [],
"source": [
"rng = jax.random.PRNGKey(training_seed)\n",
"dropout_rngs = jax.random.split(rng, jax.local_device_count())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bKuMWHicbede"
},
"source": [
"Now, we are all set to finally start training! \n",
"Let's put all the pieces together and write the training loop. \n",
"\n",
"We start each epoch by generating a new random seed that will be used for dataset shuffling, the dropout layers and the input token masking. \n",
"\n",
"Next, we generate the training dataset indices.\n",
"In the first nested loop - the training loop - we shard the input batch on all 8 TPU devices, and run the training step. \n",
"\n",
"Analogs, in the second nested loop - the evaluation loop - the evaluation batches are sharded and the evaluation step is run.\n",
"\n",
"**Note**: It might seem that the following cell \"hangs\" when executed for the first time. This is because JAX first traces & compiles the code, the very first time it is run. After the first training step, you should notice that execution is much faster."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 117,
"referenced_widgets": [
"262758972960448ea46c762caaae24ca",
"114b5b5c202d4f5da8f764305eae2582",
"5e61cb16b44949269c405f68656a30d5",
"037f015c5d98455f896f015db811260e",
"dcb74fb0f3774685aa56e64ace39bde3",
"8e267f7131de429db31f99d0f2fd310a",
"8121511fd6dc41e6b16a02806bbdecb6",
"a68eccd445d244a18a983c3d4b573358",
"aa802d8d41204fff94e49acbb3dedcc0",
"943d5c7876d44836bf15599392511ed0",
"6f88b74eeb2c49b3856d358c1a21e8a4",
"afaa3f9241b04276b4b8f9f3cf79b444",
"aac392b4e9d34bbebb7da08ccf0ed2b8",
"c60a29f8061d43338adc80ae3c09b6ef",
"b33b0ad250cf40ca803680633cc1b947",
"d44f508c2f494b3bafdf6e90925f84dd",
"da76d7739a3544839bc88aaf00970d1a",
"0febc23ecf6c457399ac6d103c1abc2f",
"b2c6b88e7df74b468e535daedb323e92",
"0c4c8206041d47d386f1da41c4972f21",
"78046e506c7948f3a6b7f3aabcb1a0f8",
"cb84d2716aa3457a9d5f1e0460e1ec60",
"e6d7b59745d24529b434ac1df1389fff",
"026d9ac7cac64731afa27ac5fcd8d9bb",
"df151562aa3249cd9635a3cd238a00e5",
"ba2ad8afb5cf4e8ebbec3d01516f141c",
"c3beb5d9c8f441738d25143a5f3e9ef9",
"ac05b51eb9c342db8633ab389d3fd97b",
"dda84868d89e44feba92c4d2bd4abae2",
"08753a03bf6c42198e505cc54de9ca90",
"6aaf8d5489c7455db84c395beb5fa45b",
"d7ab871edf5a437e9dee66027f0da73d"
]
},
"id": "U946A-YZp-Pe",
"outputId": "266a3265-6f78-4201-9ed1-dacf2d1415fb"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "262758972960448ea46c762caaae24ca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Epoch ...', max=10.0, style=ProgressStyle(description_wid…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aa802d8d41204fff94e49acbb3dedcc0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Training...', max=71.0, style=ProgressStyle(description_w…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"\r",
"Train... (1/10 | Loss: 8.718000411987305, Learning Rate: 4.5000000682193786e-05)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "da76d7739a3544839bc88aaf00970d1a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Evaluation...', max=5.0, style=ProgressStyle(description_…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"\r",
"Eval... (1/10 | Loss: 8.744632720947266, Acc: 0.048040375113487244)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df151562aa3249cd9635a3cd238a00e5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, description='Training...', max=71.0, style=ProgressStyle(description_w…"
]
},
"metadata": {
"tags": []
},
"output_type": "display_data"
}
],
"source": [
"for epoch in tqdm(range(1, num_epochs + 1), desc=f\"Epoch ...\", position=0, leave=True):\n",
" rng, input_rng = jax.random.split(rng)\n",
"\n",
" # -- Train --\n",
" train_batch_idx = generate_batch_splits(len(tokenized_datasets[\"train\"]), total_batch_size, rng=input_rng)\n",
"\n",
" with tqdm(total=len(train_batch_idx), desc=\"Training...\", leave=False) as progress_bar_train:\n",
" for batch_idx in train_batch_idx:\n",
" model_inputs = data_collator(tokenized_datasets[\"train\"][batch_idx], tokenizer=tokenizer, pad_to_multiple_of=16)\n",
"\n",
" # Model forward\n",
" model_inputs = shard(model_inputs.data)\n",
" state, train_metric, dropout_rngs = parallel_train_step(state, model_inputs, dropout_rngs)\n",
"\n",
" progress_bar_train.update(1)\n",
"\n",
" progress_bar_train.write(\n",
" f\"Train... ({epoch}/{num_epochs} | Loss: {round(train_metric['loss'].mean(), 3)}, Learning Rate: {round(train_metric['learning_rate'].mean(), 6)})\"\n",
" )\n",
" \n",
"\n",
"\n",
"\n",
" # -- Eval --\n",
" eval_batch_idx = generate_batch_splits(len(tokenized_datasets[\"validation\"]), total_batch_size)\n",
