{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook regroups the code sample of the video below, which is a part of the [Hugging Face course](https://huggingface.co/course)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form"
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@title\n",
"from IPython.display import HTML\n",
"\n",
"HTML('')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Install the Transformers and Datasets libraries to run this notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install datasets transformers[sentencepiece]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"text = \"This is a text with àccënts and CAPITAL LETTERS\"\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"albert-large-v2\")\n",
"print(tokenizer.convert_ids_to_tokens(tokenizer.encode(text)))\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"huggingface-course/albert-tokenizer-without-normalizer\")\n",
"print(tokenizer.convert_ids_to_tokens(tokenizer.encode(text)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"un père indigné\"\n",
"\n",
"tokenizer = AutoTokenizerFast.from_pretrained('distilbert-base-uncased')\n",
"print(tokenizer.backend_tokenizer.normalizer.normalize_str(text))"
]
}
],
"metadata": {
"colab": {
"name": "What is normalization?",
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 4
}