{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "NJZUsvUMhFtU", "pycharm": { "name": "#%% md\n" } }, "source": [ "# **Fine-tuning for Image Classification with 🤗 Transformers**\n", "\n", "This notebook shows how to fine-tune any pretrained Vision model for Image Classification on a custom dataset. The idea is to add a randomly initialized classification head on top of a pre-trained encoder, and fine-tune the model altogether on a labeled dataset.\n", "\n", "## ImageFolder\n", "\n", "This notebook leverages the [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature to easily run the notebook on a custom dataset (namely, [EuroSAT](https://github.com/phelber/EuroSAT) in this tutorial). You can either load a `Dataset` from local folders or from local/remote files, like zip or tar.\n", "\n", "## Any model\n", "\n", "This notebook is built to run on any image classification dataset with any vision model checkpoint from the [Model Hub](https://huggingface.co/) as long as that model has a version with a Image Classification head, such as:\n", "* [ViT](https://huggingface.co/docs/transformers/model_doc/vit#transformers.ViTForImageClassification)\n", "* [Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin#transformers.SwinForImageClassification)\n", "* [ConvNeXT](https://huggingface.co/docs/transformers/master/en/model_doc/convnext#transformers.ConvNextForImageClassification)\n", "\n", "- in short, any model supported by [AutoModelForImageClassification](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForImageClassification).\n", "\n", "## Data augmentation\n", "\n", "This notebook leverages Kornia's [image augmentations](https://kornia.readthedocs.io/en/latest/augmentation.module.html) for applying data augmentation - note that we do provide alternative notebooks which leverage other libraries, including:\n", "\n", "* [Torchvision](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb)\n", "* [Albumentations](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)\n", "* [imgaug](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_imgaug.ipynb). \n", "\n", "---\n", "\n", "Depending on the model and the GPU you are using, you might need to adjust the batch size to avoid out-of-memory errors. Set those two parameters, then the rest of the notebook should run smoothly.\n", "\n", "In this notebook, we'll fine-tune from the https://huggingface.co/microsoft/swin-tiny-patch4-window7-224 checkpoint, but note that there are many, many more available on the [hub](https://huggingface.co/models?other=vision). We will also use the [datasets](https://huggingface.co/docs/datasets/installation) library to load an image dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "wvLDfqzdhFtb", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "model_checkpoint = \"microsoft/swin-tiny-patch4-window7-224\" # pre-trained model from which to fine-tune\n", "batch_size = 32 # batch size for training and evaluation" ] }, { "cell_type": "markdown", "metadata": { "id": "WOynCHJWhFtc", "pycharm": { "name": "#%% md\n" } }, "source": [ "Before we start, let's install the `kornia`, `datasets` and `transformers` libraries. We'll install `evaluate` to evaluate our model's accuracy during and after training, which requires `sklearn`. Since we'll be working with images, we'll also ensure that `Pillow` is installed." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "krONvnn0hFtd", "outputId": "67318c2f-65f1-4fde-be66-4c6f66cd33c5", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "!pip install -q kornia datasets transformers evaluate sklearn Pillow" ] }, { "cell_type": "markdown", "metadata": { "id": "dEPOo0jnhFtd", "pycharm": { "name": "#%% md\n" } }, "source": [ "If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We also quickly upload some telemetry - this tells us which examples and software versions are getting used so we know where to prioritize our maintenance efforts. We don't collect (or care about) any personally identifiable information, but if you'd prefer not to be counted, feel free to skip this step or delete this cell entirely." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers.utils import send_example_telemetry\n", "\n", "send_example_telemetry(\"image_classification_kornia_notebook\", framework=\"pytorch\")" ] }, { "cell_type": "markdown", "metadata": { "id": "Km4rEvjJhFtd", "pycharm": { "name": "#%% md\n" } }, "source": [ "## Fine-tuning a model on an image classification task" ] }, { "cell_type": "markdown", "metadata": { "id": "NknH0OJFhFte", "pycharm": { "name": "#%% md\n" } }, "source": [ "In this notebook, we will see how to fine-tune one of the [🤗 Transformers](https://github.com/huggingface/transformers) vision models on an Image Classification dataset.\n", "\n", "Given an image, the goal is to predict an appropriate class for it, like \"tiger\". The screenshot below is taken from a [ViT fine-tuned on ImageNet-1k](https://huggingface.co/google/vit-base-patch16-224) - try out the inference widget!" ] }, { "cell_type": "markdown", "metadata": { "id": "XtNzED6hhFtf", "pycharm": { "name": "#%% md\n" } }, "source": [ "\"drawing\"\n" ] }, { "cell_type": "markdown", "metadata": { "id": "zMOBzRmOhFtf", "pycharm": { "name": "#%% md\n" } }, "source": [ "### Loading the dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "Sin4A8CwhFtf", "pycharm": { "name": "#%% md\n" } }, "source": [ "We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library's [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature to download our custom dataset into a DatasetDict.\n", "\n", "In this case, the EuroSAT dataset is hosted remotely, so we provide the `data_files` argument. Alternatively, if you have local folders with images, you can load them using the `data_dir` argument." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 248, "referenced_widgets": [ "7058d1e258de40ebad13ff790915cd3c", "01ea35ba78b440d392b2c5e75ea74464", "e2e16d974fb249dd94a11507f9224a2d", "58f000f788c14a268cc102d5237b8c04", "377190442ab84770b7e3d27199ac8563", "30a8bd848ee1497691b7605d4dd32115", "c1537b4150ab4cfca215d70f6095a110", "aca7889b9fd34829bc7c7ed72c467aa1", "32e6e84f4de54b26a7218bf720324752", "f6693950a02d4f9d933c2e32e323f521", "adaaa2e702174b2b87894c0d3fcb1a57", "4c4fb79433cf49faac5105c5403f4bc8", "e19aa06a93034787a1a422c8297c50cf", "45cc5f862ebc482d9186d3d4349cf602", "c43a2cf9f9ee42cb8a114ced6ecce524", "f1ab9e0ecd59406b825926098912b968", "fb8dda387d89412388702e248a9514df", "d37300abc9474836803687ab739be99d", "8926f783fec742ef954ceb979f5abc70", "c81f799609794db09cb4f5d19c39333c", "78fa30c22d474c3da827b6af042b1e7d", "ffaa450ad4e24d66a466ab53b424260f", "17ad910846c647eea2967a556fa5d636", "d19adaf170c1447f90538b85b2546a7a", "b850715786e741fab64246dd616e4b0b", "775c74c822b94d55897501502b8b3890", "992069d6fbdd4046b6aa734b39a23ed5", "4ba73b8913d8440ea8ddc4c0e08ed145", "f5ded311e5ad49a4b7f77c5da177ffb9", "3653830200414a2b9a5150eea235fcf1", "2b479dce1b3d427483504e57fe4acd7a", "1aa408392e434cde9bdc43e0f670617d", "0a6cef96ab1841068e9027a30e76ed1e", "c6108fb0bf124c3fa22f85bbd4bf9266", "c3d49b63b8204a04ab075188f49b0d93", "603016ca5f7f4e939e5a7f1f57b8dd33", "a73b73fbcc164a81a3a4912f9682ab00", "f05a4a836fb84bf7a5f2e75440bb026d", "6da041a6484b4d1cbfa58cfcd265f88e", "d9c9f4a8aca44e09a8136331e545ea88", "f22ca12d18354eec80befa03d312fc44", "c8eb2750eb2244699dc1492e658a9ccb", "6f52fb52f05d465090227ede5cf2a30c", "4ffe6ca0522542f2a96cd3191d6a99c6", "825be3a2828c46398b79e6279c45236a", "e32780c830504c508b85e67343ab88e9", "0fd3d466727b4ac3bdbe1b32c67b0c26", "8c70d4279bac4e1e9efdc3d3b9d45e34", "a5dabc9865f34c9089b0eeca3897e467", "f0fc57814beb464aa5c0fa560f3fa8a6", "1453dc44aa334c7097608220933e46c2", "432c7d96cdc840d6b54567474d09ab2f", "72adfd5afe784624a673284e17a813c8", "c07bfe12d2c04a0f9c5696797a1d67a5", "fbb13fc905f240dab44f438f11421f89", "9c22864ff042460584353d870e79b5fb", "2ceb2fa333a94f5fb5207b5303bf0105", "3b13fa319738413892aa0175b8d2c79a", "bd3fb4774f2544abbfe84a8f77297022", "e161abad994748e7be3655cffa4f7468", "1aed4493a06e459193d06161e5dfe09e", "36d59e2f979449fa8e27c58f44c1f801", "c243a77c77eb4e51b217b0513c2d8546", "2c21a4a4464343729719d8f3125a7535", "dfae0ee344db4147a758e6b50daa66c8", "7cfa331622ff4187a167c4a981491457" ] }, "id": "6rfbAPGehFtf", "outputId": "402e4107-7880-4174-b75e-09245376cad1", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from