" eval_metrics = []\n",
"\n",
" with tqdm(total=len(eval_batch_idx), desc=\"Evaluation...\", leave=False) as progress_bar_eval:\n",
" for batch_idx in eval_batch_idx:\n",
" model_inputs = data_collator(tokenized_datasets[\"validation\"][batch_idx], tokenizer=tokenizer)\n",
"\n",
" # Model forward\n",
" model_inputs = shard(model_inputs.data)\n",
" eval_metric = parallel_eval_step(state.params, model_inputs)\n",
" eval_metrics.append(eval_metric)\n",
"\n",
" progress_bar_eval.update(1)\n",
"\n",
" eval_metrics_dict = process_eval_metrics(eval_metrics)\n",
" progress_bar_eval.write(\n",
" f\"Eval... ({epoch}/{num_epochs} | Loss: {eval_metrics_dict['loss']}, Acc: {eval_metrics_dict['accuracy']})\"\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZI4XIhY-7hyh"
},
"source": [
"It can be seen that in this colab training already reaches a speed of 1.26 training steps per second. Executing [**`run_mlm_flax.py`**](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling/run_mlm_flax.py) on a TPUv3-8 VM should be as fast as 6 training steps per second.\n",
"\n",
"For a more in-detail comparison of runtimes please refer to [this](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling#runtime-evaluation) table."
]
}
],
"metadata": {
"accelerator": "TPU",
"colab": {
"authorship_tag": "ABX9TyOwoqeayhHJzOvhOXZIu07e",
"collapsed_sections": [],
"include_colab_link": true,
"name": "Masked Language Model Pretraining on TPU with 🤗 Transformers & JAX",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"01b8401f9f26458d97ac47eb62a53820": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b38bb5cd9489446b8fc24537759e60c6",
"placeholder": "​",
"style": "IPY_MODEL_15f7835673894849b6b6dbe4cfd336f5",
"value": " 1/1 [00:02<00:00, 2.37s/ba]"
}
},
"026d9ac7cac64731afa27ac5fcd8d9bb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"037f015c5d98455f896f015db811260e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a68eccd445d244a18a983c3d4b573358",
"placeholder": "​",
"style": "IPY_MODEL_8121511fd6dc41e6b16a02806bbdecb6",
"value": " 1/10 [08:02<1:12:20, 482.31s/it]"
}
},
"0636601f4d8a42bba470861b19e293c1": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"08753a03bf6c42198e505cc54de9ca90": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0a2cd49929ba4a5cb789f7dcfdf63f9a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0a6ba63d60924e7a869869c6dc359f42": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"0c29902ffea24196916b6f56dad78f59": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_358f223d671943a4978ceb81016b8b3d",
"placeholder": "​",
"style": "IPY_MODEL_776079278200407abafe88edd29ff702",
"value": " 333M/333M [00:15<00:00, 21.3MB/s]"
}
},
"0c4c8206041d47d386f1da41c4972f21": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_026d9ac7cac64731afa27ac5fcd8d9bb",
"placeholder": "​",
"style": "IPY_MODEL_e6d7b59745d24529b434ac1df1389fff",
"value": " 5/5 [00:11<00:00, 2.69s/it]"
}
},
"0e46d00678a34c86bfa9ebc73c4fea31": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0febc23ecf6c457399ac6d103c1abc2f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"114b5b5c202d4f5da8f764305eae2582": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"129c87d4c4bd41608eb6600854170ce4": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1507ed751ef54eabb98315e353d549ef": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_4bfbdc64093c401abc32fb47f9b910b9",
"IPY_MODEL_eb3fd3dc5fda4d728b0b45bff5f4dbbf"
],
"layout": "IPY_MODEL_129c87d4c4bd41608eb6600854170ce4"
}
},
"15f7835673894849b6b6dbe4cfd336f5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"160a103ca36c4ca68fb7f8b3817acf66": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"16c34052aa8143d3ab137a4b1adb6550": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"171c6872201847e08598cd8c5a0b2362": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_6def23bac354403696d8f60777836653",
"placeholder": "​",
"style": "IPY_MODEL_1cb65ed1e9b845c5b8554b931b4690b5",
"value": " 3/3 [00:20<00:00, 6.84s/ba]"
}
},
"18aca4b7e88248e0ac232f67afd3f3ab": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_4a57a381bac941f285574cc3e563b048",
"IPY_MODEL_db39640e706d4309a1c58d0f332b2aab"
],
"layout": "IPY_MODEL_ebaa5224f0cf47d78d08f93990c08098"
}
},
"1a9b970c8efb4277a798da1c145c19e4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"1b57f6133c8045aa8ad993d47af6f541": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"1cb65ed1e9b845c5b8554b931b4690b5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"1f47f12d6bde427a892d31443e40829b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1fa55643d9234e7facbfecf6d2ef7cb6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_34b0d26a14454933a08b7e2b39c36011",
