{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Model comparison with the AIC\n",
"\n",
"[mRNA count dataset download](https://s3.amazonaws.com/bebi103.caltech.edu/data/singer_transcript_counts.csv)\n",
"\n",
"[Spindle length dataset download](https://s3.amazonaws.com/bebi103.caltech.edu/data/good_invitro_droplet_data.csv)\n",
"\n",
"
"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"nbsphinx": "hidden",
"tags": []
},
"outputs": [],
"source": [
"#| code-fold: true\n",
"\n",
"# Colab setup ------------------\n",
"import os, sys, subprocess\n",
"if \"google.colab\" in sys.modules:\n",
" cmd = \"pip install --upgrade polars iqplot bebi103 watermark\"\n",
" process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n",
" stdout, stderr = process.communicate()\n",
" data_path = \"https://s3.amazonaws.com/bebi103.caltech.edu/data/\"\n",
"else:\n",
" data_path = \"../data/\"\n",
"# ------------------------------"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" \n",
"
\n",
"
Loading BokehJS ...\n",
"
\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"'use strict';\n",
"(function(root) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
"\n",
" const force = true;\n",
"\n",
" if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n",
" root._bokeh_onload_callbacks = [];\n",
" root._bokeh_is_loading = undefined;\n",
" }\n",
"\n",
"const JS_MIME_TYPE = 'application/javascript';\n",
" const HTML_MIME_TYPE = 'text/html';\n",
" const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
" const CLASS_NAME = 'output_bokeh rendered_html';\n",
"\n",
" /**\n",
" * Render data to the DOM node\n",
" */\n",
" function render(props, node) {\n",
" const script = document.createElement(\"script\");\n",
" node.appendChild(script);\n",
" }\n",
"\n",
" /**\n",
" * Handle when an output is cleared or removed\n",
" */\n",
" function handleClearOutput(event, handle) {\n",
" function drop(id) {\n",
" const view = Bokeh.index.get_by_id(id)\n",
" if (view != null) {\n",
" view.model.document.clear()\n",
" Bokeh.index.delete(view)\n",
" }\n",
" }\n",
"\n",
" const cell = handle.cell;\n",
"\n",
" const id = cell.output_area._bokeh_element_id;\n",
" const server_id = cell.output_area._bokeh_server_id;\n",
"\n",
" // Clean up Bokeh references\n",
" if (id != null) {\n",
" drop(id)\n",
" }\n",
"\n",
" if (server_id !== undefined) {\n",
" // Clean up Bokeh references\n",
" const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
" cell.notebook.kernel.execute(cmd_clean, {\n",
" iopub: {\n",
" output: function(msg) {\n",
" const id = msg.content.text.trim()\n",
" drop(id)\n",
" }\n",
" }\n",
" });\n",
" // Destroy server and session\n",
" const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
" cell.notebook.kernel.execute(cmd_destroy);\n",
" }\n",
" }\n",
"\n",
" /**\n",
" * Handle when a new output is added\n",
" */\n",
" function handleAddOutput(event, handle) {\n",
" const output_area = handle.output_area;\n",
" const output = handle.output;\n",
"\n",
" // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
" if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n",
" return\n",
" }\n",
"\n",
" const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
"\n",
" if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
" toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
" // store reference to embed id on output_area\n",
" output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
" }\n",
" if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
" const bk_div = document.createElement(\"div\");\n",
" bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
" const script_attrs = bk_div.children[0].attributes;\n",
" for (let i = 0; i < script_attrs.length; i++) {\n",
" toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
" toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n",
" }\n",
" // store reference to server id on output_area\n",
" output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
" }\n",
" }\n",
"\n",
" function register_renderer(events, OutputArea) {\n",
"\n",
" function append_mime(data, metadata, element) {\n",
" // create a DOM node to render to\n",
" const toinsert = this.create_output_subarea(\n",
" metadata,\n",
" CLASS_NAME,\n",
" EXEC_MIME_TYPE\n",
" );\n",
" this.keyboard_manager.register_events(toinsert);\n",
" // Render to node\n",
" const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
" render(props, toinsert[toinsert.length - 1]);\n",
" element.append(toinsert);\n",
" return toinsert\n",
" }\n",
"\n",
" /* Handle when an output is cleared or removed */\n",
" events.on('clear_output.CodeCell', handleClearOutput);\n",
" events.on('delete.Cell', handleClearOutput);\n",
"\n",
" /* Handle when a new output is added */\n",
" events.on('output_added.OutputArea', handleAddOutput);\n",
"\n",
" /**\n",
" * Register the mime type and append_mime function with output_area\n",
" */\n",
" OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
" /* Is output safe? */\n",
" safe: true,\n",
" /* Index of renderer in `output_area.display_order` */\n",
" index: 0\n",
" });\n",
" }\n",
"\n",
" // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
" if (root.Jupyter !== undefined) {\n",
" const events = require('base/js/events');\n",
" const OutputArea = require('notebook/js/outputarea').OutputArea;\n",
"\n",
" if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
" register_renderer(events, OutputArea);\n",
" }\n",
" }\n",
" if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
" root._bokeh_timeout = Date.now() + 5000;\n",
" root._bokeh_failed_load = false;\n",
" }\n",
"\n",
" const NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"\\n\"+\n",
" \"
\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"- re-rerun `output_notebook()` to attempt to load from CDN again, or
\\n\"+\n",
" \"- use INLINE resources instead, as so:
\\n\"+\n",
" \"
\\n\"+\n",
" \"
\\n\"+\n",
" \"from bokeh.resources import INLINE\\n\"+\n",
" \"output_notebook(resources=INLINE)\\n\"+\n",
" \"
\\n\"+\n",
" \"
\"}};\n",
"\n",
" function display_loaded(error = null) {\n",
" const el = document.getElementById(\"a439dd8c-7f89-4905-98a2-d6ca475a3aba\");\n",
" if (el != null) {\n",
" const html = (() => {\n",
" if (typeof root.Bokeh === \"undefined\") {\n",
" if (error == null) {\n",
" return \"BokehJS is loading ...\";\n",
" } else {\n",
" return \"BokehJS failed to load.\";\n",
" }\n",
" } else {\n",
" const prefix = `BokehJS ${root.Bokeh.version}`;\n",
" if (error == null) {\n",
" return `${prefix} successfully loaded.`;\n",
" } else {\n",
" return `${prefix} encountered errors while loading and may not function as expected.`;\n",
" }\n",
" }\n",
" })();\n",
" el.innerHTML = html;\n",
"\n",
" if (error != null) {\n",
" const wrapper = document.createElement(\"div\");\n",
" wrapper.style.overflow = \"auto\";\n",
" wrapper.style.height = \"5em\";\n",
" wrapper.style.resize = \"vertical\";\n",
" const content = document.createElement(\"div\");\n",
" content.style.fontFamily = \"monospace\";\n",
" content.style.whiteSpace = \"pre-wrap\";\n",
" content.style.backgroundColor = \"rgb(255, 221, 221)\";\n",
" content.textContent = error.stack ?? error.toString();\n",
" wrapper.append(content);\n",
" el.append(wrapper);\n",
" }\n",
" } else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(() => display_loaded(error), 100);\n",
" }\n",
" }\n",
"\n",
" function run_callbacks() {\n",
" try {\n",
" root._bokeh_onload_callbacks.forEach(function(callback) {\n",
" if (callback != null)\n",
" callback();\n",
" });\n",
" } finally {\n",
" delete root._bokeh_onload_callbacks\n",
" }\n",
" console.debug(\"Bokeh: all callbacks have finished\");\n",
" }\n",
"\n",
" function load_libs(css_urls, js_urls, callback) {\n",
" if (css_urls == null) css_urls = [];\n",
" if (js_urls == null) js_urls = [];\n",
"\n",
" root._bokeh_onload_callbacks.push(callback);\n",
" if (root._bokeh_is_loading > 0) {\n",
" console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" root._bokeh_is_loading = css_urls.length + js_urls.length;\n",
"\n",
" function on_load() {\n",
" root._bokeh_is_loading--;\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
" run_callbacks()\n",
" }\n",
" }\n",
"\n",
" function on_error(url) {\n",
" console.error(\"failed to load \" + url);\n",
" }\n",
"\n",
" for (let i = 0; i < css_urls.length; i++) {\n",
" const url = css_urls[i];\n",
" const element = document.createElement(\"link\");\n",
" element.onload = on_load;\n",
" element.onerror = on_error.bind(null, url);\n",
" element.rel = \"stylesheet\";\n",
" element.type = \"text/css\";\n",
" element.href = url;\n",
" console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" for (let i = 0; i < js_urls.length; i++) {\n",
" const url = js_urls[i];\n",
" const element = document.createElement('script');\n",
" element.onload = on_load;\n",
" element.onerror = on_error.bind(null, url);\n",
" element.async = false;\n",
" element.src = url;\n",
" console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.head.appendChild(element);\n",
" }\n",
" };\n",
"\n",
" function inject_raw_css(css) {\n",
" const element = document.createElement(\"style\");\n",
" element.appendChild(document.createTextNode(css));\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.7.3.min.js\"];\n",
" const css_urls = [];\n",
"\n",
