{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "aAa7CFu0ut_D" }, "source": [ "# Déboguer le pipeline d'entraînement\n", "\n", "Ce chapitre portant sur le débogage, la langue nous importe peu ici. Nous nous intéressons surtout à la logique du code pour comprendre d'où provient l'erreur." ] }, { "cell_type": "markdown", "metadata": { "id": "66qjHa3Hut_G" }, "source": [ "Installez les bibliothèques 🤗 Transformers et 🤗 Datasets pour exécuter ce *notebook*." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "z9pfqA-kut_I" }, "outputs": [], "source": [ "!pip install datasets transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "fLcbZLV8ut_J", "outputId": "7d6926ff-91c6-40e3-924b-c14a9f1a5e49" }, "outputs": [], "source": [ "from datasets import load_dataset, load_metric\n", "from transformers import (\n", " AutoTokenizer,\n", " TFAutoModelForSequenceClassification,\n", ")\n", "\n", "raw_datasets = load_dataset(\"glue\", \"mnli\")\n", "\n", "model_checkpoint = \"distilbert-base-uncased\"\n", "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)\n", "\n", "\n", "def preprocess_function(examples):\n", " return tokenizer(examples[\"premise\"], examples[\"hypothesis\"], truncation=True)\n", "\n", "\n", "tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)\n", "\n", "train_dataset = tokenized_datasets[\"train\"].to_tf_dataset(\n", " columns=[\"input_ids\", \"labels\"], batch_size=16, shuffle=True\n", ")\n", "\n", "validation_dataset = tokenized_datasets[\"validation_matched\"].to_tf_dataset(\n", " columns=[\"input_ids\", \"labels\"], batch_size=16, shuffle=True\n", ")\n", "\n", "model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)\n", "\n", "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")\n", "\n", "model.fit(train_dataset)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HX5TWpVeut_M", "outputId": "a3831754-f919-456d-c229-5cbe217b7cbe" }, "outputs": [], "source": [ "for batch in train_dataset:\n", " break" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "iXW275EBut_O", "outputId": "e7523e04-ce01-4127-832b-d7282eb6615f" }, "outputs": [], "source": [ "model.compile(optimizer=\"adam\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bNtmviGfut_P", "outputId": "b3a64beb-2bd3-4593-fb62-a035a5062cf8" }, "outputs": [], "source": [ "model(batch)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "j9ocmoJOut_P", "outputId": "4eafd9ef-3285-4d3c-fa96-b8c24b2e9896" }, "outputs": [], "source": [ "model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)\n", "model(batch)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "y1b677ecut_Q", "outputId": "5dc22488-04a2-4f89-e8e5-309361694d0a" }, "outputs": [], "source": [ "import numpy as np\n", "\n", "loss = model(batch).loss.numpy()\n", "indices = np.flatnonzero(np.isnan(loss))\n", "indices" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "7Db3uwJ8ut_S", "outputId": "4c4e948e-3278-4c37-aa54-2a2ddb56342d" }, "outputs": [], "source": [ "input_ids = batch[\"input_ids\"].numpy()\n", "input_ids[indices]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "jYKiD7ewut_T", "outputId": "e5ddf829-d022-41cf-c9e7-83ddf0ed2005" }, "outputs": [], "source": [ "model.config.num_labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "RmzOOSMOut_U" }, "outputs": [], "source": [ "from tensorflow.keras.optimizers import Adam\n", "\n", "model = TFAutoModelForSequenceClassification.from_pretrained(model_checkpoint)\n", "model.compile(optimizer=Adam(5e-5))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ewvva33out_V", "outputId": "08f45348-e17d-4f1f-ad6a-53dca09f060b" }, "outputs": [], "source": [ "model.fit(train_dataset)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "mZiAw85Uut_W" }, "outputs": [], "source": [ "input_ids = batch[\"input_ids\"].numpy()\n", "tokenizer.decode(input_ids[0])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "g3qWOkb1ut_W" }, "outputs": [], "source": [ "labels = batch[\"labels\"].numpy()\n", "label = labels[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "vicbZa70ut_W" }, "outputs": [], "source": [ "for batch in train_dataset:\n", " break\n", "\n", "# Assurez-vous que vous avez exécuté model.compile() et défini votre optimiseur,\n", "# et vos pertes/métriques si vous les utilisez\n", "\n", "model.fit(batch, epochs=20)" ] } ], "metadata": { "colab": { "collapsed_sections": [], "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 1 }