"placeholder": "​",
"style": "IPY_MODEL_dd286ac4f020476cb5c8e6495b717ee5",
"value": " 3/3 [00:47<00:00, 15.70s/ba]"
}
},
"20b8b6e3b79942cdbe51131f3ebaf14a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2226ef9eb3d04cf2992d2fb9976f167e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"232d2e43c91742aab712216ae4e72bb0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"2334037d360a495b9644e60f897da983": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_b567119e92374510885c44812a2ac115",
"IPY_MODEL_35680c4679af41009739ebc34ccb6959"
],
"layout": "IPY_MODEL_66aa387a4a5f4a488ee1cb29cbb42da9"
}
},
"244f1c8857a54e368b744b7596129f5a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"24f9f85b12e14f83b6f0d300c5bf2c7b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_c6534a1d59ba4c6586c20f4a6dd709ba",
"IPY_MODEL_01b8401f9f26458d97ac47eb62a53820"
],
"layout": "IPY_MODEL_a3ca03557e19482fb170ab90b6c6e136"
}
},
"25f1623a25cd4f859400d696140f79d9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_34c78198209243f896a8479f1d7257fa",
"IPY_MODEL_171c6872201847e08598cd8c5a0b2362"
],
"layout": "IPY_MODEL_da656163b59b487f9857ac7dce3989bf"
}
},
"262758972960448ea46c762caaae24ca": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_5e61cb16b44949269c405f68656a30d5",
"IPY_MODEL_037f015c5d98455f896f015db811260e"
],
"layout": "IPY_MODEL_114b5b5c202d4f5da8f764305eae2582"
}
},
"269c1ae885ca46769d0a049b7df5e839": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"29c0e9a2c0264fed8c0ef1c88c1d6daf": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"29c818fbcbfa4c4d9c2ace5afcd816bd": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"2a4aff76064241bbae6d7945811c43f3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2b87607755784544824172984f509b13": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"2c494e518396468b945342279d4a91e8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_e89648ca4e014ec78c9776ac90bbf6d2",
"IPY_MODEL_ac4384c5d8304441b3c6e764dfdb9d9a"
],
"layout": "IPY_MODEL_5bcf7478340a4d84850c43ba6364ce5e"
}
},
"2cbeaf721bf644379aff6366632a1a62": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2d4ecab20fbc4e148642e001662898f7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_a7dfa9d4c0a44542b35f94b8d9c7806f",
"IPY_MODEL_caf772c6f33a46c2b20ae99fe3c31dae"
],
"layout": "IPY_MODEL_d9fd9c0bef814996b61fc32edf8d6cc6"
}
},
"2f58e28ca978441db9d75313d263b1ba": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"332a3530366745d994126f354e5f0289": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"34b0d26a14454933a08b7e2b39c36011": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"34c78198209243f896a8479f1d7257fa": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #1: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_82ba69bcf1804675b77b1b708555bab9",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_9e6495156c9a4fc0b9ed24f8a216a388",
"value": 3
}
},
"354c2e15312a4251902d776fc770947a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_160a103ca36c4ca68fb7f8b3817acf66",
"placeholder": "​",
"style": "IPY_MODEL_50a6b75288694171bf84d99d676bb9ac",
"value": " 1/1 [00:01<00:00, 1.66s/ba]"
}
},
"35680c4679af41009739ebc34ccb6959": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_69ebeebba68145a282efed06395e61b2",
"placeholder": "​",
"style": "IPY_MODEL_406c959be1504ce09e68a84340e768cb",
"value": " 3.07M/? [00:00<00:00, 12.1MB/s]"
}
},
"358f223d671943a4978ceb81016b8b3d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"36aee3953ebe4b4596d01b9d379aa1e8": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3f5abb3236fa49cb8eefe1ca736afd07": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_a20f3f908f1644dc8b02e7cc82ba0f75",
"max": 81,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_add23e1725b34adfa63c0560fdfc653c",
"value": 81
}
},
"3fe30aad373046998a001fceec61e79e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_9491d032aadf4d27bea141190cb50b2f",
"IPY_MODEL_9b17d8470fd44c159896e26c9a4d9559"
],
"layout": "IPY_MODEL_29c0e9a2c0264fed8c0ef1c88c1d6daf"
}
},
"406c959be1504ce09e68a84340e768cb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"40ed180285114ee3b57c174e3954e871": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"420643ba0ccd4a87887b28e722e74f89": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"43215c6261f0492b8ae9f8600b51b25f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4444b057ae0747beb0a0593c62277967": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"444b38ddd3994f35b4dc6de5fa486e5a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"44f0cb6e4c07434fb0f89fbbd89e492d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"494957d1b11f4fef8aa0de984239fe6f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "info",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_99739cb14d9546f0a7058502b7562a52",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f87488c14e1c46808435448d258a062d",