" const inline_js = [ function(Bokeh) {\n",
" Bokeh.set_log_level(\"info\");\n",
" },\n",
"function(Bokeh) {\n",
" }\n",
" ];\n",
"\n",
" function run_inline_js() {\n",
" if (root.Bokeh !== undefined || force === true) {\n",
" try {\n",
" for (let i = 0; i < inline_js.length; i++) {\n",
" inline_js[i].call(root, root.Bokeh);\n",
" }\n",
"\n",
" } catch (error) {display_loaded(error);throw error;\n",
" }if (force === true) {\n",
" display_loaded();\n",
" }} else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(run_inline_js, 100);\n",
" } else if (!root._bokeh_failed_load) {\n",
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
" root._bokeh_failed_load = true;\n",
" } else if (force !== true) {\n",
" const cell = $(document.getElementById(\"a439dd8c-7f89-4905-98a2-d6ca475a3aba\")).parents('.cell').data().cell;\n",
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
" }\n",
" }\n",
"\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
" run_inline_js();\n",
" } else {\n",
" load_libs(css_urls, js_urls, function() {\n",
" console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n",
" run_inline_js();\n",
" });\n",
" }\n",
"}(window));"
],
"application/vnd.bokehjs_load.v0+json": "'use strict';\n(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"\\n\"+\n \"
\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"
\\n\"+\n \"
\\n\"+\n \"- re-rerun `output_notebook()` to attempt to load from CDN again, or
\\n\"+\n \"- use INLINE resources instead, as so:
\\n\"+\n \"
\\n\"+\n \"
\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"
\\n\"+\n \"
\"}};\n\n function display_loaded(error = null) {\n const el = document.getElementById(\"a439dd8c-7f89-4905-98a2-d6ca475a3aba\");\n if (el != null) {\n const html = (() => {\n if (typeof root.Bokeh === \"undefined\") {\n if (error == null) {\n return \"BokehJS is loading ...\";\n } else {\n return \"BokehJS failed to load.\";\n }\n } else {\n const prefix = `BokehJS ${root.Bokeh.version}`;\n if (error == null) {\n return `${prefix} successfully loaded.`;\n } else {\n return `${prefix} encountered errors while loading and may not function as expected.`;\n }\n }\n })();\n el.innerHTML = html;\n\n if (error != null) {\n const wrapper = document.createElement(\"div\");\n wrapper.style.overflow = \"auto\";\n wrapper.style.height = \"5em\";\n wrapper.style.resize = \"vertical\";\n const content = document.createElement(\"div\");\n content.style.fontFamily = \"monospace\";\n content.style.whiteSpace = \"pre-wrap\";\n content.style.backgroundColor = \"rgb(255, 221, 221)\";\n content.textContent = error.stack ?? error.toString();\n wrapper.append(content);\n el.append(wrapper);\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(() => display_loaded(error), 100);\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.7.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.7.3.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n try {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n\n } catch (error) {display_loaded(error);throw error;\n }if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"a439dd8c-7f89-4905-98a2-d6ca475a3aba\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import warnings\n",
"\n",
"import polars as pl\n",
"import numpy as np\n",
"import numba\n",
"import scipy.optimize\n",
"import scipy.stats as st\n",
"\n",
"import bebi103\n",
"\n",
"import iqplot\n",
"\n",
"import bokeh.io\n",
"bokeh.io.output_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
"\n",
"We have previously introduced the Akaike information criterion. Here, we will demonstrate its use in model comparison and the mechanics of how to calculated it.\n",
"\n",
"As a reminder, for a set of parameters $\\theta$ with MLE $\\theta^*$ and a model with log-likelihood $\\ell(\\theta;\\text{data})$, the AIC is given by\n",
"\n",
"\\begin{align}\n",
"\\text{AIC} = -2\\ell(\\theta^*;\\text{data}) + 2p,\n",
"\\end{align}\n",
"\n",
"where $p$ is the number of free parameters in a model. The Akaike weight of model $i$ in a collection of models is\n",
"\n",
"\\begin{align}\n",
"w_i = \\frac{\\mathrm{e}^{-(\\text{AIC}_i - \\text{AIC}_\\mathrm{max})/2}}{\\sum_j\\mathrm{e}^{-(\\text{AIC}_j - \\text{AIC}_\\mathrm{max})/2}}.\n",
"\\end{align}\n",
"\n",
"To begin, we will use the AIC to compare a single Negative Binomial model to a mixture of two Negative Binomials for smFISH data from Singer, et al."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## AIC for mRNA counts\n",
"\n",
"Let us now compare the single Negative Binomial to the mixture model for mRNA counts. We again need our functions for computing the MLE and computing the log-likelihood from previous lessons."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def log_like_iid_nbinom(params, n):\n",
" \"\"\"Log likelihood for i.i.d. NBinom measurements, parametrized\n",
" by alpha, b=1/beta.\"\"\"\n",
" alpha, b = params\n",
"\n",
" if alpha <= 0 or b <= 0:\n",
" return -np.inf\n",
"\n",
" return np.sum(st.nbinom.logpmf(n, alpha, 1/(1+b)))\n",
"\n",
"\n",
"def mle_iid_nbinom(n):\n",
" \"\"\"Perform maximum likelihood estimates for parameters for i.i.d.\n",
" NBinom measurements, parametrized by alpha, b=1/beta\"\"\"\n",
" with warnings.catch_warnings():\n",
" warnings.simplefilter(\"ignore\")\n",
"\n",
" res = scipy.optimize.minimize(\n",
" fun=lambda params, n: -log_like_iid_nbinom(params, n),\n",
" x0=np.array([3, 3]),\n",
" args=(n,),\n",
" method='Powell'\n",
" )\n",
"\n",
" if res.success:\n",
" return res.x\n",
" else:\n",
" raise RuntimeError('Convergence failed with message', res.message)\n",
" \n",
"\n",
"def initial_guess_mix(n, w_guess):\n",
" \"\"\"Generate initial guess for mixture model.\"\"\"\n",
" n_low = n[n < np.percentile(n, 100*w_guess)]\n",
" n_high = n[n >= np.percentile(n, 100*w_guess)]\n",
" \n",
" alpha1, b1 = mle_iid_nbinom(n_low)\n",
" alpha2, b2 = mle_iid_nbinom(n_high)\n",
" \n",
" return alpha1, b1, alpha2, b2\n",
"\n",
"\n",
"def log_like_mix(alpha1, b1, alpha2, b2, w, n):\n",
" \"\"\"Log-likeihood of binary Negative Binomial mixture model.\"\"\"\n",
" # Fix nonidentifiability be enforcing values of w\n",
" if w < 0 or w > 1:\n",
" return -np.inf\n",
" \n",
" # Physical bounds on parameters\n",
" if alpha1 < 0 or alpha2 < 0 or b1 < 0 or b2 < 0:\n",
" return -np.inf\n",
"\n",
" logx1 = st.nbinom.logpmf(n, alpha1, 1/(1+b1))\n",
" logx2 = st.nbinom.logpmf(n, alpha2, 1/(1+b2))\n",
"\n",
" # Multipliers for log-sum-exp\n",
" lse_coeffs = np.tile([w, 1-w], [len(n), 1]).transpose()\n",
"\n",
" # log-likelihood for each measurement\n",
" log_likes = scipy.special.logsumexp(np.vstack([logx1, logx2]), axis=0, b=lse_coeffs)\n",
" \n",
" return np.sum(log_likes)\n",
"\n",
"\n",
"def mle_mix(n, w_guess):\n",
" \"\"\"Obtain MLE estimate for parameters for binary mixture \n",
" of Negative Binomials.\"\"\"\n",
" with warnings.catch_warnings():\n",
" warnings.simplefilter(\"ignore\")\n",
"\n",
" res = scipy.optimize.minimize(\n",
" fun=lambda params, n: -log_like_mix(*params, n),\n",
" x0=[*initial_guess_mix(n, w_guess), w_guess],\n",
" args=(n,),\n",
" method='Powell',\n",
" tol=1e-6,\n",
" )\n",
"\n",
" if res.success:\n",
" return res.x\n",
" else:\n",
" raise RuntimeError('Convergence failed with message', res.message) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can load in the data and compute the MLEs for each of the four genes."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (4, 8)gene | alpha | b | alpha1 | b1 | alpha2 | b2 | w |
---|
str | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
"Rex1" | 1.634562 | 84.680915 | 3.497009 | 4.104916 | 5.089625 | 31.810375 | 0.160422 |
"Rest" | 4.530335 | 16.543054 | 2.786601 | 12.395701 | 6.683424 | 11.953265 | 0.108772 |
"Nanog" | 1.263097 | 69.347842 | 0.834832 | 66.535947 | 4.127488 | 28.133048 | 0.466636 |
"Prdm14" | 0.552886 | 8.200636 | 2.385858 | 4.747279 | 0.558672 | 4.872751 | 0.210606 |
"
],
"text/plain": [
"shape: (4, 8)\n",
"┌────────┬──────────┬───────────┬──────────┬───────────┬──────────┬───────────┬──────────┐\n",
"│ gene ┆ alpha ┆ b ┆ alpha1 ┆ b1 ┆ alpha2 ┆ b2 ┆ w │\n",
"│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
"│ str ┆ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 ┆ f64 │\n",
"╞════════╪══════════╪═══════════╪══════════╪═══════════╪══════════╪═══════════╪══════════╡\n",
"│ Rex1 ┆ 1.634562 ┆ 84.680915 ┆ 3.497009 ┆ 4.104916 ┆ 5.089625 ┆ 31.810375 ┆ 0.160422 │\n",
"│ Rest ┆ 4.530335 ┆ 16.543054 ┆ 2.786601 ┆ 12.395701 ┆ 6.683424 ┆ 11.953265 ┆ 0.108772 │\n",
"│ Nanog ┆ 1.263097 ┆ 69.347842 ┆ 0.834832 ┆ 66.535947 ┆ 4.127488 ┆ 28.133048 ┆ 0.466636 │\n",
"│ Prdm14 ┆ 0.552886 ┆ 8.200636 ┆ 2.385858 ┆ 4.747279 ┆ 0.558672 ┆ 4.872751 ┆ 0.210606 │\n",
"└────────┴──────────┴───────────┴──────────┴───────────┴──────────┴───────────┴──────────┘"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load in data\n",
"df = pl.read_csv(\n",
" os.path.join(data_path, \"singer_transcript_counts.csv\"), comment_prefix=\"#\"\n",
")\n",
"\n",
"df_mle = pl.DataFrame(\n",
" schema=[(\"gene\", str)]\n",
" + [(param, float) for param in [\"alpha\", \"b\", \"alpha1\", \"b1\", \"alpha2\", \"b2\", \"w\"]]\n",
")\n",
"\n",
"for gene in df.schema:\n",
" n = df[\"Nanog\"].to_numpy()\n",
"\n",
" # Single Negative Binomial MLE\n",
" alpha, b = mle_iid_nbinom(df[gene].to_numpy())\n",
"\n",
" # Mixture model MLE\n",