datasets import load_dataset\n", "\n", "# load a custom dataset from local/remote files or folders using the ImageFolder feature\n", "\n", "# option: local/remote files\n", "dataset = load_dataset(\"jonathan-roberts1/EuroSAT\")" ] }, { "cell_type": "markdown", "metadata": { "id": "0UfLRkTJhFtg", "pycharm": { "name": "#%% md\n" } }, "source": [ "**Note:** You can also provide several splits:\n", "\n", "```python\n", "dataset = load_dataset(\"imagefolder\", data_files={\"train\": [\"path/to/file1\", \"path/to/file2\"], \"test\": [\"path/to/file3\", \"path/to/file4\"]})\n", "```\n", "\n", "Or load a dataset from your local:\n", "\n", "```python\n", "dataset = load_dataset(\"imagefolder\", data_dir=\"path_to_folder\")\n", "```\n", "\n", "If you want to share your dataset publicly or collaborate with others privately, you can also push your dataset to the hub very easily (and reload afterwards using load_dataset)!\n", "\n", "```python\n", "dataset.push_to_hub(\"nielsr/eurosat\")\n", "# Or use private=True to create a private dataset\n", "dataset.push_to_hub(\"nielsr/eurosat\", private=True)\n", "```\n", "\n", "**Datasets Hub: **\n", "\n", "At Hugging Face, we host a variety of NLP, vision, speech and multi-modal datasets. Simply head over to our Hub and search for datasets. If you find a dataset you would like to use, you can simply pass in the repository name to load the dataset from the [hub](https://huggingface.co/datasets). As an example, let's load the [CIFAR-10 dataset](https://huggingface.co/datasets/cifar10) from the hub.\n", "\n", "```python\n", "dataset = load_dataset(\"cifar10\")\n", "```" ] }, { "cell_type": "markdown", "metadata": { "id": "5w7UCssAhFth", "pycharm": { "name": "#%% md\n" } }, "source": [ "Let us also load the Accuracy metric, which we'll use to evaluate our model both during and after training." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ "f237d39322cc4b9e95fac2f5f23141cb", "164e22e2e1c64ffc99b77f787cad3a22", "83dd806f4a2b45d7bd34fc0c106a0eac", "7398432c4cc74d2d8f9d61c40b786021", "fe2eda6b84194d29a110b91a59cd0417", "c79df4f5086a4cb4b251d8614928ebe2", "71323ca5991e4c0399cb106cb59193fc", "6f7c2ec995714255be700b3ffaba9f9e", "b2a6342c762f45dda3b08ad3d9d0a6ad", "d74c3e6888b84fb781f2b343534c369a", "0f5d923b2b534881bd495dcaf47b94ec" ] }, "id": "fFUVl4WehFth", "outputId": "3b5ce754-f213-4e19-df16-5f9c0989002e", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import evaluate\n", "\n", "metric = evaluate.load(\"accuracy\")" ] }, { "cell_type": "markdown", "metadata": { "id": "BAHRArlEhFth", "pycharm": { "name": "#%% md\n" } }, "source": [ "The `dataset` object itself is a [`DatasetDict`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasetdict), which contains one key per split (in this case, only \"train\" for a training split)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_Z3Aj8rQhFth", "outputId": "b82d317a-fec8-4a55-8c78-343ed2304c7f", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "VjvxlD7LhFti", "pycharm": { "name": "#%% md\n" } }, "source": [ "To access an actual element, you need to select a split first, then give an index:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "zGxlnwxuhFti", "outputId": "f9f741f1-d09e-43ab-ef3e-b4d9e9e27307", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "example = dataset[\"train\"][10]\n", "example" ] }, { "cell_type": "markdown", "metadata": { "id": "z2kp7LEMhFti", "pycharm": { "name": "#%% md\n" } }, "source": [ "Each example consists of an image and a corresponding label. We can also verify this by checking the features of the dataset:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "591Jg2hAhFtj", "outputId": "0e1ad54e-beb5-4c64-af45-8f578074fa4c", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "dataset[\"train\"].features" ] }, { "cell_type": "markdown", "metadata": { "id": "uGJf6VXihFtj", "pycharm": { "name": "#%% md\n" } }, "source": [ "The cool thing is that we can directly view the image (as the 'image' field is an [Image feature](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Image)), as follows:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 81 }, "id": "TZnB2NiHhFtj", "outputId": "ed180e6e-9c03-433d-b61f-94925965c0cc", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "example['image']" ] }, { "cell_type": "markdown", "metadata": { "id": "1X9_obDDhFtj", "pycharm": { "name": "#%% md\n" } }, "source": [ "Let's make it a little bigger as the images in the EuroSAT dataset are of low resolution (64x64 pixels):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 217 }, "id": "-_DqwhyLhFtj", "outputId": "532fe0ab-e681-4743-c0d3-ce4d91abbaf2", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "example['image'].resize((200, 200))" ] }, { "cell_type": "markdown", "metadata": { "id": "ReZsyX1HhFtk", "pycharm": { "name": "#%% md\n" } }, "source": [ "Let's print the corresponding label:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "DAKkVypyhFtk", "outputId": "dc8847e6-e181-405e-a8b4-450f227c4894", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "example['label']" ] }, { "cell_type": "markdown", "metadata": { "id": "TYcebJ9thFtk", "pycharm": { "name": "#%% md\n" } }, "source": [ "As you can see, the `label` field is not an actual string label. By default the `ClassLabel` fields are encoded into integers for convenience:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "n-nFQ_LAhFtk", "outputId": "bb172e98-aa01-4548-d597-aefed4f8622d", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "dataset[\"train\"].features[\"label\"]" ] }, { "cell_type": "markdown", "metadata": { "id": "9rDFBVD_hFtk", "pycharm": { "name": "#%% md\n" } }, "source": [ "Let's create an `id2label` dictionary to decode them back to strings and see what they are. The inverse `label2id` will be useful too, when we load the model later." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 37 }, "id": "_JF2bw65hFtl", "outputId": "f5c5f6b3-0b87-456c-9ec9-0f85dedd1185", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "labels = dataset[\"train\"].features[\"label\"].names\n", "label2id, id2label = dict(), dict()\n", "for i, label in enumerate(labels):\n", " label2id[label] = i\n", " id2label[i] = label\n", "\n", "id2label[2]" ] }, { "cell_type": "markdown", "metadata": { "id": "IBseqwgnhFtl", "pycharm": { "name": "#%% md\n" } }, "source": [ "### Sharing your model" ] }, { "cell_type": "markdown", "metadata": { "id": "i6QkMriphFtl", "pycharm": { "name": "#%% md\n" } }, "source": [ "To be able to share your model with the community and generate results like the one shown in the picture below via the inference API, there are a few more steps to follow.