"value": 1
}
},
"49bff82dc4264b0f815ea4e26734804d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4a57a381bac941f285574cc3e563b048": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #2: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_63746a342ad848fc8f45da71489e26af",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_444b38ddd3994f35b4dc6de5fa486e5a",
"value": 3
}
},
"4bfbdc64093c401abc32fb47f9b910b9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_0a2cd49929ba4a5cb789f7dcfdf63f9a",
"max": 481,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_1a9b970c8efb4277a798da1c145c19e4",
"value": 481
}
},
"4c71d8f73af54865af3bb984cfa78375": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4d0b2a650f1a43a18214d2f5be471c5e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"501540ebc32b47878367999f6b15dba2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_6b3121474b6445d88a96506c66408dd9",
"placeholder": "​",
"style": "IPY_MODEL_d1ccee8b62754023b4e6df520ae3966e",
"value": " 1/1 [00:01<00:00, 1.86s/ba]"
}
},
"50a6b75288694171bf84d99d676bb9ac": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"540e23f228ae45bcb5b76ccb94f7e031": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"5533776328e64aedbda3950db146f857": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: ",
"description_tooltip": null,
"layout": "IPY_MODEL_f6506d6ffd46498db87ec4ac66c95a9d",
"max": 5577,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f406dbf7c95b49d091c268c90080b8a5",
"value": 5577
}
},
"569ee56d7fea40ae89ef2349e1db457d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"56e6b6239d5544bdb9cfcde143d4edf7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"56fd3e43a9fb472ab180a25763acbf41": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5ae3dffe0e9b4bb5b2ccb4df55b72455": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5bcf7478340a4d84850c43ba6364ce5e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5c33fc07e8944ead8479baf09cd365f4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_e46226b475b14aa09437551b73cf0c1b",
"IPY_MODEL_998cb781fbe84f06b2064459c128015b"
],
"layout": "IPY_MODEL_a4a90eb988c94bc48aed9bc14918e9a4"
}
},
"5e61cb16b44949269c405f68656a30d5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "Epoch ...: 10%",
"description_tooltip": null,
"layout": "IPY_MODEL_8e267f7131de429db31f99d0f2fd310a",
"max": 10,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_dcb74fb0f3774685aa56e64ace39bde3",
"value": 1
}
},
"60d81ad4c9474506a99c1c9a9a8cef7a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"60f69d3d22b740e0a5f83cd2c6e8ca83": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"63746a342ad848fc8f45da71489e26af": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"669da797864e4a5b8b1b2feab627bb8e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_999db518d5174464b6c03b952ea3af1a",
"IPY_MODEL_a62f9f0af78741bc8f1045a683d54688"
],
"layout": "IPY_MODEL_a354d37e5f404a17bbd68a8f0845dd99"
}
},
"66aa387a4a5f4a488ee1cb29cbb42da9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"69ebeebba68145a282efed06395e61b2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6aaf8d5489c7455db84c395beb5fa45b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"6af5ca40e43a415bb535773ac5974dd2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"6b3121474b6445d88a96506c66408dd9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6def23bac354403696d8f60777836653": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6e91147560c94d419bbe2e10db39f694": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6f88b74eeb2c49b3856d358c1a21e8a4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "Training...: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_c60a29f8061d43338adc80ae3c09b6ef",
"max": 71,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_aac392b4e9d34bbebb7da08ccf0ed2b8",
"value": 71
}
},
"6fd5803d251d4dc4a5f20375b1e99385": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f82eaf223bb241029e23982325f421c4",
"IPY_MODEL_354c2e15312a4251902d776fc770947a"
],
"layout": "IPY_MODEL_752b65a12f2a440bb9ab1539f0fddf85"
}
},
"70b3393474e6416a85f42e9f07a9550b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_cf45447cb37e4b4198154f409f974030",
"IPY_MODEL_501540ebc32b47878367999f6b15dba2"
],
"layout": "IPY_MODEL_93e69e0936f342608e422705f40d64dd"