" alpha1, b1, alpha2, b2, w = mle_mix(df[gene].to_numpy(), 0.2)\n",
"\n",
" # Store results in data frame\n",
" df_mle = pl.concat(\n",
" (\n",
" df_mle,\n",
" pl.DataFrame(\n",
" data=[[gene, alpha, b, alpha1, b1, alpha2, b2, w]],\n",
" schema=df_mle.schema,\n",
" orient=\"row\",\n",
" ),\n",
" )\n",
" )\n",
"\n",
"# Take a look\n",
"df_mle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For each of the two models, we can compute the log likelihood evaluated at the MLEs for the parameters."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (4, 10)gene | alpha | b | alpha1 | b1 | alpha2 | b2 | w | log_like_single | log_like_mix |
---|
str | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
"Rex1" | 1.634562 | 84.680915 | 3.497009 | 4.104916 | 5.089625 | 31.810375 | 0.160422 | -1638.678482 | -1590.353743 |
"Rest" | 4.530335 | 16.543054 | 2.786601 | 12.395701 | 6.683424 | 11.953265 | 0.108772 | -1376.748398 | -1372.108896 |
"Nanog" | 1.263097 | 69.347842 | 0.834832 | 66.535947 | 4.127488 | 28.133048 | 0.466636 | -1524.928918 | -1512.444558 |
"Prdm14" | 0.552886 | 8.200636 | 2.385858 | 4.747279 | 0.558672 | 4.872751 | 0.210606 | -713.091587 | -712.702876 |
"
],
"text/plain": [
"shape: (4, 10)\n",
"┌────────┬──────────┬───────────┬──────────┬───┬───────────┬──────────┬──────────────┬─────────────┐\n",
"│ gene ┆ alpha ┆ b ┆ alpha1 ┆ … ┆ b2 ┆ w ┆ log_like_sin ┆ log_like_mi │\n",
"│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ gle ┆ x │\n",
"│ str ┆ f64 ┆ f64 ┆ f64 ┆ ┆ f64 ┆ f64 ┆ --- ┆ --- │\n",
"│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ f64 ┆ f64 │\n",
"╞════════╪══════════╪═══════════╪══════════╪═══╪═══════════╪══════════╪══════════════╪═════════════╡\n",
"│ Rex1 ┆ 1.634562 ┆ 84.680915 ┆ 3.497009 ┆ … ┆ 31.810375 ┆ 0.160422 ┆ -1638.678482 ┆ -1590.35374 │\n",
"│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 3 │\n",
"│ Rest ┆ 4.530335 ┆ 16.543054 ┆ 2.786601 ┆ … ┆ 11.953265 ┆ 0.108772 ┆ -1376.748398 ┆ -1372.10889 │\n",
"│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 6 │\n",
"│ Nanog ┆ 1.263097 ┆ 69.347842 ┆ 0.834832 ┆ … ┆ 28.133048 ┆ 0.466636 ┆ -1524.928918 ┆ -1512.44455 │\n",
"│ ┆ ┆ ┆ ┆ ┆ ┆ ┆ ┆ 8 │\n",
"│ Prdm14 ┆ 0.552886 ┆ 8.200636 ┆ 2.385858 ┆ … ┆ 4.872751 ┆ 0.210606 ┆ -713.091587 ┆ -712.702876 │\n",
"└────────┴──────────┴───────────┴──────────┴───┴───────────┴──────────┴──────────────┴─────────────┘"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Define funcitons taking Polars structs for computing log likelihoods\n",
"def pl_log_like_iid_nbinom(s):\n",
" return log_like_iid_nbinom((s[\"alpha\"], s[\"b\"]), df[s[\"gene\"]].to_numpy())\n",
"\n",
"\n",
"def pl_log_like_mix(s):\n",
" return log_like_mix(\n",
" s[\"alpha1\"], s[\"b1\"], s[\"alpha2\"], s[\"b2\"], s[\"w\"], df[s[\"gene\"]].to_numpy()\n",
" )\n",
"\n",
"\n",
"# Apply the functions\n",
"df_mle = df_mle.with_columns(\n",
" # Single negative binomial\n",
" pl.struct([\"alpha\", \"b\", \"gene\"])\n",
" .map_elements(pl_log_like_iid_nbinom, return_dtype=float)\n",
" .alias(\"log_like_single\"),\n",
"\n",
" # Mixture model\n",
" pl.struct([\"alpha1\", \"b1\", \"alpha2\", \"b2\", \"w\", \"gene\"])\n",
" .map_elements(pl_log_like_mix, return_dtype=float)\n",
" .alias(\"log_like_mix\"),\n",
")\n",
"\n",
"# Take a look\n",
"df_mle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can already see a very large difference between the log likelihood evaluated at the MLE for Rex1, but not much difference for Prdm14. The mixture model has $p = 5$ parameters, while the single Negative Binomial model has $p = 2$. With these numbers, we can compute the AIC and then also the Akaike weights."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (4, 12)gene | alpha | b | alpha1 | b1 | alpha2 | b2 | w | log_like_single | log_like_mix | AIC_single | AIC_mix |
---|
str | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
"Rex1" | 1.634562 | 84.680915 | 3.497009 | 4.104916 | 5.089625 | 31.810375 | 0.160422 | -1638.678482 | -1590.353743 | 3281.356963 | 3190.707487 |
"Rest" | 4.530335 | 16.543054 | 2.786601 | 12.395701 | 6.683424 | 11.953265 | 0.108772 | -1376.748398 | -1372.108896 | 2757.496797 | 2754.217792 |
"Nanog" | 1.263097 | 69.347842 | 0.834832 | 66.535947 | 4.127488 | 28.133048 | 0.466636 | -1524.928918 | -1512.444558 | 3053.857837 | 3034.889116 |
"Prdm14" | 0.552886 | 8.200636 | 2.385858 | 4.747279 | 0.558672 | 4.872751 | 0.210606 | -713.091587 | -712.702876 | 1430.183173 | 1435.405751 |
"
],
"text/plain": [
"shape: (4, 12)\n",
"┌────────┬──────────┬───────────┬──────────┬───┬────────────┬────────────┬────────────┬────────────┐\n",
"│ gene ┆ alpha ┆ b ┆ alpha1 ┆ … ┆ log_like_s ┆ log_like_m ┆ AIC_single ┆ AIC_mix │\n",
"│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ ingle ┆ ix ┆ --- ┆ --- │\n",
"│ str ┆ f64 ┆ f64 ┆ f64 ┆ ┆ --- ┆ --- ┆ f64 ┆ f64 │\n",
"│ ┆ ┆ ┆ ┆ ┆ f64 ┆ f64 ┆ ┆ │\n",
"╞════════╪══════════╪═══════════╪══════════╪═══╪════════════╪════════════╪════════════╪════════════╡\n",
"│ Rex1 ┆ 1.634562 ┆ 84.680915 ┆ 3.497009 ┆ … ┆ -1638.6784 ┆ -1590.3537 ┆ 3281.35696 ┆ 3190.70748 │\n",
"│ ┆ ┆ ┆ ┆ ┆ 82 ┆ 43 ┆ 3 ┆ 7 │\n",
"│ Rest ┆ 4.530335 ┆ 16.543054 ┆ 2.786601 ┆ … ┆ -1376.7483 ┆ -1372.1088 ┆ 2757.49679 ┆ 2754.21779 │\n",
"│ ┆ ┆ ┆ ┆ ┆ 98 ┆ 96 ┆ 7 ┆ 2 │\n",
"│ Nanog ┆ 1.263097 ┆ 69.347842 ┆ 0.834832 ┆ … ┆ -1524.9289 ┆ -1512.4445 ┆ 3053.85783 ┆ 3034.88911 │\n",
"│ ┆ ┆ ┆ ┆ ┆ 18 ┆ 58 ┆ 7 ┆ 6 │\n",
"│ Prdm14 ┆ 0.552886 ┆ 8.200636 ┆ 2.385858 ┆ … ┆ -713.09158 ┆ -712.70287 ┆ 1430.18317 ┆ 1435.40575 │\n",
"│ ┆ ┆ ┆ ┆ ┆ 7 ┆ 6 ┆ 3 ┆ 1 │\n",
"└────────┴──────────┴───────────┴──────────┴───┴────────────┴────────────┴────────────┴────────────┘"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_mle = df_mle.with_columns(\n",
" (-2 * (pl.col('log_like_single') - 2)).alias('AIC_single'),\n",
" (-2 * (pl.col('log_like_mix') - 5)).alias('AIC_mix'),\n",
")\n",
"\n",
"# Take a look\n",
"df_mle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can compute the Akaike weight for the model with a single Negative Binomial (the weight for the mixture model is $1-w_\\mathrm{single}$)."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
shape: (4, 2)gene | w_single |
---|
str | f64 |
"Rex1" | 2.0688e-20 |
"Rest" | 0.162533 |
"Nanog" | 0.000076 |
"Prdm14" | 0.931585 |
"
],
"text/plain": [
"shape: (4, 2)\n",
"┌────────┬────────────┐\n",
"│ gene ┆ w_single │\n",
"│ --- ┆ --- │\n",
"│ str ┆ f64 │\n",
"╞════════╪════════════╡\n",
"│ Rex1 ┆ 2.0688e-20 │\n",
"│ Rest ┆ 0.162533 │\n",
"│ Nanog ┆ 0.000076 │\n",
"│ Prdm14 ┆ 0.931585 │\n",
"└────────┴────────────┘"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_mle = df_mle.with_columns(\n",
" max_AIC := pl.max_horizontal(pl.col('AIC_single', 'AIC_mix')).alias('max_AIC'),\n",
" num := (-(pl.col('AIC_single') - max_AIC) / 2).exp().alias('num'),\n",
" (num / (num + (-(pl.col('AIC_mix') - max_AIC) / 2).exp())).alias('w_single')\n",
").select(\n",
" pl.exclude('max_AIC', 'num')\n",
")\n",
"\n",
"# Look at Akaike weights\n",
"df_mle[['gene', 'w_single']]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In looking at the Akaike weight for the mixture (1 – `w_single`), is it clear that the mixture model is strongly preferred for Rex1 and Nanog. There is not strong preference for Rest, and a preference for the single Negative Binomial model for Prdm14. Reminding ourselves of the ECDFs, this makes sense."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"(function(root) {\n",
" function embed_document(root) {\n",
" const docs_json = {\"b1817399-3fa8-4d83-8c7d-be6668ca69b7\":{\"version\":\"3.7.3\",\"title\":\"Bokeh Application\",\"roots\":[{\"type\":\"object\",\"name\":\"Column\",\"id\":\"p1253\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Row\",\"id\":\"p1251\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1003\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1004\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1005\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1013\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1014\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1006\",\"attributes\":{\"text\":\"Nanog\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1044\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1038\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1039\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1040\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKkAAAAAAAAAqQAAAAAAAACxAAAAAAAAALEAAAAAAAAAsQAAAAAAAACxAAAAAAAAALEAAAAAAAAAsQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAyQAAAAAAAADJAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADRAAAAAAAAANEAAAAAAAAA0QAAAAAAAADRAAAAAAAAANUAAAAAAAAA1QAAAAAAAADVAAAAAAAAANUAAAAAAAAA2QAAAAAAAADZAAAAAAAAANkAAAAAAAAA2QAAAAAAAADdAAAAAAAAAN0AAAAAAAAA4QAAAAAAAADhAAAAAAAAAOEAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOEAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOUAAAAAAAAA5QAAAAAAAADpAAAAAAAAAOkAAAAAAAAA7QAAAAAAAADtAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADxAAAAAAAAAPEAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPkAAAAAAAAA+QAAAAAAAAD5AAAAAAAAAPkAAAAAAAAA/QAAAAAAAAD9AAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAgEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAgEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAAEFAAAAAAAAAQUAAAAAAAIBBQAAAAAAAgEFAAAAAAACAQkAAAAAAAIBCQAAAAAAAgEJAAAAAAACAQkAAAAAAAABDQAAAAAAAAENAAAAAAAAAQ0AAAAAAAABDQAAAAAAAgENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAgENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAACAREAAAAAAAIBEQAAAAAAAgERAAAAAAACAREAAAAAAAABGQAAAAAAAAEZAAAAAAAAARkAAAAAAAABGQAAAAAAAAEdAAAAAAAAAR0AAAAAAAIBHQAAAAAAAgEdAAAAAAAAASEAAAAAAAABIQAAAAAAAgEhAAAAAAACASEAAAAAAAIBIQAAAAAAAgEhAAAAAAAAASUAAAAAAAABJQAAAAAAAgElAAAAAAACASUAAAAAAAABKQAAAAAAAAEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEtAAAAAAACAS0AAAAAAAIBLQAAAAAAAgEtAAAAAAACATEAAAAAAAIBMQAAAAAAAAE1AAAAAAAAATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAAE5AAAAAAAAATkAAAAAAAIBOQAAAAAAAgE5AAAAAAACATkAAAAAAAIBOQAAAAAAAAE9AAAAAAAAAT0AAAAAAAIBPQAAAAAAAgE9AAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAAAAUEAAAAAAAABQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAIBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAIBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAABAUUAAAAAAAEBRQAAAAAAAQFFAAAAAAABAUUAAAAAAAMBRQAAAAAAAwFFAAAAAAAAAUkAAAAAAAABSQAAAAAAAAFJAAAAAAAAAUkAAAAAAAEBSQAAAAAAAQFJAAAAAAABAUkAAAAAAAEBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAAFNAAAAAAAAAU0AAAAAAAABTQAAAAAAAAFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAgFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAwFNAAAAAAADAU0AAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAEBUQAAAAAAAQFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAADAVEAAAAAAAMBUQAAAAAAAAFVAAAAAAAAAVUAAAAAAAABVQAAAAAAAAFVAAAAAAAAAVUAAAAAAAABVQAAAAAAAQFVAAAAAAABAVUAAAAAAAIBVQAAAAAAAgFVAAAAAAACAVUAAAAAAAIBVQAAAAAAAwFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAwFVAAAAAAAAAVkAAAAAAAABWQAAAAAAAAFZAAAAAAAAAVkAAAAAAAIBWQAAAAAAAgFZAAAAAAAAAV0AAAAAAAABXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAABYQAAAAAAAAFhAAAAAAABAWEAAAAAAAEBYQAAAAAAAAFlAAAAAAAAAWUAAAAAAAEBZQAAAAAAAQFlAAAAAAABAWUAAAAAAAEBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAwFlAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAABAWkAAAAAAAEBaQAAAAAAAQFpAAAAAAABAWkAAAAAAAMBaQAAAAAAAwFpAAAAAAADAWkAAAAAAAMBaQAAAAAAAAFtAAAAAAAAAW0AAAAAAAEBbQAAAAAAAQFtAAAAAAACAW0AAAAAAAIBbQAAAAAAAQFxAAAAAAABAXEAAAAAAAIBcQAAAAAAAgFxAAAAAAADAXEAAAAAAAMBcQAAAAAAAAF1AAAAAAAAAXUAAAAAAAABdQAAAAAAAAF1AAAAAAABAXUAAAAAAAEBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAADAXUAAAAAAAMBdQAAAAAAAAF5AAAAAAAAAXkAAAAAAAABeQAAAAAAAAF5AAAAAAAAAXkAAAAAAAABeQAAAAAAAQF5AAAAAAABAXkAAAAAAAMBeQAAAAAAAwF5AAAAAAAAAX0AAAAAAAABfQAAAAAAAQF9AAAAAAABAX0AAAAAAAMBfQAAAAAAAwF9AAAAAAADAX0AAAAAAAMBfQAAAAAAAwF9AAAAAAADAX0AAAAAAAABgQAAAAAAAAGBAAAAAAAAAYEAAAAAAAABgQAAAAAAAAGBAAAAAAAAAYEAAAAAAACBgQAAAAAAAIGBAAAAAAABAYEAAAAAAAEBgQAAAAAAAgGBAAAAAAACAYEAAAAAAAIBgQAAAAAAAgGBAAAAAAACAYEAAAAAAAIBgQAAAAAAAwGBAAAAAAADAYEAAAAAAAMBgQAAAAAAAwGBAAAAAAAAAYUAAAAAAAABhQAAAAAAAIGFAAAAAAAAgYUAAAAAAAEBhQAAAAAAAQGFAAAAAAABgYUAAAAAAAGBhQAAAAAAAgGFAAAAAAACAYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACgYUAAAAAAAKBhQAAAAAAAoGFAAAAAAACgYUAAAAAAAOBhQAAAAAAA4GFAAAAAAADgYUAAAAAAAOBhQAAAAAAAAGJAAAAAAAAAYkAAAAAAACBiQAAAAAAAIGJAAAAAAACAYkAAAAAAAIBiQAAAAAAAoGJAAAAAAACgYkAAAAAAACBjQAAAAAAAIGNAAAAAAAAgY0AAAAAAACBjQAAAAAAAIGNAAAAAAAAgY0AAAAAAAEBjQAAAAAAAQGNAAAAAAABAY0AAAAAAAEBjQAAAAAAAYGNAAAAAAABgY0AAAAAAAIBjQAAAAAAAgGNAAAAAAACAY0AAAAAAAIBjQAAAAAAAgGNAAAAAAACAY0AAAAAAAABkQAAAAAAAAGRAAAAAAABAZEAAAAAAAEBkQAAAAAAAQGRAAAAAAABAZEAAAAAAAABlQAAAAAAAAGVAAAAAAABgZUAAAAAAAGBlQAAAAAAAwGVAAAAAAADAZUAAAAAAAOBlQAAAAAAA4GVAAAAAAADgZUAAAAAAAOBlQAAAAAAAAGZAAAAAAAAAZkAAAAAAACBmQAAAAAAAIGZAAAAAAACgZkAAAAAAAKBmQAAAAAAAQGdAAAAAAABAZ0AAAAAAAGBnQAAAAAAAYGdAAAAAAADAZ0AAAAAAAMBnQAAAAAAA4GdAAAAAAADgZ0AAAAAAACBoQAAAAAAAIGhAAAAAAABAaEAAAAAAAEBoQAAAAAAAYGhAAAAAAABgaEAAAAAAAIBoQAAAAAAAgGhAAAAAAADAaEAAAAAAAMBoQAAAAAAAAGlAAAAAAAAAaUAAAAAAAEBpQAAAAAAAQGlAAAAAAACAakAAAAAAAIBqQAAAAAAAAGtAAAAAAAAAa0AAAAAAAGBsQAAAAAAAYGxAAAAAAACAbEAAAAAAAIBsQAAAAAAA4GxAAAAAAADgbEAAAAAAAIBtQAAAAAAAgG1AAAAAAADgbUAAAAAAAOBtQAAAAAAAwG5AAAAAAADAbkAAAAAAAGBvQAAAAAAAYG9AAAAAAACAb0AAAAAAAIBvQAAAAAAAcHBAAAAAAABwcEAAAAAAAHBwQAAAAAAAcHBAAAAAAAAgcUAAAAAAACBxQAAAAAAAUHJAAAAAAABQckAAAAAAAIB5QAAAAAAAgHlA\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1045\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1046\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1041\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1042\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1043\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1053\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1047\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1048\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1049\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1054\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1055\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1050\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1051\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1052\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1062\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1056\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1057\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1058\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1063\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1064\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1059\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1060\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1061\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":408.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1012\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1025\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1026\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1027\",\"attributes\":{\"dimensions\":\"both\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1028\",\"attributes\":{\"syncable\":false,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"handles\":{\"type\":\"object\",\"name\":\"BoxInteractionHandles\",\"id\":\"p1034\",\"attributes\":{\"all\":{\"type\":\"object\",\"name\":\"AreaVisuals\",\"id\":\"p1033\",\"attributes\":{\"fill_color\":\"white\",\"hover_fill_color\":\"lightgray\"}}}}}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1035\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1036\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1037\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1020\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1021\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1022\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1023\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1015\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1016\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1017\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1018\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1019\",\"attributes\":{\"axis\":{\"id\":\"p1015\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1024\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1020\"}}}],\"frame_width\":200,\"frame_height\":150}},{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1065\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1066\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1067\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1075\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1076\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1068\",\"attributes\":{\"text\":\"Prdm14\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1106\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1100\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1101\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1102\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPA/AAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAACEAAAAAAAAAIQAAAAAAAAAhAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAQQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAFEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAHEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAiQAAAAAAAACJAAAAAAAAAIkAAAAAAAAAiQAAAAAAAACJAAAAAAAAAIkAAAAAAAAAiQAAAAAAAACJAAAAAAAAAJEAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJEAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAqQAAAAAAAACpAAAAAAAAAKkAAAAAAAAAqQAAAAAAAACpAAAAAAAAAKkAAAAAAAAAsQAAAAAAAACxAAAAAAAAALkAAAAAAAAAuQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAuQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAuQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAwQAAAAAAAADBAAAAAAAAAMEAAAAAAAAAwQAAAAAAAADFAAAAAAAAAMUAAAAAAAAAxQAAAAAAAADFAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADJAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADJAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAM0AAAAAAAAA0QAAAAAAAADRAAAAAAAAANUAAAAAAAAA1QAAAAAAAADZAAAAAAAAANkAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOUAAAAAAAAA5QAAAAAAAADtAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADtAAAAAAAAAP0AAAAAAAAA/QAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBA\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1107\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1108\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1103\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1104\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1105\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1115\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1109\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1110\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1111\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1116\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1117\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1112\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1113\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1114\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":0.