\n", "\n", "First you have to store your authentication token from the Hugging Face website (sign up [here](https://huggingface.co/join) if you haven't already!) then execute the following cell and input your token:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 300, "referenced_widgets": [ "9a3fd883fbcd4192972daee5e9b724e8", "e4e975ccdf71499e9e7e2628b4d12381", "2263ea69fe2748e59e241121c0ee85db", "ce8ff720c1194f9fa576fa0ab72b9434", "a245a58b01304077b758257436e69b1a", "92f5865c94ce4986a36d71e2cf1db91e", "aa59cf09e9bf4aba951ab61b47c1ed40", "ff6552e277994529b20848de6ad45b99", "6e51c6d618164aeda48942aa1850ecf0", "2fa7bbee9cee40479fd62976954dabe9", "bb520a5722484f39bb93face96e36d69", "907b655aeed94f1c97fb564525e04d01", "013ca1d8272343a2a50a8bc49c22a76b", "98245a2bb52d42369036d025ad91efdd" ] }, "id": "kdSJmmmxhFtm", "outputId": "0d4a1991-cd56-4caf-d516-f8479a8f6238", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from huggingface_hub import notebook_login\n", "\n", "notebook_login()" ] }, { "cell_type": "markdown", "metadata": { "id": "O5Q0EhXehFtm", "pycharm": { "name": "#%% md\n" } }, "source": [ "\n", "Then you need to install Git-LFS to upload your model checkpoints:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "txxHusu1hFtm", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "%%capture\n", "!sudo apt -qq install git-lfs\n", "!git config --global credential.helper store" ] }, { "cell_type": "markdown", "metadata": { "id": "L7vwcNjvhFtn", "pycharm": { "name": "#%% md\n" } }, "source": [ "### Preprocessing the data" ] }, { "cell_type": "markdown", "metadata": { "id": "WXwah-dIhFtn", "pycharm": { "name": "#%% md\n" } }, "source": [ "All Hugging Face model classes expect the input to be correctly preprocessed, so we need to preprocess these images before we can feed them to our model. Preprocessing images typically comes down to:\n", "\n", "1. **Resizing** them a particular size\n", "2. **Normalizing** the color channels (R,G,B) using a mean and standard deviation.\n", "\n", "These are referred to as **image transformations**.\n", "\n", "In addition, one typically performs what is called **data augmentation** during training (like random cropping and flipping) to make the model more robust and achieve higher accuracy. Data augmentation is also a great technique to increase the size of the training data.\n", "\n", "We will use `Kornia` for the image transformations/data augmentation in this tutorial, but note that one can use any other package (like [torchvision](https://pytorch.org/vision/stable/transforms.html), [albumentations](https://albumentations.ai/), [imgaug](https://github.com/aleju/imgaug), etc.).\n", "\n", "To make sure we (1) resize to the appropriate size (2) use the appropriate image mean and standard deviation for the model architecture we are going to use, we instantiate what is called a feature extractor with the `AutoFeatureExtractor.from_pretrained` method.\n", "\n", "This feature extractor is a minimal preprocessor that can be used to prepare images for inference." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 338, "referenced_widgets": [ "43ed5eea6e854c929400cacd09009d5a", "df6fd8bcf0bd4cbf8b29faa94bd2b34b", "528c167c7f6342acad2fa73034d9024c", "7e29403666f8487daf0825acbb63636e", "4be0b71eee094946a00786fd6bb23f25", "e91ac28da9484c6398381c48d8154183", "ad6684672345402e9140caa4e623c2b5", "4e5e098964ab44a8aee3fd95ff6ec0e1", "e9883ae85eac458fad0f966229e9e513", "ec88dc30ea1d4c9c9ca71a1026220a47", "d3a7387094884e619cc9b17eafb6d549" ] }, "id": "G1bX4lGAO_d9", "outputId": "c77a2eab-ef02-43eb-90bd-f7f84c62583a", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from transformers import AutoFeatureExtractor\n", "\n", "feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)\n", "feature_extractor" ] }, { "cell_type": "markdown", "metadata": { "id": "qUtxmoMvqml1", "pycharm": { "name": "#%% md\n" } }, "source": [ "The Datasets library is made for processing data very easily. We can write custom functions, which can then be applied on an entire dataset (either using [`.map()`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=map#datasets.Dataset.map) or [`.set_transform()`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=set_transform#datasets.Dataset.set_transform)).\n", "\n", "Here we define 2 separate functions, one for training (which includes data augmentation) and one for validation (which only includes resizing, center cropping and normalizing). " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "4O_p3WrpRyej", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import kornia as K\n", "from torch import nn\n", "import torch\n", "from PIL import Image\n", "import numpy as np\n", "\n", "class PreProcess(nn.Module):\n", " \"\"\"Module to perform pre-process using Kornia on torch tensors.\"\"\"\n", " def __init__(self) -> None:\n", " super().__init__()\n", " \n", " @torch.no_grad() # disable gradients for effiency\n", " def forward(self, x: Image) -> torch.Tensor:\n", " x_tmp: np.ndarray = np.array(x) # HxWxC\n", " x_out: torch.Tensor = K.image_to_tensor(x_tmp, keepdim=True) # CxHxW\n", " return x_out.float() / 255.0\n", "\n", "train_transforms = nn.Sequential(\n", " PreProcess(),\n", " K.augmentation.Resize(size=224, side=\"short\"),\n", " K.augmentation.CenterCrop(size=224),\n", " K.augmentation.RandomHorizontalFlip(p=0.5),\n", " K.augmentation.ColorJiggle(),\n", " K.augmentation.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std),\n", ")\n", "\n", "val_transforms = nn.Sequential(\n", " PreProcess(),\n", " K.augmentation.Resize(size=224, side=\"short\"),\n", " K.augmentation.CenterCrop(size=224),\n", " K.augmentation.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std),\n", ")\n", "\n", "def preprocess_train(example_batch):\n", " \"\"\"Apply train_transforms across a batch.\"\"\"\n", " example_batch[\"pixel_values\"] = [train_transforms(image).squeeze() for image in example_batch[\"image\"]]\n", " return example_batch\n", "\n", "def preprocess_val(example_batch):\n", " \"\"\"Apply val_transforms across a batch.\"\"\"\n", " example_batch[\"pixel_values\"] = [val_transforms(image).squeeze() for image in example_batch[\"image\"]]\n", " return example_batch" ] }, { "cell_type": "markdown", "metadata": { "id": "RF4O0KFBGXir", "pycharm": { "name": "#%% md\n" } }, "source": [ "Next, we can preprocess our dataset by applying these functions. We will use the `set_transform` functionality, which allows to apply the functions above on-the-fly (meaning that they will only be applied when the images are loaded in RAM)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "P13tqfFTZ_F4", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "# split up training into training + validation\n", "splits = dataset[\"train\"].train_test_split(test_size=0.1)\n", "train_ds = splits['train']\n", "val_ds = splits['test']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "TUs56-mprQi1", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "train_ds.set_transform(preprocess_train)\n", "val_ds.set_transform(preprocess_val)" ] }, { "cell_type": "markdown", "metadata": { "id": "MMw_wQS58a7o", "pycharm": { "name": "#%% md\n" } }, "source": [ "Let's access an element to see that we've added a \"pixel_values\" feature:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Ng9TAlDV8d7r", "outputId": "045cb11f-d5e6-4552-8ef9-918f867b828f", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "train_ds[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "IYZhy_zOswNE", "outputId": "ea2ad8ad-6144-4e25-82bc-b390f82c7599", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "train_ds[0]['pixel_values'].shape" ] }, { "cell_type": "markdown", "metadata": { "id": "HOXmyPQ76Qv9", "pycharm": { "name": "#%% md\n" } }, "source": [ "### Training the model" ] }, { "cell_type": "markdown", "metadata": { "id": "0a-2YT7O6ayC", "pycharm": { "name": "#%% md\n" } }, "source": [ "Now that our data is ready, we can download the pretrained model and fine-tune it. For classification we use the `AutoModelForImageClassification` class. Calling the `from_pretrained` method on it will download and cache the weights for us. As the label ids and the number of labels are dataset dependent, we pass `label2id`, and `id2label` alongside the `model_checkpoint` here. This will make sure a custom classification head will be created (with a custom number of output neurons).\n", "\n", "NOTE: in case you're planning to fine-tune an already fine-tuned checkpoint, like [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) (which has already been fine-tuned on ImageNet-1k), then you need to provide the additional argument `ignore_mismatched_sizes=True` to the `from_pretrained` method. This will make sure the output head (with 1000 output neurons) is thrown away and replaced by a new, randomly initialized classification head that includes a custom number of output neurons. You don't need to specify this argument in case the pre-trained model doesn't include a head. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 203, "referenced_widgets": [ "9e1895e9f61f435682c89d3262ea441c", "20c3f774d6d9484e8f1c948f7ca5e046", "c221cfb9f0274eaebe5bd732f3c6b148", "8ffd71d3f46947ba831098300ab5fb94", "a544c18d3b994b14aa4557c718088d4b", "10ea68a58d754fe6bdeff82dc343b52b", "9ffcf926bbf04f82a716ad2ed3a8b6d1", "c0791510a0e74674a5dc5b46b9c2c87e", "b20d698d71e8495c9499b836a1559f3a", "1db4970b87b348148a72525014e2d4dc", "6abd984a1ae442df8d0b43277620fd67", "56d6a39887064be39b64c8c21ce31581", "3bca40ad7c1846348a696ef66f350da7", "3bea54844d55496bab8de6e0e553243a", "dd59d93d59fc4710867bfd69ccae5e6d", "d6d134de78c14314b7627ba0f3b6891e", "268807b9219e4dae9f9073b37d9487fa", "90267331af2d4d91bfd703557e3ff6d4", "257a1e82772c4cfd90c0daef86eed031", "ff9e39b94d064b8d96f1b338c8e9123f", "5b12316940c948f7a443537d7f7d3dcd", "3a237d1e47cb4432aa3bdaeac2c586d1" ] }, "id": "X9DDujL0q1ac", "outputId": "844dbe9d-b72b-4b8e-d514-3c2deeccd593", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from transformers import AutoModelForImageClassification, TrainingArguments, Trainer\n", "\n", "model = AutoModelForImageClassification.from_pretrained(\n", " model_checkpoint, \n", " label2id=label2id,\n", " id2label=id2label,\n", " ignore_mismatched_sizes = True, # provide this in case you're planning to fine-tune an already fine-tuned checkpoint\n", ")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "U8EmET_f6458", "pycharm": { "name": "#%% md\n" } }, "source": [ "The warning is telling us we are throwing away some weights (the weights and bias of the `classifier` layer) and randomly initializing some other (the weights and bias of a new `classifier` layer). This is expected in this case, because we are adding a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do." ] }, { "cell_type": "markdown", "metadata": { "id": "FEfyuq1U8hDT", "pycharm": { "name": "#%% md\n" } }, "source": [ "#### Trainer\n", "\n", "The [Trainer class](https://huggingface.co/docs/transformers/main_classes/trainer) provides an API for feature-complete training in PyTorch for most standard use cases. To instantiate a `Trainer`, we will need to define the training configuration and the evaluation metric. The most important is the [`TrainingArguments`](https://huggingface.co/transformers/main_classes/trainer.html#transformers.TrainingArguments), which is a class that contains all the attributes to customize the training. It requires one folder name, which will be used to save the checkpoints of the model.\n", "\n", "Most of the training arguments are pretty self-explanatory, but one that is quite important here is `remove_unused_columns=False`. This one will drop any features not used by the model's call function. By default it's `True` because usually it's ideal to drop unused feature columns, making it easier to unpack inputs into the model's call function. But, in our case, we need the unused features ('image' in particular) in order to create 'pixel_values'." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "xc_MTm0Ks3DF", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "model_name = model_checkpoint.split(\"/\")[-1]\n", "\n", "args = TrainingArguments(\n", " f\"{model_name}-finetuned-eurosat-kornia\",\n", " remove_unused_columns=False,\n", " eval_strategy = \"epoch\",\n", " save_strategy = \"epoch\",\n", " learning_rate=5e-5,\n", " per_device_train_batch_size=batch_size,\n", " gradient_accumulation_steps=4,\n", " per_device_eval_batch_size=batch_size,\n", " num_train_epochs=3,\n", " warmup_ratio=0.1,\n", " logging_steps=10,\n", " load_best_model_at_end=True,\n", " metric_for_best_model=\"accuracy\",\n", " push_to_hub=True,\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "xi6JYNYs8lJO", "pycharm": { "name": "#%% md\n" } }, "source": [ "Here we set the evaluation to be done at the end of each epoch, tweak the learning rate, use the `batch_size` defined at the top of the notebook and customize the number of epochs for training, as well as the weight decay. Since the best model might not be the one at the end of training, we ask the `Trainer` to load the best model it saved (according to `metric_name`) at the end of training.\n", "\n", "The last argument `push_to_hub` allows the Trainer to push the model to the [Hub](https://huggingface.co/models) regularly during training. Remove it if you didn't follow the installation steps at the top of the notebook. If you want to save your model locally with a name that is different from the name of the repository, or if you want to push your model under an organization and not your name space, use the `hub_model_id` argument to set the repo name (it needs to be the full name, including your namespace: for instance `\"nielsr/vit-finetuned-cifar10\"` or `\"huggingface/nielsr/vit-finetuned-cifar10\"`)." ] }, { "cell_type": "markdown", "metadata": { "id": "2VE_HSha9RZk", "pycharm": { "name": "#%% md\n" } }, "source": [ "Next, we need to define a function for how to compute the metrics from the predictions, which will just use the `metric` we loaded earlier. The only preprocessing we have to do is to take the argmax of our predicted logits:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "EVWfiBuv2uCS", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import numpy as np\n", "\n", "# the compute_metrics function takes a Named Tuple as input:\n", "# predictions, which are the logits of the model as Numpy arrays,\n", "# and label_ids, which are the ground-truth labels as Numpy arrays.\n", "def compute_metrics(eval_pred):\n", " \"\"\"Computes accuracy on a batch of predictions\"\"\"\n", " predictions = np.argmax(eval_pred.predictions, axis=1)\n", " return metric.compute(predictions=predictions, references=eval_pred.label_ids)" ] }, { "cell_type": "markdown", "metadata": { "id": "Y0PqjzHQVutb", "pycharm": { "name": "#%% md\n" } }, "source": [ "We also define a `collate_fn`, which will be used to batch examples together.\n", "Each batch consists of 2 keys, namely `pixel_values` and `labels`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "u0WcwsX7rW9w", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import torch\n", "\n", "def collate_fn(examples):\n", " pixel_values = torch.stack([example[\"pixel_values\"] for example in examples])\n", " labels = torch.tensor([example[\"label\"] for example in examples])\n", " return {\"pixel_values\": pixel_values, \"labels\": labels}" ] }, { "cell_type": "markdown", "metadata": { "id": "yTF0dWw49fB9", "pycharm": { "name": "#%% md\n" } }, "source": [ "Then we just need to pass all of this along with our datasets to the `Trainer`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "McVoaCPr3Cj-", "outputId": "184c1d80-00af-49c1-f137-e7287acdbdeb", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "trainer = Trainer(\n", " model,\n", " args,\n", " train_dataset=train_ds,\n", " eval_dataset=val_ds,\n", " tokenizer=feature_extractor,\n", " compute_metrics=compute_metrics,\n", " data_collator=collate_fn,\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "ltokP9mO9pjI", "pycharm": { "name": "#%% md\n" } }, "source": [ "You might wonder why we pass along the `feature_extractor` as a tokenizer when we already preprocessed our data. This is only to make sure the feature extractor configuration file (stored as JSON) will also be uploaded to the repo on the hub." ] }, { "cell_type": "markdown", "metadata": { "id": "9j6VNsGP97LG", "pycharm": { "name": "#%% md\n" } }, "source": [ "Now we can finetune our model by calling the `train` method:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "a926f15ee449457fbf325846e6a8c738", "31ba50fb1fa7400ba28117a6f808f2fa", "76e7eb0630044940a7e20010884c90b2", "1920117d682e4174a850d0e1b24c9551", "746a5b6710914aebab7654f6c20435c4", "69a8fa38e31543faa011edc197c60931", "3e91e14cbeaa4f718960b11bed8298d6", "1500a6d5a104448e86029bedda65c487", "f5de8ebae0894b009aac08ee86160e58", "a5952ee376e1418bbb659609c9a23e12", "eaf7c8f4e9884734978bde6b797c3d7a", "82b7c8ecbd2f4b9ab09d3c7ee9f17352", "ef00e621a4b04f2b9550704ecb47b541", "c6cc09847f394b3b974b15a026b7dfd4", "5d184fb5a4284c979f6671ec01b13c32", "97d4ca9d132e4ed6b0f33ac7bef8ae41", "c2831860c6cb4e9ea52432f45f60202d", "69087e2c4bdf45f2b93377061028d6b6", "7ed3b32b51df4d5a90787700228e2add", "72ac166cd3fe4244acdcf7732269cfe2", "4c93dbdc25b7444dbb67f17e7905d59e", "d3f6d6367d694b4290aa3901458c6e1a" ] }, "id": "Pps61vF_4QaH", "outputId": "776f658a-21ec-4d1c-a490-2fcc335c53ee", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "train_results = trainer.train()\n", "# rest is optional but nice to have\n", "trainer.save_model()\n", "trainer.log_metrics(\"train\", train_results.metrics)\n", "trainer.save_metrics(\"train\", train_results.metrics)\n", "trainer.save_state()" ] }, { "cell_type": "markdown", "metadata": { "id": "Vyb-58x_-A0e", "pycharm": { "name": "#%% md\n" } }, "source": [ "We can check with the `evaluate` method that our `Trainer` did reload the best model properly (if it was not the last one):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 216 }, "id": "niniUAnb5IrR", "outputId": "d6042a8c-5766-4542-f3bd-50e17a6a88dc", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "metrics = trainer.evaluate()\n", "# some nice to haves:\n", "trainer.log_metrics(\"eval\", metrics)\n", "trainer.save_metrics(\"eval\", metrics)" ] }, { "cell_type": "markdown", "metadata": { "id": "ymwN-SIR-NDF", "pycharm": { "name": "#%% md\n" } }, "source": [ "You can now upload the result of the training to the Hub, just execute this instruction (note that the Trainer will automatically create a model card as well as Tensorboard logs - see the \"Training metrics\" tab - amazing isn't it?):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 246, "referenced_widgets": [ "a7a8d06dc4d146dcb67c768e12bcdc53", "32955c73047f4fc7b656e381852614c7", "0f2c3be3663e4357935be76395e9abd3", "9503d58abcab45eea56984f00cb8562c", "7a23bbe2ce824c699691120ea84220f4", "ce93940729774f6aa246606efe7cc5eb", "db8ca3f6861d4b6eb619d33306aeeda8", "22921fe1bb3b4a9cb4cbf23eb4ea4930", "c21ffa7c0ba64aaa8f1187923f788572", "13952af7202349c2bce9a66aec24c452", "d3d37d996cbc4fbf8b0e032af39644e2" ] }, "id": "4aNMErFz-GzX", "outputId": "773c09ff-cee2-4662-93ce-ea56717d28cd", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "trainer.push_to_hub()" ] }, { "cell_type": "markdown", "metadata": { "id": "cZQnNUsI-Q4S", "pycharm": { "name": "#%% md\n" } }, "source": [ "You can now share this model with all your friends, family, favorite pets: they can all load it with the identifier `\"your-username/the-name-you-picked\"` so for instance:\n", "\n", "```python\n", "from transformers import AutoModelForImageClassification, AutoFeatureExtractor\n", "\n", "feature_extractor = AutoFeatureExtractor.from_pretrained(\"nielsr/my-awesome-model\")\n", "model = AutoModelForImageClassification.from_pretrained(\"nielsr/my-awesome-model\")\n", "\n", "```" ] }, { "cell_type": "markdown", "metadata": { "id": "049gH1wt-Akp", "pycharm": { "name": "#%% md\n" } }, "source": [ "## Inference\n", "\n", "Let's say you have a new image, on which you'd like to make a prediction. Let's load a satellite image of a highway, and see how the model does." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 81 }, "id": "UX6dwmT7GP91", "outputId": "29c1a967-680a-477d-80c9-b2536ad00787", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from PIL import Image\n", "import requests\n", "\n", "url = \"https://datasets-server.huggingface.co/assets/nielsr/eurosat-demo/--/nielsr--eurosat-demo/train/0/image/image.jpg\"\n", "image = Image.open(requests.get(url, stream=True).raw)\n", "image" ] }, { "cell_type": "markdown", "metadata": { "id": "91-Ibh1--oI3", "pycharm": { "name": "#%% md\n" } }, "source": [ "We'll load the feature extractor and model from the hub (here, we use the [Auto Classes](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForImageClassification), which will make sure the appropriate classes will be loaded automatically based on the `config.json` and `preprocessor_config.json` files of the repo on the hub):" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xzwvix8X-st3", "outputId": "ddb4e9fc-7237-4aac-f9e9-e5e94735e906", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from transformers import AutoModelForImageClassification, AutoFeatureExtractor\n", "\n", "repo_name = \"swin-tiny-patch4-window7-224-finetuned-eurosat-kornia\"\n", "\n", "feature_extractor = AutoFeatureExtractor.from_pretrained(repo_name)\n", "model = AutoModelForImageClassification.from_pretrained(repo_name)" ] }, { "cell_type": "markdown", "metadata": { "id": "7oDoe_38AY3X", "pycharm": { "name": "#%% md\n" } }, "source": [ "We'll apply the exact same transformations as we did for validation. This involves 1) rescaling 2) resizing the shorter edge 3) center cropping 4) normalizing." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OOKhRKmh9tsw", "outputId": "82290932-b5ce-4ee7-e3ea-f5f21b757eda", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "# prepare image for the model\n", "pixel_values = val_transforms(image.convert(\"RGB\"))\n", "print(pixel_values.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "33E44G86_RtL", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "import torch\n", "\n", "# forward pass\n", "with torch.no_grad():\n", " outputs = model(pixel_values)\n", " logits = outputs.logits" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "4ctUvqfs_Yyn", "outputId": "67d2c1c5-5eae-4a9d-cfde-d0a3d788c257", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "predicted_class_idx = logits.argmax(-1).item()\n", "print(\"Predicted class:\", model.config.id2label[predicted_class_idx])" ] }, { "cell_type": "markdown", "metadata": { "id": "N3yJFIIP_k01", "pycharm": { "name": "#%% md\n" } }, "source": [ "Looks like our model got it correct! " ] }, { "cell_type": "markdown", "metadata": { "id": "-2A5W8dF_qYt", "pycharm": { "name": "#%% md\n" } }, "source": [ "## Pipeline API\n", "\n", "An alternative way to quickly perform inference with any model on the hub is by leveraging the [Pipeline API](https://huggingface.co/docs/transformers/main_classes/pipelines), which abstracts away all the steps we did manually above for us. It will perform the preprocessing, forward pass and postprocessing all in a single object. \n", "\n", "Let's showcase this for our trained model:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "I7mz7QTo_jWa", "outputId": "066ae7a2-ce84-4ba0-be72-7ea1f8140d4d", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "from transformers import pipeline\n", "\n", "pipe = pipeline(\"image-classification\", \"nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat-kornia\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fPiuLDx3_9SY", "outputId": "180093bc-ee15-4c05-c305-6a09c8e140b9", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "pipe(image)" ] }, { "cell_type": "markdown", "metadata": { "id": "BVXM6-g4AJmy", "pycharm": { "name": "#%% md\n" } }, "source": [ "As we can see, it does not only show the class label with the highest probability, but does return the top 5 labels, with their corresponding scores. Note that the pipelines also work with local models and feature extractors:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "B8kmO1NMAAXs", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "pipe = pipeline(\"image-classification\", \n", " model=model,\n", " feature_extractor=feature_extractor)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "NfFH9eLMAdCX", "outputId": "a1b96de3-285b-4208-9fe2-16b6802c6e20", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "pipe(image)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "zO4XGe8_Ao5-", "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "image_classification_kornia.ipynb", "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "013ca1d8272343a2a50a8bc49c22a76b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "01ea35ba78b440d392b2c5e75ea74464": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_30a8bd848ee1497691b7605d4dd32115", "placeholder": "​", "style": "IPY_MODEL_c1537b4150ab4cfca215d70f6095a110", "value": "Downloading data files: " } }, "0a6cef96ab1841068e9027a30e76ed1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0f2c3be3663e4357935be76395e9abd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_22921fe1bb3b4a9cb4cbf23eb4ea4930", "max": 363, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_c21ffa7c0ba64aaa8f1187923f788572", "value": 363 } }, "0f5d923b2b534881bd495dcaf47b94ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0fd3d466727b4ac3bdbe1b32c67b0c26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "info", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_432c7d96cdc840d6b54567474d09ab2f", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_72adfd5afe784624a673284e17a813c8", "value": 1 } }, "10ea68a58d754fe6bdeff82dc343b52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "13952af7202349c2bce9a66aec24c452": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1453dc44aa334c7097608220933e46c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1500a6d5a104448e86029bedda65c487": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "164e22e2e1c64ffc99b77f787cad3a22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c79df4f5086a4cb4b251d8614928ebe2", "placeholder": "​", "style": "IPY_MODEL_71323ca5991e4c0399cb106cb59193fc", "value": "Downloading builder script: 100%" } }, "17ad910846c647eea2967a556fa5d636": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d19adaf170c1447f90538b85b2546a7a", "IPY_MODEL_b850715786e741fab64246dd616e4b0b", "IPY_MODEL_775c74c822b94d55897501502b8b3890" ], "layout": "IPY_MODEL_992069d6fbdd4046b6aa734b39a23ed5" } }, "1920117d682e4174a850d0e1b24c9551": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a5952ee376e1418bbb659609c9a23e12", "placeholder": "​", "style": "IPY_MODEL_eaf7c8f4e9884734978bde6b797c3d7a", "value": " 105M/105M [02:22<00:00, 1.35MB/s]" } }, "1aa408392e434cde9bdc43e0f670617d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1aed4493a06e459193d06161e5dfe09e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1db4970b87b348148a72525014e2d4dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "20c3f774d6d9484e8f1c948f7ca5e046": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_10ea68a58d754fe6bdeff82dc343b52b", "placeholder": "​", "style": "IPY_MODEL_9ffcf926bbf04f82a716ad2ed3a8b6d1", "value": "Downloading config.json: 100%" } }, "2263ea69fe2748e59e241121c0ee85db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "PasswordModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "PasswordModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "PasswordView", "continuous_update": true, "description": "Token:", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_6e51c6d618164aeda48942aa1850ecf0", "placeholder": "​", "style": "IPY_MODEL_2fa7bbee9cee40479fd62976954dabe9", "value": "" } }, "22921fe1bb3b4a9cb4cbf23eb4ea4930": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "257a1e82772c4cfd90c0daef86eed031": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "268807b9219e4dae9f9073b37d9487fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2b479dce1b3d427483504e57fe4acd7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "2c21a4a4464343729719d8f3125a7535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "2ceb2fa333a94f5fb5207b5303bf0105": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1aed4493a06e459193d06161e5dfe09e", "placeholder": "​", "style": "IPY_MODEL_36d59e2f979449fa8e27c58f44c1f801", "value": "100%" } }, "2fa7bbee9cee40479fd62976954dabe9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "30a8bd848ee1497691b7605d4dd32115": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "31ba50fb1fa7400ba28117a6f808f2fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_69a8fa38e31543faa011edc197c60931", "placeholder": "​", "style": "IPY_MODEL_3e91e14cbeaa4f718960b11bed8298d6", "value": "Upload file pytorch_model.bin: 100%" } }, "32955c73047f4fc7b656e381852614c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ce93940729774f6aa246606efe7cc5eb", "placeholder": "​", "style": "IPY_MODEL_db8ca3f6861d4b6eb619d33306aeeda8", "value": "Upload file runs/Aug29_08-52-09_cc75a613d50e/events.out.tfevents.1661765112.cc75a613d50e.286.2: 100%" } }, "32e6e84f4de54b26a7218bf720324752": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "3653830200414a2b9a5150eea235fcf1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "36d59e2f979449fa8e27c58f44c1f801": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "377190442ab84770b7e3d27199ac8563": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3a237d1e47cb4432aa3bdaeac2c586d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3b13fa319738413892aa0175b8d2c79a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c243a77c77eb4e51b217b0513c2d8546", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2c21a4a4464343729719d8f3125a7535", "value": 1 } }, "3bca40ad7c1846348a696ef66f350da7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_268807b9219e4dae9f9073b37d9487fa", "placeholder": "​", "style": "IPY_MODEL_90267331af2d4d91bfd703557e3ff6d4", "value": "Downloading pytorch_model.bin: 100%" } }, "3bea54844d55496bab8de6e0e553243a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_257a1e82772c4cfd90c0daef86eed031", "max": 113476015, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_ff9e39b94d064b8d96f1b338c8e9123f", "value": 113476015 } }, "3e91e14cbeaa4f718960b11bed8298d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "432c7d96cdc840d6b54567474d09ab2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "43ed5eea6e854c929400cacd09009d5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_df6fd8bcf0bd4cbf8b29faa94bd2b34b", "IPY_MODEL_528c167c7f6342acad2fa73034d9024c", "IPY_MODEL_7e29403666f8487daf0825acbb63636e" ], "layout": "IPY_MODEL_4be0b71eee094946a00786fd6bb23f25" } }, "45cc5f862ebc482d9186d3d4349cf602": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8926f783fec742ef954ceb979f5abc70", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_c81f799609794db09cb4f5d19c39333c", "value": 1 } }, "4ba73b8913d8440ea8ddc4c0e08ed145": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4be0b71eee094946a00786fd6bb23f25": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4c4fb79433cf49faac5105c5403f4bc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e19aa06a93034787a1a422c8297c50cf", "IPY_MODEL_45cc5f862ebc482d9186d3d4349cf602", "IPY_MODEL_c43a2cf9f9ee42cb8a114ced6ecce524" ], "layout": "IPY_MODEL_f1ab9e0ecd59406b825926098912b968" } }, "4c93dbdc25b7444dbb67f17e7905d59e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4e5e098964ab44a8aee3fd95ff6ec0e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4ffe6ca0522542f2a96cd3191d6a99c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "528c167c7f6342acad2fa73034d9024c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4e5e098964ab44a8aee3fd95ff6ec0e1", "max": 255, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_e9883ae85eac458fad0f966229e9e513", "value": 255 } }, "56d6a39887064be39b64c8c21ce31581": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_3bca40ad7c1846348a696ef66f350da7", "IPY_MODEL_3bea54844d55496bab8de6e0e553243a", "IPY_MODEL_dd59d93d59fc4710867bfd69ccae5e6d" ], "layout": "IPY_MODEL_d6d134de78c14314b7627ba0f3b6891e" } }, "58f000f788c14a268cc102d5237b8c04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f6693950a02d4f9d933c2e32e323f521", "placeholder": "​", "style": "IPY_MODEL_adaaa2e702174b2b87894c0d3fcb1a57", "value": " 0/0 [00:00<?, ?it/s]" } }, "5b12316940c948f7a443537d7f7d3dcd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5d184fb5a4284c979f6671ec01b13c32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4c93dbdc25b7444dbb67f17e7905d59e", "placeholder": "​", "style": "IPY_MODEL_d3f6d6367d694b4290aa3901458c6e1a", "value": " 14.2k/14.2k [02:21<00:00, 78.8B/s]" } }, "603016ca5f7f4e939e5a7f1f57b8dd33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f22ca12d18354eec80befa03d312fc44", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_c8eb2750eb2244699dc1492e658a9ccb", "value": 1 } }, "69087e2c4bdf45f2b93377061028d6b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "69a8fa38e31543faa011edc197c60931": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6abd984a1ae442df8d0b43277620fd67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6da041a6484b4d1cbfa58cfcd265f88e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6e51c6d618164aeda48942aa1850ecf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f52fb52f05d465090227ede5cf2a30c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f7c2ec995714255be700b3ffaba9f9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7058d1e258de40ebad13ff790915cd3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_01ea35ba78b440d392b2c5e75ea74464", "IPY_MODEL_e2e16d974fb249dd94a11507f9224a2d", "IPY_MODEL_58f000f788c14a268cc102d5237b8c04" ], "layout": "IPY_MODEL_377190442ab84770b7e3d27199ac8563" } }, "71323ca5991e4c0399cb106cb59193fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "72ac166cd3fe4244acdcf7732269cfe2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "72adfd5afe784624a673284e17a813c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "7398432c4cc74d2d8f9d61c40b786021": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d74c3e6888b84fb781f2b343534c369a", "placeholder": "​", "style": "IPY_MODEL_0f5d923b2b534881bd495dcaf47b94ec", "value": " 4.20k/4.20k [00:00<00:00, 9.59kB/s]" } }, "746a5b6710914aebab7654f6c20435c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "76e7eb0630044940a7e20010884c90b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1500a6d5a104448e86029bedda65c487", "max": 110417455, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_f5de8ebae0894b009aac08ee86160e58", "value": 110417455 } }, "775c74c822b94d55897501502b8b3890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1aa408392e434cde9bdc43e0f670617d", "placeholder": "​", "style": "IPY_MODEL_0a6cef96ab1841068e9027a30e76ed1e", "value": " 94.3M/94.3M [00:10<00:00, 10.8MB/s]" } }, "78fa30c22d474c3da827b6af042b1e7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7a23bbe2ce824c699691120ea84220f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7cfa331622ff4187a167c4a981491457": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7e29403666f8487daf0825acbb63636e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ec88dc30ea1d4c9c9ca71a1026220a47", "placeholder": "​", "style": "IPY_MODEL_d3a7387094884e619cc9b17eafb6d549", "value": " 255/255 [00:00<00:00, 2.97kB/s]" } }, "7ed3b32b51df4d5a90787700228e2add": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "825be3a2828c46398b79e6279c45236a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e32780c830504c508b85e67343ab88e9", "IPY_MODEL_0fd3d466727b4ac3bdbe1b32c67b0c26", "IPY_MODEL_8c70d4279bac4e1e9efdc3d3b9d45e34" ], "layout": "IPY_MODEL_a5dabc9865f34c9089b0eeca3897e467" } }, "82b7c8ecbd2f4b9ab09d3c7ee9f17352": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ef00e621a4b04f2b9550704ecb47b541", "IPY_MODEL_c6cc09847f394b3b974b15a026b7dfd4", "IPY_MODEL_5d184fb5a4284c979f6671ec01b13c32" ], "layout": "IPY_MODEL_97d4ca9d132e4ed6b0f33ac7bef8ae41" } }, "83dd806f4a2b45d7bd34fc0c106a0eac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6f7c2ec995714255be700b3ffaba9f9e", "max": 4203, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_b2a6342c762f45dda3b08ad3d9d0a6ad", "value": 4203 } }, "8926f783fec742ef954ceb979f5abc70": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8c70d4279bac4e1e9efdc3d3b9d45e34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c07bfe12d2c04a0f9c5696797a1d67a5", "placeholder": "​", "style": "IPY_MODEL_fbb13fc905f240dab44f438f11421f89", "value": " 26705/0 [00:02<00:00, 10567.37 examples/s]" } }, "8ffd71d3f46947ba831098300ab5fb94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1db4970b87b348148a72525014e2d4dc", "placeholder": "​", "style": "IPY_MODEL_6abd984a1ae442df8d0b43277620fd67", "value": " 70.1k/70.1k [00:00<00:00, 80.5kB/s]" } }, "90267331af2d4d91bfd703557e3ff6d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "907b655aeed94f1c97fb564525e04d01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "button_color": null, "font_weight": "" } }, "92f5865c94ce4986a36d71e2cf1db91e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": "center", "align_self": null, "border": null, "bottom": null, "display": "flex", "flex": null, "flex_flow": "column", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "50%" } }, "9503d58abcab45eea56984f00cb8562c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_13952af7202349c2bce9a66aec24c452", "placeholder": "​", "style": "IPY_MODEL_d3d37d996cbc4fbf8b0e032af39644e2", "value": " 363/363 [00:02<?, ?B/s]" } }, "97d4ca9d132e4ed6b0f33ac7bef8ae41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "98245a2bb52d42369036d025ad91efdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "992069d6fbdd4046b6aa734b39a23ed5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9a3fd883fbcd4192972daee5e9b724e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_e4e975ccdf71499e9e7e2628b4d12381", "IPY_MODEL_2263ea69fe2748e59e241121c0ee85db", "IPY_MODEL_ce8ff720c1194f9fa576fa0ab72b9434", "IPY_MODEL_a245a58b01304077b758257436e69b1a" ], "layout": "IPY_MODEL_92f5865c94ce4986a36d71e2cf1db91e" } }, "9c22864ff042460584353d870e79b5fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_2ceb2fa333a94f5fb5207b5303bf0105", "IPY_MODEL_3b13fa319738413892aa0175b8d2c79a", "IPY_MODEL_bd3fb4774f2544abbfe84a8f77297022" ], "layout": "IPY_MODEL_e161abad994748e7be3655cffa4f7468" } }, "9e1895e9f61f435682c89d3262ea441c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_20c3f774d6d9484e8f1c948f7ca5e046", "IPY_MODEL_c221cfb9f0274eaebe5bd732f3c6b148", "IPY_MODEL_8ffd71d3f46947ba831098300ab5fb94" ], "layout": "IPY_MODEL_a544c18d3b994b14aa4557c718088d4b" } }, "9ffcf926bbf04f82a716ad2ed3a8b6d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a245a58b01304077b758257436e69b1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_013ca1d8272343a2a50a8bc49c22a76b", "placeholder": "​", "style": "IPY_MODEL_98245a2bb52d42369036d025ad91efdd", "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " } }, "a544c18d3b994b14aa4557c718088d4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a5952ee376e1418bbb659609c9a23e12": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a5dabc9865f34c9089b0eeca3897e467": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a73b73fbcc164a81a3a4912f9682ab00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6f52fb52f05d465090227ede5cf2a30c", "placeholder": "​", "style": "IPY_MODEL_4ffe6ca0522542f2a96cd3191d6a99c6", "value": " 1/1 [00:07<00:00, 7.30s/it]" } }, "a7a8d06dc4d146dcb67c768e12bcdc53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_32955c73047f4fc7b656e381852614c7", "IPY_MODEL_0f2c3be3663e4357935be76395e9abd3", "IPY_MODEL_9503d58abcab45eea56984f00cb8562c" ], "layout": "IPY_MODEL_7a23bbe2ce824c699691120ea84220f4" } }, "a926f15ee449457fbf325846e6a8c738": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_31ba50fb1fa7400ba28117a6f808f2fa", "IPY_MODEL_76e7eb0630044940a7e20010884c90b2", "IPY_MODEL_1920117d682e4174a850d0e1b24c9551" ], "layout": "IPY_MODEL_746a5b6710914aebab7654f6c20435c4" } }, "aa59cf09e9bf4aba951ab61b47c1ed40": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aca7889b9fd34829bc7c7ed72c467aa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "ad6684672345402e9140caa4e623c2b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "adaaa2e702174b2b87894c0d3fcb1a57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b20d698d71e8495c9499b836a1559f3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b2a6342c762f45dda3b08ad3d9d0a6ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b850715786e741fab64246dd616e4b0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3653830200414a2b9a5150eea235fcf1", "max": 