}
},
"72dc8f192bb24271849b618522ad3990": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"7522a60a290d4b749142b7c3bef2e51e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_eaf74e107314477d93302b2296145ef9",
"IPY_MODEL_ff231177ded8474e844806243efde855"
],
"layout": "IPY_MODEL_fa60d2398af0441d96fb81391cafdf96"
}
},
"752b65a12f2a440bb9ab1539f0fddf85": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"776079278200407abafe88edd29ff702": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"78046e506c7948f3a6b7f3aabcb1a0f8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"79a4220737f04106af1fcc33a9ef9409": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_332a3530366745d994126f354e5f0289",
"placeholder": "​",
"style": "IPY_MODEL_6af5ca40e43a415bb535773ac5974dd2",
"value": " 14.7k/? [00:00<00:00, 16.7kB/s]"
}
},
"7b2a7c286bf3418c89b58390a5d071dc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f8a52dc00c554a9488b2ad11f1eecdd6",
"IPY_MODEL_d5d34937611f41749ec872eb5162d087"
],
"layout": "IPY_MODEL_1f47f12d6bde427a892d31443e40829b"
}
},
"7cbfb28a8a10402eb34a0b07af3e7973": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c12d9b21c94d4a5b987a66d19d926ced",
"placeholder": "​",
"style": "IPY_MODEL_c1fd2afcaa2d45c9ad6aa2e4ce40f1ae",
"value": " 1/1 [00:01<00:00, 1.96s/ba]"
}
},
"7e428c1823a748d8a0367107dbdaa70d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"7eea344bf03645478852c513401b3115": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"80fc7c43339d4282bc8edfaf167c1224": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8121511fd6dc41e6b16a02806bbdecb6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"82ba69bcf1804675b77b1b708555bab9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8827cea3be154f1c8979072ddfbb9f8d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"88498392c9b6435a90b44f42699bc2bd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"885d037ed38542fe82d9a5404476c044": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8b7829a8ce7b4892b8047f8c6a19201a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_5533776328e64aedbda3950db146f857",
"IPY_MODEL_79a4220737f04106af1fcc33a9ef9409"
],
"layout": "IPY_MODEL_a95d6d6ad00a472abbc6ac7beded4abb"
}
},
"8e267f7131de429db31f99d0f2fd310a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8ed57e3298854dd8a8e08ad233c78410": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #1: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_2cbeaf721bf644379aff6366632a1a62",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_60d81ad4c9474506a99c1c9a9a8cef7a",
"value": 3
}
},
"92c59dbc4f6a467ebe5c4d60928c768f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"93e69e0936f342608e422705f40d64dd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"943d5c7876d44836bf15599392511ed0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9491d032aadf4d27bea141190cb50b2f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #1: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_d5a036d3c1f0461698a0b1299a009fcd",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_244f1c8857a54e368b744b7596129f5a",
"value": 1
}
},
"94bcede0deb74189acd3c30f748be1ff": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"94cbae744604407e8c8aa9c6bd8ce151": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #3: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_dbb51464281d40a2b5b8c8414304afa0",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_2b87607755784544824172984f509b13",
"value": 3
}
},
"9513b5d85ae442859f0223f83a48b953": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"95f6ac83377e49379240c8eeae384af0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"99739cb14d9546f0a7058502b7562a52": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"998cb781fbe84f06b2064459c128015b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_569ee56d7fea40ae89ef2349e1db457d",
"placeholder": "​",
"style": "IPY_MODEL_e06b47e60bd5415fa536603f2c103f86",
"value": " 1/1 [00:02<00:00, 2.08s/ba]"
}
},
"999db518d5174464b6c03b952ea3af1a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #0: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_49bff82dc4264b0f815ea4e26734804d",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_e49dc5ab78d74be3ab6d9760397e04c2",
"value": 3
}
},
"9b17d8470fd44c159896e26c9a4d9559": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a8e66259adcf4a3ab57ab2fc0d3847c2",
"placeholder": "​",
"style": "IPY_MODEL_c30e725164724058b83da04ac22b61b8",
"value": " 1/1 [00:02<00:00, 2.45s/ba]"
}
},
"9c9e95f42e904a34a97b8ebe17f997eb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_94cbae744604407e8c8aa9c6bd8ce151",