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1124\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1118\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1119\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1120\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1125\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1126\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1121\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":32.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1122\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":32.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1123\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":32.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1074\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1087\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1088\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1089\",\"attributes\":{\"dimensions\":\"both\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1090\",\"attributes\":{\"syncable\":false,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"handles\":{\"type\":\"object\",\"name\":\"BoxInteractionHandles\",\"id\":\"p1096\",\"attributes\":{\"all\":{\"type\":\"object\",\"name\":\"AreaVisuals\",\"id\":\"p1095\",\"attributes\":{\"fill_color\":\"white\",\"hover_fill_color\":\"lightgray\"}}}}}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1097\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1098\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1099\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1082\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1083\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1084\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1085\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1077\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1078\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1079\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1080\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1081\",\"attributes\":{\"axis\":{\"id\":\"p1077\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1086\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1082\"}}}],\"frame_width\":200,\"frame_height\":150}}]}},{\"type\":\"object\",\"name\":\"Row\",\"id\":\"p1252\",\"attributes\":{\"children\":[{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1127\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1128\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1129\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1137\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1138\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1130\",\"attributes\":{\"text\":\"Rest\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1168\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1162\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1163\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1164\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAFEAAAAAAAAAUQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAmQAAAAAAAACZAAAAAAAAAKEAAAAAAAAAoQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAqQAAAAAAAACpAAAAAAAAALkAAAAAAAAAuQAAAAAAAADBAAAAAAAAAMEAAAAAAAAAxQAAAAAAAADFAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADVAAAAAAAAANUAAAAAAAAA4QAAAAAAAADhAAAAAAAAAOUAAAAAAAAA5QAAAAAAAADpAAAAAAAAAOkAAAAAAAAA6QAAAAAAAADpAAAAAAAAAO0AAAAAAAAA7QAAAAAAAADtAAAAAAAAAO0AAAAAAAAA8QAAAAAAAADxAAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA+QAAAAAAAAD5AAAAAAAAAPkAAAAAAAAA+QAAAAAAAAD9AAAAAAAAAP0AAAAAAAAA/QAAAAAAAAD9AAAAAAAAAP0AAAAAAAAA/QAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAACAQEAAAAAAAIBAQAAAAAAAgEBAAAAAAACAQEAAAAAAAABBQAAAAAAAAEFAAAAAAAAAQUAAAAAAAABBQAAAAAAAAEFAAAAAAAAAQUAAAAAAAABBQAAAAAAAAEFAAAAAAACAQUAAAAAAAIBBQAAAAAAAgEFAAAAAAACAQUAAAAAAAABCQAAAAAAAAEJAAAAAAACAQkAAAAAAAIBCQAAAAAAAgEJAAAAAAACAQkAAAAAAAIBDQAAAAAAAgENAAAAAAACAQ0AAAAAAAIBDQAAAAAAAgENAAAAAAACAQ0AAAAAAAABEQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAACAREAAAAAAAIBEQAAAAAAAAEVAAAAAAAAARUAAAAAAAABFQAAAAAAAAEVAAAAAAACARUAAAAAAAIBFQAAAAAAAgEVAAAAAAACARUAAAAAAAABGQAAAAAAAAEZAAAAAAAAARkAAAAAAAABGQAAAAAAAAEZAAAAAAAAARkAAAAAAAIBGQAAAAAAAgEZAAAAAAAAAR0AAAAAAAABHQAAAAAAAAEdAAAAAAAAAR0AAAAAAAABHQAAAAAAAAEdAAAAAAAAAR0AAAAAAAABHQAAAAAAAAEhAAAAAAAAASEAAAAAAAABIQAAAAAAAAEhAAAAAAAAASEAAAAAAAABIQAAAAAAAgEhAAAAAAACASEAAAAAAAIBIQAAAAAAAgEhAAAAAAAAASUAAAAAAAABJQAAAAAAAAElAAAAAAAAASUAAAAAAAIBJQAAAAAAAgElAAAAAAACASUAAAAAAAIBJQAAAAAAAgElAAAAAAACASUAAAAAAAIBJQAAAAAAAgElAAAAAAAAASkAAAAAAAABKQAAAAAAAAEpAAAAAAAAASkAAAAAAAIBKQAAAAAAAgEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEpAAAAAAACASkAAAAAAAIBKQAAAAAAAgEpAAAAAAAAAS0AAAAAAAABLQAAAAAAAAEtAAAAAAAAAS0AAAAAAAABLQAAAAAAAAEtAAAAAAAAAS0AAAAAAAABLQAAAAAAAgEtAAAAAAACAS0AAAAAAAIBLQAAAAAAAgEtAAAAAAAAATEAAAAAAAABMQAAAAAAAAExAAAAAAAAATEAAAAAAAIBMQAAAAAAAgExAAAAAAACATEAAAAAAAIBMQAAAAAAAgExAAAAAAACATEAAAAAAAIBMQAAAAAAAgExAAAAAAAAATUAAAAAAAABNQAAAAAAAAE1AAAAAAAAATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAgE1AAAAAAACATUAAAAAAAIBNQAAAAAAAAE5AAAAAAAAATkAAAAAAAABOQAAAAAAAAE5AAAAAAAAATkAAAAAAAABOQAAAAAAAAE5AAAAAAAAATkAAAAAAAIBOQAAAAAAAgE5AAAAAAACATkAAAAAAAIBOQAAAAAAAAE9AAAAAAAAAT0AAAAAAAABPQAAAAAAAAE9AAAAAAAAAT0AAAAAAAABPQAAAAAAAAE9AAAAAAAAAT0AAAAAAAABPQAAAAAAAAE9AAAAAAAAAT0AAAAAAAABPQAAAAAAAAE9AAAAAAAAAT0AAAAAAAIBPQAAAAAAAgE9AAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAAAAUEAAAAAAAABQQAAAAAAAAFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAQFBAAAAAAABAUEAAAAAAAEBQQAAAAAAAgFBAAAAAAACAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAMBQQAAAAAAAwFBAAAAAAADAUEAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAAFFAAAAAAAAAUUAAAAAAAABRQAAAAAAAQFFAAAAAAABAUUAAAAAAAIBRQAAAAAAAgFFAAAAAAACAUUAAAAAAAIBRQAAAAAAAgFFAAAAAAACAUUAAAAAAAIBRQAAAAAAAgFFAAAAAAACAUUAAAAAAAIBRQAAAAAAAAFJAAAAAAAAAUkAAAAAAAABSQAAAAAAAAFJAAAAAAAAAUkAAAAAAAABSQAAAAAAAQFJAAAAAAABAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAACAUkAAAAAAAIBSQAAAAAAAgFJAAAAAAADAUkAAAAAAAMBSQAAAAAAAwFJAAAAAAADAUkAAAAAAAMBSQAAAAAAAwFJAAAAAAADAUkAAAAAAAMBSQAAAAAAAAFNAAAAAAAAAU0AAAAAAAABTQAAAAAAAAFNAAAAAAABAU0AAAAAAAEBTQAAAAAAAQFNAAAAAAABAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAACAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAwFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAwFNAAAAAAAAAVEAAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAABUQAAAAAAAAFRAAAAAAAAAVEAAAAAAAABUQAAAAAAAgFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAIBUQAAAAAAAgFRAAAAAAACAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAADAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAADAVEAAAAAAAMBUQAAAAAAAwFRAAAAAAAAAVUAAAAAAAABVQAAAAAAAAFVAAAAAAAAAVUAAAAAAAEBVQAAAAAAAQFVAAAAAAABAVUAAAAAAAEBVQAAAAAAAQFVAAAAAAABAVUAAAAAAAIBVQAAAAAAAgFVAAAAAAACAVUAAAAAAAIBVQAAAAAAAwFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAwFVAAAAAAADAVUAAAAAAAMBVQAAAAAAAAFZAAAAAAAAAVkAAAAAAAABWQAAAAAAAAFZAAAAAAABAVkAAAAAAAEBWQAAAAAAAQFZAAAAAAABAVkAAAAAAAIBWQAAAAAAAgFZAAAAAAACAVkAAAAAAAIBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAMBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAMBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAMBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAMBWQAAAAAAAwFZAAAAAAADAVkAAAAAAAABXQAAAAAAAAFdAAAAAAAAAV0AAAAAAAABXQAAAAAAAAFdAAAAAAAAAV0AAAAAAAABXQAAAAAAAAFdAAAAAAAAAV0AAAAAAAABXQAAAAAAAAFdAAAAAAAAAV0AAAAAAAEBXQAAAAAAAQFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAADAV0AAAAAAAMBXQAAAAAAAwFdAAAAAAADAV0AAAAAAAMBXQAAAAAAAwFdAAAAAAAAAWEAAAAAAAABYQAAAAAAAAFhAAAAAAAAAWEAAAAAAAEBYQAAAAAAAQFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAADAWEAAAAAAAMBYQAAAAAAAAFlAAAAAAAAAWUAAAAAAAEBZQAAAAAAAQFlAAAAAAACAWUAAAAAAAIBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAwFlAAAAAAADAWUAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAABaQAAAAAAAAFpAAAAAAAAAWkAAAAAAAEBaQAAAAAAAQFpAAAAAAACAWkAAAAAAAIBaQAAAAAAAgFpAAAAAAACAWkAAAAAAAIBaQAAAAAAAgFpAAAAAAADAWkAAAAAAAMBaQAAAAAAAwFpAAAAAAADAWkAAAAAAAABbQAAAAAAAAFtAAAAAAAAAW0AAAAAAAABbQAAAAAAAAFtAAAAAAAAAW0AAAAAAAEBbQAAAAAAAQFtAAAAAAABAW0AAAAAAAEBbQAAAAAAAgFtAAAAAAACAW0AAAAAAAIBbQAAAAAAAgFtAAAAAAAAAXEAAAAAAAABcQAAAAAAAAFxAAAAAAAAAXEAAAAAAAIBcQAAAAAAAgFxAAAAAAAAAXUAAAAAAAABdQAAAAAAAQF1AAAAAAABAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAABAXkAAAAAAAEBeQAAAAAAAAF9AAAAAAAAAX0AAAAAAAEBfQAAAAAAAQF9AAAAAAABAX0AAAAAAAEBfQAAAAAAAQF9AAAAAAABAX0AAAAAAACBgQAAAAAAAIGBAAAAAAAAgYEAAAAAAACBgQAAAAAAAQGBAAAAAAABAYEAAAAAAAEBgQAAAAAAAQGBAAAAAAADAYEAAAAAAAMBgQAAAAAAAwGBAAAAAAADAYEAAAAAAACBhQAAAAAAAIGFAAAAAAAAgYUAAAAAAACBhQAAAAAAAQGFAAAAAAABAYUAAAAAAAIBhQAAAAAAAgGFAAAAAAADAYUAAAAAAAMBhQAAAAAAAAGJAAAAAAAAAYkAAAAAAAIBiQAAAAAAAgGJAAAAAAAAAY0AAAAAAAABjQAAAAAAAIGNAAAAAAAAgY0AAAAAAAGBjQAAAAAAAYGNAAAAAAADgY0AAAAAAAOBjQAAAAAAAQGRAAAAAAABAZEAAAAAAAEBkQAAAAAAAQGRAAAAAAABAZUAAAAAAAEBlQAAAAAAAwGZAAAAAAADAZkAAAAAAAMBuQAAAAAAAwG5A\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1169\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1170\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1165\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1166\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1167\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1177\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1171\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1172\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1173\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1178\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1179\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1174\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":5.