94280567, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2b479dce1b3d427483504e57fe4acd7a", "value": 94280567 } }, "bb520a5722484f39bb93face96e36d69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bd3fb4774f2544abbfe84a8f77297022": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dfae0ee344db4147a758e6b50daa66c8", "placeholder": "​", "style": "IPY_MODEL_7cfa331622ff4187a167c4a981491457", "value": " 1/1 [00:00<00:00, 26.07it/s]" } }, "c0791510a0e74674a5dc5b46b9c2c87e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c07bfe12d2c04a0f9c5696797a1d67a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c1537b4150ab4cfca215d70f6095a110": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c21ffa7c0ba64aaa8f1187923f788572": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "c221cfb9f0274eaebe5bd732f3c6b148": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c0791510a0e74674a5dc5b46b9c2c87e", "max": 71813, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_b20d698d71e8495c9499b836a1559f3a", "value": 71813 } }, "c243a77c77eb4e51b217b0513c2d8546": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c2831860c6cb4e9ea52432f45f60202d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c3d49b63b8204a04ab075188f49b0d93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6da041a6484b4d1cbfa58cfcd265f88e", "placeholder": "​", "style": "IPY_MODEL_d9c9f4a8aca44e09a8136331e545ea88", "value": "Extracting data files: 100%" } }, "c43a2cf9f9ee42cb8a114ced6ecce524": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_78fa30c22d474c3da827b6af042b1e7d", "placeholder": "​", "style": "IPY_MODEL_ffaa450ad4e24d66a466ab53b424260f", "value": " 1/1 [00:11<00:00, 11.85s/it]" } }, "c6108fb0bf124c3fa22f85bbd4bf9266": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c3d49b63b8204a04ab075188f49b0d93", "IPY_MODEL_603016ca5f7f4e939e5a7f1f57b8dd33", "IPY_MODEL_a73b73fbcc164a81a3a4912f9682ab00" ], "layout": "IPY_MODEL_f05a4a836fb84bf7a5f2e75440bb026d" } }, "c6cc09847f394b3b974b15a026b7dfd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7ed3b32b51df4d5a90787700228e2add", "max": 14573, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_72ac166cd3fe4244acdcf7732269cfe2", "value": 14573 } }, "c79df4f5086a4cb4b251d8614928ebe2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c81f799609794db09cb4f5d19c39333c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "c8eb2750eb2244699dc1492e658a9ccb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "ce8ff720c1194f9fa576fa0ab72b9434": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ButtonView", "button_style": "", "description": "Login", "disabled": false, "icon": "", "layout": "IPY_MODEL_bb520a5722484f39bb93face96e36d69", "style": "IPY_MODEL_907b655aeed94f1c97fb564525e04d01", "tooltip": "" } }, "ce93940729774f6aa246606efe7cc5eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d19adaf170c1447f90538b85b2546a7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ba73b8913d8440ea8ddc4c0e08ed145", "placeholder": "​", "style": "IPY_MODEL_f5ded311e5ad49a4b7f77c5da177ffb9", "value": "Downloading data: 100%" } }, "d37300abc9474836803687ab739be99d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d3a7387094884e619cc9b17eafb6d549": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d3d37d996cbc4fbf8b0e032af39644e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d3f6d6367d694b4290aa3901458c6e1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d6d134de78c14314b7627ba0f3b6891e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d74c3e6888b84fb781f2b343534c369a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d9c9f4a8aca44e09a8136331e545ea88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "db8ca3f6861d4b6eb619d33306aeeda8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "dd59d93d59fc4710867bfd69ccae5e6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5b12316940c948f7a443537d7f7d3dcd", "placeholder": "​", "style": "IPY_MODEL_3a237d1e47cb4432aa3bdaeac2c586d1", "value": " 108M/108M [00:01<00:00, 61.6MB/s]" } }, "df6fd8bcf0bd4cbf8b29faa94bd2b34b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e91ac28da9484c6398381c48d8154183", "placeholder": "​", "style": "IPY_MODEL_ad6684672345402e9140caa4e623c2b5", "value": "Downloading preprocessor_config.json: 100%" } }, "dfae0ee344db4147a758e6b50daa66c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e161abad994748e7be3655cffa4f7468": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e19aa06a93034787a1a422c8297c50cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fb8dda387d89412388702e248a9514df", "placeholder": "​", "style": "IPY_MODEL_d37300abc9474836803687ab739be99d", "value": "Downloading data files: 100%" } }, "e2e16d974fb249dd94a11507f9224a2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_aca7889b9fd34829bc7c7ed72c467aa1", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_32e6e84f4de54b26a7218bf720324752", "value": 0 } }, "e32780c830504c508b85e67343ab88e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f0fc57814beb464aa5c0fa560f3fa8a6", "placeholder": "​", "style": "IPY_MODEL_1453dc44aa334c7097608220933e46c2", "value": "Generating train split: " } }, "e4e975ccdf71499e9e7e2628b4d12381": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_aa59cf09e9bf4aba951ab61b47c1ed40", "placeholder": "​", "style": "IPY_MODEL_ff6552e277994529b20848de6ad45b99", "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" } }, "e91ac28da9484c6398381c48d8154183": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e9883ae85eac458fad0f966229e9e513": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "eaf7c8f4e9884734978bde6b797c3d7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ec88dc30ea1d4c9c9ca71a1026220a47": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ef00e621a4b04f2b9550704ecb47b541": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c2831860c6cb4e9ea52432f45f60202d", "placeholder": "​", "style": "IPY_MODEL_69087e2c4bdf45f2b93377061028d6b6", "value": "Upload file runs/Aug29_08-52-09_cc75a613d50e/events.out.tfevents.1661763148.cc75a613d50e.286.0: 100%" } }, "f05a4a836fb84bf7a5f2e75440bb026d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f0fc57814beb464aa5c0fa560f3fa8a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f1ab9e0ecd59406b825926098912b968": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f22ca12d18354eec80befa03d312fc44": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f237d39322cc4b9e95fac2f5f23141cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_164e22e2e1c64ffc99b77f787cad3a22", "IPY_MODEL_83dd806f4a2b45d7bd34fc0c106a0eac", "IPY_MODEL_7398432c4cc74d2d8f9d61c40b786021" ], "layout": "IPY_MODEL_fe2eda6b84194d29a110b91a59cd0417" } }, "f5de8ebae0894b009aac08ee86160e58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "f5ded311e5ad49a4b7f77c5da177ffb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f6693950a02d4f9d933c2e32e323f521": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fb8dda387d89412388702e248a9514df": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fbb13fc905f240dab44f438f11421f89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "fe2eda6b84194d29a110b91a59cd0417": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ff6552e277994529b20848de6ad45b99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ff9e39b94d064b8d96f1b338c8e9123f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "ffaa450ad4e24d66a466ab53b424260f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "nbformat": 4, "nbformat_minor": 1 }