"IPY_MODEL_f6fc3918d3f149c5ab7f7dd630e5e303"
],
"layout": "IPY_MODEL_43215c6261f0492b8ae9f8600b51b25f"
}
},
"9e57068083904dcda413fef9728a1b8e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"9e6495156c9a4fc0b9ed24f8a216a388": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"9f7ad7e1e3164bc79ddc589a9649625f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a12e3f6679564ea4a2ff9e1f973a6415": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_8ed57e3298854dd8a8e08ad233c78410",
"IPY_MODEL_1fa55643d9234e7facbfecf6d2ef7cb6"
],
"layout": "IPY_MODEL_80fc7c43339d4282bc8edfaf167c1224"
}
},
"a20f3f908f1644dc8b02e7cc82ba0f75": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a354d37e5f404a17bbd68a8f0845dd99": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a3ca03557e19482fb170ab90b6c6e136": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a4a90eb988c94bc48aed9bc14918e9a4": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a62f9f0af78741bc8f1045a683d54688": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0e46d00678a34c86bfa9ebc73c4fea31",
"placeholder": "​",
"style": "IPY_MODEL_1b57f6133c8045aa8ad993d47af6f541",
"value": " 3/3 [00:19<00:00, 6.45s/ba]"
}
},
"a68eccd445d244a18a983c3d4b573358": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a7dfa9d4c0a44542b35f94b8d9c7806f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #0: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_56e6b6239d5544bdb9cfcde143d4edf7",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_7eea344bf03645478852c513401b3115",
"value": 3
}
},
"a8e66259adcf4a3ab57ab2fc0d3847c2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a95d6d6ad00a472abbc6ac7beded4abb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"aa802d8d41204fff94e49acbb3dedcc0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_6f88b74eeb2c49b3856d358c1a21e8a4",
"IPY_MODEL_afaa3f9241b04276b4b8f9f3cf79b444"
],
"layout": "IPY_MODEL_943d5c7876d44836bf15599392511ed0"
}
},
"aac392b4e9d34bbebb7da08ccf0ed2b8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"ac05b51eb9c342db8633ab389d3fd97b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d7ab871edf5a437e9dee66027f0da73d",
"placeholder": "​",
"style": "IPY_MODEL_6aaf8d5489c7455db84c395beb5fa45b",
"value": " 12/71 [00:09<00:48, 1.23it/s]"
}
},
"ac4384c5d8304441b3c6e764dfdb9d9a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_fdb39fdbd0ca424f8a98449d7a929deb",
"placeholder": "​",
"style": "IPY_MODEL_9e57068083904dcda413fef9728a1b8e",
"value": " 3/3 [00:15<00:00, 5.32s/ba]"
}
},
"add23e1725b34adfa63c0560fdfc653c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"afaa3f9241b04276b4b8f9f3cf79b444": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d44f508c2f494b3bafdf6e90925f84dd",
"placeholder": "​",
"style": "IPY_MODEL_b33b0ad250cf40ca803680633cc1b947",
"value": " 71/71 [07:43<00:00, 1.23it/s]"
}
},
"b1d2b908593c422d946d7656da6cbaf9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #1: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_d30fe8af738f419eafc4fbb3dbf69164",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f1bf3ed55e454e05ad3cc4a441041a5b",
"value": 1
}
},
"b2607cb39d7f4df69e029473df4e0bb6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_b1d2b908593c422d946d7656da6cbaf9",
"IPY_MODEL_7cbfb28a8a10402eb34a0b07af3e7973"
],
"layout": "IPY_MODEL_92c59dbc4f6a467ebe5c4d60928c768f"
}
},
"b2c6b88e7df74b468e535daedb323e92": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "Evaluation...: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_cb84d2716aa3457a9d5f1e0460e1ec60",
"max": 5,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_78046e506c7948f3a6b7f3aabcb1a0f8",
"value": 5
}
},
"b33b0ad250cf40ca803680633cc1b947": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"b34b97728ac248d0860a1eb85b33e309": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b38bb5cd9489446b8fc24537759e60c6": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b567119e92374510885c44812a2ac115": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: ",
"description_tooltip": null,
"layout": "IPY_MODEL_94bcede0deb74189acd3c30f748be1ff",
"max": 358718,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_16c34052aa8143d3ab137a4b1adb6550",
"value": 358718
}
},
"ba2ad8afb5cf4e8ebbec3d01516f141c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"bbfa545245f04d028b6c054c24853997": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"bdb9619c2f3449caaa4d4273d1cfa0cf": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"be4bd93181264b4ba86ab629cea48890": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #2: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_eb27225d1f694ef49b5f5a1d704ee2ac",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4444b057ae0747beb0a0593c62277967",