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1175\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":5.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1176\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":5.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1186\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1180\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1181\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1182\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1187\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1188\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1183\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":246.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1184\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":246.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1185\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":246.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1136\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1149\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1150\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1151\",\"attributes\":{\"dimensions\":\"both\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1152\",\"attributes\":{\"syncable\":false,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"handles\":{\"type\":\"object\",\"name\":\"BoxInteractionHandles\",\"id\":\"p1158\",\"attributes\":{\"all\":{\"type\":\"object\",\"name\":\"AreaVisuals\",\"id\":\"p1157\",\"attributes\":{\"fill_color\":\"white\",\"hover_fill_color\":\"lightgray\"}}}}}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1159\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1160\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1161\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1144\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1145\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1146\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1147\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1139\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1140\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1141\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1142\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1143\",\"attributes\":{\"axis\":{\"id\":\"p1139\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1148\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1144\"}}}],\"frame_width\":200,\"frame_height\":150}},{\"type\":\"object\",\"name\":\"Figure\",\"id\":\"p1189\",\"attributes\":{\"x_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1190\"},\"y_range\":{\"type\":\"object\",\"name\":\"DataRange1d\",\"id\":\"p1191\"},\"x_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1199\"},\"y_scale\":{\"type\":\"object\",\"name\":\"LinearScale\",\"id\":\"p1200\"},\"title\":{\"type\":\"object\",\"name\":\"Title\",\"id\":\"p1192\",\"attributes\":{\"text\":\"Rex1\"}},\"renderers\":[{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1230\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1224\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1225\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1226\"},\"data\":{\"type\":\"map\",\"entries\":[[\"x\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAACEAAAAAAAAAIQAAAAAAAABBAAAAAAAAAEEAAAAAAAAAUQAAAAAAAABRAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAYQAAAAAAAABhAAAAAAAAAGEAAAAAAAAAcQAAAAAAAABxAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIEAAAAAAAAAgQAAAAAAAACBAAAAAAAAAIkAAAAAAAAAiQAAAAAAAACJAAAAAAAAAIkAAAAAAAAAkQAAAAAAAACRAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAACZAAAAAAAAAJkAAAAAAAAAmQAAAAAAAAChAAAAAAAAAKEAAAAAAAAAqQAAAAAAAACpAAAAAAAAALEAAAAAAAAAsQAAAAAAAAC5AAAAAAAAALkAAAAAAAAAuQAAAAAAAAC5AAAAAAAAAMEAAAAAAAAAwQAAAAAAAADFAAAAAAAAAMUAAAAAAAAAxQAAAAAAAADFAAAAAAAAAMkAAAAAAAAAyQAAAAAAAADNAAAAAAAAAM0AAAAAAAAAzQAAAAAAAADNAAAAAAAAAN0AAAAAAAAA3QAAAAAAAADdAAAAAAAAAN0AAAAAAAAA5QAAAAAAAADlAAAAAAAAAPUAAAAAAAAA9QAAAAAAAAD1AAAAAAAAAPUAAAAAAAAA+QAAAAAAAAD5AAAAAAAAAP0AAAAAAAAA/QAAAAAAAAEBAAAAAAAAAQEAAAAAAAABAQAAAAAAAAEBAAAAAAAAAQ0AAAAAAAABDQAAAAAAAAERAAAAAAAAAREAAAAAAAABEQAAAAAAAAERAAAAAAAAARUAAAAAAAABFQAAAAAAAgEdAAAAAAACAR0AAAAAAAIBHQAAAAAAAgEdAAAAAAAAASEAAAAAAAABIQAAAAAAAgElAAAAAAACASUAAAAAAAABKQAAAAAAAAEpAAAAAAACASkAAAAAAAIBKQAAAAAAAAEtAAAAAAAAAS0AAAAAAAABLQAAAAAAAAEtAAAAAAAAATEAAAAAAAABMQAAAAAAAgE5AAAAAAACATkAAAAAAAIBOQAAAAAAAgE5AAAAAAAAAT0AAAAAAAABPQAAAAAAAgE9AAAAAAACAT0AAAAAAAMBQQAAAAAAAwFBAAAAAAAAAUUAAAAAAAABRQAAAAAAAQFFAAAAAAABAUUAAAAAAAABSQAAAAAAAAFJAAAAAAAAAU0AAAAAAAABTQAAAAAAAAFNAAAAAAAAAU0AAAAAAAIBTQAAAAAAAgFNAAAAAAADAU0AAAAAAAMBTQAAAAAAAAFRAAAAAAAAAVEAAAAAAAEBUQAAAAAAAQFRAAAAAAABAVEAAAAAAAEBUQAAAAAAAgFVAAAAAAACAVUAAAAAAAEBWQAAAAAAAQFZAAAAAAABAVkAAAAAAAEBWQAAAAAAAgFZAAAAAAACAVkAAAAAAAIBWQAAAAAAAgFZAAAAAAABAV0AAAAAAAEBXQAAAAAAAgFdAAAAAAACAV0AAAAAAAIBXQAAAAAAAgFdAAAAAAADAV0AAAAAAAMBXQAAAAAAAAFhAAAAAAAAAWEAAAAAAAABYQAAAAAAAAFhAAAAAAABAWEAAAAAAAEBYQAAAAAAAQFhAAAAAAABAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAgFhAAAAAAACAWEAAAAAAAIBYQAAAAAAAwFhAAAAAAADAWEAAAAAAAABZQAAAAAAAAFlAAAAAAAAAWUAAAAAAAABZQAAAAAAAgFlAAAAAAACAWUAAAAAAAIBZQAAAAAAAgFlAAAAAAADAWUAAAAAAAMBZQAAAAAAAAFpAAAAAAAAAWkAAAAAAAEBaQAAAAAAAQFpAAAAAAAAAW0AAAAAAAABbQAAAAAAAAFtAAAAAAAAAW0AAAAAAAIBbQAAAAAAAgFtAAAAAAADAW0AAAAAAAMBbQAAAAAAAwFtAAAAAAADAW0AAAAAAAEBcQAAAAAAAQFxAAAAAAABAXEAAAAAAAEBcQAAAAAAAAF1AAAAAAAAAXUAAAAAAAABdQAAAAAAAAF1AAAAAAAAAXUAAAAAAAABdQAAAAAAAAF1AAAAAAAAAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAIBdQAAAAAAAgF1AAAAAAACAXUAAAAAAAABeQAAAAAAAAF5AAAAAAAAAXkAAAAAAAABeQAAAAAAAQF5AAAAAAABAXkAAAAAAAIBeQAAAAAAAgF5AAAAAAACAXkAAAAAAAIBeQAAAAAAAgF5AAAAAAACAXkAAAAAAAABfQAAAAAAAAF9AAAAAAAAAX0AAAAAAAABfQAAAAAAAAF9AAAAAAAAAX0AAAAAAAEBfQAAAAAAAQF9AAAAAAABAX0AAAAAAAEBfQAAAAAAAgF9AAAAAAACAX0AAAAAAAIBfQAAAAAAAgF9AAAAAAAAAYEAAAAAAAABgQAAAAAAAIGBAAAAAAAAgYEAAAAAAACBgQAAAAAAAIGBAAAAAAABAYEAAAAAAAEBgQAAAAAAAYGBAAAAAAABgYEAAAAAAAGBgQAAAAAAAYGBAAAAAAABgYEAAAAAAAGBgQAAAAAAAgGBAAAAAAACAYEAAAAAAAKBgQAAAAAAAoGBAAAAAAADAYEAAAAAAAMBgQAAAAAAA4GBAAAAAAADgYEAAAAAAAABhQAAAAAAAAGFAAAAAAAAgYUAAAAAAACBhQAAAAAAAIGFAAAAAAAAgYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACAYUAAAAAAAIBhQAAAAAAAgGFAAAAAAACAYUAAAAAAAMBhQAAAAAAAwGFAAAAAAADAYUAAAAAAAMBhQAAAAAAAwGFAAAAAAADAYUAAAAAAAOBhQAAAAAAA4GFAAAAAAAAAYkAAAAAAAABiQAAAAAAAAGJAAAAAAAAAYkAAAAAAAABiQAAAAAAAAGJAAAAAAAAgYkAAAAAAACBiQAAAAAAAIGJAAAAAAAAgYkAAAAAAAGBiQAAAAAAAYGJAAAAAAACAYkAAAAAAAIBiQAAAAAAAwGJAAAAAAADAYkAAAAAAAOBiQAAAAAAA4GJAAAAAAADgYkAAAAAAAOBiQAAAAAAA4GJAAAAAAADgYkAAAAAAAABjQAAAAAAAAGNAAAAAAAAgY0AAAAAAACBjQAAAAAAAIGNAAAAAAAAgY0AAAAAAAEBjQAAAAAAAQGNAAAAAAABAY0AAAAAAAEBjQAAAAAAAYGNAAAAAAABgY0AAAAAAAGBjQAAAAAAAYGNAAAAAAABgY0AAAAAAAGBjQAAAAAAAgGNAAAAAAACAY0AAAAAAAKBjQAAAAAAAoGNAAAAAAACgY0AAAAAAAKBjQAAAAAAAwGNAAAAAAADAY0AAAAAAAOBjQAAAAAAA4GNAAAAAAAAAZEAAAAAAAABkQAAAAAAAAGRAAAAAAAAAZEAAAAAAAABkQAAAAAAAAGRAAAAAAABgZEAAAAAAAGBkQAAAAAAAYGRAAAAAAABgZEAAAAAAAGBkQAAAAAAAYGRAAAAAAADAZEAAAAAAAMBkQAAAAAAAwGRAAAAAAADAZEAAAAAAAMBkQAAAAAAAwGRAAAAAAADAZEAAAAAAAMBkQAAAAAAAwGRAAAAAAADAZEAAAAAAAOBkQAAAAAAA4GRAAAAAAAAgZUAAAAAAACBlQAAAAAAAQGVAAAAAAABAZUAAAAAAAEBlQAAAAAAAQGVAAAAAAABgZUAAAAAAAGBlQAAAAAAAgGVAAAAAAACAZUAAAAAAAIBlQAAAAAAAgGVAAAAAAACAZUAAAAAAAIBlQAAAAAAAoGVAAAAAAACgZUAAAAAAAMBlQAAAAAAAwGVAAAAAAADAZUAAAAAAAMBlQAAAAAAAAGZAAAAAAAAAZkAAAAAAACBmQAAAAAAAIGZAAAAAAABAZkAAAAAAAEBmQAAAAAAAYGZAAAAAAABgZkAAAAAAAIBmQAAAAAAAgGZAAAAAAADAZkAAAAAAAMBmQAAAAAAAQGdAAAAAAABAZ0AAAAAAAEBnQAAAAAAAQGdAAAAAAABAZ0AAAAAAAEBnQAAAAAAAwGdAAAAAAADAZ0AAAAAAAOBnQAAAAAAA4GdAAAAAAADgZ0AAAAAAAOBnQAAAAAAA4GdAAAAAAADgZ0AAAAAAAABoQAAAAAAAAGhAAAAAAAAAaEAAAAAAAABoQAAAAAAAIGhAAAAAAAAgaEAAAAAAAEBoQAAAAAAAQGhAAAAAAABAaEAAAAAAAEBoQAAAAAAAYGhAAAAAAABgaEAAAAAAAGBoQAAAAAAAYGhAAAAAAADAaEAAAAAAAMBoQAAAAAAAIGlAAAAAAAAgaUAAAAAAACBpQAAAAAAAIGlAAAAAAABAaUAAAAAAAEBpQAAAAAAAYGlAAAAAAABgaUAAAAAAAIBpQAAAAAAAgGlAAAAAAACAaUAAAAAAAIBpQAAAAAAAgGlAAAAAAACAaUAAAAAAAKBpQAAAAAAAoGlAAAAAAACgaUAAAAAAAKBpQAAAAAAAwGlAAAAAAADAaUAAAAAAACBqQAAAAAAAIGpAAAAAAABAakAAAAAAAEBqQAAAAAAAwGpAAAAAAADAakAAAAAAAOBqQAAAAAAA4GpAAAAAAAAga0AAAAAAACBrQAAAAAAAIGtAAAAAAAAga0AAAAAAAEBrQAAAAAAAQGtAAAAAAABAa0AAAAAAAEBrQAAAAAAAYGtAAAAAAABga0AAAAAAAKBrQAAAAAAAoGtAAAAAAABAbEAAAAAAAEBsQAAAAAAAYGxAAAAAAABgbEAAAAAAAGBsQAAAAAAAYGxAAAAAAAAgbUAAAAAAACBtQAAAAAAAYG1AAAAAAABgbUAAAAAAAMBtQAAAAAAAwG1AAAAAAADAbUAAAAAAAMBtQAAAAAAA4G1AAAAAAADgbUAAAAAAAOBtQAAAAAAA4G1AAAAAAAAgbkAAAAAAACBuQAAAAAAAQG5AAAAAAABAbkAAAAAAAIBuQAAAAAAAgG5AAAAAAACgbkAAAAAAAKBuQAAAAAAAoG5AAAAAAACgbkAAAAAAAOBuQAAAAAAA4G5AAAAAAABAb0AAAAAAAEBvQAAAAAAAgG9AAAAAAACAb0AAAAAAAMBvQAAAAAAAwG9AAAAAAADgb0AAAAAAAOBvQAAAAAAAIHBAAAAAAAAgcEAAAAAAAEBwQAAAAAAAQHBAAAAAAABQcEAAAAAAAFBwQAAAAAAAYHBAAAAAAABgcEAAAAAAAIBwQAAAAAAAgHBAAAAAAACQcEAAAAAAAJBwQAAAAAAAkHBAAAAAAACQcEAAAAAAAKBwQAAAAAAAoHBAAAAAAADwcEAAAAAAAPBwQAAAAAAAQHFAAAAAAABAcUAAAAAAAIBxQAAAAAAAgHFAAAAAAACQcUAAAAAAAJBxQAAAAAAAwHFAAAAAAADAcUAAAAAAAAByQAAAAAAAAHJAAAAAAAAQckAAAAAAABByQAAAAAAAIHJAAAAAAAAgckAAAAAAADByQAAAAAAAMHJAAAAAAACQckAAAAAAAJByQAAAAAAA4HJAAAAAAADgckAAAAAAABB0QAAAAAAAEHRAAAAAAABgdEAAAAAAAGB0QAAAAAAAsHRAAAAAAACwdEAAAAAAALB0QAAAAAAAsHRAAAAAAAAQdkAAAAAAABB2QAAAAAAAoHZAAAAAAACgdkAAAAAAAEB6QAAAAAAAQHpA\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}],[\"y\",{\"type\":\"ndarray\",\"array\":{\"type\":\"bytes\",\"data\":\"AAAAAAAAAACycnWArFxtP7JydYCsXG0/snJ1gKxcfT+ycnWArFx9PwYWWGCBBYY/BhZYYIEFhj+ycnWArFyNP7JydYCsXI0/r2dJ0OtZkj+vZ0nQ61mSPwYWWGCBBZY/BhZYYIEFlj9cxGbwFrGZP1zEZvAWsZk/snJ1gKxcnT+ycnWArFydP4QQQgghhKA/hBBCCCGEoD+vZ0nQ61miP69nSdDrWaI/2r5QmLYvpD/avlCYti+kPwYWWGCBBaY/BhZYYIEFpj8xbV8oTNunPzFtXyhM26c/XMRm8BaxqT9cxGbwFrGpP4cbbrjhhqs/hxtuuOGGqz+ycnWArFytP7JydYCsXK0/3cl8SHcyrz/dyXxIdzKvP4QQQgghhLA/hBBCCCGEsD8avEVsBm+xPxq8RWwGb7E/r2dJ0OtZsj+vZ0nQ61myP0UTTTTRRLM/RRNNNNFEsz/avlCYti+0P9q+UJi2L7Q/cGpU/JsatT9walT8mxq1PwYWWGCBBbY/BhZYYIEFtj+bwVvEZvC2P5vBW8Rm8LY/MW1fKEzbtz8xbV8oTNu3P8YYY4wxxrg/xhhjjDHGuD9cxGbwFrG5P1zEZvAWsbk/8W9qVPybuj/xb2pU/Ju6P4cbbrjhhrs/hxtuuOGGuz8cx3Ecx3G8PxzHcRzHcbw/snJ1gKxcvT+ycnWArFy9P0geeeSRR74/SB555JFHvj/dyXxIdzK/P93JfEh3Mr8/uTpAVq4OwD+5OkBWrg7AP4QQQgghhMA/hBBCCCGEwD9P5kO6k/nAP0/mQ7qT+cA/GrxFbAZvwT8avEVsBm/BP+SRRx555ME/5JFHHnnkwT+vZ0nQ61nCP69nSdDrWcI/ej1Lgl7Pwj96PUuCXs/CP0UTTTTRRMM/RRNNNNFEwz8Q6U7mQ7rDPxDpTuZDusM/2r5QmLYvxD/avlCYti/EP6WUUkoppcQ/pZRSSimlxD9walT8mxrFP3BqVPybGsU/O0BWrg6QxT87QFauDpDFPwYWWGCBBcY/BhZYYIEFxj/Q61kS9HrGP9DrWRL0esY/m8FbxGbwxj+bwVvEZvDGP2aXXXbZZcc/Zpdddtllxz8xbV8oTNvHPzFtXyhM28c/+0Jh2r5QyD/7QmHavlDIP8YYY4wxxsg/xhhjjDHGyD+R7mQ+pDvJP5HuZD6kO8k/XMRm8BaxyT9cxGbwFrHJPyeaaKKJJso/J5poookmyj/xb2pU/JvKP/FvalT8m8o/vEVsBm8Ryz+8RWwGbxHLP4cbbrjhhss/hxtuuOGGyz9S8W9qVPzLP1Lxb2pU/Ms/HMdxHMdxzD8cx3Ecx3HMP+ecc84558w/55xzzjnnzD+ycnWArFzNP7JydYCsXM0/fUh3Mh/SzT99SHcyH9LNP0geeeSRR84/SB555JFHzj8S9HqWBL3OPxL0epYEvc4/3cl8SHcyzz/dyXxIdzLPP6iffvrpp88/qJ9++umnzz+5OkBWrg7QP7k6QFauDtA/nyVBr2dJ0D+fJUGvZ0nQP4QQQgghhNA/hBBCCCGE0D9q+0Jh2r7QP2r7QmHavtA/T+ZDupP50D9P5kO6k/nQPzTRRBNNNNE/NNFEE0000T8avEVsBm/RPxq8RWwGb9E//6ZGxb+p0T//pkbFv6nRP+SRRx555NE/5JFHHnnk0T/KfEh3Mh/SP8p8SHcyH9I/r2dJ0OtZ0j+vZ0nQ61nSP5VSSimllNI/lVJKKaWU0j96PUuCXs/SP3o9S4Jez9I/XyhM2xcK0z9fKEzbFwrTP0UTTTTRRNM/RRNNNNFE0z8q/k2Nin/TPyr+TY2Kf9M/EOlO5kO60z8Q6U7mQ7rTP/XTTz/99NM/9dNPP/300z/avlCYti/UP9q+UJi2L9Q/wKlR8W9q1D/AqVHxb2rUP6WUUkoppdQ/pZRSSiml1D+Lf1Oj4t/UP4t/U6Pi39Q/cGpU/Jsa1T9walT8mxrVP1VVVVVVVdU/VVVVVVVV1T87QFauDpDVPztAVq4OkNU/ICtXB8jK1T8gK1cHyMrVPwYWWGCBBdY/BhZYYIEF1j/rAFm5OkDWP+sAWbk6QNY/0OtZEvR61j/Q61kS9HrWP7bWWmuttdY/ttZaa6211j+bwVvEZvDWP5vBW8Rm8NY/gKxcHSAr1z+ArFwdICvXP2aXXXbZZdc/Zpdddtll1z9Lgl7PkqDXP0uCXs+SoNc/MW1fKEzb1z8xbV8oTNvXPxZYYIEFFtg/FlhggQUW2D/7QmHavlDYP/tCYdq+UNg/4S1iM3iL2D/hLWIzeIvYP8YYY4wxxtg/xhhjjDHG2D+sA2Tl6gDZP6wDZOXqANk/ke5kPqQ72T+R7mQ+pDvZP3bZZZdddtk/dtlll1122T9cxGbwFrHZP1zEZvAWsdk/Qa9nSdDr2T9Br2dJ0OvZPyeaaKKJJto/J5poookm2j8MhWn7QmHaPwyFaftCYdo/8W9qVPyb2j/xb2pU/JvaP9daa6211to/11prrbXW2j+8RWwGbxHbP7xFbAZvEds/oTBtXyhM2z+hMG1fKEzbP4cbbrjhhts/hxtuuOGG2z9sBm8Rm8HbP2wGbxGbwds/UvFvalT82z9S8W9qVPzbPzfccMMNN9w/N9xwww033D8cx3Ecx3HcPxzHcRzHcdw/ArJydYCs3D8CsnJ1gKzcP+ecc84559w/55xzzjnn3D/Nh3Qn8yHdP82HdCfzId0/snJ1gKxc3T+ycnWArFzdP5dddtlll90/l1122WWX3T99SHcyH9LdP31IdzIf0t0/YjN4i9gM3j9iM3iL2AzeP0geeeSRR94/SB555JFH3j8tCXo9S4LePy0Jej1Lgt4/EvR6lgS93j8S9HqWBL3eP/jee++9994/+N5777333j/dyXxIdzLfP93JfEh3Mt8/w7R9oTBt3z/DtH2hMG3fP6iffvrpp98/qJ9++umn3z+Nin9To+LfP42Kf1Oj4t8/uTpAVq4O4D+5OkBWrg7gPyywwAILLOA/LLDAAgss4D+fJUGvZ0ngP58lQa9nSeA/EZvBW8Rm4D8Rm8FbxGbgP4QQQgghhOA/hBBCCCGE4D/3hcK0faHgP/eFwrR9oeA/avtCYdq+4D9q+0Jh2r7gP9xwww033OA/3HDDDTfc4D9P5kO6k/ngP0/mQ7qT+eA/wlvEZvAW4T/CW8Rm8BbhPzTRRBNNNOE/NNFEE0004T+nRsW/qVHhP6dGxb+pUeE/GrxFbAZv4T8avEVsBm/hP4wxxhhjjOE/jDHGGGOM4T//pkbFv6nhP/+mRsW/qeE/chzHcRzH4T9yHMdxHMfhP+SRRx555OE/5JFHHnnk4T9XB8jK1QHiP1cHyMrVAeI/ynxIdzIf4j/KfEh3Mh/iPz3yyCOPPOI/PfLII4884j+vZ0nQ61niP69nSdDrWeI/It3JfEh34j8i3cl8SHfiP5VSSimllOI/lVJKKaWU4j8HyMrVAbLiPwfIytUBsuI/ej1Lgl7P4j96PUuCXs/iP+2yyy677OI/7bLLLrvs4j9fKEzbFwrjP18oTNsXCuM/0p3Mh3Qn4z/SncyHdCfjP0UTTTTRROM/RRNNNNFE4z+4iM3gLWLjP7iIzeAtYuM/Kv5NjYp/4z8q/k2Nin/jP51zzjnnnOM/nXPOOeec4z8Q6U7mQ7rjPxDpTuZDuuM/gl7PkqDX4z+CXs+SoNfjP/XTTz/99OM/9dNPP/304z9oSdDrWRLkP2hJ0OtZEuQ/2r5QmLYv5D/avlCYti/kP0000UQTTeQ/TTTRRBNN5D/AqVHxb2rkP8CpUfFvauQ/Mh/SncyH5D8yH9KdzIfkP6WUUkoppeQ/pZRSSiml5D8YCtP2hcLkPxgK0/aFwuQ/i39To+Lf5D+Lf1Oj4t/kP/30008//eQ//fTTTz/95D9walT8mxrlP3BqVPybGuU/49/UqPg35T/j39So+DflP1VVVVVVVeU/VVVVVVVV5T/IytUBsnLlP8jK1QGycuU/O0BWrg6Q5T87QFauDpDlP6211lprreU/rbXWWmut5T8gK1cHyMrlPyArVwfIyuU/k6DXsyTo5T+ToNezJOjlPwYWWGCBBeY/BhZYYIEF5j94i9gM3iLmP3iL2AzeIuY/6wBZuTpA5j/rAFm5OkDmP1522WWXXeY/XnbZZZdd5j/Q61kS9HrmP9DrWRL0euY/Q2HavlCY5j9DYdq+UJjmP7bWWmutteY/ttZaa6215j8oTNsXCtPmPyhM2xcK0+Y/m8FbxGbw5j+bwVvEZvDmPw433HDDDec/DjfccMMN5z+ArFwdICvnP4CsXB0gK+c/8yHdyXxI5z/zId3JfEjnP2aXXXbZZec/Zpdddtll5z/ZDN4iNoPnP9kM3iI2g+c/S4Jez5Kg5z9Lgl7PkqDnP7733nvvvec/vvfee++95z8xbV8oTNvnPzFtXyhM2+c/o+Lf1Kj45z+j4t/UqPjnPxZYYIEFFug/FlhggQUW6D+JzeAtYjPoP4nN4C1iM+g/+0Jh2r5Q6D/7QmHavlDoP2644YYbbug/brjhhhtu6D/hLWIzeIvoP+EtYjN4i+g/U6Pi39So6D9To+Lf1KjoP8YYY4wxxug/xhhjjDHG6D85juM4juPoPzmO4ziO4+g/rANk5eoA6T+sA2Tl6gDpPx555JFHHuk/HnnkkUce6T+R7mQ+pDvpP5HuZD6kO+k/BGTl6gBZ6T8EZOXqAFnpP3bZZZddduk/dtlll1126T/pTuZDupPpP+lO5kO6k+k/XMRm8Bax6T9cxGbwFrHpP84555xzzuk/zjnnnHPO6T9Br2dJ0OvpP0GvZ0nQ6+k/tCTo9SwJ6j+0JOj1LAnqPyeaaKKJJuo/J5poookm6j+ZD+lO5kPqP5kP6U7mQ+o/DIVp+0Jh6j8MhWn7QmHqP3/66aeffuo/f/rpp59+6j/xb2pU/JvqP/FvalT8m+o/ZOXqAFm56j9k5eoAWbnqP9daa6211uo/11prrbXW6j9J0OtZEvTqP0nQ61kS9Oo/vEVsBm8R6z+8RWwGbxHrPy+77LLLLus/L7vssssu6z+hMG1fKEzrP6EwbV8oTOs/FKbtC4Vp6z8Upu0LhWnrP4cbbrjhhus/hxtuuOGG6z/6kO5kPqTrP/qQ7mQ+pOs/bAZvEZvB6z9sBm8Rm8HrP99777333us/33vvvffe6z9S8W9qVPzrP1Lxb2pU/Os/xGbwFrEZ7D/EZvAWsRnsPzfccMMNN+w/N9xwww037D+qUfFvalTsP6pR8W9qVOw/HMdxHMdx7D8cx3Ecx3HsP4888sgjj+w/jzzyyCOP7D8CsnJ1gKzsPwKycnWArOw/dSfzId3J7D91J/Mh3cnsP+ecc8455+w/55xzzjnn7D9aEvR6lgTtP1oS9HqWBO0/zYd0J/Mh7T/Nh3Qn8yHtPz/99NNPP+0/P/30008/7T+ycnWArFztP7JydYCsXO0/Jej1LAl67T8l6PUsCXrtP5dddtlll+0/l1122WWX7T8K0/aFwrTtPwrT9oXCtO0/fUh3Mh/S7T99SHcyH9LtP++999577+0/77333nvv7T9iM3iL2AzuP2IzeIvYDO4/1aj4NzUq7j/VqPg3NSruP0geeeSRR+4/SB555JFH7j+6k/mQ7mTuP7qT+ZDuZO4/LQl6PUuC7j8tCXo9S4LuP6B++umnn+4/oH766aef7j8S9HqWBL3uPxL0epYEve4/hWn7QmHa7j+FaftCYdruP/jee++99+4/+N5777337j9qVPybGhXvP2pU/JsaFe8/3cl8SHcy7z/dyXxIdzLvP1A//fTTT+8/UD/99NNP7z/DtH2hMG3vP8O0faEwbe8/NSr+TY2K7z81Kv5NjYrvP6iffvrpp+8/qJ9++umn7z8bFf+mRsXvPxsV/6ZGxe8/jYp/U6Pi7z+Nin9To+LvPwAAAAAAAPA/\"},\"shape\":[558],\"dtype\":\"float64\",\"order\":\"little\"}]]}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1231\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1232\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1227\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_width\":2}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1228\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.1,\"line_width\":2}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Line\",\"id\":\"p1229\",\"attributes\":{\"x\":{\"type\":\"field\",\"field\":\"x\"},\"y\":{\"type\":\"field\",\"field\":\"y\"},\"line_color\":\"#1f77b3\",\"line_alpha\":0.2,\"line_width\":2}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1239\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1233\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1234\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1235\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1240\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1241\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1236\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":3.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1237\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":3.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1238\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":3.0},\"y\":{\"type\":\"value\",\"value\":0},\"angle\":{\"type\":\"value\",\"value\":3.141592653589793},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}},{\"type\":\"object\",\"name\":\"GlyphRenderer\",\"id\":\"p1248\",\"attributes\":{\"data_source\":{\"type\":\"object\",\"name\":\"ColumnDataSource\",\"id\":\"p1242\",\"attributes\":{\"selected\":{\"type\":\"object\",\"name\":\"Selection\",\"id\":\"p1243\",\"attributes\":{\"indices\":[],\"line_indices\":[]}},\"selection_policy\":{\"type\":\"object\",\"name\":\"UnionRenderers\",\"id\":\"p1244\"},\"data\":{\"type\":\"map\"}}},\"view\":{\"type\":\"object\",\"name\":\"CDSView\",\"id\":\"p1249\",\"attributes\":{\"filter\":{\"type\":\"object\",\"name\":\"AllIndices\",\"id\":\"p1250\"}}},\"glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1245\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":420.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"nonselection_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1246\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":420.