"value": 3
}
},
"c12d9b21c94d4a5b987a66d19d926ced": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c1fd2afcaa2d45c9ad6aa2e4ce40f1ae": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c30e725164724058b83da04ac22b61b8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c3913e79f785433989cf4ff6a528056e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_8827cea3be154f1c8979072ddfbb9f8d",
"max": 332871683,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_232d2e43c91742aab712216ae4e72bb0",
"value": 332871683
}
},
"c3beb5d9c8f441738d25143a5f3e9ef9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "",
"description": "Training...: 17%",
"description_tooltip": null,
"layout": "IPY_MODEL_08753a03bf6c42198e505cc54de9ca90",
"max": 71,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_dda84868d89e44feba92c4d2bd4abae2",
"value": 12
}
},
"c60a29f8061d43338adc80ae3c09b6ef": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c6534a1d59ba4c6586c20f4a6dd709ba": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #2: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_9f7ad7e1e3164bc79ddc589a9649625f",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_d7cfc8a005a74fb5aee9cfc5737e10bd",
"value": 1
}
},
"cae9b026ff684dffa0bcacb1ddaf1fd8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"caf772c6f33a46c2b20ae99fe3c31dae": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_95f6ac83377e49379240c8eeae384af0",
"placeholder": "​",
"style": "IPY_MODEL_60f69d3d22b740e0a5f83cd2c6e8ca83",
"value": " 3/3 [00:48<00:00, 16.19s/ba]"
}
},
"cb84d2716aa3457a9d5f1e0460e1ec60": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cea4982e4b32491698c26178a4c445ff": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cf45447cb37e4b4198154f409f974030": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #3: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_0636601f4d8a42bba470861b19e293c1",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_bbfa545245f04d028b6c054c24853997",
"value": 1
}
},
"d1ccee8b62754023b4e6df520ae3966e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d240794aecdb4f1c8dd5948a87095bfe": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_36aee3953ebe4b4596d01b9d379aa1e8",
"placeholder": "​",
"style": "IPY_MODEL_29c818fbcbfa4c4d9c2ace5afcd816bd",
"value": " 3/3 [00:34<00:00, 11.35s/ba]"
}
},
"d25c31eb97ff496baa48c4b7a317a976": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d2ad23714f2d49b08205d069b12899c8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_be4bd93181264b4ba86ab629cea48890",
"IPY_MODEL_d240794aecdb4f1c8dd5948a87095bfe"
],
"layout": "IPY_MODEL_20b8b6e3b79942cdbe51131f3ebaf14a"
}
},
"d30fe8af738f419eafc4fbb3dbf69164": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d3948f470523480697d5d7221b0fd1f4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_494957d1b11f4fef8aa0de984239fe6f",
"IPY_MODEL_eab56d1def3749ac9f95ccffce80dacc"
],
"layout": "IPY_MODEL_269c1ae885ca46769d0a049b7df5e839"
}
},
"d44f508c2f494b3bafdf6e90925f84dd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d5a036d3c1f0461698a0b1299a009fcd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d5d34937611f41749ec872eb5162d087": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_56fd3e43a9fb472ab180a25763acbf41",
"placeholder": "​",
"style": "IPY_MODEL_72dc8f192bb24271849b618522ad3990",
"value": " 1/1 [00:01<00:00, 1.86s/ba]"
}
},
"d7ab871edf5a437e9dee66027f0da73d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d7cfc8a005a74fb5aee9cfc5737e10bd": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"d9fd9c0bef814996b61fc32edf8d6cc6": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"da656163b59b487f9857ac7dce3989bf": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"da76d7739a3544839bc88aaf00970d1a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_b2c6b88e7df74b468e535daedb323e92",
"IPY_MODEL_0c4c8206041d47d386f1da41c4972f21"
],
"layout": "IPY_MODEL_0febc23ecf6c457399ac6d103c1abc2f"
}
},
"db39640e706d4309a1c58d0f332b2aab": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5ae3dffe0e9b4bb5b2ccb4df55b72455",
"placeholder": "​",
"style": "IPY_MODEL_f6ad3867bbd74702a807841b926705ca",
"value": " 3/3 [00:14<00:00, 4.89s/ba]"
}
},
"dbb51464281d40a2b5b8c8414304afa0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"dcb74fb0f3774685aa56e64ace39bde3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"dd286ac4f020476cb5c8e6495b717ee5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"dda84868d89e44feba92c4d2bd4abae2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"de6d3f88db2f48a48287566f152902d6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"df151562aa3249cd9635a3cd238a00e5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_c3beb5d9c8f441738d25143a5f3e9ef9",