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.1},\"line_width\":{\"type\":\"value\",\"value\":2}}},\"muted_glyph\":{\"type\":\"object\",\"name\":\"Ray\",\"id\":\"p1247\",\"attributes\":{\"x\":{\"type\":\"value\",\"value\":420.0},\"y\":{\"type\":\"value\",\"value\":1},\"line_color\":{\"type\":\"value\",\"value\":\"#1f77b3\"},\"line_alpha\":{\"type\":\"value\",\"value\":0.2},\"line_width\":{\"type\":\"value\",\"value\":2}}}}}],\"toolbar\":{\"type\":\"object\",\"name\":\"Toolbar\",\"id\":\"p1198\",\"attributes\":{\"tools\":[{\"type\":\"object\",\"name\":\"PanTool\",\"id\":\"p1211\"},{\"type\":\"object\",\"name\":\"WheelZoomTool\",\"id\":\"p1212\",\"attributes\":{\"renderers\":\"auto\"}},{\"type\":\"object\",\"name\":\"BoxZoomTool\",\"id\":\"p1213\",\"attributes\":{\"dimensions\":\"both\",\"overlay\":{\"type\":\"object\",\"name\":\"BoxAnnotation\",\"id\":\"p1214\",\"attributes\":{\"syncable\":false,\"line_color\":\"black\",\"line_alpha\":1.0,\"line_width\":2,\"line_dash\":[4,4],\"fill_color\":\"lightgrey\",\"fill_alpha\":0.5,\"level\":\"overlay\",\"visible\":false,\"left\":{\"type\":\"number\",\"value\":\"nan\"},\"right\":{\"type\":\"number\",\"value\":\"nan\"},\"top\":{\"type\":\"number\",\"value\":\"nan\"},\"bottom\":{\"type\":\"number\",\"value\":\"nan\"},\"left_units\":\"canvas\",\"right_units\":\"canvas\",\"top_units\":\"canvas\",\"bottom_units\":\"canvas\",\"handles\":{\"type\":\"object\",\"name\":\"BoxInteractionHandles\",\"id\":\"p1220\",\"attributes\":{\"all\":{\"type\":\"object\",\"name\":\"AreaVisuals\",\"id\":\"p1219\",\"attributes\":{\"fill_color\":\"white\",\"hover_fill_color\":\"lightgray\"}}}}}}}},{\"type\":\"object\",\"name\":\"SaveTool\",\"id\":\"p1221\"},{\"type\":\"object\",\"name\":\"ResetTool\",\"id\":\"p1222\"},{\"type\":\"object\",\"name\":\"HelpTool\",\"id\":\"p1223\"}]}},\"toolbar_location\":\"above\",\"left\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1206\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1207\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1208\"},\"axis_label\":\"ECDF\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1209\"}}}],\"below\":[{\"type\":\"object\",\"name\":\"LinearAxis\",\"id\":\"p1201\",\"attributes\":{\"ticker\":{\"type\":\"object\",\"name\":\"BasicTicker\",\"id\":\"p1202\",\"attributes\":{\"mantissas\":[1,2,5]}},\"formatter\":{\"type\":\"object\",\"name\":\"BasicTickFormatter\",\"id\":\"p1203\"},\"axis_label\":\"mRNA count\",\"major_label_policy\":{\"type\":\"object\",\"name\":\"AllLabels\",\"id\":\"p1204\"}}}],\"center\":[{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1205\",\"attributes\":{\"axis\":{\"id\":\"p1201\"}}},{\"type\":\"object\",\"name\":\"Grid\",\"id\":\"p1210\",\"attributes\":{\"dimension\":1,\"axis\":{\"id\":\"p1206\"}}}],\"frame_width\":200,\"frame_height\":150}}]}}]}}]}};\n",
" const render_items = [{\"docid\":\"b1817399-3fa8-4d83-8c7d-be6668ca69b7\",\"roots\":{\"p1253\":\"d22b9c3f-2823-4f2d-82bd-2e90317faaf4\"},\"root_ids\":[\"p1253\"]}];\n",
" void root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n",
" }\n",
" if (root.Bokeh !== undefined) {\n",
" embed_document(root);\n",
" } else {\n",
" let attempts = 0;\n",
" const timer = setInterval(function(root) {\n",
" if (root.Bokeh !== undefined) {\n",
" clearInterval(timer);\n",
" embed_document(root);\n",
" } else {\n",
" attempts++;\n",
" if (attempts > 100) {\n",
" clearInterval(timer);\n",
" console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n",
" }\n",
" }\n",
" }, 10, root)\n",
" }\n",
"})(window);"
],
"application/vnd.bokehjs_exec.v0+json": ""
},
"metadata": {
"application/vnd.bokehjs_exec.v0+json": {
"id": "p1253"
}
},
"output_type": "display_data"
}
],
"source": [
"genes = [\"Nanog\", \"Prdm14\", \"Rest\", \"Rex1\"]\n",
"\n",
"plots = [\n",
" iqplot.ecdf(\n",
" data=df[gene].to_numpy(),\n",
" q=gene,\n",
" x_axis_label=\"mRNA count\",\n",
" title=gene,\n",
" frame_height=150,\n",
" frame_width=200,\n",
" )\n",
" for gene in genes\n",
"]\n",
"\n",
"bokeh.io.show(\n",
" bokeh.layouts.column(bokeh.layouts.row(*plots[:2]), bokeh.layouts.row(*plots[2:]))\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Rex1 clearly is bimodal, and Nanog appears to have a second inflection point where the ECDF reaches a value of about 0.4, which is what we see in the MLE estimates in the mixture model. Rest and Prdm14 both appear to be unimodal, agreeing with what we saw with the AIC analysis.\n",
"\n",
"Note that this underscores something we've been stressing all along. You should do good exploratory data analysis first, and the EDA often tells much of the story!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Caveat\n",
"\n",
"Remember, though, that we did *not* take into account that the measurements of the four genes were done in the same cells. We modeled that when we presented the mixture models at the beginning of this lesson. The analysis of a more complicated model with MLE proved to be out of reach due to computational difficulty. So, we should not make strong conclusions about what the relative quality of the mixture of single Negative Binomial models mean in this context. We will address these kinds of modeling issues in the sequel of this course."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## AIC for the spindle model\n",
"\n",
"We can do a similar analysis for the two competing models for mitotic spindle size. We need our functions from earlier."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def theor_spindle_length(gamma, phi, d):\n",
" \"\"\"Compute spindle length using mathematical model\"\"\"\n",
" return gamma * d / np.cbrt(1 + (gamma * d / phi)**3)\n",
"\n",
"\n",
"def log_likelihood(params, d, ell):\n",
" \"\"\"Log likelihood of spindle length model.\"\"\"\n",
" gamma, phi, sigma = params\n",
"\n",
" if gamma <= 0 or gamma > 1 or phi <= 0:\n",
" return -np.inf\n",
"\n",
" mu = theor_spindle_length(gamma, phi, d)\n",
" return np.sum(st.norm.logpdf(ell, mu, sigma))\n",
"\n",
"\n",
"def spindle_mle(d, ell):\n",
" \"\"\"Compute MLE for parameters in spindle length model.\"\"\"\n",
" with warnings.catch_warnings():\n",
" warnings.simplefilter(\"ignore\")\n",
"\n",
" res = scipy.optimize.minimize(\n",
" fun=lambda params, d, ell: -log_likelihood(params, d, ell),\n",
" x0=np.array([0.5, 35, 5]),\n",
" args=(d, ell),\n",
" method='Powell'\n",
" )\n",
"\n",
" if res.success:\n",
" return res.x\n",
" else:\n",
" raise RuntimeError('Convergence failed with message', res.message) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now perform MLE to get the parameters for each model and store the results."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"df = pl.read_csv(os.path.join(data_path, \"good_invitro_droplet_data.csv\"), comment_prefix=\"#\")\n",
"\n",
"mle_1 = df.select(\n",
" pl.col(\"Spindle Length (um)\").mean().alias('phi_1'), \n",
" pl.col(\"Spindle Length (um)\").std().alias('sigma_1')\n",
")\n",
"\n",
"mle_2 = pl.DataFrame(\n",
" data=spindle_mle(\n",
" df[\"Droplet Diameter (um)\"].to_numpy(), \n",
" df[\"Spindle Length (um)\"].to_numpy()\n",
" ).reshape((1, 3)),\n",
" orient='row',\n",
" schema=['gamma', 'phi_2', 'sigma_2']\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we can compute the log likelihood evaluated at the MLE."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(np.float64(-1999.5179249272933), np.float64(-1837.1589821363168))"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"log_like_1 = st.norm.logpdf(\n",
" df[\"Spindle Length (um)\"], \n",
" mle_1[\"phi_1\"].item(), \n",
" mle_1[\"sigma_1\"].item()\n",
").sum()\n",
"\n",
"log_like_2 = log_likelihood(\n",
" mle_2.to_numpy().flatten(),\n",
" df[\"Droplet Diameter (um)\"],\n",
" df[\"Spindle Length (um)\"],\n",
")\n",
"\n",
"# Take a look\n",
"log_like_1, log_like_2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The log likeihood for model 2, with spindle size depending on droplet diameter, is much greater than for model 1. And now we can compute the AIC,noting that there are two parameters for model 1 and three for model 2."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(np.float64(4003.0358498545866), np.float64(3680.3179642726336))"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AIC_1 = -2 * (log_like_1 - 2)\n",
"AIC_2 = -2 * (log_like_2 - 3)\n",
"\n",
"# Look at the AICs\n",
"AIC_1, AIC_2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There is a massive disparity in the AICs, so we know that model 2 is strongly preferred. Nonetheless, we can compute the Akaike weight for model 1 to compare."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"np.float64(8.369539052514859e-71)"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"AIC_max = max(AIC_1, AIC_2)\n",
"numerator = np.exp(-(AIC_1 - AIC_max)/2)\n",
"denominator = numerator + np.exp(-(AIC_2 - AIC_max)/2)\n",
"w_single = numerator / denominator\n",
"\n",
"# Check the Akaike weight\n",
"w_single"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Model 1 is completely out of the question, with a tiny Akaike weight!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing environment"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python implementation: CPython\n",
"Python version : 3.13.5\n",
"IPython version : 9.4.0\n",
"\n",
"numpy : 2.2.6\n",
"polars : 1.31.0\n",
"scipy : 1.16.0\n",
"bokeh : 3.7.3\n",
"iqplot : 0.3.7\n",
"bebi103 : 0.1.28\n",
"jupyterlab: 4.4.5\n",
"\n"
]
}
],
"source": [
"%load_ext watermark\n",
"%watermark -v -p numpy,polars,scipy,bokeh,iqplot,bebi103,jupyterlab"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}