"IPY_MODEL_ac05b51eb9c342db8633ab389d3fd97b"
],
"layout": "IPY_MODEL_ba2ad8afb5cf4e8ebbec3d01516f141c"
}
},
"e02d02fb4e3c4932ade9f214b93ce4e5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e06b47e60bd5415fa536603f2c103f86": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e46226b475b14aa09437551b73cf0c1b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #3: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_44f0cb6e4c07434fb0f89fbbd89e492d",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_0a6ba63d60924e7a869869c6dc359f42",
"value": 1
}
},
"e49dc5ab78d74be3ab6d9760397e04c2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"e6d7b59745d24529b434ac1df1389fff": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e89648ca4e014ec78c9776ac90bbf6d2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #3: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_cea4982e4b32491698c26178a4c445ff",
"max": 3,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_cae9b026ff684dffa0bcacb1ddaf1fd8",
"value": 3
}
},
"eab56d1def3749ac9f95ccffce80dacc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_885d037ed38542fe82d9a5404476c044",
"placeholder": "​",
"style": "IPY_MODEL_2226ef9eb3d04cf2992d2fb9976f167e",
"value": " 389515/0 [00:51<00:00, 10309.57 examples/s]"
}
},
"eaf74e107314477d93302b2296145ef9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #0: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_4c71d8f73af54865af3bb984cfa78375",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_7e428c1823a748d8a0367107dbdaa70d",
"value": 1
}
},
"eb27225d1f694ef49b5f5a1d704ee2ac": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"eb3fd3dc5fda4d728b0b45bff5f4dbbf": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_bdb9619c2f3449caaa4d4273d1cfa0cf",
"placeholder": "​",
"style": "IPY_MODEL_2f58e28ca978441db9d75313d263b1ba",
"value": " 481/481 [00:00<00:00, 1.16kB/s]"
}
},
"ebaa5224f0cf47d78d08f93990c08098": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f15842f820b2492eaf344303bb31cb9e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_3f5abb3236fa49cb8eefe1ca736afd07",
"IPY_MODEL_f9177108ca8d437fb83cd6ec87071268"
],
"layout": "IPY_MODEL_9513b5d85ae442859f0223f83a48b953"
}
},
"f1bf3ed55e454e05ad3cc4a441041a5b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"f2e1e2c29e8a4e4dae1b535311703e66": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_c3913e79f785433989cf4ff6a528056e",
"IPY_MODEL_0c29902ffea24196916b6f56dad78f59"
],
"layout": "IPY_MODEL_4d0b2a650f1a43a18214d2f5be471c5e"
}
},
"f406dbf7c95b49d091c268c90080b8a5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"f6506d6ffd46498db87ec4ac66c95a9d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f6ad3867bbd74702a807841b926705ca": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f6fc3918d3f149c5ab7f7dd630e5e303": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b34b97728ac248d0860a1eb85b33e309",
"placeholder": "​",
"style": "IPY_MODEL_de6d3f88db2f48a48287566f152902d6",
"value": " 3/3 [00:38<00:00, 12.84s/ba]"
}
},
"f82eaf223bb241029e23982325f421c4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #0: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_420643ba0ccd4a87887b28e722e74f89",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_540e23f228ae45bcb5b76ccb94f7e031",
"value": 1
}
},
"f87488c14e1c46808435448d258a062d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"f8a52dc00c554a9488b2ad11f1eecdd6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": " #2: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_6e91147560c94d419bbe2e10db39f694",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_40ed180285114ee3b57c174e3954e871",
"value": 1
}
},
"f9177108ca8d437fb83cd6ec87071268": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_88498392c9b6435a90b44f42699bc2bd",
"placeholder": "​",
"style": "IPY_MODEL_e02d02fb4e3c4932ade9f214b93ce4e5",
"value": " 81.0/81.0 [00:00<00:00, 129B/s]"
}
},
"fa60d2398af0441d96fb81391cafdf96": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fdb39fdbd0ca424f8a98449d7a929deb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ff231177ded8474e844806243efde855": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2a4aff76064241bbae6d7945811c43f3",
"placeholder": "​",
"style": "IPY_MODEL_d25c31eb97ff496baa48c4b7a317a976",
"value": " 1/1 [00:01<00:00, 1.66s/ba]"
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 1
}